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Stochastic time-dependent networks

Given a topological network G = (N ,A )

I Departure and arrival times at nodes are integer.

I Time-dependent - The travel time between two nodes
depends on the leaving time from the tail node.

I Stochastic - Travel time through an arc is not known in
advance and represented by a discrete random variable.

I No online information - Only information while travelling is
arrival time.

I No waiting allowed at nodes (arrival = departure).
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Route choice in STD networks

A routing routing strategy between an origin o and a
destination d when leaving the origin at time zero assigns to
each node and possible leaving time and sucessor arc.

Two ways of routing in an STD network

I Time-adaptive routing - The traveler may react on arrival
time realizations (different sucessors allowed).

I A priori routing - A loopless path in G must be specified
before travel begins (sucessors must be the same).

In this talk we consider a priori routing
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Route selection criteria

We consider the following objectives:

I Minimizing the expected travel time (MET)

I Minimizing the expected cost (MEC)

Under MEC we define the following costs:

I c(u , v , t) – cost of leaving node u at time t along arc (u , v).
I g(t) – penalty cost of arriving at node d at time t .

Known results

I Time-adaptive route choice – Finding the best strategy⇔
finding a minimum weight hyperpath.

I A priori route choice – Finding the shortest path is NP-hard.
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Ranking scheme (deterministic case)

Let P denote the set of paths in G and p the shortest path.
Generic ranking scheme based on lower bounds:

1. Patition P \ {p} into q disjoint subsets P1, . . . ,Pq based on
p

2. For each set P i find a lower bound w i on the shortest path
cost and add (P i ,w i ) to a sorted candidate set C

3. Pick the best candidate (P i ,w i ) from C and find the
shortest path p i ∈ P i with cost ŵ i

4. If ∃k : wk ≤ ŵ i , (Pk ,wk ) ∈ C reinsert (P i , ŵ i ) into C and
goto step 3

5. Output (ŵ i ,p i ) and repeat using p i and P i
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4. If ∃k : wk ≤ ŵ i , (Pk ,wk ) ∈ C reinsert (P i , ŵ i ) into C and
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Ranking paths in a STDN

The generic ranking scheme is hard to use in an STD network.

Problem: finding the shortest path is NP -hard.

Idea: use time-adaptive routing as a relaxation of a priori
routing.

I Finding the best routing strategy gives us a lower bound on
the expected cost of the shortest path

I The best routing strategy may be used to partition the
solution space
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Ranking scheme (STDN)

Let s denote the best strategy and ps the corresponding path
(null if s not is a path).

1. Patition P \ {ps} into q disjoint subsets P1, . . . ,Pq based
on a subpath of s

2. For each set P i find a lower bound w i on the shortest path
cost and add (P i ,w i ) to a sorted candidate set C

3. Pick the best candidate (P i ,w i ) from C and find the best
strategy s i ∈ P i with cost ŵ i

4. If ∃k : wk ≤ ŵ i , (Pk ,wk ) ∈ C reinsert (P i , ŵ i ) into C and
goto step 3

5. If p i
s is a path output (ŵ i ,p i

s)

6. Repeat using s i and P i
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4. If ∃k : wk ≤ ŵ i , (Pk ,wk ) ∈ C reinsert (P i , ŵ i ) into C and
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Generator

I TEGP generator used (www.research.relund.dk).

I Cyclic time periods (e.g. a day)
I In each cyclic period there are some peak periods.
I Time unit 5 min, off-peak mean travel time [2,6] (100%

increase in peaks).
I Off-peak costs [1,1000] (100% increase in peaks) +

random noise (10%).
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Test instances

peak dependent costs random costs

Class 1 2 3 4 5 6

Grid size 5 × 10 10×10 20×10 5 × 10 10×10 20×10

n 2320 7573 21454 1497 3961 11856

m 7809 27278 79570 5056 14295 43991

H 118 156 237 75 101 155
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Results (K = 100)
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1 356 8 13 0.3 82 14 4 1 49 5

2 454 37 11 1.0 82 14 4 0 17 7

3 2359 875 133 53.5 85 13 2 0 10 5

4 1427 25 133 2.5 50 25 20 5 18 43

5 9942 564 2722 157.9 39 21 27 12 8 54

6 203479 34227 89519 15127.5 25 16 27 31 3 59
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Questions

Contact: lars@relund.dk,
http://www.research.relund.dk/

lars@relund.dk
http://www.research.relund.dk/
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