

Ranking paths in stochastic time-dependent networks

Lars Relund Nielsen and Kim Allan Andersen Department of Economics and Business, Aarhus University, Denmark (lars@relund.dk)

Daniele Pretolani

Department of Science and Methods of Engineering, University of Modena and Reggio Emilia, Italy

VeRoLog - June 18-20, 2012

Agenda

Stochastic time-dependent networks Assumptions A hypergraph representation Route choice in STD networks Route selection criteria Example MEC (time-adaptive routing)

Ranking paths Ranking paths Ranking paths in a STDN Example (continued)

Computational results

Given a topological network G = (N, A)

• Departure and arrival times at nodes are integer.

- Departure and arrival times at nodes are integer.
- Time-dependent The travel time between two nodes depends on the leaving time from the tail node.

- Departure and arrival times at nodes are integer.
- Time-dependent The travel time between two nodes depends on the leaving time from the tail node.
- Stochastic Travel time through an arc is not known in advance and represented by a discrete random variable.

- Departure and arrival times at nodes are integer.
- Time-dependent The travel time between two nodes depends on the leaving time from the tail node.
- Stochastic Travel time through an arc is not known in advance and represented by a discrete random variable.
- No online information Only information while travelling is arrival time.

- Departure and arrival times at nodes are integer.
- Time-dependent The travel time between two nodes depends on the leaving time from the tail node.
- Stochastic Travel time through an arc is not known in advance and represented by a discrete random variable.
- No online information Only information while travelling is arrival time.
- No waiting allowed at nodes (arrival = departure).

A hypergraph representation

(u, v), t	(a,b),0	(b,c),1	(b,c),2	(b,d), 1	(b,d),2	(c, d), 2	(c, d), 3
l(u, v, t)	{1,2}	{2,3}	{3}	{3}	{6}	{3,4}	{4,5}
Pijt	$\{\frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{2}, \frac{1}{2}\}$	{1}	{1}	{1}	$\{\frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{2}, \frac{1}{2}\}$

A hypergraph representation

(u, v), t	(a, b), 0	(b,c),1	(b,c),2	(b, d), 1	(b,d),2	(c, d), 2	(c,d),3
l(u, v, t)	{1,2}	{2,3}	{3}	{3}	{6}	{3,4}	{4,5}
Pijt	$\{\frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{2}, \frac{1}{2}\}$	{1}	{1}	{1}	$\{\frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{2}, \frac{1}{2}\}$

A **routing routing strategy** between an origin *o* and a destination *d* when leaving the origin at time zero assigns to each node and possible leaving time and successor arc.

A **routing routing strategy** between an origin *o* and a destination *d* when leaving the origin at time zero assigns to each node and possible leaving time and successor arc. Two ways of routing in an STD network

 Time-adaptive routing - The traveler may react on arrival time realizations (different sucessors allowed).

A **routing routing strategy** between an origin *o* and a destination *d* when leaving the origin at time zero assigns to each node and possible leaving time and sucessor arc. Two ways of routing in an STD network

- Time-adaptive routing The traveler may react on arrival time realizations (different sucessors allowed).
- A priori routing A loopless path in G must be specified before travel begins (sucessors must be the same).

A **routing routing strategy** between an origin *o* and a destination *d* when leaving the origin at time zero assigns to each node and possible leaving time and sucessor arc. Two ways of routing in an STD network

- Time-adaptive routing The traveler may react on arrival time realizations (different sucessors allowed).
- A priori routing A loopless path in G must be specified before travel begins (sucessors must be the same).

In this talk we consider a priori routing

We consider the following objectives:

Minimizing the expected travel time (MET)

Under MEC we define the following costs:

- ► c(u, v, t) cost of leaving node u at time t along arc (u, v).
- g(t) penalty cost of arriving at node d at time t.

We consider the following objectives:

- Minimizing the expected travel time (MET)
- Minimizing the expected cost (MEC)

Under MEC we define the following costs:

- ► c(u, v, t) cost of leaving node u at time t along arc (u, v).
- g(t) penalty cost of arriving at node d at time t.

We consider the following objectives:

- Minimizing the expected travel time (MET)
- Minimizing the expected cost (MEC)

Under MEC we define the following costs:

- ► c(u, v, t) cost of leaving node u at time t along arc (u, v).
- g(t) penalty cost of arriving at node d at time t.

We consider the following objectives:

- Minimizing the expected travel time (MET)
- Minimizing the expected cost (MEC)

Under MEC we define the following costs:

- ► c(u, v, t) cost of leaving node u at time t along arc (u, v).
- g(t) penalty cost of arriving at node d at time t.

Known results

- Time-adaptive route choice Finding the best strategy finding a minimum weight hyperpath.
- A priori route choice Finding the shortest path is NP-hard.

Agenda

Stochastic time-dependent networks Assumptions A hypergraph representation Route choice in STD networks Route selection criteria Example MEC (time-adaptive routing)

Ranking paths Ranking paths Ranking paths in a STDN Example (continued)

Computational results

Let \mathcal{P} denote the set of paths in G and p the shortest path. Generic ranking scheme based on lower bounds:

1. Patition $\mathcal{P} \setminus \{p\}$ into q disjoint subsets $\mathcal{P}^1, \dots, \mathcal{P}^q$ based on p

- 1. Patition $\mathcal{P} \setminus \{p\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on p
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}

- 1. Patition $\mathcal{P} \setminus \{p\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on p
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the shortest path $p^i \in \mathcal{P}^i$ with cost \hat{w}^i

