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Resumé

Denne ph.d.–afhandling omhandler en række abstrakte lokaliseringsproblemer og foreslår
forskellige løsningsmetoder. Litteraturen inden for operationsanalyse behandler lokaliser-
ingsproblemer ved at opstille matematiske optimeringsmodeller for stiliserede problemstill-
inger, hvor en eller flere faciliteter skal placeres i forhold til en række kunder. Det kan for
eksempel være placeringen af sygehuse, som skal ske under hensyntagen til kapacitetsbe-
grænsninger og størrelsen på omkringliggende byer.

Afhandlingen fokuserer især på et problem kaldet single–source capacitated facility loca-
tion problem (SSCFLP). Dette problem består i at placere en række faciliteter og forsyne
kunder fra disse åbne faciliteter på en sådan måde, at de samlede omkostninger ved at åbne
faciliteterne og forsyne kunderne minimeres. En brugbar løsning er en løsning, hvor hver
kunde forsynes fra netop én åben facilitet. Det antages, at kundernes efterspørgsel samt
faciliteternes kapaciteter er kendte, og at faciliteternes kapacitet skal respekteres. Desu-
den antages, at både placeringen af en facilitet og allokeringen af en kunde til en facilitet
resulterer i en fast (periodisk) omkostning.

Afhandlingen bidrager med nye metoder til løsning af dette problem når både et og
to kriterier optimeres samtidigt. Afhandlingen beskæftiger sig hovedsageligt med eksakte
metoder, som altid finder en optimal løsning. Når flere objektfunktioner optimeres samtidigt,
betyder det, at alle ikke–dominerede løsningsvektorer skal genereres. Afhandlingen bidrager
med nye løsningsprocedurer for såvel et–kriterie som for flerkriterie problemer.

Første kapitel giver en historisk introduktion til lokaliseringsproblemer samt en kort
gennemgang af nogle af bidragene inden for diskret flerkriterie lokaliseringsplanlægning.

Andet kapitel foreslår en algoritme, der bruger cut–and–solve til at løse SSCFLP prob-
lemet. Algoritmen er effektiv og viser sig at være op til 40 gange hurtigere end de bedste
kendte algoritmer fra litteraturen.

Tredje kapitel beskriver to algoritmer som integrer cut–and–solve med en såkaldt dual-
ascent algoritme. Den første algoritme benytter en variation af cut–and–solve algoritmen
fra kapitel 2 til at løse en række delproblemerne i dual ascent algoritmen. Den anden
algoritme løser cut–and–solve algoritmes såkaldt sparse problemer ved hjælp af en dual
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ascent algoritme.
I de to sidste kapitler (kapitel 4 og kapitel 5) af afhandlingen, optimeres to kriterier sam-

tidigt. I kapitel 4 studeres et såkaldt bi–kriterie “omkostning–flaskehals” lokaliseringsproblem.
Dette problem minimerer to kriterier, hvor det ene består af de samlede omkostninger ved at
servicere kunder samt åbne faciliteter, mens det andet minimerer den maksimale transporttid
fra en kunde til den nærmeste facilitet. Der foreslås en såkaldt ε–begrænsningsmetode, som
bevarer problemets underliggende struktur, til at løse dette problem. Afhandlingen afsluttes
med kapitel 5, hvor der udvikles en såkaldt branch–and–cut algoritme til at løse en bi–kriterie
version af SSCFLP. Metoden finder alle rationelle kompromiser mellem omkostningen ved
at åbne faciliter og omkostningerne ved at servicere kunderne.



Abstract

This PhD–dissertation proposes a number of solution procedures for discrete facility location
problems. In the literature of operations research, location problems are mathematical models
describing optimization problems where one or more facilities need to be placed in relation
to a given set of customers or demand points. An example is the location of hospitals which
needs to be performed in such a way as to take into account capacity limits and the sizes of
nearby towns and cities.

The dissertation particularly focuses on the so–called single–source capacitated facility
location problem (SSCFLP). The problem consists in opening a set of facilities and allocating
the customers’ demands to these open facilities in such a way that the capacity of each
facility is respected and such that each customer is serviced from exactly one open facility.
An optimal solution to the SSCFLP is a solution in which the total cost of opening facilities
and servicing customers is minimized. In this problem, it is assumed that all costs and the
customers’ demand and the capacity of the facilities are fixed and known.

The dissertation proposes new solution procedures for both single objective as well as bi–
objective versions of the SSCFLP. The dissertation considers exact methods that guarantee
an optimal solution. When two objective functions are optimized simultaneously, an optimal
solution consists of a set of solutions which maps into the entire set of non–dominated
outcome vectors.

The first chapter of the dissertation provides a historic overview of location problems
and a short survey of the literature on discrete multi–objective facility location.

The second chapter proposes an improved cut–and–solve based algorithm for the SSCFLP.
The algorithm is effective and turns out to be up to 40 times faster compared to state–of–
the–art algorithms from the literature.

The third chapter describes two algorithms that integrates the cut–and–solve framework
with a semi–Lagrangean dual ascent algorithm in order to solve large instances of the
SSCFLP. The first algorithm uses a variant of the cut–and–solve algorithm proposed in
Chapter 2 to solve subproblems arising in the dual ascent algorithm whereas the second
solves the sparse problems of the cut–and–solve algorithm using a semi–Lagrangean based
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dual ascent algorithm.
In the last two chapters (Chapter 4 and Chapter 5) of the dissertation, bi–objective

location problems are considered. In Chapter 4, a so–called bi–objective “cost–bottleneck”
location problems is studied. The problem minimizes two objective functions simultaneously.
The first minimizes the total cost while the second minimizes the maximal transportation
time from a customer to a nearest open facility. An ε–constrained algorithm is proposed
which preserves the structure of the underlying location problem. In the last chapter of
the dissertation, Chapter 5, branch-and-cut algorithms for bi-objective optimization are
developed. The proposed algorithms rely on explicitly and implicitly given lower bound sets
and compute all rational compromises between the cost of opening facilities and the cost
incurred by servicing the customers.
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Notation

Throughout this dissertation I have aimed at keeping a consistent use of symbols. In general,
calligraphic capitals denote sets, and lower case Latin and Greek letters denote elements
of sets, variables, functions, parameters, or indices. Table 1 summarizes the standardized
notation for the dissertation.

Table 1: Notation

Notation Explanation of notation
X Feasible set of an optimization problem.
Z Feasible set in objective space of a multi–objective optimization problem.
I Index set of potential facility sites.
J Index set of demand points.
y Vector of binary location variables indicating if a facility is open at

location i ∈ I (yi = 1) or not (yi = 0).
x Matrix of assignment variables. xij denotes the proportion of demand

point j’s demand covered by facility i.
z Vector of objective function values.
λ ∈ R2 Vector of objective function weights.
fi Fixed cost of opening a facility.
cij Cost of assigning all of customer j’s demand to facility i.
z1 < z2 z1

l < z2
l , for l = 1, 2.

z1 5 z2 z1
l ≤ z2

l , for l = 1, 2.
z1 ≤ z2 z1 5 z2 and z1 6= z2.
R2
> {y ∈ R2 : y > 0}.

R2
= {y ∈ R2 : y = 0}.

R2
≥ {y ∈ R2 : y ≥ 0}.

SN {s ∈ S : ({s} − R2
=) ∩ S = {s}}. The non–dominated set of S.

ZN Set of non–dominated outcomes of a bi–objective optimization problem.





[ First Chapter \

Introduction

This dissertation considers the field of discrete facility location where the set of potential
facility sites and the set of demand points or customers are finite. The main focus of the
dissertation is on the solution processes: though simple to explain, many facility location
problems are surprisingly hard to solve to optimality for larger instances. Therefore, a number
of exact solution approaches is developed for single objective facility location problems, but
also bi–objective facility location problems are considered.

I will in this chapter introduce the field of facility location problems (FLPs) via a historic
overview of the literature and characterize FLPs by three underlying “topologies” and three
kinds of objectives to optimize. The three most popular objectives in the literature are
cost/minisum, bottleneck/minimax, and covering. The cost–objective aims at minimizing
total cost (or a surrogate hereof, e.g. total distance to customers). In some problems a fixed
opening cost is incurred when opening a facility and in others a fixed number of facilities with
identical cost needs to be opened. Furthermore, the service cost for supplying a customer from
a given open facility is often included in the total costs as well. The cost–objective focuses
on efficiency. The bottleneck–objective seeks to minimize the maximum (weighted) distance
from customers to the nearest open facility. This type of objective function is especially
appropriate when locating public facilities such as fire stations and hospitals. The focus of
this objective function is equity. The covering–objective has two variants. In both cases, a
customer can be considered covered if a facility is opened within a certain exogenously given
distance. In the first variant, a fixed number of facilities to open is given and the objective
then maximizes the number of (weighted) customers it is possible to cover. In the second
variant it is the objective to minimize the (weighted) number of facilities needed to cover
the customers within that maximum distance.

The three topologies that will be used are planar, network and discrete. The planar
location problems assume that facilities can be placed anywhere on the plane. Conversely, the
network location problems only allow facilities to be placed on a network which is represented
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as a graph with a set of demand nodes and a set of edges. The facilities can then be placed
in the nodes as well as on the edges of the graph. Finally, discrete location problems assume
that a finite set of potential facility sites is given, and a decision is to be made as to which
of these potential facility sites is to be used. As this dissertation concentrates on the discrete
topology, the overview in Section 1.1 will have these problems as its focus.

The rest of this introductory chapter is organized as follows: Section 1.1 provides a
short overview of the history of facility location. After this historic overview, an overview
of the discrete multi–objective facility location literature is given in Section 1.2 and the
contributions of the present dissertation are then described in Section 1.3.

1.1 Facility location problems

Facility location problems are core problems within operations research. As the name suggests,
these problems consist of determining a best location for one or more facilities in such a
way that a certain set of demand points, or customers, are serviced in a satisfactory way. In
order to evaluate a certain constellation of facilities and determining the best one, we require
objectives or criteria and constraints on the system to be modelled. Numerous models have
been proposed for a variety of different problems in the literature. We refer the reader to
the survey paper by Klose and Drexl (2005) which includes a detailed overview of facility
location problems used in distribution systems and states many mathematical programming
formulations for a large variety of location problems.

In the following a historic overview of the field of facility location is given. The focus
of the first part is on the seminal contributions in the field and the second part focuses on
contributions in discrete multi–objective facility location.

1.1.1 A historic overview of facility location

The continuous location problems laid the foundation for the academic field of location
science. The problem can be stated simply as follows: given a set of demand points in the
plane that need to be served, determine a position in the plane for one or more facilities, such
that an objective is optimized. Pierre de Fermat was probably the first person to present this
problem, and in his book Methodus ad disquirendam maximam et minima (see de Fermat
(1679)) it is stated as follows: given three points in the plane A, B and C, locate a fourth
point D such that the sum of distances from points A, B and C to D is minimal. The
point D is now known as a Fermat point. This problem is equivalent to calculating the
geometric median of the three points. The problem was extended to a weighted version by
Carl Friedrich Launhardt in Launhardt (1900). He determined the optimal location of an
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industrial facility combining iron ore and coal in order to produce pig–iron. The objective
was to minimize the transportation cost arising from transporting iron ore and coal to the
production facility plus the transportation cost incurred by transporting the pig-iron to the
final customer.

Weber (1922) popularized the problem for an arbitrary number of demand points, and
this specification is now known as the Weber problem (a generalization of Launhardt’s
problem). It consists in finding a location for a facility in such a way that the sum of
weighted distances from all demand points to the location of the facility is minimized. A
fixed point method for solving the Weber problem was proposed in Weiszfeld (1937) (recently
translated in Weiszfeld and Plastria (2009)).

The first natural extension of the Weber problem is the so–called multi–source Weber
problem where an optimal location of p > 1 facilities in the plane has to be determined. A
complicating feature of the multi–source Weber problem is that an optimal allocation of
customers to facilities needs to be determined as well as the location of the facilities. This
makes the multi–source Weber problem much harder than the single–Weber problem, and in
fact, despite its simple nature, the problem is strictly NP–hard (Megiddo and Supowit, 1984).
Although some exact methods for the multi–Weber problem have been proposed (see for
example the column generation based approach for the multi–Weber with p = 2 problem by
Drezner (1984)), the probably most well–known algorithm is the so–called Cooper’s location–
allocation heuristic proposed by Cooper (1964). Some extensions of Weber problems have
been proposed in the literature: Hamacher and Nickel (1994) proposed algorithms for the
Weber problem where some areas of the plane are forbidden; Klamroth (2001) proposed
a model where the demand points can be separated by line barriers; and Melachrinoudis
(1988) solved an obnoxious location problem in the plane.

In many situations, it might not be possible to cover all demand points. Mehrez and
Stulman (1982) therefore suggested the so–called maximal covering problem in the plane,
where a fixed number of possible facilities is given as input, and a solution consists of a
set of facilities covering as many (weighted) demand points as possible. A demand point is
considered covered if it lies within a given radius of an open facility.

In 1964, Hakimi published the seminal paper on the problem of locating a facility on a
network such that either the sum of distances from the nodes of the network to the facility is
minimized (minisum/cost objective) or such that the maximum distance from all nodes to the
facility is minimized (mini–max/bottleneck objective). These two problems have been known
as the median and center problems on networks, respectively. Hakimi (1965) showed that an
optimal solution to the p–median problem, where p facilities should be placed on a network,
can be found among the nodes of the graph (the property of the p–median problem is known
as the Hakimi–property or nodal optimality–property). Later, Minieka (1970) showed that
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an optimal solution to the p–center problem can be found among the nodes of the graph
and a finite number of so–called intersection points on edges of the network. Both of these
classical problems have received enormous attention since then, and overviews of the scientific
contributions for these problems can be found in Reese (2006) for the p–median problem
and in Revelle, Eiselt, and Daskin (2008) for the p–center problem. Many extensions have
been proposed including capacity constraints (see for example Mulvey and Beck (1984) and
Bar-Ilan, Kortsarz, and Peleg (1993)), combinations of the two objectives (see e.g. Halpern
(1978), Hansen, Labbé, and Thisse (1991), and Ogryczak (1997a)), and in the paper by Nickel
and Puerto (1999) the ordered median problem is introduced which includes the p–median,
the p–center, and the p–centdian problems as special cases.

For location problems arising in the public sector such as the location of hospitals or fire
stations, it often happens that (political) constraints stating a maximal travel– or service
time are added to the model. This means that a demand point is considered uncovered if
the time it takes to travel from this location to the nearest open facility exceeds a specified
threshold. This gives rise to the so–called covering location problems. On networks, the
standard covering problem is the maximal covering problem which was introduced in Church
and ReVelle (1974). This problem is similar to the p–center problem of Hakimi (1965), but it
differs in that a fixed covering radius is given as a parameter and then the number of demand
points which can be covered by a set of p facilities within the given radius is maximized.

Presumably independently of each other and concurrently with the development of
network location problems, Balinski and Wolfe (1963) and Manne (1964) published the first
mixed integer linear programming (MILP) formulations of a location problem. This problem
has later become known as the uncapacitated facility location problem (UFLP). The UFLP is
the prototypical discrete facility location problem: a finite set of potential facility sites and
a finite set of demand points are given, and the objective is to minimize the cost incurred
by opening facilities and supplying customers from the open facilities. Contrary to the
standard network location problems, the number of open facilities is not given as a problem
parameter; rather it is a result of the tradeoff between the cost of opening facilities and the
cost of supplying the demand points. Interestingly, even though the p–median problem was
originally stated as a network location problem, most of the research on solution algorithms
for this problem has been addressed from the discrete facility location perspective: due to the
Hakimi–property, the p–median problem can be stated as a discrete facility location problem
where the finite set of potential facility sites and the set of demand points are both given by
the set of nodes on the network. The first formulation of the p–median problem as an MILP
was given by ReVelle and Swain (1970). Despite the simple structure of both the p–median
problem and the UFLP, much contemporary research is still devoted to these problems.
Among recent contributions we find a new formulation of the p-median problem that can
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easily be adapted to the UFLP proposed by Elloumi (2010), a simultaneous row–and–column
generation procedure for the p–median problem proposed by Avella, Sassano, and Vasilév
(2007), an aggressive reduction approach for the UFLP proposed by Letchford and Miller
(2014), and a semi–Lagrangean based dual ascent algorithm proposed by Jörnsten and Klose
(2015) for large scale instances of the UFLP. For a fixed set of open facilities, the remaining
semi–assignment problem of assigning demand points to open facilities is trivial for both the
p–median problem and the UFLP.

Another widely studied problem is the capacitated facility location problem (CFLP) which
extends the UFLP to include capacity constraints on the facilities. The objective is to find a
set of open facilities and then to allocate the demands to these open facilities in such a way
that total opening and allocation costs are minimized. In the CFLP a demand point may be
serviced from several open facilities. A vast amount of literature considers this problem from
both an algorithmic (heuristic and exact) and a polyhedral perspective. One of the first exact
methods for the CFLP was proposed by Davis and Ray (1969), and the strengths of several
bounds obtained from Lagrangean relaxations are compared in Cornuejols, Sridharan, and
Thizy (1991). Many variants of this problem have been proposed in the literature including
problems with staircase costs (Holmberg, 1994), increasing production costs (Harkness and
ReVelle, 2003), and many more. If splitting demand is not feasible the CFLP becomes a
so–called single–source CFLP (SSCFLP). This problem is surprisingly much harder to solve
than the CFLP. Neebe and Rao (1983) applied a column-generation approach to this problem,
and Holmberg, Rönnqvist, and Yuan (1999) developed a branch-and-bound algorithm relying
on a Lagrangean relaxation.

The UFLP, the p–median problem, and the CFLP all minimize a cost/minisum objective.
Church and ReVelle (1974) suggested the maximization of the (weighted) number of covered
demand points instead. Like for the planar and the network location problems, a demand
point is covered if it is within a certain distance of an open facility. Another covering problem,
arises when the number of open facilities is not given a priori. Toregas, Swain, ReVelle, and
Bergman (1971) formulated the problem of finding the minimum number of facilities needed
to satisfy a certain coverage radius and computed the set of rational comprises between the
coverage radius and the number of facilities needed to obtain that radius.

Regarding the network location problems a variant of the p–center problem is known
in the field of discrete facility location as well: the vertex–p–center problem. This problem
places facilities on the nodes of the graph only and can therefore be stated as non–linear
discrete location problem. It can, however, easily be stated as an MILP by linearizing the
objective function. Unfortunately, the resulting MIP is not of much use as the program is
large and produces a rather weak lower bound. However, Elloumi, Labbé, and Pochet (2004)
recently proposed a new formulation of the problem and developed an exact algorithm based
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Table 1.1: Characterization of some of the most well–known facility location problems
by topology and objective.

Topology

Planar Network Discrete

Cost Weber
multi–Weber

1–median
p–median

UFLP
CFLP
p–median

Bottleneck planar center center
p–center

vertex–p–center
bottleneck CFLP

Covering maximal covering
(in the plane) maximal covering set covering

maximal covering

on binary search. Others have used the strong relation between the vertex–p–center problem
and set covering in order to devise algorithms for this problem as well.

1.1.2 Characterizing facility location by topology and
objective

As was mentioned in the beginning of the chapter, location problems can be roughly parti-
tioned on the basis of the underlying topology and the objective function. Table 1.1 shows a
three–by–three matrix containing some of the location problems mentioned. A column in
Table 1.1 corresponds to a topology (planar, network, or discrete) and a row corresponds to
an objective to be optimized. For example, the p–center problem on a network has a network
topology and a bottleneck objective and is therefore placed in entry (Bottleneck, Network).
From the discussion above, it was clear that the p–median problem could be viewed as a
network location problem as well as a discrete location problem. Therefore, the p–median
problem turns up in both (Cost, Network) and in (Cost, Discrete).

In this dissertation, the focus will be on discrete facility location, and on the bottleneck
and the cost objectives. Particularly, the focus will be on the single–source capacitated facility
location problem. As already stated, this problem is very similar to the widely studied CFLP.
However, due to the increased computational complexity of the SSCFLP compared to the
CFLP, the SSCFLP has not received the same attention as the CFLP. This dissertation
studies the SSCFLP from both a single objective as well as from a bi–objective perspective.

1.2 Bi–objective facility location

Real world optimization problems often consist of problems with conflicting objectives. This
means that more often than not a single ideal solution that is optimal for all objectives does
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not exist. Facility location problems are not an exception and are consequently often of a
multi–objective nature. Deciding on where to locate facilities is usually a strategic decision
whereas the allocation or assignment of customers’ demands to open facilities is a more
tactical decision. Furthermore, the cost of opening facilities might be negatively correlated
with the cost of allocating customer’s demands to the open facilities. Consider, for example,
the decision of where to locate (public) hospitals. A natural objective is to both minimize
the cost of building the hospitals while at the same time minimizing the driving distance the
citizens have to travel in order to reach the nearest hospital. The cost of building hospitals
and the distance a citizen has to drive can both be expressed in monetary terms, but the
costs are usually negatively correlated: the driving distance decreases as more hospitals are
opened whereas the cost associated with opening these hospitals will naturally increase.
Multiple–objective location problems are therefore a natural extension of the classical single
objective facility location problems.

As this dissertation considers discrete facility location problems, we provide a short
overview of the literature on multi-objective discrete facility location. That is, problems
combining objectives, in a multi–objective fashion (third column of Table 1.1). As can be
seen in for example Nickel, Puerto, and Rodríguez-Chía (2015), planar and network multi–
objective location problems have been studied from a methodological point of view resulting
in important structural results and algorithms known to generate efficient solutions, but little
attention has been devoted to the structural analysis of discrete multi–objective location
problems. Instead, the focus has been on modeling complex problems with often complex
objective functions.

The paper by Ross and Soland (1980) is one of two papers found that take a methodolog-
ical perspective on multi-objective discrete location problems. Here, the authors characterize
the set of Pareto optimal solutions by rewriting the location problem as a generalized
assignment problem with an additional constraint. However, the authors argue against gen-
erating all efficient solutions, and they propose an interactive approach instead. Fernández
and Puerto (2003) released the second methodological paper considering a multi–objective
versions of the uncapacitated facility location problem (UFLP). A dynamic programming
approach was proposed based on a decomposition of the UFLP into a facility selection prob-
lem and a demand allocation problem. The dynamic programming algorithm was further
improved by introducing lower and upper bounds allowing for implicit enumeration of some
of the states.

Another bi–objective variation of the UFLP is proposed by Myung, Kim, and Tcha
(1997). In the proposed model, a fixed cost is incurred when facilities are opened whereas
a profit is gained when a customer is serviced. The model aims to maximize net profit
and the rate of return at the same time. The authors use a parametric approach capable
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of generating all supported efficient solutions, but only some of the unsupported efficient
solutions. Bi–objective models for reverse logistics network design have also received some
attention during the last decade. Du and Evans (2008) propose a model for a manufacturer
outsourcing its post-sale services to a third–party logistics provider. The model decides on
the capacity of repair stations to be installed at the third–party logistics provider.

The combination of cost and bottleneck objectives in multi–objective settings does not
seem to be that well studied in the literature. In Drezner, Drezner, and Salhi (2006), however,
five objectives are considered: cost (p-median), bottleneck (p–center), two covering objectives,
and the minimization of the variance of distances between demand points and their closest
open facility. A minimax–regret multi–objective approach is taken, where the maximum
relative deviation of each objective to its ideal value is minimized.

