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☞ Biosens II: Improved monitoring and management of dairy

production based on on-farm biosensors

☞ Goal: Better detection of oestrus and illnesses

☞ Focus on biomarkers in milk (progesterone, LDH, yield, etc.)

☞ Commercial partner Lattec I/S (FOSS A/S and DeLaval AB)

☞ Five year project (2007-2011). Budget ≈5 mill EUR

☞ Commercial product Herd NavigatorTM based on Biosens project

(www.herdnavigator.com)

Project 2.3: Economic value of the dairy cow

Life – Oct 16’th 2009 – 3 / 19

Find optimal strategy for each cow w.r.t. replacement, treatment and reproduction

(economic point of view).

☞ Many papers about the dairy cow replacement problem but limited use in pratice.
Reasons could be:

- Often large and complex models.

- Parameters in the model must be estimated, i.e. data collection frameworks

at herd level must exist.

- Stage length: one month up to a year → no assistance when to inseminate,

treat or cull the cow in the current month.

☞ Bio-sensors and cow specific traits/interventions exists in modern dairy herds →
parameters can be estimated on a daily basis.

Develop MDP with daily stages based on daily yield measurements.
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Problem

☞ Assign an economic value to a dairy cow during lactation

☞ Calculate the optimal replacement strategy based on the

economic value

☞ Assume daily yield measurements available

Models

☞ Use a state space model (SSM) for predicting daily milk yield

☞ Use a Markov decision process (MDP) for calculating the optimal

strategy with the SSM embedded

Results

☞ A strategy saying whether to replace or keep the cow given its

current state

☞ An economic value of the cow and forecast of the yield.
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☞ Formulate a hierarchical MDP (HMDP) based on lactation cycles

of the cow.

☞ Infinite time-horizon, Daily stages, 3 levels

☞ Decisions Replace, Keep and Dry

☞ Maximize the discounted net present reward of the cow
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Transition probabilities are a found using

☞ The SSM milk yield model

☞ A reproduction model

☞ An IC model

The net reward is a combination of

☞ Milk yield

☞ The calf

☞ Beef

☞ Feeding and treatment costs
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☞ ... or dynamic linear models are models of phenomena evolving in

time e.g. blood pressure and milk yield.

Yt-1 Yt Yt+1

☞ Latent process evolves as a first order Markov process.

θt = Gθt−1 + ωt, (θt | θt−1) ∼ N (Gθt−1, W )

☞ Yt are observations which we model as a function depending on

θt.
Yt = F ′θt + νt, (Yt | θt) ∼ N

(
F ′θt, V

)
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Observed milk yield intensity

Mtc = µt + Ac + Xtc + νtc
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Observed milk yield intensity

Mtc = µt + Ac + Xtc + νtc

Subtract herd effect (remove index c)

Yt = Mt − µt = F ′θt + νt

= ( 1 1 )
(

A
Xt

)
+ νt

θt = Gθt−1 + ωt

=
(

1 0
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)(
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)
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)

where

(θt | Y0, . . . , Yt) ∼ N(mt, Ct)
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Dt−1: data up to time t− 1. Fact:

(θt−1 | Dt−1) ∼ N(mt−1, Ct−1)
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Given (θt−1 | Dt−1) ∼ N(mt−1, Ct−1) we have that

(Yt | Dt−1) ∼ N(f(mt−1), Qt)
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Given (θt−1 | Dt−1) ∼ N(mt−1, Ct−1) we have that
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☞ Can find P (mt+1 | mt) if store the mean mt and variance Ct in

each state.

☞ Discrete states → discretize mt with {m̃(1), . . . , m̃(q)} and

calculate P (m̃(i)
t+1 | m̃

(j)
t )

☞ Discretization can be done uniform or non-uniform.

(mt = (E(At), E(Xt))).
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☞ Can find P (mt+1 | mt) if store the mean mt and variance Ct in

each state.

☞ Discrete states → discretize mt with {m̃(1), . . . , m̃(q)} and
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Discretize every variable separately (many states, independent of m̃(·)).
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Discretize the regions of the density (fewer states, dependent on m̃(·)).
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☞ Model running (Linux) using MLHMP Java library.

☞ Manuscript accepted in JDS.

☞ Currently working on evaluating different reproduction strategies

in the model. Challenge: Number of state variables (complexity)

☞ Other spinoffs: A MDP and dairy package in R.