- 1. Patition $\mathcal{P} \setminus \{p\}$ into q disjoint subsets $\mathcal{P}^1, \dots, \mathcal{P}^q$ based on p
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the shortest path $p^i \in \mathcal{P}^i$ with cost \hat{w}^i
- 4. If $\exists k : w^k \leq \hat{w}^i, (\mathcal{P}^k, w^k) \in \mathcal{C}$ reinsert $(\mathcal{P}^i, \hat{w}^i)$ into \mathcal{C} and goto step 3

- 1. Patition $\mathcal{P} \setminus \{p\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on p
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the shortest path $p^i \in \mathcal{P}^i$ with cost \hat{w}^i
- 4. If $\exists k : w^k \leq \hat{w}^i, (\mathcal{P}^k, w^k) \in \mathcal{C}$ reinsert $(\mathcal{P}^i, \hat{w}^i)$ into \mathcal{C} and goto step 3
- 5. Output (\hat{w}^i, p^i) and repeat using p^i and \mathcal{P}^i

Ranking paths in a STDN

The generic ranking scheme is hard to use in an STD network.

Ranking paths in a STDN

The generic ranking scheme is hard to use in an STD network. Problem: finding the shortest path is *NP*-hard.

Ranking paths in a STDN

The generic ranking scheme is hard to use in an STD network. Problem: finding the shortest path is *NP*-hard. Idea: use time-adaptive routing as a relaxation of a priori routing.

 Finding the best routing strategy gives us a lower bound on the expected cost of the shortest path

Ranking paths in a STDN

The generic ranking scheme is hard to use in an STD network. Problem: finding the shortest path is *NP*-hard. Idea: use time-adaptive routing as a relaxation of a priori routing.

- Finding the best routing strategy gives us a lower bound on the expected cost of the shortest path
- The best routing strategy may be used to partition the solution space

Let s denote the best strategy and p_s the corresponding path (null if s not is a path).

1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s

- 1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}

- 1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the best strategy $s^i \in \mathcal{P}^i$ with cost \hat{w}^i

- 1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the best strategy $s^i \in \mathcal{P}^i$ with cost \hat{w}^i
- 4. If $\exists k : w^k \leq \hat{w}^i, (\mathcal{P}^k, w^k) \in \mathcal{C}$ reinsert $(\mathcal{P}^i, \hat{w}^i)$ into \mathcal{C} and goto step 3

- 1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the best strategy $s^i \in \mathcal{P}^i$ with cost \hat{w}^i
- 4. If $\exists k : w^k \leq \hat{w}^i, (\mathcal{P}^k, w^k) \in \mathcal{C}$ reinsert $(\mathcal{P}^i, \hat{w}^i)$ into \mathcal{C} and goto step 3
- 5. If p_s^i is a path output (\hat{w}^i, p_s^i)

- 1. Patition $\mathcal{P} \setminus \{p_s\}$ into q disjoint subsets $\mathcal{P}^1, \ldots, \mathcal{P}^q$ based on a subpath of s
- 2. For each set \mathcal{P}^i find a lower bound w^i on the shortest path cost and add (\mathcal{P}^i, w^i) to a sorted candidate set \mathcal{C}
- 3. Pick the best candidate (\mathcal{P}^i, w^i) from \mathcal{C} and find the best strategy $s^i \in \mathcal{P}^i$ with cost \hat{w}^i
- 4. If $\exists k : w^k \leq \hat{w}^i, (\mathcal{P}^k, w^k) \in \mathcal{C}$ reinsert $(\mathcal{P}^i, \hat{w}^i)$ into \mathcal{C} and goto step 3
- 5. If p_s^i is a path output (\hat{w}^i, p_s^i)
- 6. Repeat using s^i and \mathcal{P}^i

Optimal routing strategy

Optimal routing strategy

Choosing subpath

Choosing subpath

Choosing subpath

 \mathcal{P}^3

Agenda

Stochastic time-dependent networks Assumptions A hypergraph representation Route choice in STD networks Route selection criteria Example MEC (time-adaptive routing)

Ranking paths Ranking paths Ranking paths in a STDN Example (continued)

Computational results

► TEGP generator used (www.research.relund.dk).

- ► TEGP generator used (www.research.relund.dk).
- Cyclic time periods (e.g. a day)

- ► TEGP generator used (www.research.relund.dk).
- Cyclic time periods (e.g. a day)
- In each cyclic period there are some peak periods.

- ► TEGP generator used (www.research.relund.dk).
- Cyclic time periods (e.g. a day)
- In each cyclic period there are some peak periods.
- Time unit 5 min, off-peak mean travel time [2, 6] (100% increase in peaks).

- ► TEGP generator used (www.research.relund.dk).
- Cyclic time periods (e.g. a day)
- In each cyclic period there are some peak periods.
- Time unit 5 min, off-peak mean travel time [2, 6] (100% increase in peaks).
- Off-peak costs [1, 1000] (100% increase in peaks) + random noise (10%).

Test instances

	peak dependent costs				random costs			
Class	1	2	3		4	5	6	
Grid size	5 imes 10	10×10	20 imes 10	5 >	< 10	10×10	20 imes 10	
n	2320	7573	21454	1	497	3961	11856	
m	7809	27278	79570	5	056	14295	43991	
Н	118	156	237		75	101	155	

Results (K = 100)

Class	ite _k	CPUk	iteı	CPU1	$\delta(u) = 1$	$\delta(u) = 2$	$\delta(u) = 3$	$\delta(u) = 4$	inc	incs-ps
1	356	8	13	0.3	82	14	4	1	49	5
2	454	37	11	1.0	82	14	4	0	17	7
3	2359	875	133	53.5	85	13	2	0	10	5
4	1427	25	133	2.5	50	25	20	5	18	43
5	9942	564	2722	157.9	39	21	27	12	8	54
6	203479	34227	89519	15127.5	25	16	27	31	3	59

Contact:lars@relund.dk,
http://www.research.relund.dk/