Current, ReVelle, and Cohon (1985) introduce the so–called maximum covering/shortest
path problem. The problem consists in finding a least cost path between a predetermined
source and sink node pair, while at the same time maximizing the covered demand. The
model considers the demand of a node covered if the node lies on the path or if the distance
from the node to a node on the shortest path is below a given threshold. A branch–and–bound
algorithm is used to generate the efficient frontier of an example network with 15 nodes and 34
edges. Bhaskaran and Turnquist (1990) investigate the combination of objectives minimizing
total transportation costs and maximizing demand coverage for a car producing firm in North
America. The authors note that an optimal solution for one objective might be very inferior
for the other. The study showed that for that particular area and data, good compromises
between the objectives could be found using bi–objective optimization techniques. Brimberg
and ReVelle (1998) propose a slight variation of the UFLP where only some customers need
to be served and propose a parametric solution approach for generating the subset of the
efficient solutions lying on the convex envelope of the non–dominated frontier (the supported
non–dominated outcomes). A computational study shows that the proposed integer program
has an integer feasible LP-relaxation in many cases. Villegas, Palacios, and Medaglia (2006)
also study an uncapacitated facility location problem where an additional covering objective
is added. The model is used to solve the problem of redesigning a Colombian coffee supply
network.

Ogryczak (1997b) takes a lexicographic approach to the p–center location problem:
The standard bottleneck approach considers only the minimization of the largest distance
from demand points to open facilities. Ogryczak also minimizes the second largest outcome
(provided that the largest one remains as small as possible), minimizes the third largest
(provided that the two largest remain as small as possible), and so on.

The location of emergency medical services (EMS) is considered in Chanta, Mayorga,
and McLay (2011) where bi–objective models combining covering objectives and bottleneck
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objectives are proposed. It is noted that in many previous approaches to EMS location,
only the covering aspect is considered, leading to solutions where rural areas are neglected.
Therefore a bottleneck objective minimizing the maximum distance from an uncovered area
to its nearest open EMS is considered. A standard ε–constraint approach is taken to generate
the efficient frontier of the problems.

To summarize, it seems that the combination of cost and covering objectives is particularly
popular in the field of discrete multi–objective location problems. Furthermore, as many of
the problems are NP–hard even in the single objective case, it has not been the scope of many
contributions to generate the entire set of non–dominated outcomes. Therefore, combinations
of other types of objective functions and methods for generating all non–dominated outcomes
seem to be promising research areas where interesting insights can be gained.

1.3 Contribution and outline of the dissertation

This dissertation has as its main focus the single–source capacitated facility location problem
which is studied both as a single objective as well as a bi–objective problem. The dissertation
consists of four self–contained papers which can be read independently. For the single
objective problem (Chapter 2 and Chapter 3), the contribution of the dissertation is primarily
algorithmic in the sense that the best known algorithms for the problem are significantly
improved.

Section 1.2 showed that most research in the field of discrete multi–objective facility
location is focused on the modeling aspect. In Chapter 4 and Chapter 5 of this dissertation,
however, the focus is on the methodology. A bi-objective version of the SSCFLP is studied in
which the bottleneck objective is considered as the second objective, and to the best of the
author’s knowledge no prior research has studied this problem in the discrete case. A new
direct solution method based on a branch–and–cut framework for bi–objective combinatorial
problems is also suggested and used to solve a bi–objective version of the SSCFLP where
facility establishing costs and allocation costs are treated as separate objectives. Previous
literature has not presented an exact solution of this problem.

In Chapter 2, an effective three–phased algorithm is proposed for solving the single
objective single–source capacitated facility location problem (SSCFLP). The chapter starts
by reviewing the literature on the SSCFLP and proceeds by explaining the algorithmic
approach. The facets of the knapsack constraints obtained from the capacity constraints are
characterized and the characterization is used to reduce the effort in separation algorithms
subsequently proposed and employed to strengthen the LP–bound. A simple local branching
heuristic is then proposed which takes the structure of the problem into account, and finally
an accelerated cut–and–solve algorithm is used to close the gap between the LP relaxation
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and the heuristic upper bound. The paper contains experimental results clearly showing that
the methodology is superior to a state of the art algorithm for the SSCFLP.

Chapter 3 proposes two algorithms for the single objective SSCFLP based on a semi–
Lagrangean relaxation. The two algorithms integrate the cut–and–solve framework with a
semi–Lagrangean based dual ascent algorithm. The first algorithm solves the semi–Lagrangean
subproblems by use of a modified version of the algorithm proposed in the paper of Chap-
ter 2. The second algorithm uses a dual ascent algorithm to solve the sparse problems of a
cut–and–solve algorithm.

Chapter 4 considers a family of bi–objective discrete facility location problems that
combine, in a bi–objective manner, a minisum or cost objective with a minimax or bottleneck
objective. It is shown that bi-objective facility location problems of this type can be solved
efficiently by means of an ε–constraint method that solves at most a polynomial number of
minisum problems. Additionally, the algorithm is compared to a two–phase method. Extensive
computational results obtained from several classes of facility location problems are reported.
The proposed algorithm is shown to compare very favorably to other bi–objective algorithms.

Finally, in Chapter 5, a novel direct branch–and–cut algorithm for bi–objective combi-
natorial optimization is developed. The algorithm develops methods for comparing lower
and upper bound sets by both implicitly and explicitly stated lower bounds. Furthermore,
a simple lower bound updating rule is devised for explicitly stated lower bound sets which
reduce the number of bi–objective LPs the algorithm needs to solve. In addition, we introduce
and test the concept of extended Pareto branching. The branch–and–cut algorithm compares
favorably to a two–phase method.



[ Second Chapter \

An improved cut–and–solve algorithm for
the single–source capacitated facility

location problem



This chapter is based on the paper Gadegaard, Klose, and Nielsen (2016d).
submitted to EURO Journal on Computational Optimization,

June 2016



An improved cut–and–solve algorithm for the single–source
capacitated facility location problem

Sune Lauth Gadegaard†, Andreas Klose∗ and Lars Relund Nielsen†

†Department of Economics and Business Economics, Aarhus University, Denmark,
{sgadegaard, larsrn}@econ.au.dk

∗Department of Mathematics, Aarhus University, Denmark, aklose@imf.au.dk

Abstract

In this paper we present an improved cut–and–solve algorithm for the single–source ca-
pacitated facility location problem in the form of a three-phase-algorithm. The first phase
strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound.
The second phase uses a two level local branching heuristic to find an upper bound and, if
optimality has not yet been established, the third phase uses an accelerated cut–and–solve
algorithm to close the optimality gap. Extensive computational results are reported, showing
that the proposed algorithm runs 10 to 80 times faster on average compared to state of the
art problem specific algorithms.

Keywords: Facility location; capacitated facility location; single–sourcing; cut–and–solve;
cutting planes; local branching.

2.1 Introduction

The single–source capacitated facility location problem (SSCFLP) is the problem of opening
a set of facilities and assigning each customer to exactly one open facility while respecting
the capacity of each facility. An optimal solution to the SSCFLP is an allocation which
minimizes fixed opening and allocation costs. The difference between the SSCFLP and the
more widely studied capacitated facility location problem (CFLP) is that each customer
must be serviced by only one facility. The SSCFLP is a significant problem in the area of
location science as it exhibits many of the challenging aspects and features of general location
problems. Furthermore, the SSCFLP often arises as a subproblem in more complex problems
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such as hierarchical location problems with capacities and capacitated facility problems with
piecewise linear costs.

It is well known that the SSCFLP can be formulated as an integer linear program (ILP)
with a set of demand constraints and a set of capacity constraints. Since the SSCFLP is a
strongly NP-hard problem (the SSCFLP polynomially reduces to the node cover problem,
which was one of the original 21 NP–complete problems listed in Karp (1972)), most research
has been focused on heuristic solution approaches.

Since the linear programming (LP) lower bound of the SSCFLP as stated above is
known to be weak, most of the existing literature focuses on a Lagrangean relaxation of
one or more of the constraints of the SSCFLP. These Lagrangean based heuristics primarily
differ in the way constraints are relaxed and in the way a primal solution is obtained from
the Lagrangean subproblem. Klincewicz and Luss (1986) relax the capacity constraints
in a Lagrangean manner where the Lagrangean subproblem becomes an uncapacitated
facility location problem. A heuristic primal solution is obtained by an add heuristic and a
refinement heuristic that improves the primal feasible solutions to the Lagrangean subproblem.
If the demand constraints are relaxed in a Lagrangean manner instead, Bitran, Chandru,
Sempolinski, and Shapiro (1981) show that the Lagrangean subproblem decomposes into an
independent knapsack problem for each facility site. Sridharan (1993) uses this fact to derive
a tight lower bound for the SSCFLP by maximizing the Lagrangean dual function using
subgradient optimization. In order to obtain good primal solutions, a generalized assignment
problem is solved over the open facilities in each iteration of the subgradient procedure;
the approach can therefore hardly be applied to large problem instances. The capacitated
concentrator location problem, which is equivalent to the SSCFLP, is studied in Pirkul (1987),
where a lower bound is obtained by maximizing the Lagrangean dual function that results
from a relaxation of the demand constraints. In Beasley (1993) both the capacity constraints
and the demand constraints are relaxed and different Lagrangean heuristics are compared.
Barceló and Casanovas (1984) consider a slight variation of the SSCFLP where the number
of open facilities is limited by a given constant K. They propose a Lagrangean heuristic
that decomposes into two subproblems; a plant selection and an allocation phase. The
heuristic is based on relaxing the demand constraints in a Lagrangean manner. Properties
of the dual of the LP-relaxation are used to guide a heuristic computing the Lagrangean
multipliers. Barceló, Fernández, and Jörnsten (1991) propose a Lagrangean decomposition
approach that separates the demand constraints from all other constraints. The Lagrangean
subproblem thus decomposes into two subproblems; one being identical to the one obtained
when relaxing the demand constraints and one being a simple semi-assignment problem. As
the latter shows the integrality property, the Lagrangean decomposition bound is no stronger
than the Lagrangean bound based on relaxing the demand constraints. Taking a different
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approach Barceló, Hallefjord, Fernández, and Jörnsten (1990) suggest, to relax the capacity
constraints, including a total demand constraint (stating that the open facilities’ capacity
needs to cover the total demand). In addition, they generate simple cover inequalities from
the total demand constraint on the fly during subgradient optimization. The added cover
inequalities are then relaxed and therefore they do not alter the Lagrangean subproblem but
may nevertheless contribute to an improved bound. A more recent Lagrangean relaxation
based heuristic is proposed in Chen and Ting (2008) where the Lagrangean dual function is
approximately maximized using subgradient optimization, and a multiple ant colony heuristic
is used in each iteration in order to improve the best upper bound.

Other types of heuristics have been developed as well. Some of the more recent approaches
count a repeated matching heuristic proposed in Rönnqvist, Tragantalerngsak, and Holt
(1999), a scatter search strategy developed by Contreras and Díaz (2008), and a multi–
exchange heuristic presented in Ahuja, Orlin, Pallottino, Scaparra, and Scutella (2004). The
latter is based on a very large-scale neighborhood search first presented in Ahuja, Orlin, and
Sharma (2000) and originally applied to the capacitated minimum spanning tree problem.

Less research has been devoted to exact solution methods primarily due to the large
number of integer variables. Neebe and Rao (1983) reformulate the SSCFLP as a set
partitioning problem and column generation is used to solve the resulting model. Holmberg,
Rönnqvist, and Yuan (1999) relax the demand constraints in a Lagrangean manner in order
to obtain lower bounds. Upper bounds are generated using a repeated matching heuristic.
These bounds are used in a branch–and–bound algorithm to find a proven optimal solution
to the SSCFLP. A branch–and–price algorithm is developed by Díaz and Fernández (2002).
Ceselli and Righini (2005) consider the capacitated p-median problem, which is closely
related to the SSCFLP; instead of including fixed facility costs, the number of open facilities
may not exceed a number p. They also propose a branch–and–price algorithm based on a set–
covering like formulation of the problem. The lower bound obtained from the LP-relaxation
of the reformulated problem is easily shown to be the same as the one obtainable from the
Lagrangean relaxation of the demand constraints.

Over the years, various methods have been successfully used to strengthen the lower bound
on general ILPs, e.g. knapsack separation using lifted cover inequalities (Balas, 1975; Balas
and Zemel, 1978; Crowder, Johnson, and Padberg, 1983; Gu, Nemhauser, and Savelsbergh,
1998, 1999; Kaparis and Letchford, 2010), weight inequalities (Weismantel, 1997) and exact
separation (Boyd, 1993). Avella, Boccia, and Salerno (2011) proposed a reformulation of the
SSCFLP based on dicut inequalities. Here, exact knapsack separation is used to strengthen
the formulation and the problem is solved using branch–and–cut. Furthermore, in Yang,
Chu, and Chen (2012) a cutting plane algorithm based on exact knapsack separation is used
to strengthen the formulation of the SSCFLP and a cut–and–solve framework is used to



16 Second Chapter. An improved cut–and–solve algorithm

solve the strengthened formulation.
In this paper, we propose a new efficient three–phase algorithm improving the running

time on known test beds compared to state of the art problem specific software. Inspired by
the computational results obtained using knapsack separation reported in Avella et al. (2011)
and Yang et al. (2012), we characterize the facets of the knapsack structures arising from
the capacity constraints. The first phase of the algorithm consists of an efficient and effective
cutting plane algorithm that takes advantage of this characterization. A heuristic based on
local branching is employed in the second phase in order to obtain a strong upper bound.
In fact, the computational studies suggest that the heuristic could be used as a stand alone
heuristic. Finally, in case the lower bound found in the first phase does not reach the upper
bound found in the second phase, a third phase is considered and an accelerated cut–and–
solve algorithm is used to solve the problem to optimality. In this paper, we propose a new
way of defining the subproblems which tends to generate smaller subproblems and prove
termination of the resulting algorithm. The speed of the algorithm is further substantially
improved by simple, but usually effective, variable fixing in conjunction with premature
pruning of subproblems. The four main contributions of this paper are:

1. We propose a three–phase algorithm which improves the solution times on known test
beds considerably.

2. We characterize the facets of the knapsack structures arising from the capacity con-
straints and exploits this result when strengthening the lower bound of the problem.

3. We propose a new local branching heuristic that takes advantage of the two decision
levels in the SSCFLP.

4. We propose and successfully test an accelerated cut–and–solve algorithm.

The paper is organized as follows: In Section 2.2, a mathematical programming formu-
lation of the SSCFLP is given. Section 2.3 describes the three phases of the algorithm. In
Section 2.4 extensive computational results comparing the algorithm to commercial as well
as specialized algorithms are reported. Finally, Section 2.5 gives conclusions and directions
for further research.

2.2 Problem formulation

Let I, |I| = n, be a set of potential facility sites and J , |J | = m, be a set of customers.
Each facility, i ∈ I, has a fixed capacity, si > 0, and each customer has a fixed and known
demand, dj > 0. Opening a facility i results in a fixed cost fi ≥ 0 and allocating a customer
j to a facility i involves a cost of cij ≥ 0. Let yi be a binary variable equaling one only if a
facility is opened at site i and similarly let xij be a binary variable that equals one only if
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customer j is allocated to facility i. The SSCFLP can then be stated as the following ILP
problem:

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (O)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J , (D)

∑
j∈J

djxij ≤ siyi ∀i ∈ I, (C)

∑
i∈I

siyi ≥ D, (T)

0 ≤ xij , yi ≤ 1, ∀i ∈ I, j ∈ J , (N)

yi, xij ∈ {0, 1}, ∀i ∈ I, j ∈ J . (I)

The objective function (O) minimizes the total cost. Constraints (D), referred to as the
demand constraints, make sure that each customer is allocated to exactly one facility. The
capacity constraints (C) ensure that the capacities of the facilities are respected. In the total
demand constraint (T), D represents the total demand. This constraint is in fact redundant,
but it will be used later to tighten the LP relaxation of the problem. Constraints (N) state
that all variables should be non-negative and less or equal to one. Finally, constraints (I)
state that all variables should be binary. It will be assumed throughout the paper that all
parameters are integral.

2.3 Solution methodology

In order to solve the SSCFLP to optimality, we propose an algorithm running in three phases
(see Algorithm 2.1). The first phase consists of a cutting plane algorithm that separates
fractional solutions from the knapsack polytopes defined by the capacity constraints (C)
and the total demand constraint (T). In the second phase, we implement a two level local
branching strategy that exploits the two levels of decisions (location and allocation) in
order to produce an initial near optimal solution. And finally, a third phase based on the
cut–and–solve framework is used to solve the problem to proven optimality.

Following the notation used in Cornuejols, Sridharan, and Thizy (1991), we let P (R)
denote the set of solutions satisfying a set of constraints R and conv(R) denote the convex
hull of these solutions. For simplicity, P (RS) := P (R)∩P (S) and conv(RS) := conv(P (RS)).
Furthermore, by P(R) we define the optimization problem

P(R) : min{cx+ fy : (x, y) ∈ P (R)}.

Using this notation, the SSCFLP can be written as PIP := P(DCTI) and its (weak) linear
relaxation PLP := P(DCTN). Furthermore, the conventional notation xi = (xi1, xi2, . . . , xim)
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Phase 1:
1.1: Apply the cutting plane algorithm described in Algorithm 2.2.
1.2: If the solution returned is integral, stop as it is an optimal solution. Else

go to Phase 2.
Phase 2:

2.1: Apply the local branching heuristic described in Section 2.3.2.
2.2: If the solution value of the returned solution equals the lower bound from

Phase 1, stop as the solution is optimal. Else go to Phase 3.
Phase 3:

3.1: Apply the cut–and–solve algorithm described in Algorithm 2.5.
3.2: Stop as the solution returned by the cut–and–solve algorithm is optimal.

Algorithm 2.1: Summary of the complete three–phase algorithm

is used. Solutions corresponding to a lower bound on the optimal solution will be denoted
using underlining as (x, y) and solutions corresponding to upper bounds will be denoted
using overlining, that is (x, y).

2.3.1 Phase 1 – Cutting planes

It is well known that the lower bound obtained by solving PLP is usually very weak. Therefore,
implied variable upper bounds

xij − yi ≤ 0, ∀i ∈ I j ∈ J , (2.1)

are often added to PLP. The resulting LP is, however, very large and consequently hard to
solve, which is why we add these constraints on the fly as needed.

In order to further strengthen the LP bound, we ideally want to solve

min{cx+ fy : (x, y) ∈ P (D) ∩ conv(CTI)}.

One particular way to do this is to relax the assignment constraints (D) in a Lagrangean
manner and to solve the resulting Lagrangean dual. From Geoffrion (1974) we know that
solving the Lagrangean dual implicitly corresponds to building the convex hull of solutions
to the kept constraints. In this paper, however, we want to approximate the convex hull
of integer solutions to the capacity constraints (C) and the total demand constraint (T)
by cutting planes. By doing so, we avoid separating from the entire polytope defined by
conv(CTI) and instead we need only consider one constraint at a time.
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The following observations will be used to further reduce the effort in separating fractional
points from conv(CTI). Let

X = {x ∈ {0, 1}m : aTx ≤ a0},

Xy = {(x, y) ∈ {0, 1}m+1 : aTx ≤ a0y},

where ak > 0 for k = 0, 1, . . . ,m. Moreover, assume that aj ≤ a0 for all j = 1, . . . ,m as if
this was not the case, the corresponding variables could be removed. Now observe that if
πTx ≤ π0 is a valid inequality for X , then πTx ≤ π0y is valid for Xy. Furthermore, it is easily
seen that if πTx ≤ π0 is facet defining for conv(X ), then πTx ≤ π0y will be facet defining
for conv(Xy), implying that strong cutting planes derived from conv(X ) will be strong for
conv(Xy). The converse is also true but before proving it, the following well known result
from polyhedral theory is needed (see (Nemhauser and Wolsey, 1988, Proposition 6.6, p.108)
for a proof).

Proposition 2.1. Let S = {x ∈ Rn= : Ax ≤ b} ∩ Zn, where A and b are matrices of
appropriate sizes. If πTx ≤ π0 defines a face of dimension k − 1 of conv(S), there are k
affinely independent points x1, . . . , xk ∈ S such that πTxl = π0 for l = 1, . . . , k.

With this result established, we are ready to prove Proposition 2.2.

Proposition 2.2. If πTx ≤ π0y is facet defining for conv(Xy) then πTx ≤ π0 is facet
defining for conv(X ).

Proof. Let (x, y)l l = 1, . . . ,m+ 1 be m+ 1 affinely independent points from the facet

{(x, y) ∈ conv(Xy) : πx = π0y}.

According to Proposition 2.1 we can assume that these m+ 1 points are from Xy. One of the
m+ 1 affinely independent points (x, y)l (l = 0, 1, . . . ,m) on the facet is the point (x, y) =
(0, 0). Let this be point (x, y)0. For all other points we have y = 1. Accordingly the points xl

(l = 1, . . . ,m) give m affinely independent points on the face {x ∈ conv(X ) : πx = π0}.

Combining Proposition 2.2 and the previous observation we obtain

Corollary 2.1. πTx ≤ π0y is facet-defining for conv(Xy) if and only if πTx ≤ π0 is facet-
defining for conv(X ).

We now examine the form of a facet, πTx− πyy ≤ π0, of conv(Xy).

Lemma 2.1. Any inequality of the form πx− πyy ≤ π0 that is valid for Xy is equivalent to
or dominated by the inequality πx ≤ (π0 + πy)y.
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Proof. For the case y = 1, both inequalities are the same. For the case y = 0, the first
inequality gives 0 ≤ π0, which can be strengthened to 0 ≤ π0y = 0.

From Lemma 2.1 we immediately get Corollary 2.2.

Corollary 2.2. Any facet defining inequality of conv(Xy) different from y ≤ 1 can be written
as πx ≤ πyy.

Proof. From Lemma 2.1 we know that any facet-defining inequality πx− π̃yy ≤ π0 needs to
be equivalent to πx ≤ (π̃y + π0)y. Letting πy = π̃y + π0 , the result follows.

We now determine the sign of the coefficients π and πy.

Lemma 2.2. Let πx ≤ πyy be a facet-defining inequality for conv(Xy) different from y ≤ 1
and −xj ≤ 0. Then πy > 0.

Proof. From (0, 1) ∈ Xy, we get 0 = 0π ≤ 1πy = πy. Assume πy = 0, so that the inequality
becomes πx ≤ 0. As, by assumption, the points (x, y) with x = ej and y = 1 are from Xy, we
get ejπ = πj ≤ 0 for all j. But then πx ≤ 0 is dominated by the set of inequalities −xj ≤ 0
for each j. Hence, if πx ≤ πyy is facet defining and different from −xj ≤ 0, then πy > 0.

Lemma 2.3. Let πTx ≤ πyy be a facet defining inequality of conv(Xy) different from −xj ≤ 0
for all j ∈ {1, . . . ,m}. Then πj ≥ 0 for all j ∈ {1, . . . ,m}.

Proof. Suppose there exists an index j̃ ∈ {1, . . . ,m} such that πj̃ < 0. Note that xj̃ = 0 in
any optimal solution to the program

max πTx− πyy

s.t.: (x, y) ∈ Xy.

