Week	Date	Subject	Literature	Exercises
5	27-01	The Poisson Process*	HCT, p. 1-8, 15-23	HCT, exc. 1.4*
5	29-01	Renewal Theory and Renewal-Reward processes [*]	HCT, p. 33-47	
6	03-02	Little's formula, PASTA and discrete-time Markov chains [*]	HCT, p. 50-58, 81-95	HCT, exc. 2.17^*
6	05-02	Equilibrium results for discrete-time Markov chains [*]	HCT, p. 96-111	HCT, exc. 2.20^*
7	10-02	Continuous-time Markov chains*	HCT, p. 141-157, 166-172, 442-449	HCT, exc. 3.12^*
7	12-02	Markov decision processes (MDP): Definitions and policy iteration *	HCT, p. 233-252	
8	17-02	MDP: Linear Programming [*]	HCT, p. 252-259	HCT, exc. 6.4^*
8	19-02	MDP: Value Iteration*	HCT, p. 259-264	HCT, exc. $6.4^{*\dagger}$
9	24-02	The semi-Markov decision model [*]	HCT, p. 279-287	HCT, exc. 6.7 part 1^*
9	24-02	Modelling tricks [*]	HCT, p. 287-299	HCT, exc. 6.7 part 2^*
10	03-03	Discounted Dynamic Programming*	SR, p. 29-42	HCT, exc. 7.3^*
10	05-03	Negative and Positive Dynamic Programming [*]	SR, p. 49-57, 60-68, 73-76, 83-85	HCT, exc. $6.7^{*\ddagger}$
11	10-03	Applications of Markov decision theory, topics for projects and project guidelines $*$	See project_topics.pdf note	
11	12-03	Discussion of the average reward criterion and selection of topics for projects	SR, p. 89-103	
17	23-04	Project presentation: Model (20 min. for each group)*		
21	21-05	Project must be delivered to me in Koll G3 between $15-15:30^*$		
22	26-05	Project presentation: Results (20 min. for each group) $*$		

* The subject is fixed and can not be changed. \dagger Use value iteration to solve the problem. \ddagger Consider the discounted criterion with rates of 1% and 10%. Solve the problem using your own value iteration and using the MDP package. Comment on the values V(i) and the optimal policies.

References

[HCT] Henk. C. Tijms. A first course in stochastic models. John Wiley & Sons Ltd, 2003. ISBN: 978-0-471-49880-3.

[SR] Sheldon Ross. Introduction to stochastic dynamic programming. Academic Press, 1983. ISBN: 978-0-125-98421-8.