Two of my papers have been accepted for publication. “Optimal Replacement Policies for Dairy Cows Based on Daily Yield Measurements” have been published in Journal of Dairy Scienc.
Abstract: Markov decision processes (MDP) with finite state and action space have often been used to model sequential decision making over time in dairy herds. However, the length of each stage has been at least 1 mo, resulting in models that do not support decisions on a daily basis. The present paper describes the first step of developing an MDP model that can be integrated into a modern herd management system. A hierarchical MDP was formulated for the dairy cow replacement problem with stage lengths of 1 d. It can be used to assist the farmer in replacement decisions on a daily basis and is based on daily milk yield measurements that are available in modern milking systems. Bayesian updating was used to predict the performance of each cow in the herd and economic decisions were based on the prediction. Moreover, parameters in the model were estimated using data records of the specific herd under consideration. This includes herd-specific lactation curves.
The other article “Embedding a state space model into a Markov decision process” have been accepted for publication in Annals of Operations Research.
Abstract: In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models estimated from data collected from the animal or herd. State space models (SSMs) are a general tool for modeling repeated measurements over time where the model parameters can evolve dynamically. In this paper we consider methods for embedding an SSM into an MDP with finite state and action space. Different ways of discretizing an SSM are discussed and methods for reducing the state space of the MDP are presented. An example from dairy production is given.