Now define the vector π̃ as follows

π̃j =

πj , if j 6= j̃

0, if j = j̃

This leads to the fact that xj̃ = 0 is an optimal value of xj̃ in the program

max π̃Tx− πyy

s.t.: (x, y) ∈ Xy,

stating that

0 ≥ max{πTx− πyy : (x, y) ∈ Xy} = max{π̃Tx− πyy : (x, y) ∈ Xy}

whereby π̃Tx ≤ πyy is valid for conv(Xy). Furthermore, as π̃j̃ > πj̃ the inequality π̃Tx ≤ πyy
dominates πTx ≤ πyy, a contradiction. Therefore, π ≥ 0.
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Step 0: Set Z0 = −∞ and iteration counter k = 0.
Step 1: Set k = k + 1. Solve the program PLP and let (x, y) be an optimal solution

and Zk the solution value.
Step 2: If (x, y) is integral, return (x, y) as it is optimal.
Step 3: If Zk − Zk−1 < ε, return (x, y).
Step 4: For each i ∈ I do the following

Step 4.2: Add all violated implied bounds of the form (2.1) to PLP.
Step 4.2: Separate (x, y) by a General Lifted Cover Inequality (GLCI) (see

Algorithm 2.3); if possible, add it to PLP. If not, try to generate a Fenchel
cutting plane (see Algorithm 2.4); if possible, add this to PLP .

Step 5: If k < K go to Step 1, else return (x, y).

Algorithm 2.2: Summary of the cutting plane algorithm. The parameter ε > 0 is
a suitable number used to check if the improvement in the lower bound is below a
predefined limit.

Finally, by combining the above results, Corollary 2.3 is obtained.

Corollary 2.3. All facet defining inequalities of conv(Xy), different from the trivial facets
−xj ≤ 0 and y ≤ 1, are of the form πTx ≤ πyy, where π ≥ 0, πy > 0, and πTx ≤ πy is facet
defining for conv(X ).

In the following we will therefore omit the location variable when generating cutting
planes from the capacity constraints (C) and then translate the resulting inequality by
multiplying the right–hand side by y. The cutting plane algorithm developed in this paper
is described in Algorithm 2.2. Two types of cutting planes are used, namely lifted cover
inequalities and Fenchel cutting planes. All cutting planes are described for the knapsack
polytope defined by the capacity constraints, but it should be obvious that they apply to the
total demand constraint (T) as well (simply complement location variables by zi = 1− yi
and an ordinary knapsack constraint is obtained).

Lifted cover inequalities

A cover of the i’th capacity constraint is a set of customers whose total demand exceeds the
capacity of facility i. That is, a cover is a set J̃ ⊆ J such that

∑
j∈J̃ dj > si. A minimal

cover of a capacity constraint is a cover that additionally satisfies
∑
j∈J̃ \{j̄} dj ≤ si for all

j̄ ∈ J̃ . Let J̃ be a minimal cover of capacity constraint i, then obviously
∑
j∈J̃ xij ≤ |J̃ | − 1

is a valid inequality. If the minimal cover J̃ is partitioned into two disjoint sets J 0 and J 1,
the inequality

∑
j∈J 0 xij ≤ |J 0| − 1 is only valid if xij = 1 for all j ∈ J 1. Obtaining a valid
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Step 0: Input a fractional solution xi which satisfies capacity constraint i.
Step 1: Let variables zj = 0 for all variables where xij = 0. Sort the rest of the

allocation variables in non-increasing order of xij. Start from the beginning
and set zj = 1 until ∑j:zj=1 dj > s. Then J̃ = {j ∈ J : zj = 1} defines a
cover of capacity constraint i.

Step 2: Partition the cover, J̃ , into two disjoint sets J 1 = {j ∈ J̃ : xij = 1} and
J 0 = J̃ \J 1. If J̃ is not a minimal cover, delete items from J 0 until it is.

Step 3: Set F = {j ∈ J \J̃ : xij > 0} and N = {j ∈ J \J̃ : xij = 0}. Starting
from the inequality ∑j∈J 0 xij ≤ |J 0| − 1 do the following
1. Up-lift variables in F in a greedy manner. That is, lift the variable xij

with the greatest value of αjxij (this requires finding all the (remaining)
coefficients for each variable in F).

2. If ∑j∈J 0 xij + ∑
j∈F αjxij ≤ |J 0| − 1, the inequality cannot be made

violated by lifting more coefficients. Therefore stop.
3. Down-lift all variables in J 1 in order of non-decreasing magnitude of

reduced cost.
4. Up-lift variables in N in order of non-decreasing magnitude of reduced

cost.
Step 4: Multiply the right–hand side of the resulting GLCI by yi and output the

violated cutting plane∑
j∈J\J̃

αjxij +
∑
j∈J 1

γjxij +
∑
j∈J 0

xij ≤ (|J 0| − 1 +
∑
j∈J 1

γj)yi

Algorithm 2.3: Separation procedure for GLCI for a single capacity constraint.

inequality for the polytope conv({xij ∈ {0, 1}m :
∑
j∈J djxij ≤ si}) can then be achieved

by down-lifting the variables in J 1. Furthermore, the inequality can be strengthened by
up-lifting variables not in the initial cover (that is, j ∈ J \ J̃ ). The resulting inequality is
referred to as a general lifted cover inequality (GLCI ) and is of the form∑

j∈J\J̃

αjxij +
∑
j∈J 1

γjxij +
∑
j∈J 0

xij ≤ |J 0| − 1 +
∑
j∈J 1

γj .

Furthermore, αj ≥ 0 for all j ∈ J \ J̃ and γj ≥ 0 for all j ∈ J 1 (see Nemhauser and
Wolsey, 1988, Part II.1.2). The coefficients αj and γj are up-lift and down-lift coefficients,
respectively, and determining each αj and γj requires the solution of a 0-1 knapsack problem,
and the derivation of a GLCI is therefore NP-hard (Gu et al., 1999).

We use the method proposed by Gu et al. (1998) to generate the initial minimal cover
and the lifting sequence. The method is summarized in Algorithm 2.3 (Step 0–Step 3). For a
detailed survey on cover inequalities and their extensions, the reader is referred to Gu et al.
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(1998, 1999). Using the observations that if πTx ≤ π0 is valid for X , then πTx ≤ π0y is valid
for Xy, we translate the resulting GLCI by multiplying the right–hand side by yi and return
the resulting cutting plane in Step 4 of Algorithm 2.3.

Fenchel cutting planes

Let X ′iy = {(xi, yi) ∈ {0, 1}|J |+1 :
∑
j∈J djxij ≤ si} and projx(X ′iy) be the projection of

conv(X ′iy) on the space of the x variables. As the set of all integer solutions to projx
(
X ′iy

)
is

an independence system, all non-dominated valid inequalities for projx
(
X ′iy
)
different from

−xij ≤ 0 are of the form λTxi ≤ 1 (Nemhauser and Wolsey, 1988, p.237). A Fenchel cutting
plane is in this case a cutting plane of the form λTxi ≤ 1 that cuts as deep as possible into
the relaxed polytope. Generating a Fenchel cutting plane for projx

(
X ′iy
)
can be seen as a

proof of the existence of a hyperplane that separates a fractional solution xi from projx
(
X ′iy
)
.

Boyd (1993) states the separation problem for the knapsack polytope projx
(
X ′iy
)
as

ν = max xTi λ

s.t.: xTi λ ≤ 1, ∀xi ∈ projx
(
X ′iy
)
,

0 ≤ λj ≤ 1, ∀j ∈ J .

(2.2)

If ν > 1, then there exists a hyperplane that separates xi from projx
(
X ′iy
)
, and this hyperplane

is given by
∑
j∈J λ

∗
jxij ≤ 1, where λ∗ is an optimal solution to (2.2). In fact, Boyd (1993)

proves a reduction result stating that there exists a hyperplane separating xi from projx
(
X ′iy
)

if and only if there exists a hyperplane separating xi from

projx
(
X ′iy
)
∩
{
xi ∈ R|J | : xij = 0 ∀j ∈ J 0

xij = 1 ∀j ∈ J 1},
where J 0 = {j ∈ J : xij = 0} and J 1 = {j ∈ J : xij = 1}. We can therefore exclude these
variables from the separation problem and thereby reduce the effort quite substantially.

The separation problem (2.2) obviously has too many constraints to be taken directly into
account. For that reason, Boccia, Sforza, Sterle, and Vasilyev (2008) propose a generic row-
generation procedure. We do, however, propose an equivalent column generation procedure
which is summarized in Algorithm 2.4 (Step 0–Step 8).

We have chosen to implement the method as a column generation procedure instead of
a row generation procedure as the basis matrix of the problem (2.3) only has the dimension
of the number of variables included in the separation problem, whereas the basis matrix of
the equivalent row generation procedure has the dimension of H (or the dimension of linear
independent rows in H). As rows are generated, the dimension of the basis matrix increases,
and the simplex iterations become computationally more demanding. This is avoided when
solving problem (2.2) by column generation. When solving the binary knapsack problems
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Step 0: Input a capacity constraint ∑j∈J djxij ≤ si and a fractional solution xi.
Step 1: Let J 1, J 0 and J f be the set of indices where xij = 1, xij = 0 and

0 < xij < 1, respectively. Define the residual capacity, s, as s = si −
∑
j∈J 1 dj.

Set the iteration counter l = 0 and initialize the set of solutions to the knapsack
problem H = {ej}j∈J f , where ej is the j’th column og the |J f |×|J f | identity
matrix.

Step 2: Set up the linear column generation master problem

min
∑
h∈H

γh

s.t.:
∑
h∈H

xhi γh ≥ xij, ∀j ∈ J f

γh ≥ 0

(2.3)

where H is an index set of solutions satisfying the knapsack constraint∑
j∈J f djxij ≤ s generated in step 5. If l = 0, then H = ∅.

Step 3: Solve the linear column generation master problem and denote an optimal
primal–dual pair (γl, λl).

Step 4: If ∑j∈J f xijλ
l
j ≤ 1, no violated cutting plane exists. Therefore stop.

Step 5: Solve the binary knapsack problem

Zkp = max{
∑
j∈J f

λljxj :
∑
j∈J f

djxj ≤ s, xj ∈ {0, 1}}

and denote an optimal solution xl.
Step 6: If Zkp ≤ 1 go to step 7. Otherwise, the inequality ∑j∈J f λljxij ≤ 1 is not

valid for

projx
(
X ′iy

)
∩ {xi ∈ R|J | : xij = 1, ∀j ∈ J 1 and xij = 0, ∀j ∈ J 0}

Therefore add the index l of the solution xl to H, set l := l+ 1 and go to step
2.

Step 7: Down–lift all variables in J 1 and up–lift all variables in J 0.
Step 8: Output the violated cutting plane πxi ≤ π0yi.

Algorithm 2.4: Column generation procedure for generating a Fenchel cutting plane
for capacity constraint i.



2.3. Solution methodology 25

in Step 5 of Algorithm 2.4, one should note that the cost coefficients λk are fractional, and
therefore numerical problems can arise. In order to overcome this, we simply multiply the
coefficients with a large scalar and then round the coefficients to the nearest integer, which
allows to use the highly efficient COMBO algorithm (Martello, Pisinger, and Toth, 1999)
for solving the binary knapsack problems. When it is no longer possible to find violated
inequalities this way, we submit the generated cutting plane to the rounding procedure
proposed by Kaparis and Letchford (2010) and check the result for validity. If this is the
case, the cutting plane is returned, otherwise a weakened inequality is returned. The cutting
plane generated by the row generation procedure described in Algorithm 2.4 is, after lifting
the fixed variables, of the form πTx ≤ π0. Again, we translate the resulting cutting plane by
multiplying the right–hand side by yi and obtain πTx ≤ π0yi in Step 8.

2.3.2 Phase 2 – Local branching

Local branching (LB) is in principle a technique for finding exact solutions to mixed integer
programs (MIP). It can, however, easily be converted into a heuristic, e.g. by setting a limit
on the time used for solving a given instance or a limit on the number of improving solutions.
The technique uses a general purpose MIP–solver to solve restricted subproblems of the
original problem instance defined by linear local branching constraints, which in turn are
derived from a feasible solution. For a detailed introduction to LB, the reader is referred to
Fischetti and Lodi (2003) and Fischetti, Polo, and Scantamburlo (2004). The two level LB
heuristic developed in this paper is summarized as follows; First, an initial feasible solution
is found by exploiting the LP-solution, second, the locational decisions are refined by local
branching, and finally the allocation of customers is determined, likewise by local branching.

Initial feasible solution

First, an initial feasible solution is found. Fischetti and Lodi (2003) argue to let the general
purpose MIP–solver find an (almost) random initial solution. In our case, however, it seems
more appropriate to guide the search from the start. We utilize the information available
from the cutting plane algorithm to this end. Let (x, y) be the fractional solution from the
last iteration of the cutting plane algorithm. Assuming that the probability of facility i being
open in an optimal solution to the SSCFLP is higher when yi > 0 than when yi = 0, we add
a constraint of the form ∑

i:yi=0
yi ≤ h1,

for a small integer value of h1. This constraint simply states that at most h1 of the facilities
not used in the fractional solution can be used in a heuristic solution to SSCFLP. The general
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purpose MIP–solver is then used to solve the resulting problem. The MIP-solver is stopped if
a heuristic stop criterion is met (see Section 2.3.2). The solution returned is denoted (x0, y0).

Refining the locational decision

Next, based on the initial solution (x0, y0), we add a local branching constraint for the
location variables of the form∑

i∈I
|y0
i − yi| ≤ h2 ⇔

∑
i:y0

i =0
yi +

∑
i:y0

i =1
(1− yi) ≤ h2,

to the formulation of SSCFLP, where h2 is a small integer. The problem is now solved with
the additional requirement that only improving solutions are accepted. Again, a heuristic
stop criterion is used to end the optimization (see Section 2.3.2). The resulting solution is
denoted (x1, y1). After this refinement of the locational decision, all location variables where
y1
i = 0 are fixed to zero. Note that only a single branch is created, meaning that a heuristic
fixation of non-promising location variables is done rather than an actual local branching.

Refining the allocation decision

Having almost fixed the location variables (we are still allowed to close open facilities), we
consider the allocation variables. Summing up the assignment constraints over j ∈ J we
have for any feasible solution to SSCFLP that∑

j∈J

∑
i∈I

xij = |J |.

We can therefore define a k-opt neighborhood around the allocation corresponding to x1 by
means of the local branching constraint

N(x1, k) :
∑

(i,j):x1
ij=1

xij ≥ |J | − k, (2.4)

for a given positive integer k. Adding this constraint will significantly reduce the solution
space, but the problem can still be too hard to solve to optimality. Therefore the search is
stopped prematurely if a heuristic stop criterion is met. If an improving solution is found,
say (x2, y2), the constraint (2.4) is removed and a reversed local branching constraint of the
form ∑

(i,j):x1
ij=1

xij ≤ |J | − k − 1,

is added to the problem. This constraint removes the neighbourhood N(x1, k) from further
consideration. The procedure is repeated and the problem solved in iteration n is given by

P(
[
DCTI ∩N(xn, k)

]
\
n−1⋂
l=1

N(xl, k)).
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If an iteration does not lead to any improvement, the best solution found so far is returned.

Heuristic stop criteria

Although the local branching constraints significantly reduce the size of the problem, solving
every subproblem to optimality is usually too time–consuming. Instead we set a limit on
the time and an upper bound for the number of improving solutions for the MIP-solver.
Ideally, these limits should depend on the problem data, but fixed limits seem to work well
in practice.

We do, however, distinguish between local branching on the location variables and on
the allocation variables. As the neighborhoods searched when refining the location decisions
are much larger than those examined for the allocation variables, we set a time limit of ty
seconds for those subproblems and a time limit of 0 < tx < ty for the allocation refinement.

When refining the locational decisions, we do not impose any upper bound on the number
of improved solutions, because the MIP-solver usually finds a large number of improving
solutions for the locational decisions in short computation times. For the allocation variables,
we set a limit of 1 < kx <∞ improving solutions, because in most cases only a few improving
solutions exist in the much smaller neighborhoods of the current allocation.

2.3.3 Phase 3 – Cut–and–solve

The cut–and–solve framework is to some extent very similar to LB as it also adds invalid
linear constraints to the problem in order to reduce its size. It is essentially a branch–and–
bound algorithm which branches on a set of variables instead of branching on single fractional
variables. At each level in the search tree (see Figure 2.1) there are only two nodes. The
left node is associated with the linear constraint stating that the sum of the variables in
a set Ω is less than or equal to an integer γ. This subproblem is called the sparse problem
(SP). The right node is associated with the sum being larger than or equal to γ + 1 and this
problem is called the dense problem (DP). The constraint associated with the DP is called a
piercing cut and these cuts are accumulated. An obvious choice for binary programs is to
set the parameter γ equal to zero as this completely fixes the variables in the set Ω to zero
in the SP. If that choice is made, it is often possible to use a general purpose MIP–solver
to solve the sparse problem. The optimal solution to the SP provides an upper bound on
the optimal solution value to SSCFLP (if the SP shows a feasible solution). If this upper
bound improves the incumbent, it is updated. Concurrently, a lower bound, Z, for the DP is
obtained from a relaxation of the DP. If the lower bound for the DP is not smaller than the
value of the incumbent, we know that no improving solutions can exist in the yet unexplored
solution space defined by the DP, and the incumbent is proven optimal. This procedure is
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Step 0 Obtain a lower bound of the
dense problem.

Step 1 Select a piercing cut.
Step 2 Find optimal solution in space

removed by the piercing cut
(sparse problem).
Update the incumbent if neces-
sary.

Step 3 If lower bound ≥ incumbent, re-
turn the incumbent.

Step 4 Add piercing cut to dense prob-
lem and go to Step 0.

SP1

DP0

SP2

DP1

SP3

DP2

DP3

Algorithm 2.5: Generic cut–and–solve
algorithm.

Figure 2.1: Cut–and–solve search tree.

repeated until an optimal solution is found (using the convention that a lower bound on an
infeasible DP is equal to infinity, this procedure will return an optimal solution). For a more
detailed introduction to the cut–and–solve framework, the reader is referred to Climer and
Zhang (2006).

Relaxation and piercing cuts

The way the DP is relaxed and piercing cuts are derived is of utmost importance for the
efficiency of the cut–and–solve approach. First of all, we want to use a relaxation that gives
strong lower bounds. The lower bound should also increase rapidly as piercing cuts are
added. Climer and Zhang (2006) suggest to use the linear programming relaxation and
to use reduced costs to define the piercing cuts. The problem is, however, that the linear
programming relaxation of SSCFLP is often highly degenerate and adding piercing cuts
does not improve the lower bound fast enough to obtain an efficient algorithm. We therefore
adopt the partial integrality strategy proposed by Yang et al. (2012). This strategy means
that we preserve the integrality of the location variables and relax the allocation variables,
leading to a CFLP as a relaxation of the SSCFLP. Defining the set Ω can therefore be done
in a straightforward way by letting

Ω = {i ∈ I : yi = 0}, (2.5)

where y is an integer solution to the location variables in the DP and the piercing cut becomes∑
i∈Ω yi ≥ 1. This definition is mainly motivated by the assumption that an optimal solution
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to the CFLP should have a number of attributes in common with an optimal solution to the
SSCFLP. This assumption is supported by the computational results reported in Section 2.4.
Furthermore, choosing Ω as in (2.5), many variables can be fixed in the SP as

∑
i∈Ω yi = 0

implies that xij = 0 for all i ∈ Ω and j ∈ J .

Termination

When proving finiteness of the cut–and–solve algorithm, Climer and Zhang (2006) assume
finiteness of the problem’s feasible region and that all SPs have at least one feasible solution.
The latter is, however, not necessarily true with the choice of Ω given in (2.5) as it might
be impossible to create a single–source solution using the set of facilities used in the CFLP–
relaxation. Termination is, however, easily proven in Proposition 2.3.

Proposition 2.3. Assume that the piercing cuts are defined by the set Ω stated in (2.5).
Then the algorithm terminates if the algorithms for solving the dense and the sparse problems
are guaranteed to terminate.

Proof. First of all, the set of feasible facility constellations for the CFLP version of the
SSCFLP is finite. There are |{ι ⊆ I :

∑
i∈ι siyi ≥ D}| such solutions. The piercing cut

∑
i:yi=0

yi ≥ 1,

removes the current solution to the modified CFLP from further considerations (in fact
it also removes all solutions which consist of a subset of the facilities used in the CFLP
solution). As there is a finite number of solutions to the locational variables of the CFLP,
the cut–and–solve algorithm terminates if the algorithms used to solve the dense and the
sparse problems terminate.

Variable fixing and pruning of nodes

As the open facilities in the solution to the DP often constitute a minimal cover of the total
demand, it is usually possible to fix many of the location variables in the SP to a value of
one in the following way. If ∑

i∈(I\Ω)\{̃i}

si < D,

for some ĩ ∈ I \Ω, the location variable yĩ can be fixed to one as the total demand cannot be
covered otherwise. If all variables in I \Ω can be fixed to one, the SP reduces to a generalized
assignment problem (GAP). Though GAP is also NP-hard, the only remaining decision is
to decide on the allocation of customers, whereby the effort for solving the SP is reduced.
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Note that it is not necessary to find an optimal solution to the SP in each iteration.
It suffices to prove that no improving solution exists in the space of solutions to the SP.
The optimization of the SP can then be prematurely terminated if a lower bound of this
SP equals or exceeds the value of the incumbent. For the same reason, the last DP can be
stopped prematurely as soon as it can be proven that its optimal solution does not fall below
that of the incumbent.

Cutting planes for the SP

For solving the DPs and SPs efficiently, the cutting planes generated in phase one of the
algorithm are all appended to these programs. Although the cuts generated for the capacity
constraints are not valid for the CFLP version of the SSCFLP, they are valid for the SSCFLP.
The modified CFLP is therefore still a relaxation of the SSCFLP. The variable fixing (2.5)
defined by the solution to the DP may, of course, remove the part of the solution space for
which these cuts were generated. If this is the case, the cuts are only of limited use in the
SP. We thus include additional cutting planes at the root node of each SP so that these
problems can be solved efficiently. The cutting planes are generated in the same way as in
the cutting plane algorithm shown in Algorithm 2.2. The implied variable bounds are not
used as they seem to contribute little to improvements in the lower bound at this stage. The
reason for this lack of effect is simply that many location variables can be fixed to one a
priori, making the implied bound xij ≤ yi redundant.

2.4 Computational experiments

In this section, the computational efficiency of the cut–and–solve approach is first tested
by comparing it to a commercial state–of–the–art software. Secondly, we test our algorithm
against the cut–and–solve algorithm developed by Yang et al. (2012), which to the best of
our knowledge is one of the most efficient algorithms for solving the SSCFLP. Finally, our
algorithm is tested on a set of new instances such that some insight can be obtained into
which parameter settings constitute difficult instances.

2.4.1 Implementation detail

The algorithm developed in this paper uses the linear programming solver and the branch–
and–cut framework provided by ILOG CPLEX Concert Technology 12.3 (CPLEX). All
programs have been coded in C++ and C languages and compiled using g++ and gcc,
respectively, with optimization option O2. All experiments were carried out on a Dell Vostro
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3450 laptop with 4 GB RAM and a 2.5 GHz Intel R© Core i5-2450M processor running a 32
bit version of Ubuntu 12.04.

In CPLEX, the ParallelMode switch is set to deterministic such that the running times
for different instances can be compared. Moreover, in Phase 1, the default settings are used
to solve the linear programming problems in each iteration of the cutting plane algorithm.
This means that CPLEX is allowed to preprocess the problem instance before the separation
routines are used. The separation routines are called for each knapsack constraint (capacity
or total demand) if the slack is below a certain threshold. A rather large slack is permitted, as
good results were obtained by including separating hyperplanes even for capacity constraints
showing large values of the slack variables at the current LP solution.

CPLEX is also used as MIP solver for solving the restricted problems in Phase 2. As
mentioned in Section 2.3.2, the parameters h1, h2 and k that determine the neighborhoods’s
sizes are fixed independently of the problem data and attain the values 0, 1 and 5, respectively.

In order to solve the dense problem in Phase 3, CPLEX is applied with the MIPSearch
set to “Traditional Branch-and-Cut”. The relative and the absolute optimality gaps are both
set to zero. All other settings are at their default values. All cuts generated in Phase 1 are
appended to the dense problem. CPLEX is also used for solving the sparse problem. Settings
are as for the dense problem, except that the absolute optimality gap is set to 0.99 due to
integral data. Furthermore, we branch on the location variables before branching on the
assignment variables. As the SPs often require memory exceeding the RAM capacity, the
NodeFileInd switch is set to 3 to allow for the branching tree to be written to a file on the
disk. All cuts generated in Phase 1 are added to this program as well, and furthermore, we
use a cut callback to separate GLCIs and Fenchel cutting planes in order to strengthen the
lower bound of the sparse problem. The cut generation is limited to the root node of the SP
as experience has shown that cutting planes are more effective at nodes in the top of the
branching tree.

2.4.2 Test instances

The solution approach has been evaluated on four different test beds, denoted TBi, i =
1, . . . , 4. TB1 consists of 57 instances from Díaz and Fernández (2002) ranging from small
instances with 10 potential facility sites and 20 customers to larger instances with 30 potential
facility sites and 90 customers. These instances are publically available at http://www-eio.

upc.es/~elena/sscplp/index.html. TB2 consists of 71 instances used by Holmberg et al.
(1999) with problems consisting of 10 facility sites and 50 customers up to problems with 30
facility sites and 200 customers. These instances are available at http://www.mai.liu.se/

~kahol/problemdata/cloc/. The third test bed, TB3, consists of relatively large problem
instances reported in Yang et al. (2012). The sizes of these problems range from 30 facility

http://www-eio.upc.es/~elena/sscplp/index.html
http://www-eio.upc.es/~elena/sscplp/index.html
http://www.mai.liu.se/~kahol/problemdata/cloc/
http://www.mai.liu.se/~kahol/problemdata/cloc/
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sites and 200 customers to 80 facility sites and 400 customers.
TB4 is a new set of problem instances generated for this paper. It tries to mimic the

situation where large fixed opening costs lead to small production costs (e.g. more efficient
and therefore expensive machinery leads to lower production costs). The problem instances
have been generated so as to be similar to instances in the literature on the CFLP and the
SSCFLP (see for example Cornuejols et al. (1991), Klose and Görtz (2007) and Yang et al.
(2012)). That is, demands and capacities are uniformly distributed in the intervals [5, 35] and
[10, 160], respectively. Then the capacities are scaled so as to obtain a specific ratio between
total capacity and total demand. Fixed opening costs are generated using the formula

fi = U(0, 90) +
√
siU(100, 110)

where U(a, b) denotes the uniform distribution of the set {a, a+ 1, . . . , b− 1, b}. Finally, the
assignment costs cij are usually determined as follows: generate facility sites and customers
so as to be uniformly distributed points in the unit square and set cij = b 10 δ(i, j) c,
where δ(i, j) denotes the Euclidean distance between facility point i and customer point j
and bδ(i, j)c denotes the largest integer no greater than δ(i, j). For the problems in TB4,
however, we will let this number denote the transportation cost of delivering customer j’s
demand from facility i. That is tij = b 10 δ(i, j) c. The production cost of producing dj
units of the desired product at facility i is then calculated as

pij =
⌊2 maxi∈I fi

fi

⌉
dj

where b·e means rounded to nearest integer. This specification has been made in order to
reflect the idea that items may be produced at a lower unit price in an expensive facility.
Another implication is that low opening costs for a facility will lead to high supply costs,
thus making it harder to determine the “right” set of facilities. The assignment cost is then
set to be cij = tij + pij , that is transportation plus production costs. In order to make the
percentage optimality gap, given by

gap = best integer− best lower bound
best lower bound 100

more “honest”, the assignment costs are scaled as follows

cij = cij −min
i∈I

cij

which will decrease the magnitude of the solution values. The assignment cost cij can then
be interpreted as the cost that should be paid if customer j is assigned to facility i instead
of the cheapest alternative.

These four test beds range from small over medium–sized to large–sized problems. In the
instances of TB2, the assignment costs dominate the fixed opening costs whereby an optimal
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Table 2.1: Abbreviations used in the column headings of the result tables

Heading Description
ID The ID of the problem under consideration.
|I| × |J | Number of facilities and customers in the instances.
r Ratio between total capacity and total demand.
%-time in phase Displays the percentage of the total cpu time used in Phase 1, 2,

and 3.
Z, Z, Z∗ Denotes the lower bound obtained from the first dense problem,

best upper bound found using the local branching heuristic and
the optimal solution value, respectively.

LBgap
(Z∗−Z)

Z
100. That is, a measure of the quality of the lower bound.

UBgap
Z−Z
Z

100. That is, a measure of the quality of the upper bound.
cpu The average cpu time used by our algorithm to solve the instances

in seconds.
CPU The cpu time, in seconds, used to solve a single instance using

our algorithm.
ρ The ratio between the cpu time used by another algorithm and

the cpu time used by the improved cut–and–solve algorithm of
this paper.

solution tends to include more facilities. In the rest of the test beds, the fixed opening costs
dominate the assignment costs, and the optimal solution will therefore often open as few
facilities as possible. Furthermore, a new cost structure for the allocation costs is used in
TB4. As a result, the instances in TB1-TB4 cover many different scenarios and it should be
possible to evaluate the effectiveness of our three–phase algorithm.

Table 2.1 simplifies the reading of the tables by summarizing the column headings.

2.4.3 The efficiency of cut–and–solve

In order to test the efficiency of the cut–and–solve algorithm in Phase 3, we have implemented
a solution procedure that first uses our cutting plane algorithm and then the traditional
branch–and–cut algorithm provided by CPLEX. Furthermore, the optimal solution value is
used as an upper cut-off value in CPLEX in order to mimic a very strong and fast heuristic.
All other settings are at their default values allowing CPLEX to generate cuts and preprocess
the instance.

Table 2.2 presents the aggregated results obtained using the combination of our cutting
plane algorithm and the branch–and–cut algorithm. It is evident that the branch–and–cut
algorithm performs well for the small test instances of TB1 and TB2. The ρ-value shows that
for TB2 the branch–and—cut algorithm generally outperforms the cut–and–solve algorithm
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Table 2.2: Results obtained using branch–and–cut instead of cut–and–solve.

ρ

TB |I| × |J | r cpu min mean max

1 10× 20− 30× 90 1.27-5.17 10.04 0.29 5.28 133.20

2 10× 50− 30× 200 1.37-8.28 1.92 0.23 0.78 2.44

3 30× 200− 80× 400 1.73-7.30 401.62 1.38 136.47 1652.70

4 50× 100− 60× 300 2.00-5.00 6,442.88 0.56 10.52 140.42

over the entire test bed. This is due to the small size of these problems; it is less time
consuming to solve one integer program than it is to alternate between solving a MIP
corresponding to the DP and the restricted MIP defined by the SP. The reason why the
branch–and–cut algorithm performs worse relative to our algorithm in TB1 than in TB2 is
that the integrality gap between the value of the LP relaxation and the optimal solution
value to SSCFLP is larger in TB1 than in TB2. As the cutting plane in conjunction with
the partial integrality strategy provides better lower bounds than the LP relaxation, the gap
is closed faster.

When we look at TB3 and TB4, it is apparent that the size of the problems in TB3 and
the tight capacity to demand ratios of TB4 make the branch–and–cut algorithm much more
time consuming than the cut–and–solve. On average, the branch–and–cut algorithm requires
about 135 times more cpu time than the cut–and–solve to solve the instances in TB3. Even
though the instances in TB4 exhibit a relatively small capacity to demand ratio, implying
larger SPs, our algorithm runs 10 times faster than the branch–and–cut algorithm provided
by CPLEX on average. Furthermore, the branch–and–cut algorithm was not able to solve
a number of instances (instances n16, n19, n20 and n35) within a time limit of 50,000 cpu
seconds. These instances were solved by the three phase algorithm within half that time.

We therefore conclude that for small instances with a small integrality gap the cut–and–
solve approach is comparable to CPLEX’ branch–and–cut algorithm and for large instances
our cut–and–solve algorithm clearly outperforms CPLEX. Furthermore, the authors would
like to note that for some of the instances in TB4 the memory requirement for the branch–
and–cut algorithm exceeded 80 GB before the time limit was exceeded; for the cut–and–solve
algorithm it never exceeded 7 GB.

2.4.4 Computational results of TB1–TB4

This section compares our improved cut–and–solve algorithm to the one proposed by Yang
et al. (2012). To distinguish the two algorithms, we denote the improved cut–and–solve
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algorithm developed in this paper Imp-CS and the cut–and–solve algorithm developed in
Yang et al. (2012) is denoted Y-CS. As Mr. Zhen Yang kindly provided the implementation
of the algorithm proposed in Yang et al. (2012), and as the two algorithms have been run
on the same machine, the CPU-times are truly comparable. We should mention, that Y-CS

originally considered the implied bounds xij − yi ≤ 0 as a part of the formulation of the
SSCFLP. However, we noticed that this slowed down the Y-CS significantly. Therefore, we
changed the code slightly so that the implied variable bounds were added on the fly like by
the Imp-CS. The results obtained for TB1 to TB4 are displayed in Table 2.3. It is apparent
that the lower and upper bounds obtained before solving the first sparse problem are very
close to the optimal solution in almost all cases. Except for the first subsets of test instances
in TB1, the average deviation of the lower bound obtained from the first dense problem
from the optimal solution never exceeds 0.5 percent. The larger gaps in the two first subsets
of TB1 mainly stem from two instances, namely d1 and d7, respectively. The absolute gaps
in these two instances are relatively small, but as the objective function values are not that
large for these instances either, the percentage gap becomes larger. In 4 and 22 instances
of TB1 and TB2, respectively, the cutting plane algorithm was able to close the integrality
gap and found an integer solution whereby Phases 2 and 3 were never entered. This never
happened for any instances in TB3 and TB4.

The simple local branching heuristic seems to work well; for each test bed it produces
solutions deviating less than 1.09 percent from the lower bound on average. In fact, for
test beds TB1, TB2, and TB3, the deviation is less than one percent in each test bed
(see Table 2.3, the column denoted UBgap). This indicates that even though the heuristic
is relatively simple, it may be used as a stand–alone heuristic with a known quality of
the computed solution. In fact, in 86 of the 193 instances tested here, the local branching
heuristic found the optimal solution. It should be mentioned, however, that in five instances
of TB4 the heuristic failed to find a feasible solution (see Section 2.4.5 for an elaboration of
the results on TB4).

Regarding the percentage of the time spent in the three phases, for the smaller instances
of TB1 and TB2 most of the time is spent in the first two phases, while in TB3 and TB4
the majority of the time is spent in Phase 3. There are two reasons for this result. First,
even though the lower bound percentage deviation from the optimal solution is quite small
in TB3, the absolute gaps are relatively large. This is due to the larger objective function
values in TB3 than in TB1 and TB2. In fact, the average optimal objective function values
in TB1 and TB2 are almost 40 and 60 percent smaller than those in TB3. For this reason,
large absolute gaps can be hidden in the “percentage deviation”-measure. Second, as the
problem size grows, so does the time-consuming SPs which need to be solved in Phase 3,
leading to more time spent in this phase. Note also that the time spent in Phase 3 in TB4
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Table 2.3: Aggregated results on the four test beds when our algorithm is compared
to the algorithm proposed by Yang et al. (2012)

%-time in phase ρ

TB ID |I| × |J | r LBgap UBgap 1 2 3 cpu min mean max

1 d1-d6 10× 20 1, 32− 1, 54 1.15 1.53 19.0 35.6 45.4 0.90 1.72 4.68 8.53

d7-d17 15× 30 1.33− 3.15 0.51 0.72 45.0 36.7 18.3 1.47 2.00 8.64 37.94

d18-d25 20× 40 1.30− 3.93 0.13 0.46 46.6 27.3 26.1 3.31 1.65 12.27 38.25

d26-d33 20× 50 1.27− 4.06 0.16 0.55 41.9 37.9 20.2 36.58 0.67 10.20 30.21

d34-d41 30× 60 1.64− 5.17 0.16 0.28 43.2 26.8 30.0 5.42 4.00 12.46 35.17

d42-d49 30× 75 1.43− 3.01 0.03 0.13 40.9 28.7 30.3 14.29 2.02 15.25 30.08

d50-d57 30× 90 1.49− 3.47 0.08 0.20 52.8 25.7 21.5 8.88 3.26 25.94 74.42

Avg. 0.30 0.53 40.6 28.5 30.9 9.99 12.84

2 h1-h12 10× 50 1.37− 2.06 0.04 0.05 55.4 35.0 9.6 0.20 2.19 4.60 13.66

h13-h24 20× 50 2.77− 3.50 0.01 0.08 69.7 16.6 13.7 0.34 0.65 2.10 8.06

h25-h40 30× 150 3.03− 6.06 0.11 0.23 58.2 24.5 17.3 2.61 1.23 33.40 122.73

h41-h55 30× 100 1.52− 8.28 0.10 0.20 48.1 31.5 20.4 0.67 0.46 24.40 67.20

h56-h71 30× 200 1.97− 3.95 0.08 0.22 60.8 16.5 22.7 5.29 1.52 21.41 116.44

Avg. 0.07 0.17 60.6 24.7 14.7 2.01 18.64

3 y1-y5 30× 200 1.73− 1.98 0.10 0.78 20.1 40.8 39.1 51.00 4.81 28.11 48.60

y6-y10 60× 200 2.88− 3.49 0.16 0.78 8.5 8.2 83.3 1261.82 0.87 29.54 52.00

y11-y15 60× 300 3.42− 5.78 0.07 1.02 32.0 17.9 50.1 65.63 42.17 114.50 212.97

y16-y20 80× 400 3.50− 7.30 0.05 0.68 27.4 15.0 57.6 228.01 27.49 169.62 370.80

Avg. 0.10 0.82 22.0 20.5 57.5 401.62 85.44

4 n1-n5 50× 100 2 0.02 — 5,8 26,4 67,8 1078.94 0.84 6.12 18.72

n6-n10 3 0.02 0.97 7,2 17,6 75,2 931.25 2.34 6.33 9.69

n11-n15 5 0.02 0.76 45,2 15,2 39,6 16.83 11.77 59.93 127.41

n16-n20 50× 200 2 0.08 — 6,3 7,3 86,4 7871.77 9.72 14.03 18.33

n21-n25 3 0.01 — 12,6 32,8 54,6 4221.90 5.48 12.17 23.74

n26-n30 5 0.01 0.13 73,6 13,0 13,4 14.32 42.88 101.34 150.92

n31-n35 60× 300 2 — — 0,1 0,5 99,4 42938,86 — — —

n36-n40 3 0.01 — 12,4 34,7 52,9 863,94 0.58 20.28 44.14

n41-n45 5 0.02 — 60,8 22,7 16,5 48.11 79.57 138.38 203.69

Avg. 0.03 1.09 24,9 18,9 56,2 6442,88 43.11
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decreases as the capacity to demand ratio increases. The rather obvious explanation is that
as the ratio increases, fewer facilities are needed to cover the demand, and the SPs become
smaller and thereby easier to solve.

Comparing the running times obtained using Imp-CS to the ones obtained using Y-CS,
we observe that in all four test beds the average running time of Imp-CS is just a small
fraction of that obtained by Y-CS. In TB1 and TB2, Y-CS algorithm runs faster than Imp-CS

in one out of 57 and in seven out of 71 instances, respectively. Y-CS usually only outperforms
Imp-CS in cases where the cutting plane algorithm is capable of closing the integrality gap,
thus eliminating the need for evoking phases 2 and 3. This is probably due to the fact that
the Fenchel cuts generated by Yang et al. (2012) are deeper than those generated here. Even
though these deeper cuts come at a price in terms of longer computation times, this does
not make that large an impact on these small instances, and the gap can be closed faster.
Considering TB3 and TB4, the difference between the two algorithm becomes more apparent.
On average, Y-CS uses about 85 and almost 45 times more computation time compared to
Imp-CS on the instances in TB3 and TB4, respectively. Thus, the improved cut-and-solve
algorithm Imp-CS achieves a very significant decrease in the running times.

We ascribe the large differences in running times to five primary improvements: 1) the
way in which cutting planes are generated and the relaxation is strengthened; 2) the place
where the cutting planes are added in the cut-and-solve tree; 3) the definition of the piercing
cuts; 4) the pruning of sparse problems before an optimal solution has been established; and
5) the strong upper bounds generated in Phase 2. In Phase 1 of the Imp-CS algorithm, we
generate the Fenchel cuts in a different way than is done by Yang et al. (2012); First of all,
we only consider the fractional support of the LP solution in the separation problem and we
use Corollary 2.3 to exclude the y-variables from the separation problems. This significantly
reduces the size of the linear master problem in Algorithm 2.4. In addition to this, we solve
the separation problem for the Fenchel inequalities using column generation instead of the
traditional row generation procedure, which reduces the size of the basic matrix of the linear
master problem. We also noticed that the main bottleneck of the cut–and–solve algorithm
was the solution of the sparse problems and not the number of cut–and–solve nodes created.
For that reason, we focused on reducing the effort for solving the sparse problems by means
of additional cutting planes, instead of adding cuts to the dense problem in order to increase
the lower bound. Furthermore, the way we define the sparse problems generally results in
smaller sparse problems compared to those generated by Y-CS. Yang et al. (2012) use the
solution from the dense problem to guide a heuristic to generate a feasible solution and
let this feasible solution define the sparse problem. In this way, they can use the proof of
termination given in Climer and Zhang (2006) as each sparse problem contains at least one
feasible solution. We, however, use Proposition 2.3 and do this way not need each sparse
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problem to contain a feasible solution. Furthermore, we use the observation that if a lower
bound of the sparse problem exceeds the best known solution, no improving solution can
be found in that cut–and–solve node, and we therefore stop the optimization of the sparse.
This saves a significant amount of CPU time. Finally, as the sparse problem defined by
Imp-CS are small, it is often hard to find a feasible solution to these problems. Without a
good upper bound, solving the sparse problems would often be impossible as none of the
branching nodes can be pruned before a feasible solution is known. The good upper bounds
generated in Phase 2 are thus very helpful for solving the sparse problems. Actually, in the 86
cases where the local branching heuristic produced the optimal solution, no sparse problems
needed to be solved to optimality due to the pruning rule.

2.4.5 Elaborated results on TB4

As mentioned previously, TB4 consists of problems where an extra “production cost” is
added to the distance matrix. Three different problem sizes are considered, namely 50× 100,
50× 200 and 60× 400. For each problem size, three sets of five instances showing a capacity
to demand ratio of 2, 3, and 5 were generated. The results are presented in Table 2.4.

For these instances an extremely small gap between the lower bound and the optimal
solution is observed; in none of the cases does the lower bound deviate more than one third
of a percent. This is a very convincing result as the assignment costs have been scaled down
in order to make the percentage-error measure more independent from the magnitude of the
cost data. The two level local branching does, however, show some weaknesses. In five of
the 45 instances, the heuristic is not able to generate a feasible solution, and for five other
instances, a deviation of more than two percent from the lower bound is observed. Both the
failure of finding a feasible solution and the large deviations are encountered in problems
with a small capacity to demand ratio (r = 2 and 3). The main reason is that we use a
general MIP-solver to find an initial solution, and when the capacity to demand ratio is
small, a branching tree of a certain depth is often needed to find a feasible solution. On
average, however, the local branching heuristic performs well showing an average deviation
between lower bound and heuristic upper bound over the entire bed of about one percent,
only.

In four of the 45 instances (instances n31-n34), the algorithm failed to find the optimal
solution as the set maximum of 50,000 cpu seconds was reached and computation discontinued.
The tendency is that the smaller the r-value, the more computation time is required for
solving the instance. If the capacity to demand ratio gets smaller, more facilities are needed
to cover the demand, implying that the size of the sparse problems increases as fewer facilities
can be closed. It seems we have reached the limit of the problem size for the case r = 2
solvable by our algorithm. Note that the larger problem instances solved to optimality in
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Table 2.4: Results on test bed TB4

LB UB %-time in phase

ID |I| × |J | r Z LBgap Z UBgap Z∗ 1 2 3 CPU ρ

n1 50× 100 2 18,291.3 0.01 18,319 0.15 18,294 2.2 4.8 93.0 616.74 0.88
n2 19,684.3 0.06 20,590 4.40 19,688 0.8 4.5 94.7 3705.52 5.32
n3 19,073.2 0.01 — — 19,075 7.2 43.8 49.0 192.32 4.34
n4 18,618.7 0.01 18,620 0.01 18,620 16.0 77.3 6.8 92.10 18.72
n5 18,498.0 0.02 18,871 1.98 18,502 2.5 1.7 95.8 788.01 1.40

n6 3 16,942.6 0.03 17,215 1.61 16,948 0.2 0.2 99.6 3887.94 2.87
n7 15,061.7 0.01 15,065 0.02 15,063 29.8 54.9 15.3 32.37 8.91
n8 15,103.5 0.02 15,372 1.78 15,107 2.8 16.9 80.3 170.56 7.87
n9 14,344.1 0.02 14,452 0.75 14,347 1.8 3.8 94.4 89.11 9.69
n10 14,808.8 0.03 14,912 0.70 14,813 1.1 12.3 86.6 476.28 2.34

n11 5 12,071.0 0.01 12,078 0.06 12,072 60.0 11.6 28.4 10.36 63.09
n12 11,893.9 0.03 12,014 1.01 11,898 7.1 5.6 87.3 46.46 11.77
n13 11,124.5 0.00 11,125 0.00 11,125 47.7 23.3 29.0 8.58 127.41
n14 11,815.8 0.01 12,000 1.56 11,817 69.6 15.8 14.6 10.05 36.67
n15 11,486.3 0.02 11,622 1.18 11,489 41.6 19.4 39.0 8.68 60.68

n16 50× 200 2 25,989.1 0.01 27,272 4.94 25,992 2.6 8.9 88.5 2267.62 22.05
n17 25,866.5 0.01 26,132 1.03 25,868 22.5 17.8 59.7 122.87 9.72
n18 26,928.2 0.01 — — 26,930 6.4 9.2 84.4 869.55 18.33
n19 25,950.4 0.11 26,120 0.65 25,980 0.1 0.2 99.7 14,790.36 3.38
n20 25,323.7 0.26 — — 25,390 0.0 0.4 99.6 21,308.44 2.35

n21 3 20,697.0 0.02 20,787 0.43 20,701 1.3 0.8 97.9 1397.86 5.48
n22 22,018.8 0.01 — — 22,021 0.1 0.4 99.5 19,588.60 2.55
n23 20,036.8 0.01 20,038 0.01 20,038 36.0 58.5 5.5 7.42 23.74
n24 20,594.3 0.00 20,941 1.68 20,595 15.6 14.3 70.1 28.08 8.44
n25 21,167.3 0.00 21,168 0.00 21,168 10.0 90.0 0.0 87.55 11.00

n26 5 16,658.7 0.00 16,659 0.00 16,659 69.8 30.2 0.0 11.54 42.88
n27 16,136.7 0.01 16,140 0.02 16,138 75.0 8.6 16.4 18.92 105.77
n28 17,754.6 0.00 17,804 0.28 17,755 70.1 7.9 22.0 15.37 124.45
n29 15,855.7 0.01 15,914 0.37 15,858 56.0 15.8 28.2 12.08 145.81
n30 16,883.7 0.00 16,884 0.00 16,884 97.3 2.7 0.0 13.68 82.68

n31 60× 300 2 34,858.5 — 34,861 0.01 — 0.1 0.2 99.7 50,000 1
n32 36,543.5 — 36,742 0.54 — 0.1 0.3 99.6 50,000 1
n33 34,876.2 — 34,884 0,02 — 0.1 0.1 99.8 50,000 1
n34 34,817.6 — 36,057 3.27 — 0.1 0.3 99.6 50,000 1
n35 37,136.3 0.16 38,603 3.80 37,196 0.0 1.5 98.5 14,694.31 3.40

n36 3 27,901.2 0.01 — — 27,903 0.6 2.4 97.0 3,492.47 0.58
n37 27,593.5 0.00 27,729 0.49 27,594 30.6 36.7 32.7 83,20 44.14
n38 29,229.5 0.01 31,101 6.02 29,231 5.6 52.3 42.1 393,35 5.02
n39 27,437.6 0.01 27,440 0.01 27,439 20.5 66.6 12.9 62.34 13.58
n40 28,030.3 0.01 28,190 0.57 28,033 4.8 15.4 79.8 288.35 38.10

n41 5 21,043.2 0.01 21,045 0.01 21,045 71.5 22.5 6.0 30.57 174.09
n42 22,587.6 0.01 22,924 1.47 22,589 46.0 7.3 46.7 29.51 203.69
n43 21,447.5 0.01 21,822 1.72 21,449 47.0 49.0 4.0 87.32 102.83
n44 21,464.6 0.01 21,466 0.01 21,466 72.8 21.8 5.4 34.17 79.57
n45 21,859.0 0.00 21,879 0.09 21,860 66.9 12.8 20.3 58.97 131.73

Avg. 0.02 1.17 24.9 18.9 56.2 644.9 39.36
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TB3 have a significantly larger ratio r than the unsolved instances in TB4. Considering the
distribution of computation time across the three phases, it is evident that most of the time
is spent in Phase 3. This is mainly due to the large time consumption in Phase 3 for the
instances showing a small r-value. It is also worth noting that our way of generating the
allocation costs cij differs from the way traditionally used in existing literature, but this
seems to have almost no impact on the performance and thus our algorithm proves robust
in this respect.

Comparing Imp-CS to Y-CS, we see that in only two out of 45 cases (instances n1 and n36)
our algorithm does not perform as well as that of Yang et al. (2012). In the four unsolved
instances, the time consumption exceeded 50,000 seconds and both Imp-CS and Y-CS were
stopped. One should note that as the ratio r increases, so does the value of ρ, meaning that
Imp-CS becomes more efficient relative to Y-CS as the cut–and–solve algorithm in Phase 3
becomes more relevant. This underlines the results obtained in Section 2.4.3, namely that
our improved cut–and–solve algorithm is indeed very fast. Over the entire test bed, Imp-CS

runs about 40 times faster than Y-CS on average, suggesting an efficient solution procedure.

2.5 Conclusions

We have proposed an algorithm to solve the single–source capacitated facility location
problem to optimality. The proposed algorithm works in three phases: The first phase
consists of a cutting plane algorithms based on knapsack separation used to strengthen
the SSCFLP. Secondly, strong upper bounds are generated in Phase 2 by a local branching
heuristic that starts by heuristically fixing location variables and then improves the allocation
of customers. Finally, in Phase 3, an accelerated cut–and–solve algorithm is proposed to
search for an optimal solution if one has not been found in the first two phases.

The computational results show that the lower bounds produced by the cutting plane
algorithm in Phase 1 combined with the partial integrality strategy produces very strong
lower bounds in relatively short computation times. Furthermore, the characterization of the
facets of the integer hull of the capacity constraints facilitates a more efficient generation of
very strong Fenchel cutting planes.

When we combine the strong lower bound with the simple LB heuristic, we get a
provably very good solution in most cases. Although the heuristic is relatively simple by
nature, combined with Phase 1 it could in fact work as a stand alone heuristic.

The accelerated cut–and–solve algorithm in Phase 3 also seems to be efficient in searching
for an optimal solution. The lower bound of the dense problem increases fast and only a few
time consuming sparse problems need to be solved. Adding cuts in the root node of every
sparse problem also seems to have a positive effect on the performance of our algorithm.
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Compared to the algorithm presented in Yang et al. (2012) our algorithm solves the
problems significantly faster in almost all instances. Our new algorithm far outperforms their
algorithm with running times 10 to 80 times faster, on average. As the algorithm by Yang
et al. (2012) is considered state-of-the-art, this suggests a very efficient algorithm.

Directions for further research include the examination of the effect of generating cutting
planes, not only for the knapsack-like structures, but also for substructures including the
demand constraints. Furthermore, the proposed framework seems appropriate for other
types of location problems as well, for example hierarchical location models with capacity
constraints. Finally, the model for the capacitated facility location problems with modular
distribution costs proposed in Correia, Gouveia, and Saldanha-da Gama (2010) exhibits
many of the same features as the SSCFLP, and therefore an adaptation of the algorithm
presented here might serve as a good solution method.
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Abstract

This paper describes how the cut–and–solve framework and semi–Lagrangean based dual
ascent algorithms can be integrated in two natural ways in order to solve the single–source
capacitated facility location problem. The first uses the cut–and–solve framework both as
a heuristic and as an exact solver for the semi–Lagrangean subproblems. The other uses a
semi–Lagrangean based dual ascent algorithm to solve the sparse problems arising in the
cut–and–solve algorithm. Furthermore, we developed a simple way to separate a special
type of cutting planes from what we denote the effective capacity polytope with generalized
upper bounds. From our computational study, we show that the semi–Lagrangean relaxation
approach has its merits when the instances are tightly constrained with regards to the
capacity of the system, but that it is very hard to compete with a standalone implementation
of the cut–and–solve algorithm. We were, however, able to increase the size of the instances
solvable by almost 25 percent compared to methodologies proposed in the literature.

Keywords: capacitated location problem; single–source; semi–Lagrangean; cut–and–solve;
dual ascent

3.1 Introduction

The single–source capacitated facility location problem (SSCFLP) is the problem of opening
facilities and allocating each customer’s demand to one single open facility, while respecting
the capacity of the facilities. An optimal solution is a solution that minimizes the total
cost incurred by opening facilities and assigning the demand of the customers to the open
facilities. Despite the fact that the problem has a simple verbal description, it is strongly

45
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NP–hard and most research has consequently been devoted to heuristics. It is beyond the
scope of this paper to review the vast literature on heuristics for the SSCFLP, and we will
therefore limit the discussion of heuristics for the SSCFLP to papers dealing with Lagrangean
or semi–Lagrangean heuristics.

Klincewicz and Luss (1986) relax the so–called capacity constraints in a Lagrangean man-
ner where the Lagrangean subproblem becomes an uncapacitated facility location problem.
Primal solutions are obtained by an add heuristic and a refinement heuristic improving the
primal feasible solutions to the Lagrangean subproblem. If the assignment constraints are
relaxed in a Lagrangean manner instead, Bitran, Chandru, Sempolinski, and Shapiro (1981)
showed that the Lagrangean subproblem decomposes into an independent knapsack problem
for each facility site. Sridharan (1993) uses this fact to derive a tight lower bound for the
SSCFLP by maximizing the Lagrangean dual function using subgradient optimization. In
order to obtain good primal solutions, a generalized assignment problem is solved over the
open facilities in each iteration of the subgradient procedure which makes this approach
unsuited for large problem instances. The capacitated concentrator location problem, which
is equivalent to the SSCFLP, is studied in Pirkul (1987), where a lower bound is obtained by
maximizing the Lagrangean dual function resulting when relaxing the demand constraints.
In Beasley (1993) both the capacity constraints and the demand constraints are relaxed
and different Lagrangean heuristics are compared. Barceló and Casanovas (1984) consider
a slight variant of the SSCFLP where the number of open facilities is limited by a given
constant K. They propose a Lagrangean heuristic that decomposes into two subproblems; a
plant selection and an allocation problem. The heuristic relaxes the demand constraints in
a Lagrangean manner and properties of the dual of the LP-relaxation are used to guide a
heuristic computing the Lagrangean multipliers. Barceló, Fernández, and Jörnsten (1991)
propose a Lagrangean decomposition approach that separates the demand constraints from
all other constraints. The Lagrangean subproblem thus decomposes into two subproblems;
one being identical to the one obtained when relaxing the demand constraints and one being
a simple semi-assignment problem. Due to the integrality property of the latter subproblem,
the Lagrangean decomposition bound is no stronger than the Lagrangean bound based on
relaxation of the demand constraints. Barceló, Hallefjord, Fernández, and Jörnsten (1990)
suggest, to relax the capacity constraints, including a total demand constraint (stating
that the total capacity of the open facilities needs to cover the total demand). In addition,
they generate simple cover inequalities from the total demand constraint on the fly during
subgradient optimization. The added cover inequalities are then relaxed and consequently
do not alter the Lagrangean subproblem, but may nevertheless contribute to an improved
bound. The assignment constraints are also dualized by Cortinhal and Captivo (2003) and
the solutions to the Lagrangean subproblem are transformed into a feasible solution by a
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repair heuristics based on local search. A more recent Lagrangean relaxation based heuristic
was proposed in Chen and Ting (2008), where the Lagrangean dual bound is approximated
using subgradient optimization techniques and a multiple ant colony heuristic is used in
each iteration in order to improve the best upper bound. We would also like to mention the
heuristic dual ascent method based on a semi–Lagrangean relaxation for the uncapacitated
facility location problem proposed in Monabbati (2014).

In addition to the computational complexity of the SSCFLP, the traditional arc–based
formulation of the problem suffers from a weak LP–bound when the cost of opening facilities
is large compared to the assignment costs. This is often the case for instances proposed
in the literature and exact approaches have therefore traditionally relied on stronger lower
bounds. Neebe and Rao (1983) and Díaz and Fernández (2002) therefore reformulate the
problem in a Dantzig–Wolfe fashion and use a branch–and–price algorithm for solving the
SSCFLP. Holmberg, Rönnqvist, and Yuan (1999) imbed a Lagrangean relaxation in a branch–
and–bound framework and use a repeated matching heuristic to generate upper bounds.
Recently, Yang, Chu, and Chen (2012) proposed a cut–and–solve method based on relaxing
only assignment variables, effectively using the, also NP–hard, capacitated facility location
problem (CFLP) as a relaxation of the SSCFLP. In Gadegaard, Klose, and Nielsen (2016d)
an improved cut–and–solve algorithm running in three phases was developed.

Recently, several papers have dealt with the so–called semi–Lagrangean relaxation ap-
proach for facility location problems. The approach was proposed in Beltran, Tadonki, and
Vial (2006) for the p–median problem, and applied again to the uncapacitated facility location
problem (UFLP) in Beltran-Royo, Vial, and Alonso-Ayuso (2012). Beltran et al. (2006) show
that the semi–Lagrangean relaxation shows no duality gap, and that it therefore constitute
an exact solution procedure. Both Monabbati (2014) and Jörnsten and Klose (2015) propose
a surrogate relaxation of a set of constraints before dualizing them in a Lagrangean manner.
This condensed semi–Lagrangean relaxation does not show any duality gap either, and the
resulting Lagrangean dual problem becomes a one–dimensional optimization problem. Based
on this observation Monabbati (2014) proposes a heuristic solution procedure from the
(UFLP) and Jörnsten and Klose (2015) develop an exact dual ascent algorithm guided by
primal feasible solutions.

The semi–Lagrangean approaches proposed in the literature have only been applied to
location problems where primal feasible solutions can easily be recovered from the solutions
to the semi–Lagrangean dual subproblem. These primal feasible solutions have then been
used to guide the search for optimal multipliers. For the SSCFLP it is, however, an NP–hard
problem just to find a feasible solution, implying that guiding a dual ascent by feasible
solutions can be prohibitive. In addition, the solution approaches for the SSCFLP proposed
in the literature often use knapsack separation exclusively from the capacity constraints,
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thereby ignoring the so called assignment constraints when generating cutting planes.
We wish to close the gap in existing literature by overcoming the above-mentioned

obstacles and we contribute as follows:

1. We propose to separate a special kind of cutting planes from what we denote the
effective capacity polytope with generalized upper bounds in order to strengthen the
programs before applying the algorithms.

2. We develop a semi–Lagrangean based dual ascent algorithm which integrates the
cut–and–solve framework, both as a heuristic and as an exact solver.

3. We propose an enhanced cut–and–solve algorithm that integrates the semi–Lagrangean
based dual ascent algorithm as a solution procedure for the otherwise time consuming
subproblems.

4. We test three different algorithms and three different schemes for initializing the
semi-Lagrangean multiplier. We show empirically that the semi–Lagrangean based
dual ascent algorithms performs very well on instances with a small ratio between the
total capacity and the total demand.

The remainder of the paper is organized as follows: Section 3.2 introduces the semi–
Lagrangean based dual ascent and the cut–and–solve algorithms for general integer linear
programs. In Section 3.3 we show how the two aforementioned solutions procedures can be
integrated while Section 3.4 adapts the solution methodologies to the single–source capaci-
tated facility location problem. Section 3.5 reports on extensive computational experiments,
and finally we conclude on our findings in Section 3.6.

3.2 Preliminaries

In this section we introduce the preliminaries for the remainder of the paper. In Section 3.2.1
we introduce the concept of semi–Lagrangean relaxation and describe two simple dual ascent
algorithms based on this relaxation. Section 3.2.2 introduces the cut–and–solve framework.
To that end, consider the generic integer linear program

Z∗ = min cTx

s.t.: Ax = b

x ∈ P ∩ {0, 1}n
(3.1)

where P ⊆ Rn+ is a polyhedron, A is a rational m×n matrix, and b and c are rational vectors
of dimensions m and n, respectively. Unless otherwise stated, it will be assumed throughout
the paper that (3.1) has an optimal solution.
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3.2.1 Semi–Lagrangean relaxation

In traditional Lagrangean relaxation approaches one would introduce Lagrangean multipliers
λ and relax the constraints Ax = b in a Lagrangean manner in order to obtain a lower bound
of (3.1) given by L(λ) = λT b+ min{(c−λTA)x : x ∈ P ∩{0, 1}n}. Although the traditional
approach in many cases improves the bound compared to the LP relaxation bound, the
duality gap is usually not closed by maximizing L(λ). However, another approach called
semi–Lagrangean relaxation was recently proposed in Beltran et al. (2006). By stating the
equations Ax = b as the two sets of inequalities Ax ≤ b and Ax ≥ b we obtain an equivalent
formulation of (3.1). Relaxing the latter set of inequalities with multipliers λ ∈ Rm+ in a
Lagrangean manner results in the semi–Lagrangean relaxation

L(λ) = λT b+ min (c− λTA)Tx

s.t.: x ∈ X ,
(3.2)

where X = {x ∈ P ∩ {0, 1}n : Ax ≤ b}. The Lagrangean dual problem then becomes the
problem of finding multipliers λ∗ ∈ Rm+ such that

λ∗ ∈ arg max{L(λ) : λ ∈ Rm+}. (3.3)

As the variables are positive, the system Ax = b can also be described by the inequalities
Ax ≤ b and the surrogate relaxation eTAx ≥ eT b of the constraints Ax ≥ b, where the vector
e ∈ Rm is given by e = (1, . . . , 1). Dualizing the single constraint eTAx ≥ eT b with multiplier
µ ≥ 0 leads to the so–called condensed semi–Lagrangean relaxation given by

L(µ) = µeT b+ min (c− µeTA)Tx

s.t.: x ∈ X .
(3.4)

The condensed semi–Lagrangean relaxation was suggested by Monabbati (2014) and
Jörnsten and Klose (2015). Compared to the semi–Lagrangean dual problem (3.3) the dual
problem

max{L(µ) : µ ≥ 0}, (3.5)

has the clear advantage that it is one–dimensional. Preliminary tests confirmed the findings
for the uncapacitated facility location problem reported in Jörnsten and Klose (2015), namely
that the condensed semi–Lagrangean relaxation outperforms the ordinary semi–Lagrangean
relaxation by an order of magnitude. Therefore this paper is limited to the study of the
condensed semi–Lagrangean relaxation only. For that reason, we will henceforth use the
term semi–Lagrangean relaxation for the relaxation (3.4) instead of the rather cumbersome
condensed semi–Lagrangean relaxation.

In Theorem 3.1 we have stated some properties of the semi–Lagrangean function and
the semi–Lagrangean dual problem which were originally proven in Monabbati (2014).
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1) and optimal multiplier µ∗ ∈M.

Step 1: (Initialization) Set k = 1 and initialize multiplier, µk, to a suitably small
value.

Step 2: (Solve subproblem) Obtain an optimal solution xk to the semi–Lagrangean
subproblem

L(µ) = min{(c− µkeTA)Tx : x ∈ X}.

Step 3: (Termination check) If Axk = b, stop with (xk, µk) as an optimal primal–
dual pair.

Step 4: (Update) Let µk+1 = µk + δk, δk > 0, and return to Step 2. Go to Step 2.

Algorithm 3.1: A dual ascent algorithm for a semi–Lagrangean relaxation of a general
ILP.

Theorem 3.1 (Monabbati (2014)). Let X (µ) = arg min{(c − µeTA)x : x ∈ X} and let
M = arg max{L(µ) : µ ≥ 0}. Then the following holds true

1. L(µ) is monotone and L(µ′) ≥ L(µ) if µ′ ≥ µ. The inequality is strict if µ′ > µ and
µ′ 6∈ M.

2. If x∗ ∈ X (µ) and Ax∗ = b, then µ ∈M and x∗ is optimal for (3.1).

3. Conversely, if µ∗ ∈ int(M), then every x ∈ X (µ∗) is optimal for (3.1) (where int(M)
denotes the interior of the setM).

4. max{L(µ) : µ ≥ 0} = Z∗, that is, the semi–Lagrangean relaxation shows no duality
gap.

From Theorem 3.1 point 1 we see that the lower bound produced by L(µ) is monotone
and increasing in µ, and in point 4 it is stated that the dual problem (3.5) closes the duality
gap. This obviously implies that if µ∗ is an optimal dual multiplier, then every µ ≥ µ∗ will
also be optimal. Furthermore, point 2 states that if an optimal solution to the dual problem
is primal feasible, then it is primal optimal and the corresponding dual multiplier is optimal
for the semi–Lagrangean dual problem. On the other hand, if µ ∈ int(M), then an optimal
solution to the semi–Lagrangean subproblem will be a primal optimal solution as well.
Theorem 3.1 naturally leads to the generic dual ascent algorithm described in Algorithm 3.1.
In Step 1, the multiplier µ is initialized. Next, the semi–Lagrangean subproblem is solved to
optimality in Step 2. The solution obtained in Step 2 is tested for primal feasibility in Step 3.
According to point 2 of Theorem 3.1 the solution xk to the semi–Lagrangean subproblem is
optimal to (3.1) if xk is primal feasible, and the procedure can therefore be terminated. But
if Axk 6= b, the multiplier µ is incremented in Step 4 and the algorithm returns to Step 2.
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1) and optimal multiplier µ∗ ∈M.

Step 1: (Initialization) Set k = 1 and initialize multiplier, µk, to a suitably small
value.

Step 2: (Solve subproblem)
Step 2.1: Use a heuristic to obtain a good feasible solution x̄k to

min{(c− µkeTA)Tx : x ∈ X}. (3.6)

If Ax̄ 6= b, set xk = x̄k and go to Step 3. Otherwise, the subproblem must
be solved to optimality, therefore go to Step 2.2.

Step 2.2: Determine xk ∈ X (µk), that is an optimal solution to (3.6), and
proceed to Step 3.

Step 3: (Termination check) If Axk = b, stop with (xk, µk) as an optimal primal–
dual pair.

Step 4: (Update) Let µk+1 = µk + δk, δk > 0, and return to Step 2. Go to Step 2.

Algorithm 3.2: A dual ascent algorithm with heuristically solved subproblems for a
semi–Lagrangean relaxation of a general ILP.

The obvious drawback of this methodology is that the semi–Lagrangean subproblem has
the same computational complexity as the original problem, meaning that the subproblem
might be just as hard to solve as the original problem. One should, however, note that
if the vector x can be decomposed in such a way that if x = (x1, x2) ∈ X and x̃1 ≤ x1

then (x̃1, x2) ∈ X , then the semi–Lagrangean subproblem (3.2) can be reduced in size by
eliminating all variables x1

j where c1
j −µeTa1

j ≥ 0. Here a1
j is the column corresponding to the

variable x1
j . Also note that the larger the value of µ, the fewer variables can be eliminated

in this way. On the other hand, it should be obvious that for a sufficiently large value of µ
the solution to the semi–Lagrangean subproblem will be optimal to (3.1). Thus, one should
find a µ ∈ int(M) which is as small as possible and if possible, find such a multiplier using
a method solving the semi–Lagrangean subproblem as a few times as possible.

Just like pricing problems can be solved heuristically in a column generation procedure,
the semi–Lagrangean subproblem can also be solved heuristically to indicate optimality of
the multiplier µ. This leads to Algorithm 3.2, which is a version of Algorithm 3.1 where Step
2 is expanded into two sub–steps that allow the subproblem to be solved heuristically. In
Algorithm 3.2 the semi–Lagrangean subproblem is only solved to optimality if the heuristic
suggests that the multiplier µk is optimal (Ax̄k = b). Otherwise the subproblem is simply
solved by a heuristic that is assumed to produced good (near optimal) solutions in reasonable
time. This can potentially speed ud the search for optimal dual multipliers by reducing the
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time spent on solving the subproblems. On the other hand, this might increase the value of
µ more than necessary, implying that the final subproblem cannot be reduced as much as
otherwise possible.

Updating the multiplier

In Step 4 of Algorithms 3.1 and 3.2 the semi–Lagrangean multiplier is updated by adding a
strictly positive number to the current multiplier. One possible way of updating the multiplier
is to use subgradient optimization. Let xk be an optimal solution to the semi–Lagrangean
subproblem at multiplier µk. Then

gk = eT (b−Axk)

is easily seen to be a subgradient at µk. The multiplier of iteration k + 1 can then be
determined as µk+1 = µk + φkgk, where 0 < φk is a positive step size. A step size often
suggested in the literature on subgradient optimization is

φk = UB − L(µk)
(eT (b−Axk)) ,

where UB is an upper bound on the optimal solution value of the original problem. This
leads to the updating strategy µk+1 = µk +UB−L(µk). One might, however, also regularize
the step size by the length of the gradient whereby the new iterate is determined by
µk+1 = µk + UB−L(µk)

eT (b−Axk) . Both of these strategies close the duality gap as the increment is
strictly positive until the duality gap is closed. The main drawback of this method is that
the semi–Lagrangean subproblem needs to be solved to optimality for gk to be a subgradient.
Another and more straightforward procedure is to simply use a strictly positive δk = δ > 0
and increment the multiplier µk by a fixed amount in each iteration. In Section 3.4.2 we
propose an updating scheme which is based on dual feasible solutions.

3.2.2 Cut–and–solve

The cut–and–solve approach was first proposed by Climer and Zhang (2006) for the asym-
metric traveling salesman problem. The methodology is essentially a branch–and–bound
algorithm which instead of branching on a single variable branches on a set of variables.
At each level in the search tree there are only two nodes (see Figure 3.1). The left node is
associated with a linear constraint stating that the sum of the variables in a set Ω is less
than or equal to an integer γ, while the right node is associated with the sum being larger
than or equal to γ + 1. The MIP corresponding to a left node is called a sparse problem (SP)
as the search space is considerably reduced compared to the original problem. The problems
solved at the right nodes are called dense problems and the cut

∑
i∈Ω xi ≥ γ + 1 is called a
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SP1

DP0

SP2

DP1

SP3

DP2

DP3

∑
j∈Ω1 xj ≤ γ

∑
j∈Ω1 xj ≥ γ + 1

Input: A mixed inter programming prob-
lem.
Output: An optimal solution x∗ to (3.1).

Step 1: (Initialization) Set L = −∞, UB =
∞, and H = ∅, where H is the set of
piercing cuts.

Step 2: (Dense problem) Solve a relaxation
of (3.1) with all piercing cuts in H
added. Let the solution value be L.

Step 3: (Termination check) If L ≥ UB, re-
turn the incumbent.

Step 4: (Piercing cut selection) Select an in-
dex set, Ω, of variables for the piercing
cut.

Step 5: (Sparse problem) Solve the problem
(3.1) with the constraint

∑
j∈Ω xj ≤ γ

added.
Step 6: (Incumbent update) If the solution

found in Step 4 improves the incum-
bent, then update UB. If L ≥ UB,
return the incumbent.

Step 7: (Adding piercing cut) Add piercing
cut

∑
j∈Ω xj ≥ γ + 1 to H and go to

Step 1.

Figure 3.1: The cut–and–solve search tree. Algorithm 3.3: A description of a generic
cut–and–solve algorithm.

piercing cut. For MIPs where the integer constrained variables are binary, it is natural to
select the constant γ = 0. In this way, all variables in the set Ω will be fixed to zero in the
sparse problem, thus reducing the problem significantly.

A generic cut–and–solve algorithm for the MIP (3.1) is given in Algorithm 3.3. In Step
1, the lower and upper bounds are initialized and the set of piercing cuts is initialized to the
empty set. In the second step, Step 2, of Algorithm 3.3 a lower bound of the dense problem
is obtained. Note that this lower bound is a lower bound on the optimal solution in the space
not removed by the piercing cuts. In Step 3, the lower bound is compared to the current
best solution and if the lower bound exceeds the value of the incumbent, the incumbent
is optimal. In Step 4, a piercing cut is selected and in Step 5, the SP associated with the
piercing cut is solved. If the solution to SP improves the current incumbent, it is updated in
Step 6 and the value of the incumbent is compared to the lower bound obtained in Step 1.
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If the lower bound exceeds the new incumbent, an optimal solution has been found. Finally,
in Step 7, the search space investigated in the sparse problem in Step 5 is excluded by the
addition of the piercing cut and the procedure is repeated from Step 2.

Climer and Zhang (2006) propose to use the LP–relaxation of the dense problem and to
define the set Ω as those variables having a reduced cost above a specified (positive) threshold.
Climer and Zhang (2006) prove termination of the cut–and–solve algorithm, Algorithm 3.3,
by assuming that the search space removed by the piercing cuts removed at least one feasible
solution from the problem. It was noted in Gadegaard et al. (2016d) that an optimal solution
to the original problem was often found at the first sparse problem or in nodes close to the top
of the search tree when the sparse problems are chosen carefully. Thus, if the cut–and–solve
algorithm is stopped before optimality is proven, it becomes a heuristic with a known quality
as both a lower and an upper bound of the problem are provided by the algorithm. If the
sparse problems are chosen appropriately, an optimal solution might be found very close to
the top of the search tree, yielding a potentially powerful heuristic.

3.3 Integrating cut–and–solve and
semi–Lagrangean based dual ascent

In this section we describe two ways of integrating the two frameworks of cut–and–solve
and semi–Lagrangean based dual ascent. There are two natural ways to integrate these two
frameworks; the first approach is to solve the subproblems arising in the semi–Lagrangean
dual ascent algorithm using the cut–and–solve framework. Section 3.3.1 proposes a way
to do this in which the cut–and–solve framework is used as a heuristic and only as an
exact solver when the heuristic solution to the semi–Lagrangean subproblems is primal
feasible. The second natural way is to solve the sparse problems arising in the cut–and–solve
algorithm using a semi–Lagrangean dual ascent algorithm. Such an approach is developed
in Section 3.3.2.

3.3.1 Integrating cut–and–solve in a semi–Lagrangean based
dual ascent algorithm

As mentioned in Section 3.2.2, the cut–and–solve framework can be used both as a heuristic
and as an exact solution method. This makes the cut–and–solve framework ideal as a method
to perform both Steps 2.1 and 2.2 in Algorithm 3.2. If the cut–and–solve algorithm described
in Algorithm 3.3 is terminated before optimality has been proven, the framework becomes
a heuristic. This means that Step 2.1 of Algorithm 3.2 can be handled by a truncated
version of the cut–and–solve algorithm, while Step 2.2, where an optimal solution is found
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1) and optimal multiplier µ∗ ∈M.

Step 1: (Initialization) Set k = 1 and initialize the multiplier, µk, to a suitably
small value.

Step 2: (Solving subproblem) Use the cut–and–solve framework to solve the semi–
Lagrangean subproblem
Step 2.1: (Initialization of cut–and–solve) Set best = ∞ and initialize the

incumbent xk = null.
Step 2.2: (Solution of dense problem) Solve a relaxation of

min{(c− µkeTA)Tx : x ∈ X},

and let ZDP be the objective function value of the relaxation. If ZDP ≥
best, go to Step 3 with xk as an optimal solution to the semi–Lagrangean
subproblem. Otherwise, proceed to Step 2.3.

Step 2.3: (Piercing cut selection) Determine a subset of variables, Ω, defining
the piercing cut.

Step 2.4: (Solution of sparse problem) If the sparse problem is feasible, set

ZSP = min{(c− µkeTA)Tx : x ∈ X ,
∑
j∈Ω

xj ≤ γ}.

Else set ZSP =∞. Go to Step 2.5.
Step 2.5 (Incumbent update) If ZSP ≤ best, update the subproblem incum-

bent xk, set best = ZSP and go to Step 2.6. Else, go to Step 2.7.
Step 2.6 (Feasibility check) If Axk 6= b, go to Step 4. Else, go to Step 2.7.
Step 2.7 (Adding piercing cut) Add the piercing cut ∑j∈Ω xj ≥ γ + 1 to X

and go to Step 2.2.
Step 3: (Termination check) If Axk = b, stop with (xk, µk) as an optimal primal–

dual pair.
Step 4: (Multiplier update) Let µk+1 = µk + δk, δk > 0, and return to Step 1. Go

to Step 1.

Algorithm 3.4: A semi–Lagrangean based dual ascent algorithm integrating the cut–
and–solve framework for solving the semi–Lagrangean subproblems.

to the semi–Lagrangean subproblem, can be handled by continuing from the cut–and–solve
branching node where the heuristic stopped. Such a framework is proposed in Algorithm 3.4.

In this setting, the cut–and–solve framework (Steps 2.1 to 2.7 of Algorithm 3.4) is used
as a heuristic. The search is terminated as soon as a primal infeasible solution that improves
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the incumbent of the subproblem is found. Only if no such solution to the sparse problems
is found will the semi–Lagrangean subproblem be solved to optimality. Note that the choice
of piercing cuts may make the sparse problems infeasible. The proof of termination of the
cut–and–solve algorithm provided by Climer and Zhang (2006) rely on the sparse problems
containing at least one feasible solution, meaning that the piercing cuts have to be chosen
accordingly or that another termination proof must be provided. If the piercing cuts are
chosen such that the sparse problems always exhibit a feasible solution, the modified cut–
and–solve algorithm in Steps 2.1 to 2.7 of Algorithm 3.4 only performs one iteration unless
the solution found is primal feasible. Therefore, in the first iterations of the dual ascent
algorithm, little computational effort is put into solving the subproblems. Only when the
top nodes of the cut–and–solve search tree start to indicate that the multiplier µk might be
optimal (by finding primal feasible solutions), the effort is increased.

3.3.2 Integrating semi–Lagrangean dual ascent in a
cut–and–solve algorithm

When employing the cut–and–solve framework for solving integer programming problems
one of the obstacles is to be able to solve the sparse problems in Step 5 of Algorithm 3.3
efficiently. Even though the piercing cuts reduce the size of the sparse problem considerably
compared to the original problem, it might still be very time consuming to solve these
reduced problems. The dual ascent algorithm described in Algorithm 3.2 might offer a way
to further reduce the sparse problem and thereby speed up the solution of difficult problems.
Furthermore, when the feasibility version of the problem (3.1) is NP–hard, it can be very
hard to find a feasible, and specifically an optimal, solution to the sparse problems. Therefore,
relaxing the equation system Ax = b to the inequality system, Ax ≤ b, can make it easier to
find feasible solutions that can be utilized by heuristics in the solver employed to solve the
subproblems. For completeness, Algorithm 3.5 describes the cut–and–solve algorithm using
a dual ascent algorithm to solve the sparse problems. Note that Algorithm 3.5 is identical to
Algorithm 3.3 except for Step 5, where Algorithm 3.5 uses the semi–Lagrangean based dual
ascent algorithm to solve the sparse problems.

3.4 Applications to the single–source capacitated
facility location problem

In this section, we start by formulating the single–source capacitated facility location problem
(SSCFLP). Next, we apply the semi–Lagrangean relaxation to the single–source capacitated
facility location problem (SSCFLP) and suggest procedures for initializing and updating the
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1).

Step 1: (Initialization) Set L = −∞, UB = ∞, and set the set of piecing cuts
H = ∅. Initialize the incumbent to an empty solution x∗ = null.

Step 2: (Dense problem) Solve a relaxation of (3.1) with all piercing cuts in H
added. Let the solution value be L.

Step 3: (Termination check) If L ≥ UB, return the incumbent.
Step 4: (Piercing cut selection) Select a set of variables Ω for the piercing cut.
Step 5: Use the dual ascent algorithm described in Algorithm 3.2 to find an optimal

solution in the space removed by the piercing cut (sparse problem).

Step 5.1: (Initialization) Set k = 1 and initialize multiplier, µk, to a suitably
small value.

Step 5.2: (Solve subproblem)
Step 5.2.1: Use a heuristic to obtain a good feasible solution x̄k to

min{(c− µkeTA)Tx : x ∈ X ,
∑
j∈Ω

xj ≤ γ}.

If Ax̄ 6= b, set xk = x̄k and go to Step 5.4. Otherwise the subproblem
needs to be solved to optimality, therefore go to Step 5.2.2.

Step 5.2.2: Determine xk ∈ arg min{(c− µkeTA)Tx : x ∈ X ,∑j∈Ω xj ≤
γ}, and proceed to Step 3.

Step 5.3: (Termination check) If Axk = b, go to Step 6 as xk is an optimal
solution to the sparse problem. Else go to Step 5.4.

Step 5.4: (Update) Let µk+1 = µk + δk, δk > 0, and return to Step 2. Go to
Step 2.

Step 6: (Incumbent update) If the solution found in Step 4 improves the incumbent,
then update UB. If L ≥ UB, return the incumbent.

Step 7: (Adding piercing cut) Add piercing cut ∑j∈Ω xj ≥ γ + 1 to H and go to
Step 1.

Algorithm 3.5: A cut–and–solve algorithm integrating a semi–Lagrangean dual ascent
algorithm for solving the sparse problems.
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semi–Lagrangean dual multiplier, µ. We continue by proposing a new way to generate cutting
planes that can be used to strengthen the lower bound of the problems. Finally, we propose
a dual ascent algorithm integrating the cut–and–solve framework and a cut–and–solve
algorithm integrating the dual ascent algorithm.

The SSCFLP can be formulated as a pure integer linear programming (ILP) problem in
the following way: Let I, |I| = n, be a set of potential facility sites and J , |J | = m, be a
set of customers. Each facility, i ∈ I, has a fixed capacity, si > 0, and each customer has a
fixed and known demand, dj > 0. Opening a facility at site i ∈ I results in a fixed opening
cost fi > 0 and allocation of customer j to facility i yields a cost of cij ≥ 0. Let yi be a
binary variable equaling one if and only if a facility is opened at site i and similarly let xij
be a binary variable that equals one if and only if customer j is allocated to facility i. The
SSCFLP can then be stated as the following ILP problem:

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (3.7)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J , (3.8)

∑
j∈J

djxij ≤ siyi, ∀i ∈ I, (3.9)

0 ≤ yi, xij ≤ 1, ∀i ∈ I, j ∈ J , (3.10)

yi, xij ∈ {0, 1} ∀i ∈ I, j ∈ J . (3.11)

The objective function (3.7) minimizes the total cost (assignment plus opening costs). Con-
straints (3.8) state that each customer needs to be assigned to exactly one facility while
constraints (3.9) make sure that each facility’s capacity is respected. Finally, the constraints
(3.10) impose lower and upper bounds on each variable and the constraints (3.11) state that
all variables should be binary.

3.4.1 Semi–Lagrangean relaxation applied to the SSCFLP

The equations (3.8) can be replaced by the two sets of inequalities
∑
i∈I xij ≤ 1 for all j ∈ J

and
∑
j∈J

∑
i∈I xij ≥ m. The latter is then dualized with multiplier µ ≥ 0, resulting in the



3.4. Applications to the single–source capacitated facility location problem 59

Lagrangean dual function

L(µ) = µm+ min
∑
i∈I

∑
j∈J

(cij − µ)xij +
∑
i∈I

fiyi

s.t.:
∑
i∈I

xij ≤ 1, ∀j ∈ J,

∑
j∈J

djxij ≤ siyi, ∀i ∈ I,

0 ≤ xij , yi ≤ 1, ∀i ∈ I, j ∈ J,

xij , yi ∈ {0, 1}, ∀i ∈ I, j ∈ J.

If (x̄, ȳ) is feasible for the Lagrangean subproblem, then (x̃, ȳ) is feasible too if x̃ij ≤ x̄ij ,
∀i ∈ I, j ∈ J . This implies that we can exclude all variables showing a Lagrangean reduced
cost cij − µ ≥ 0 from the subproblem. For small values of µ this may lead to a substantial
reduction in the number of xij–variables.

We can also present the semi–Lagrangean subproblem in the same form as the original
problem as follows: Introduce a “dummy” facility, i = 0, with c0j = µ for all j ∈ J , f0 = 0
and si = D. Setting I0 = I ∪ {0} the Lagrangean subproblem can be posed as the following
SSCFLP

L(µ) = min
∑
i∈I0

∑
j∈J

cijxij +
∑
i∈I0

fiyi

s.t.:
∑
i∈I0

xij = 1, ∀j ∈ J ,

∑
j∈J

djxij ≤ siyi, ∀i ∈ I0,

xij = 0, ∀i ∈ I, j ∈ J : cij ≥ µ,

y0 = 1,

xij , yi ∈ {0, 1}, ∀i ∈ I0, j ∈ J .

(3.12)

As customer j can be assigned to the “dummy” facility at a cost of µ, all assignment
variables xij with cij ≥ µ can be removed from the program. This leads to the interpretation
of the semi–Lagrangean multiplier as a fixed prize obtainable by servicing a customer.
Alternatively, µ can be thought of as a threshold which defines a “core” problem, that
gradually has to be enlarged to facilitate the eventual proof of optimality. Core algorithms
have proved very effective for problems like the binary knapsack problem (see Pisinger
(1997)), but core–like algorithms have also been successfully used as heuristics for facility
location problems (see e.g. Avella, Boccia, Sforza, and Vasilév (2008) and Guastaroba and
Speranza (2012)).

The lower bound L(µ) can be considerably improved by adding the constraint
∑
i∈I siyi ≥∑

j∈J dj := D to the semi–Lagrangean subproblem (3.12). Note that this constraint is
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redundant for the original problems as it is implied by constraints (3.8) and (3.9). However,
when the constraints (3.8) are relaxed in a semi–Lagrangean manner, this is no longer
the case. The added constraint ensures that the lower bound L(µ) is never worse than
min{

∑
i∈I fiyi :

∑
i∈I siyi ≥ D}+

∑
j∈J mini∈I0 cij . Since the semi–Lagrangean subproblem

can be cast as an SSCFLP, it can be solved by any algorithm customized for the SSCFLP.
Even though the optimization problem (3.12) is just as hard as the original SSCFLP (3.7)–

(3.11) seen from a computational complexity viewpoint, the feasibility version is significantly
easier. It is well known that the feasibility problem “does the SSCFLP (3.7)–(3.11) contain
a feasible solution” is NP-complete (this can for example be seen by reduction from the
generalized assignment problem). However, the problem “does the semi–Lagrangean of
SSCFLP given by (3.12) contain a feasible solution” is polynomially solvable, and the answer
is always “yes”. This means that a feasible solution for (3.12) is easy to obtain, and that
such a feasible solution can be used as a starting solution for a heuristic in order to find a
feasible solution to the original problem.

3.4.2 Initializing and updating the semi–Lagrangean
multiplier

It is crucial to have a good initial value for the dual variables for Algorithm 3.1 to be efficient.
For that reason, we start by setting a lower bound on the optimal multiplier.

Proposition 3.1. For all µ ∈M we have µ ≥ µmin := maxj∈J mini∈I cij.

Proof. If there exists a j ∈ J such that µ < mini∈I cij , then that customer will be serviced
from the dummy facility in any optimal solution to the semi–Lagrangean subproblem.

For the uncapacitated facility location problem Jörnsten and Klose (2015) show that
there exists an optimal multiplier with µ ≤ maxi∈Ij∈J cij . This is, however, not the case for
the SSCFLP due to the presence of the capacity constraints. However, a trivial upper bound
is readily available by µmax :=

∑
i∈I fi + maxi∈I,j∈J {cij}. This upper bound is obvious, as it

is cheaper to open all facilities and assign each customer to its most expensive facility than to
assign it to the dummy facility. However, one should note, that if µk ≥ max{cij : i ∈ I, j ∈ J },
then no variables can be eliminated from the subproblem. Below we list four different choices
of starting values for the semi–Lagrangean multipliers which all satisfy Proposition 3.1:

1. Compute (near) optimal Lagrangean multipliers λ∗ by for example subgradient meth-
ods to the relaxation obtained by relaxing constraints (3.8) in a Lagrangean manner.
Then set µ = min{µmax,maxj∈J dλ∗je}.

2. Solve the linear relaxation of (3.7)–(3.11) and let δ∗ be an optimal dual solution
corresponding to the assignment constraints (3.8). Set µ = maxj∈J dδ∗j e.
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3. Specify a minimum number of possible assignments for each customer, say T . Then
set µ = min{n ∈ N : |{i ∈ I : cij ≤ n}| ≥ T, ∀j ∈ J }. T should be large enough to
yield an “interesting” subproblem.

4. Let (x̄, ȳ) be a (good) feasible solution for the SSCFLP. Then set µ = min{cij : cij >
c(x̄), i ∈ I, j ∈ J }, where c(x̄) = max{cij : x̄ij > 0}.

An obvious disadvantage of the first suggestion for initializing the multipliers is that it
requires potentially many subgradient iterations and that a series of knapsack problems
needs to be solved in each iteration. The other three suggestions each has their own merits:
suggestion 2 is easy to obtain. If in addition cutting planes are used to approximate the convex
hull of integer solutions to the knapsack constraints defined by the capacity constraints (3.9),
the optimal dual variables approximate optimal Lagrangean variables as well. Specifying a
certain number of allowed assignments in suggestion 3 makes it possible to have complete
control over the size of the first subproblem. And finally 4 provides the possibility that
improved primal feasible solutions can be found quickly.

The next crucial component regarding the multiplier is the updating scheme. To that
end, let (xk, yk) be the solution to the semi–Lagrangean subproblem computed in Step 2
of Algorithm 3.2 at multiplier µk. Furthermore, let J 0 = {j ∈ J :

∑
i∈I x

k
ij = 0}. That is,

J 0 is the subset of customers which is assigned to the dummy facility. The fact that these
customers are effectively not serviced indicates that the prize µk is not sufficiently high for
these customers to be profitable. Hence, a natural updating rule is

µt+1 = min{cij : cij > µk, i ∈ I, j ∈ J 0}.

However, it is not guaranteed that any cij > µk for i ∈ I and j ∈ J 0 exists. To overcome this
issue, one might try to make some of the already serviced customers even more profitable by
updating the multiplier as follows

µk+1 = min{cij : cij > µk, i ∈ I, j ∈ J }.

Even this updating strategy may fail if no assignment cost exceed the value of the current
multiplier. This means that no xij–variables can be removed based on the rule cij ≥ µk ⇒
xij = 0.The obvious choice is therefore to increase the multiplier to its maximum value
µk+1 = µmax. For many instances of the SSCFLP proposed in the literature, the updating
rules above often lead to very small increments in the multiplier. Therefore a more aggressive
updating strategy is taken where the above rules are used and then the multiplier is updated
according to the rule

µk+1 = max{µk+1, µk +K}.

That is, we do not allow an increase that is smaller than a constant K > 0. This strategy
clearly makes the subproblems larger than necessary, but it does also decrease the number
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of subproblems we need to solve. The above strategies can be summarized by

µk+1 =


max{mini∈I, j∈J 0{cij : cij > µk}, µk +K}, if max{cij : i ∈ I, j ∈ J 0} > µk

max{mini∈I, j∈J {cij : cij > µk}, µk +K}, if max{cij : i ∈ I, j ∈ J } > µk

µmax, otherwise

3.4.3 Cut–and–solve applied to the SSCFLP

The cut–and–solve framework was successfully used for solving the SSCFLP in Gadegaard
et al. (2016d) and we therefore use the recommendations given in this paper and use a
capacitated facility location problem (CFLP) as a relaxation of the dense problem. Although
the CFLP itself is an NP–hard problem, it can be effectively handled by a good MIP
solver such as CPLEX or Gurobi. Using the CFLP as a relaxation means that only the
xij–variables are continuously relaxed. This gives a very straightforward way of defining the
set of variables Ω defining the piercing cuts. Let (xDP , yDP ) be an optimal solution to the
CFLP solved as a relaxation of the dense problem, then Ω = {i ∈ I : yi = 0}. The choice of
the CFLP as a relaxation is based on the fact that it shares many of the characteristics of the
SSCFLP, implying that an optimal solution is often found in one of the first cut–and–solve
branching nodes. However, it should be noted that this choice of Ω does not guarantee a
feasible solution to each sparse problem. This has implications for the dual ascent algorithm
used to solve the sparse problem in the adaptation of Algorithm 3.5 as we have assumed that
the problems solved using the dual ascent algorithm were all feasible. We discuss this shortly
in Section 3.4.6. Furthermore, as the SSCFLP is a binary integer programming problem,
we choose to set γ = 0. In conjunction with the choice of Ω this ensures that all variables
yi and xij , i ∈ Ω, j ∈ J are fixed to zero in the sparse problem, reducing these problems
considerably.

3.4.4 Cutting planes for the SSCFLP

It is well established that separating LP solutions from the convex hull of integer solutions to
the capacity constraints (3.9) generally works very well for the SSCFLP (see e.g. Gadegaard
et al. (2016d)). However, separating from the convex hull of integer solutions to the capacity
constraints alone, means that the assignment constraints (3.8) are completely ignored. To
remedy this, we first reformulate the SSCFLP. To that end, let I1, I2 ⊆ I with I1 6= ∅,
I1 ∩ I2 = ∅, and I1 ∪ I2 = I. Furthermore, introduce new binary variables zlj , l = 1, 2,
defined by

zlj =

1, if ∃i ∈ Il : xij = 1

0, otherwise
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With these additional binary variables we get the new formulation of the feasible set of the
SSCFLP

P =
{
(x, y, z) ∈ {0, 1}n×m+n+2×m :

∑
i∈I1

xij = z1
j ,
∑
i∈I2

xij = z2
j , ∀j ∈ J ,

z1
j + z2

j = 1, ∀j ∈ J ,∑
j∈J

djxij ≤ siyi, ∀i ∈ I
}

It should be clear, that for any solution (x, y, z) ∈ P we have that (x, y) is a solution to the
SSCFLP. The goal is now to generate valid inequalities for P = conv(P ) which are violated
by an LP solution. To do so, we sum all capacity constraints over i ∈ I1 and obtain the valid
inequality ∑

i∈I1

∑
j∈J

djxij ≤
∑
i∈I1

siyi,

which we denote an effective capacity constraint. Rearranging terms and using
∑
i∈I xij = z1

j

yields the inequality ∑
j∈J

djz
1
j ≤

∑
i∈I1

siyi,

which can be turned into a standard knapsack constraints by complementing the y–variables,
γi = 1− yi, thereby yielding: ∑

j∈J
djz

1
j +

∑
i∈I1

siγi ≤
∑
i∈I1

si (3.13)

Since (3.13) is a valid inequality for P, we have that

P ⊆ conv({(z1, γ) ∈ {0, 1}m+|I1| :
∑
j∈J

djz
1
j +

∑
i∈I1

siγi ≤
∑
i∈I1

si}) =: Pzγ(I1). (3.14)

This implies that given a solution (x, y) to the LP relaxation of the SSCFLP, we can set
z1
j =

∑
i∈I1 xij for all j ∈ J and γ

i
= 1 − y

i
for all i ∈ I1 and then separate (z, γ) from

Pzγ(I1). Given a hyperplane
∑
j∈J πjz

1
j +
∑
i∈I1 ψγi ≤ π0 that separates (z1, γ) from Pzγ(I1)

we can simply reinsert the original variables using the definitions of z1
j and γi and obtain

the cutting plane ∑
j∈J

πj
( ∑
i∈I1

xij
)
≤ (π0 −

∑
i∈I1

ψi) +
∑
i∈I1

ψiyi.

This means that we can use all the classical inequalities such as cover inequalities, lifted
cover inequalities, and Fencel inequalities known for the 0-1 knapsack polytope to separate
the current LP solution from the polytope Pzγ(I1).

Note that using exact knapsack separation to separate (z1, γ) from Pzγ(I1) is equivalent to
solving the following separation problem: Find an inequality of the form

∑
j∈J πj

(∑
i∈I1 xij

)
+∑

i∈I1 ψiyi ≤ π0 that separates (x, y) from

conv({(x, y) ∈ {0, 1}n×m+n :
∑
j∈J

∑
i∈I1

djxij ≤
∑
i∈I2

siyi,
∑
i∈I1

xij ≤ 1, ∀j ∈ J }), (3.15)
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or prove that no such inequality exists.
The procedure thus provides a way to exactly separate inequalities of the form

∑
j∈J

πj
( ∑
i∈I1

xij
)

+
∑
i∈I1

ψiyi ≤ π0

from the polytope (3.15), which is denoted an effective capacity polytope with generalized
upper bounds.

The reader might note that for I1 = I and I2 = ∅ we get the well known total demand
constraint

∑
i∈I siyi ≥

∑
j∈J dj and for I1 = {i} we simply get the original capacity

constraint
∑
j∈J djxij ≤ siyi. In this paper we consider pairs of facilities, that is I1 = {i1, i2}

with i1, i2 ∈ I and i1 6= i2. This yields n(n − 1)/2 new knapsack structures from which
cutting planes can be separated. We have summarized the cutting plane algorithm used to
strengthen the program in Algorithm 3.6.

In order to decrease the computational effort when separating cutting planes we only
separate from Pzγ if we cannot generate any violated inequalities from the knapsack polytopes
defined by single capacity constraints. In Steps 4.2 and 6.2 we follow the recommendations
from Kaparis and Letchford (2010)and first attempt to separate a general lifted cover
inequality and in case we fail to do so, we resort to Fenchel cutting planes.

3.4.5 A semi–Lagrangean based dual ascent algorithm using
cut–and–solve

An outline of the complete dual ascent algorithm using the cut–and–solve framework for
the SSCFLP is given in Algorithm 3.7. In Step 1 the algorithm is initialized. First, we
run the cutting algorithm in order to strengthen the formulation of the SSCFLP and to
get a dual solution that can be used to initialize the semi–Lagrangean multiplier. In Steps
2.1 to 2.6 we exploit the fact that the semi–Lagrangean subproblem can be rewritten as a
SSCFLP and that we thereby can use a modified version of the cut–and–solve algorithm
proposed in Gadegaard et al. (2016d) to solve the semi–Lagrangean subproblem. In Step
2.1 we initialize the upper bound on the subproblem to a large number, and the current
best solution of the subproblem is set to the empty solution. In Step 2.2 the dense problem
is solved and the solution value is first compared to the best primal feasible solution. As
the dense problem provides a lower bound on the optimal solution to the semi–Lagrangean
subproblem it is a valid lower bound on the optimal solution, which means that if the value of
the dense problem exceeds the value of the current best primal solution, it is optimal. Next,
the value of the dense problem is compared to the best solution to the semi–Lagrangean
subproblem. If the value of the dense problem exceeds the value of the best solution to
the semi–Lagrangean subproblem, the subproblem has been solved to optimality, and we
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Input: An instance of the SSCFLP.
Output: A strengthened formulation of the SSCFLP and a vector, δ∗, of optimal
dual variables for the assignment constraints.

Step 1: Set LB0 = −∞ and set the iteration counter k = 0.
Step 2: Set k = k + 1, solve the linear relaxation of the SSCFLP, and let (x, y) be

an optimal solution to the LP relaxation with objective function value LBk.
Step 3: If (x, y) is integral, return (x, y) as an optimal solution to the SSCFLP.
Step 4: If LBk − LBk−1 < ε, return the strengthened formulation and an optimal

dual solution to the assignment constraints, δ∗.
Step 5: For each i ∈ I do the following:

Step 5.1: Add all violated implied upper bounds xij − yi ≤ 0 to the formula-
tion.

Step 5.2: Separate the solution (xi) from the knapsack polytope conv({xi ∈
{0, 1}|J | : ∑j∈J djxij ≤ si}) if possible. If a cutting plane, say πTxi ≤ π0,
is generated translate it to πTxi ≤ π0yi and add it to the formulation of
the SSCFLP.

Step 6: If Step 4 resulted in violated cutting planes, go to Step 6. Else for each pair
i1, i2 ∈ I with i1 < i2 do the following:
Step 6.1 Create the aggregate solution zj = xi1j + xi2j for each j ∈ J and

γ
i

= 1− y
i
for each i = i1, i2.

Step 6.2 Separate the point (z, γ) from Pzγ({i1, i2}), if possible. If a cutting
plane, say πtz+ψγ ≤ π0, is generated, reinsert the original variables and
add the cutting plane ∑j∈J πj(xi1j +xi2j) ≤ (π0−ψ1−ψ2)+ψ1yi1 +ψ2yi2
to the formulation of the SSCFLP.

Step 7: If k < K and Step 5 or Step 6 resulted in violated cutting planes, go to
Step 2, otherwise return the strengthened formulation and an optimal dual
solution to the assignment constraints, δ∗.

Algorithm 3.6: Summary of the cutting plane algorithm.

continue to Step 3. If not, we continue to Step 2.3 where the piercing cut is selected. In
Step 2.4 the sparse problem is solved. Note that the choice of piercing cuts ensures that the
sparse problems always have a feasible solution as the dummy facility has amble capacity
to service all customers simultaneously. The solution value of the sparse problem, ZSP , is
compared to the best solution to the current subproblem found so far. If the solution to
the sparse problem improves the current best solution, the subproblem solution (x, y)k is
updated and the procedure continues to Step 2.6. Otherwise we continue to Step 2.7. If
the procedure continues to Step 2.6, it means that the current best solution to subproblem
has just been updated. We therefore check if this solution is primal feasible in which case
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1) and optimal multiplier µ∗ ∈M.

Step 1: (Initialization) Run Algorithm 3.6 on the full SSCFLP in order to strengthen
the problem and obtain an optimal dual solution to the assignment con-
straints, say δ∗j . Next, run a local branching heuristic producing a feasible
solution (x̄, ȳ). If no feasible solution was found, set UB = ∞, otherwise set
UB = ∑

i∈I
∑
j∈J cijx̄ij +∑

i∈I fiȳi and (x∗, y∗) = (x̄, ȳ). Finally, set k = 0 and
initialize the semi–Lagrangean multiplier to µk to suitably small value.

Step 2: (Solving subproblem) Use the cut–and–solve framework to solve the semi–
Lagrangean subproblem
Step 2.1: (Initialization of cut–and–solve) Set sub_best =∞ and initialize the

incumbent (xk, yk) = null.
Step 2.2: (Solution of dense problem) Solve the problem (3.12) with the inte-

grality requirement on the xij–variables relaxed. Let ZDP be the optimal
solution value and (x, y)DP an optimal solution. If ZDP ≥ UB, return
the incumbent as it is optimal. Else if ZDP ≥ sub_best, go to Step 3,
with (x, y)k as an optimal solution to the semi–Lagrangean subproblem.
Otherwise, continue to Step 2.3.

Step 2.3: (Piercing cut selection) Let Ω = {i ∈ I : yDPi = 0}.
Step 2.4: (Solution of sparse problem) Solve the problem (3.12) with all variables

yi, xij, j ∈ J , i ∈ Ω fixed to zero. Let (x, y)SP be an optimal solution to
the sparse problem and go to Step 2.5.

Step 2.5: (Incumbent update) If ZSP ≤ sub_best, update the subproblem in-
cumbent (x, y)k = (x, y)SP , set sub_best = ZSP , and go to Step 2.6. Else,
go to Step 2.7.

Step 2.6: (Feasibility check) If ∑i∈I x
k
ij = 0 for some j ∈ J , go to Step 4. Else,

the subproblem solution is primal feasible. If sub_best < UB update the
incumbent (x∗, y∗) = (x, y)k and set UB = sub_best. Go to Step 2.7.

Step 2.7: (Piercing cut addition) Add the piercing cut ∑i∈Ω yi ≥ 1 to (3.12) and
go to Step 2.2.

Step 3: (Termination check) (x, y)k is optimal to the subproblem. If ∑i∈I x
k
ij = 1 for

all j ∈ J or sub_best ≥ UB, stop with ((x, y)k, µk) as an optimal primal–dual
pair. Otherwise, go to Step 4.

Step 4: (Multiplier update) Let J 0 = {j ∈ J : ∑i∈I x
k
ij = 0}. Update the multipliers

according to the rule

µk+1 =


max{mini∈I, j∈J 0{cij : cij > µk}, µk +K}, if maxi∈I,j∈J 0{cij} > µk

max{mini∈I, j∈J {cij : cij > µk}, µk +K}, if maxi∈I,j∈J {cij} > µk

µmax, otherwise,
set k = k + 1, and return to Step 2.

Algorithm 3.7: A dual ascent algorithm for the SSCFLP that uses the cut–and–solve
framework to solve the semi–Lagrangean subproblems.
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we test if this primal feasible solution improves the incumbent (x∗, y∗). Furthermore, if the
current best solution is primal feasible, we continue the cut–and–solve procedure by going
to Step 2.7 where the piercing cut is added to the dense problem as we might need to solve
the subproblem to optimality. In Step 3 we check if the current best solution is optimal.
If the subproblem was solved to optimality, sub_best provides a valid lower bound on the
optimal solution, so if sub_best ≥ UB, we know that (x∗, y∗) is optimal. Conversely, if the
subproblem solution is primal feasible, we know, by the construction of the algorithm, that
(x∗, y∗) is an optimal solution to the subproblem. By means of point 2 of Theorem 3.1 we
can conclude that (x, y)k is an optimal solution to the SSCFLP. Otherwise, we go to Step 4
where the semi–Lagrangean multiplier is incremented.

3.4.6 A cut–and–solve algorithm using semi–Lagrangean
based dual ascent for sparse problems

Algorithm 3.8 outlines the cut–and–solve algorithm for the SSCFLP that utilizes a dual
ascent algorithm to solve the sparse problems. In Step 1, the algorithm is initialized by first
running the cutting plane algorithm followed by a local branch algorithm. The dense problem
is solved in Step 2, and in Step 3 we check if the dense problem produced a solution larger
than the incumbent, in which case the incumbent is optimal. In Step 4 we select the set of
variables forming the piercing cut. The sparse problem is solved by a dual ascent algorithm
in Step 5; first, the iteration counter is set and the semi–Lagrangean dual bound is set to
minus infinity in Step 5.1. In Step 5.2 we solve the semi–Lagrangean subproblem. We start
by checking if the multiplier is at its upper bound as the subproblem then has to be solved
to optimality. If that is not the case, we start by solving the subproblem by a heuristic and if
the resulting solution is primal feasible, we solve the subproblem to optimality in Step 5.2.2.
In Step 5.3 we perform the termination check of the dual ascent algorithm. If the dual lower
bound L exceeds the value of the incumbent, the sparse problem cannot improve the current
best solution and we therefore go to Step 7 where a piercing cut is added. If µk = µmax, we
know that the subproblem has been solved to optimality, and if the corresponding solution is
not primal feasible, the sparse problem contains no feasible solutions so we continue to Step
7. But if the solution is actually primal feasible, it is also optimal for the sparse problem
and we go to Step 6. Otherwise, we need to increase the multiplier in Step 5.4 and the dual
ascent algorithm returns to Step 5.2. We update the incumbent in Step 6 and check if the
incumbent value falls below the value of the lower bound obtained from the dense problem
as the incumbent is then optimal. Finally, in Step 7, the piercing cut is added to the program
and we return to Step 2.
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Input: Vectors c and b, matrix A, and feasible set X .
Output: An optimal solution x∗ to (3.1) and optimal multiplier µ∗ ∈M.

Step 1: (Initialization) Run Algorithm 3.6 on the full SSCFLP in order to strengthen the problem
and obtain an optimal dual solution to the assignment constraints, say δ∗j . Next, run a local
branching heuristic producing a feasible solution (x̄, ȳ). If no feasible solution was found, set
best = ∞, otherwise set UB =

∑
i∈I
∑

j∈J cij x̄ij +
∑

i∈I fiȳi and (x∗, y∗) = (x̄, ȳ). Finally,
set the set of piercing cuts H = ∅.

Step 2: (Dense problem) Solve the CFLP relaxation of the SSCFLP with all piercing cuts in H

added. Let the solution value be ZDP and an optimal solution be (x, y)DP .
Step 3: (Termination check) If ZDP ≥ UB, return the incumbent (x∗, y∗) as it is optimal.
Step 4: (Piercing cut selection) Set Ω = {i ∈ I : yDP

i = 0}.
Step 5: (Sparse problem) Use the semi–Lagrangean based dual ascent algorithm to solve the sparse

problem.
Step 5.1 (Initialization) Set k = 0, L = −∞, and initialize µk to a suitably small value.
Step 5.2 (Solve subproblem) Set k = k+ 1. If µ < µmax, go to Step 5.2.1, else go to Step 5.2.2.

Step 5.2.1 Use a heuristic to obtain a good feasible solution, (x, y)k to the problem

min
∑
i∈I0

∑
j∈J

cijxij +
∑
i∈I0

fiyi

s.t.:
∑
i∈I0

= 1, ∀j ∈ J ,

∑
j∈J

djxij ≤ siyi, ∀i ∈ I0,

xij = yi = 0, ∀i ∈ Ω, j ∈ J ,
xij = 0, ∀(i, j) ∈ I × J : cij ≥ µk,

y0 = 1,
xij , yi ∈ {0, 1}, ∀i ∈ I, j ∈ J .

(3.16)

If
∑

i∈I xij = 0 for some j ∈ J , go to Step 5.4, else go to Step 5.2.2.
Step 5.2.2 Solve the problem (3.16) to optimality. Let (x, y)k be an optimal solution, let

L be the corresponding solution value, and continue to Step 5.3.
Step 5.3 (Termination check) If L ≥ UB, the sparse problem cannot contain improving

solutions, hence go to Step 7. If µk = µmax and
∑

i∈I x
k
ij = 0 for some j ∈ J , the sparse

problem is infeasible so go to Step 7. If
∑

i∈I x
k
ij = 1 for all j ∈ J , the solution (x, y)k

is optimal for the sparse problem, hence go to Step 6. Otherwise, continue to Step 5.4.
Step 5.4 (Multiplier update) Let J 0 = {j ∈ J :

∑
i∈I x

k
ij = 0}. Update the multipliers

according to the rule

µk+1 =


max{mini∈I, j∈J 0{cij : cij > µk}, µk +K}, if maxi∈I,j∈J 0{cij} > µk

max{mini∈I, j∈J {cij : cij > µk}, µk +K}, if maxi∈I,j∈J {cij} > µk

µmax, otherwise,

and return to Step 5.2.
Step 6: (Incumbent update) If L < UB, set UB = L and (x∗, y∗) = (x, y)k. If ZDP ≥ UB, return

(x∗, y∗) as it is optimal.
Step 7: (Adding piercing cut) Add the piercing cut

∑
i∈Ω yi ≥ γ + 1 to H and go to Step 2.

Algorithm 3.8: A cut–and–solve algorithm for the SSCFLP that integrates a semi–
Lagrangean based dual ascent algorithm to solve the sparse problems.
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3.5 Computational results

This section describes the results obtained using the algorithms proposed in the previous
sections. The primary purpose of the computational study is to test to which extent the
integration of the semi–Lagrangean based dual ascent algorithm and the cut–and–solve frame-
work can efficiently solve the single–source capacitated facility location problem (SSCFLP).
In order for us to test the algorithms we start by identifying the most promising initialization
schemes for the semi–Lagrangean dual multiplier. Next, we run the algorithms on three
testbeds that have been proposed in the literature and a fourth testbed that consists of
large instances generated for this paper. We compare the performance of the two integrated
algorithms to the improved cut–and–solve algorithm from Gadegaard et al. (2016d), which
is currently one of the fastest algorithms for the SSCFLP.

3.5.1 Implementation details and test instances

We have tested two different algorithms based on the two frameworks described in Section 3.2
and compared them to a state–of–the–art solver for the SSCFLP. The first algorithm, denoted
DA-CS, implements Algorithm 3.7 where the cut–and–solve framework is used to solve the
semi–Lagrangean subproblems both heuristically and exactly. Algorithm CS-CPX is the cut–
and–solve algorithm described in Algorithm 3.3. We have used the implementation proposed
in Gadegaard et al. (2016d) as this algorithm was proven to be effective for solving the
SSCFLP. It serves mainly as a benchmark algorithm as nothing new is proposed here.
The algorithm is enhanced with the cutting planes proposed in Section 3.4.4 to make the
comparison fair. Finally, CS-DA augments the implementation of the cut–and–solve algorithm
proposed in Gadegaard et al. (2016d) such that each sparse problem is solved using a semi–
Lagrangean based dual ascent algorithm. It uses a standard implementation of Algorithm 3.2
to solve these problems. Each semi–Lagrangean subproblem arising when solving the sparse
problems of the cut–and–solve algorithm is solved using CPLEX which has been strengthened
by a cut callback employing the cutting plane algorithm Algorithm 3.6. We use CPLEX as
a heuristic by setting the relative optimality gap to a small positive value. When a solution
of sufficient quality has been found, the best solution is checked for primal feasibility. If the
solution is primal feasible, the subproblem is solved to optimality. If, on the other hand, the
solution is infeasible, the dual multiplier is increased and a new subproblem is solved.

The cutting plane algorithm, Algorithm 3.6, uses general lifted cover inequalities (GLCI)
to separate fractional points from each individual capacity constraint. If no violated GLCI
can be generated, we use the separation algorithm for Fenchel inequalities developed in
Gadegaard et al. (2016d). Finally, if no cuts could be separated from any of the capacity
constraints, we attempt to separate the aggregate solution from the polytope Pzγ defined
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in (3.14). As in the case of the individual capacity constraints, we first attempt to separate
using GLCIs and only if that fails, do we use the exact knapsack separation algorithm.

In all algorithms we initialize the upper bound by running a local branching heuristic on
the full problem. The heuristic is similar to the one described in Gadegaard et al. (2016d);
first, we run a local branching heuristic on the y–variables in order to get a good initial
solution. The second phase then takes the best solution from the first phase and improves
it, again by using a local branching heuristic. After each phase we use a fast two–opt local
search that swaps customers between open facilities to find a local optimum given the current
set of open facilities.

We carried out preliminary experiments using a version of Algorithm 3.1 in which we
used the solver developed in Gadegaard et al. (2016d) as a subproblem solver. It turned out
that this methodology was very inferior to DA-CS, CS-DA, and CS-CPX, even for the smallest
instances. Therefore, we do not report on the results obtained using this methodology.

All algorithms have been coded in C and C++ and compiled using gcc and g++ with
optimization option O3 and C++11 features enabled. As solver for the MIPs arising in the
subproblems, we have used CPLEX 12.6 with callbacks. The ParallelMode switch is set to
deterministic such that different runs can be compared. All codes are publicly available (see
Gadegaard, Klose, and Nielsen (2016c)).

The tests have been performed on instances from four different testbeds; the first testbed,
TB1, consists of 57 instances used in Díaz and Fernández (2002) ranging in size from instances
with 10 facilities and 20 customers to instances with 30 facilities and 90 customers. The
second testbed, TB2, contains instances having 10 to 30 facilities and 50 to 200 customers
and has been used in Holmberg et al. (1999). Yang et al. (2012) proposed a testbed consisting
of relatively large instances ranging in size from 30 facilities and 200 customers to 80 facilities
and 400 customers, TB3. These instances range in size from 30 facilities and 200 customers to
80 facilities and 400 customers. The last testbed, TB4, consists of 30 new instances generated
according to the procedure proposed by Cornuejols, Sridharan, and Thizy (1991). First, the
demand at customer j is generated from U [5, 35], where U [a, b] denotes a uniform distribution
on the interval [a, b]. Next the positions of the customers and facilities are generated as
random points in a unit square. The assignment costs are then set equal to cij = djδij , where
δij denotes the Euclidean distance between customer j and facility i multiplied by 10. Next,
the capacity si at facility i is generated uniformly from [10, 160]. We then scale the capacities
such that the ratio

∑
i∈I si/

∑
j∈J dj = R where R ∈ {3, 5, 7}. Finally, the fixed operating

costs are generated as fi = U [0, 90] + U [100, 110]√si. We note that all parameters have
been rounded to the nearest integer such that we avoid numerical instability. Two groups
of instances were generated: the first group contains 15 instances of size 80× 500 and the
second group consists of 15 instances of size 100× 400. Each group consists of 5 instances
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Table 3.1: Column headers of the tables in Section 3.5.

Header Description
# Number of instances over which the average is taken.
size Size of the instance given by |I| × |J |.
R Ratio between total capacity and total demand, that is R =∑

i∈I si/
∑
j∈J dj.

it Number of iterations used by the dual ascent algorithm before optimality
was proven.

itopt Number of iterations in which the subproblem was solved to optimality.
% x–left The percentage of the xij–left in the final subproblem of the dual ascent

algorithm.
CPU The total time used by the algorithm in question measured in seconds.

having a capacity–to–demand ratio of R = 3, R = 5, and R = 7, respectively. Table 3.1
provides an overview of the table headings.

3.5.2 Testing the initialization of the dual multiplier

In this section we test three initialization schemes for the semi–Lagrangean multiplier. We
run the two algorithms DA-CS and CS-DA on the smaller instances from TB1 and TB2. Each
algorithm is run with the following three initialization schemes:

Dual: First, we apply the cutting plane algorithm separating from the knapsack structures.
When no more cutting planes can be found, we set µ0 = maxj∈J {δ∗j }, where δ∗ is a
vector of optimal dual multipliers for the assignment constraints.

Threshold: We set a minimum number of assignments that should be allowed for each
customer, say T . Then µ0 = min{n ∈ N : |{i ∈ I : cij ≤ n}| ≥ T, ∀j ∈ J }.

Feasible Let (x̄, ȳ) be a good feasible solution, then µ0 = min{cij : cij > c(x̄), i ∈ I, j ∈ J},
where c(x̄) = max{cij : x̄ij > 0}.

We append a D, T, or F to the name of the algorithm to denote that initialization strategy
Dual, Threshold, or Feasible is used. Furthermore, we test both an aggressive and a more
conservative value of T for the T–option; for the aggressive option we let T = d|I|0.75e,
thereby allowing for relatively large subproblems and consequently fewer iterations of the
dual ascent algorithm. For the more conservative value, we let T = d|I|0.1e, effectively
eliminating about 90 percent of the xij–variables in the first subproblem. This strategy
might lead to more, but smaller subproblems solved. We denote the aggressive and the
conservative versions of the threshold strategy T75 and T10, respectively. Thus, we get a
total of 8 different algorithms, namely DA-CS-i and CS-DA-i, for i∈ {D,F,T10,T75}.
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(a) Results of the three initialization strategies
obtained from TB1 using DA-CS.
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(b) Results of the three initialization strategies
obtained from TB2 using DA-CS.
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(c) Results of the three initialization strategies
obtained from TB1 using CS-DA.
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(d) Results of the three initialization strategies
obtained from TB2 using CS-DA.

Figure 3.2: Overview of the performance of the four different initialization strategies.
Figures 3.2a and 3.2b show results for DA-CS whereas Figures 3.2c and 3.2d show the
results obtained with CS-DA.

Note that we do not have dual information available for the algorithm CS-DA as the
cutting plane algorithm used for this algorithm is run at the root node of the cut–and–solve
tree, and the dual ascent algorithm is run at each sparse problem. This means that we use
the optimal dual vector found at the root node of the cut–and–solve tree to initialize the
semi–Lagrangean multiplier when the initialization strategy D is specified.

Figure 3.2 summarizes the performance of the 2 different algorithms and the four initial-
ization schemes. For the DA-CS algorithm, the initialization strategy that seems to be the
overall best and the most stable is F. The results obtained on TB2 are very consistent over
all four initialization strategies, but in TB1 all strategies become very unstable except for
F. As regards the CS-DA algorithm, however, we get the best performance using option T75,
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Table 3.2: Overview of the average number of dual ascent iterations and the average
number of xij–variables left in the last iteration of the dual ascent algorithms.

DA-CS CS-DA

D F T10 T75 D F T10 T75

Dual ascent iterations 1.1 4.7 5.42 1.52 5.7 4.8 9.9 2.5
Percentage of variables left 67.1 65.2 63.1 95.8 32.9 50.0 35.3 43.5

Table 3.3: Results obtained for TB3 using the semi–Lagrangean based dual ascent
algorithms using cut–and–solve to solve the semi–Lagrangean subproblems, DA-CS.

DA-CS-F DA-CS-D

TB # size R it itopt %x-left CPU it itopt xij–left CPU

3 5 30× 200 1.73− 1.98 4.6 1.0 81.2 171.38 1.0 1.0 99.2 100.25
5 30× 300 2.88− 3.49 7.6 1.0 79.0 677.47 1.0 1.0 98.1 256.34
5 60× 300 3.42− 5.78 5.4 1.0 73.0 1627.22 1.0 1.0 94.1 364.66
5 80× 400 3.50− 7.30 5.4 1.0 78.9 5035.14 1.0 1.0 92.4 1712.35

Averages 5.8 1.0 78.0 1877.80 1.0 1.0 95.9 608.40

4 5 80× 500 3.001 3.0 1.0 67.9 183.15 1.0 1.0 75.5 2353.94
5 5.00 1.8 1.0 77.7 1751.20 1.0 1.0 69.4 1760.34
5 7.00 1.8 1.0 85.4 4861.61 1.6 1.0 71.1 4346.43
5 100× 400 3.00 3.8 1.0 69.8 1455.07 1.0 1.0 84.7 573.26
5 5.00 2.4 1.0 76.1 635.93 1.2 1.0 75.3 577.80
5 7.00 2.0 1.0 79.5 1499.78 1.0 1.0 70.1 1547.11

Averages 2.4 1.0 76.6 1796.27 1.1 1.0 74.1 1888.11
1 We were not able to solve instance p4 of size 80× 500. The program was killed by the operating system as
the size of the branching tree grew too large.

initializing the multiplier using the aggressive threshold value. In Table 3.2, we have summa-
rized the number of dual ascent iterations and the percentage of the variables left in the last
iteration of the dual ascent algorithms, that is |{(i, j) ∈ I×J : cij < µ∗}|/(|I| · |J |). For the
algorithm CS-DA, these numbers are calculated as an average over all sparse problems solved
in the cut–and–solve algorithm for the particular instance. For DA-CS the D initialization
strategy results in few iterations of the algorithm and at the same time, the final subproblem
remains small. For the CS-DA, Table 3.2 seems to support the observations from Figure 3.2,
namely that the initialization strategy T75 works the best. Therefore, based on Figure 3.2
and Table 3.2, the tests on the larger instances of TB3 and TB4 will be carried out with
the initialization strategies D and F for the DA-CS algorithm, whereas CS-DA will only be
initialized using the T75 strategy.
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3.5.3 Analysis of the DA-CS algorithms

In this section we analyze the results obtained with the algorithms DA-CS-F and DA-CS-D.
Table 3.3 shows the results obtained with DA-CS-F and DA-CS-D for the instances of testbeds
TB3 and TB4. We have chosen not to reproduce the optimal solution values and have
instead aggregated the results by taking the average over five instances having the same
size (for detailed information about the instances of TB3 consult Yang et al. (2012) and for
information on the new instances of TB4 see Appendix 3.A).

Table 3.3 shows that for the instances of TB3, DA-CS-D clearly outperforms DA-CS-F,
as the latter uses more than three times as much CPU time on average compared to
CS-DA-D. Even though the final subproblem solved by DA-CS-F is reduced to 78 percent
of the original problem on average, this is not enough to counterbalance the additional
iterations needed when the initialization strategy F is used compared to D. It is worth noting
that the initialization strategy D provides an optimal dual multiplier for all instances of TB3,
leading to only one subproblem that needs to be solved. In TB4 the performance of the two
initialization strategies seem more equal as the CPU times used by the two algorithms are
almost identical and differ by less than 5 percent. In TB4 the initialization strategy D is again
very good at predicting an optimal dual multiplier as only 1.1 iterations are needed by the
dual ascent algorithm on average. A very interesting point is that the modified cut–and–solve
algorithm seems to work very well as a subproblem solver as it needed to solve only one
subproblem to optimality in all instances of TB3 and TB4. This suggests that the truncated
cut–and–solve algorithm is indeed a very effective heuristic for the SSCFLP.

3.5.4 Analysis of the CS-DA algorithm

Table 3.4 summarizes the results obtained with the cut–and–solve algorithm using the
dual ascent algorithm for solving the sparse problems. It is evident that the cut–and–solve
framework in conjunction with the semi–Lagrangean based dual ascent algorithm is very
effective in reducing the size of the integer linear programs that need to be solved. In the
column headed “SP size” we report the average size of the final sparse problem as a percentage
of the original instance size. On average, the sparse problems consist of less than 10 percent
of the variables in the original problem. We note that the results confirm the findings from
Gadegaard et al. (2016d), that is that the CFLP relaxation of the SSCFLP provides a good
approximation as regards the facilities to be opened, and we note that the cut-and-solve
algorithm requires less than 3 iterations to find an optimal solution. In addition, the dual
ascent algorithm used to solve the subproblems only uses about 2 iterations on average
to solve the sparse problems to optimality. Furthermore, we observed that CPLEX very
quickly found near optimal solutions to the semi–Lagrangean subproblems and that the main
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Table 3.4: Results obtained on TB3 and TB4 using cut–and–solve algorithm incorpo-
rating a dual ascent algorithm for solving the sparse problems, CS-DA.

Iterations
TB # size R CS1 DA2 SP size CPU
3 5 30× 200 1.73− 1.98 2.4 2.2 15.5 75.55

5 30× 300 2.88− 3.49 3.8 1.7 5.1 1115.67
5 60× 300 3.42− 5.78 2.0 2.4 8.9 80.32
5 80× 400 3.50− 7.30 3.0 1.7 4.8 337.31

Averages 2.8 2.0 8.5 402.21
4 5 80× 5003 3 2.0 2.0 9.0 2347.01

5 5 2.3 1.6 7.0 2406.79
5 7 2.0 1.8 7.1 7157.59
5 100× 4003 3 2.5 1.0 8.4 709.42
5 5 2.6 1.6 5.9 659.62
5 7 2.4 2.2 5.2 1735.84

Averages 2.3 1.65 7.3 2398.84
1Number of iterations of the cut–and–solve algorithm.
2Average number of iterations of the dual ascent algorithm used to solve a sparse
problem. 3We were not able to solve instance p4 of size 80× 500. The program was
killed by the operating system as the size of the branching tree grew too large.

effort in the subproblems was spent on increasing the lower bound. Memory consumption
therefore only became prohibitive in one instance. In Section 3.5.5, we discuss how the solver
proposed in Gadegaard et al. (2016d) was immensely challenged by the task of finding a
feasible solution to the sparse problems when the ratio between total capacity and total
demand was small. The CS-DA algorithm performs slightly better on the instances of TB3
compared to the DA-CS algorithms analyzed in the previous section. However, for the larger
instances of TB4, the roles are reversed. One reason for this change in performance is that
the CS-DA solves a CFLP as a relaxation of the full problem. When the instances get larger,
this large CFLP becomes more time consuming to solve. The CFLP solved as a relaxation
of the semi–Lagrangean subproblem in DA-CS is, however, significantly reduced by the rule
cij ≥ µ⇒ xij = 0.
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Figure 3.3: Comparison with the cut–and–solve algorithm proposed in Gadegaard et al.
(2016d). The i in TB4-i indicates the ratio between total demand and total capacity.

3.5.5 Comparing with a state–of–the–art solver for the
SSCFLP

Figure 3.3 depicts the performance of the three algorithms DA-CS, CS-DA, and CS-CPX. From
Figure 3.3a we see that none of the algorithms perform consistently better than the others.
For the instances of TB3, CS-DA performs extremely well, but this performance deteriorates
as the instances and the capacity to demand ratios increase. We also see that the augmented
cut–and–solve algorithm, CS-CPX, performs very well on most of the instances, which confirms
that this algorithm is indeed very efficient for solving the SSCFLP. Figure 3.3a shows that
the CS-CPX algorithm performs just as well or even better than the semi–Lagrangean based
algorithms. It should be noted that the time–averages are taken over instances that were
actually solved. This makes the CS-CPX look better than is actually the case. When we look
at Figure 3.3b we see that the dual ascent based algorithms are more robust compared to
CS-CPX in case the instances have a small ratio between total capacity and total demand.
CS-CPX failed on four of the 10 instances of TB4 having a ratio R = 3. In all four cases
CPLEX failed to find a feasible solution to the first sparse problem and consequently no
nodes could be fathomed based on bound. The operating system would relatively quickly
kill the program due to the excessive memory consumption.

The results we have obtained suggests that a hybrid solver, which based on the char-
acteristics of the instance chooses the algorithmic approach that should be taken. If the
instance has a large R–value or if it is small, then the cut–and–solve algorithm CS-CPX

should be used. On the other hand, if the instance is large and has a small R–value the solver
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should use the dual ascent algorithm DA-CS-F. The dashed line in Figure 3.3 depicts the
performance of such an approach, showing that in most cases this would be a very efficient
solution procedure for the SSCFLP.

3.6 Conclusion

In this paper we have proposed two new ways of integrating semi–Lagrangean based dual
ascent and cut–and–solve for the single–source capacitated facility location problem (SS-
CFLP). The first approach used a cut–and–solve algorithm as a subproblem solver in a
dual ascent algorithm where the cut–and–solve algorithm only solved the subproblems to
optimality if a good primal feasible solution was found. The second approach augmented an
existing cut–and–solve algorithm by solving the sparse problems using a dual ascent algo-
rithm based on a semi–Lagrangean relaxation of the SSCFLP. We proposed to update the
semi–Lagrangean multiplier based on the solution to the semi–Lagrangean subproblem and
tested four distinct initialization strategies and found that for the cut–and–solve algorithm
using dual ascent for solving the subproblems, the initialization strategy that worked the
best was setting the initial value of the dual multiplier such that a 25 percent reduction of
the subproblem was obtained. The results were slightly more ambiguous for the dual ascent
algorithm using cut–and–solve as the subproblem solver. Here, initializing using a feasible
solution or using the dual multipliers of the assignment constraints worked equally well. In
order to speed up the computations and limit the memory consumption we proposed a new
way of generating cutting planes for a substructure of the SSCFLP combining the capacity
constraints and the assignment constraints.

We showed empirically that the dual ascent based algorithms solved more instances com-
pared to an efficient cut–and–solve algorithm proposed in the literature, when the instances
were large and had a tight capacity to demand ratio. We argued that the primary reason is
that the feasibility problem corresponding to the Lagrangean subproblem is polynomially
solvable in contrast to the NP–hard feasibility problem of the SSCFLP. With these new
methodologies it was possible to increase the size of the instances solvable by almost 25
percent.

In the future, it will be interesting to investigate whether improved updating strategies
for the dual multiplier and fixation of variables based on Lagrangean penalty tests can lead
to improved performance through fewer subproblems. It is also of interest to examine if
the methodology can be used to solve more complex location problems such as dynamic or
multi-stage models.
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3.A Detailed information on the new instances

Table 3.5 gathers information on the new instances generated for this paper. The columns
headed id, size, and R contain the name of the instance, the size of the instance (|I| × |J |),
and the ratio between total supply and total demand, respectively. The next three columns
headed LBLP, LBCP, and Gap closed report the lower bound obtained from the LP relaxation
before adding cuts, the lower bound produced by the cutting plane algorithm, Algorithm 3.6,
and the percentage gap closed by the cutting planes. The last two columns headed UB and
%gap contain the value of the best known upper bound and the percentage gap between
this upper bound and the best known lower bound. All instances are publicly available (see
Gadegaard, Klose, and Nielsen (2016e)).
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Table 3.5: Detailed information on the new instances generated for this paper.

id size R LBLP LBCP %Gap closed UB %gap
p1 80× 500 3 29194.7 31341.5 90.34 31571 0
p2 29291.0 31352.4 91.17 31552 0
p3 30417.0 32714.5 93.93 32863 0
p4 30087.6 32179.3 48.68 34384 7
p5 28405.2 30781.1 92.92 30962 0
p6 5 20183.6 24957.7 96.36 25138 0
p7 20038.5 24927.1 96.41 25109 0
p8 20998.6 25836.9 96.33 26021 0
p9 20537.3 24829.1 95.63 25025 0
p10 19784.6 24830.4 98.39 24913 0
p11 7 16214.0 22981.4 97.58 23149 0
p12 15792.8 22501.6 98.77 22585 0
p13 16847.2 23936.1 97.75 24099 0
p14 16395.2 22928.8 97.87 23071 0
p15 15948.1 23246.1 97.54 23430 0
p16 100×400 3 34992.1 36278 87.60 36460 0
p17 32707.5 33933.4 83.82 34170 0
p18 32533.1 33909.8 88.94 34081 0
p19 30153.2 31584.7 86.56 31807 0
p20 32463.6 33570.8 86.20 33748 0
p21 5 22870.7 25783.2 95.76 25912 0
p22 21720.8 24936 96.49 25053 0
p23 21782.7 25268 95.35 25438 0
p24 20207.6 23699.9 94.84 23890 0
p25 21578.2 24845.9 94.09 25051 0
p26 7 17609.2 22219.7 98.48 22291 0
p27 16823.0 21765.6 96.44 21948 0
p28 17073.3 22234.1 97.09 22389 0
p29 15835.8 21059.9 98.23 21154 0
p30 16771.3 21696.5 95.71 21917 0
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Abstract

This paper considers a family of bi–objective discrete facility location problems with a
cost objective and a bottleneck objective. A special case is, for instance, a bi-objective version
of the (vertex) p-centdian problem. We show that bi-objective facility location problems
of this type can be solved efficiently by means of an ε-constraint method that solves at
most (n− 1) ·m minisum problems, where n is the number of customer points and m the
number of potential facility sites. Additionally, we compare the approach to a lexicographic
ε-constrained method that only returns efficient solutions and to a two–phase method relying
on the perpendicular search method. We report extensive computational results obtained
from several classes of facility location problems. The proposed algorithm compares very
favorably to both the lexicographic ε-constrained method and to the two phase method.

Keywords: discrete facility location; bi-objective optimization; ε-constrained method; lexi-
cographic optimization.

4.1 Introduction

Single objective location analysis usually distinguishes between two major types of objective
functions. Whilst the objective of a minisum location problem consists in minimizing average
(weighted) costs, a solution to a minimax location problem aims at minimizing the maximal
(weighted) distance between customer points and facilities. We will refer to the two objectives
as a cost objective and a bottleneck objective, respectively. On networks, the prototype cost and
bottleneck location models are the p-median (Hakimi, 1965) and p-center problem (Hakimi,
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1964), respectively. The survey papers by Reese (2006) and Revelle, Eiselt, and Daskin (2008)
review the extensive literature on these two important network location problems. Within
the subject of discrete facility location, the simplest and also most studied problem with
cost–objective is the uncapacitated facility location problem proposed by Balinski (1965).
For discrete facility location the bottleneck–objective has not received as much attention as
the cost–objective, but Dearing and Newruck (1979) study a capacitated facility location
problem with such a bottleneck–objective.

As the cost–objective focuses on minimizing the total/average cost of supplying demand
points from supply points, it often provides solutions in which remote and sparsely populated
areas are discriminated in terms of accessibility compared to centrally situated and highly
populated areas. On the other hand, locating facilities according to the bottleneck objective
(focussing on equity rather than efficiency) may cause a large increase in the total cost, thus
generating a substantial loss in cost efficiency. This fact was recognized by Halpern (1976)
who minimized a convex combination of the two objectives such that both efficiency and
equity were expressed in the resulting solution. On a network, this model is known as the
centdian problem. Halpern (1978) showed that when placing one facility on an undirected
graph so as to minimize the centdian objective, only a finite set composed of the set of
vertices and the set of so–called local centers need to be examined. For the case where
multiple facilities should be placed, this finite set needs to be expanded to the (still finite)
set presented in Perez-Brito, Moreno-Perez, and Rodriguez-Martin (1997).

Recognizing the fact that only supported efficient solutions can be found using convex
combinations of the objectives, it seems obvious to apply a bi-objective approach to the
cost–bottleneck problem. Instead of only considering a fixed convex combination of the two
objectives, the entire set of non-dominated outcomes will then be generated. The need to
balance efficiency and equity does, however, also arise in the case of other, similar problems.
In case of the transportation problem, the literature distinguishes between the classical
Hitchcock-type and the bottleneck transportation problem (Hammer, 1969; Garfinkel and
Rao, 1971). Whilst the objective of the former is to minimize total transportation cost,
the latter aims at minimizing the maximum time required to transport all supplies to the
destinations. In this case it seems relevant to find a balance between these two objectives,
leading to the bi-objective “bottleneck-cost” transportation problem studied by Pandian and
Nataraja (2011). This problem can in fact be solved in polynomial time. Combining a cost
and a bottleneck objective is also highly relevant in the context of discrete facility location
problems such as, for instance, the uncapacitated and capacitated facility location problems.
The bottleneck objective may then, in particular, refer to a customer service objective that
aims at keeping maximum delivery times small. Facility location models also play a role in
the area of supplier selection (Current and Weber, 1994). In this case, the cost objective
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may refer to the total procurement cost, whereas the bottleneck objective is to minimize the
(largest) lead time.

In the literature on planar and network multi–objective facility location problems, most
papers concentrate on specific problems and on methodological and theoretical results
(see e.g. Hamacher and Nickel (1996) for planar and Hamacher, Labbé, and Nickel (1999)
for network location problems). The opposite is true for discrete multi–objective facility
location, where the attention has primarily been on applications (see e.g. the survey in Nickel,
Puerto, and Rodríguez-Chía (2005)). However, a few contributions with a methodological
perspective on multi–criteria discrete location problem exist. In Ross and Soland (1980)
the set of Pareto optimal solutions is characterized by rewriting the location problem as a
generalized assignment problem with an additional constraint. However, the authors argue
not to generate all efficient solutions, and propose an interactive approach instead. Fernández
and Puerto (2003) consider a multi–objective version of the uncapacitated facility location
problem (UFLP). A multi–objective dynamic programming approach is proposed based on
a decomposition of the UFLP into a facility selection problem and a demand allocation
problem. We have, however, not been able to find any papers investigating, in a discrete
bi–objective setting, the combination of a cost objective and a bottleneck. For surveys on
multi–objective facility location problems we refer the reader to Nickel et al. (2005) and
Farahani, SteadieSeifi, and Asgari (2010).

In this paper we, therefore, suggest a bi-objective approach to balance cost minimization
and maximum transportation times for a family of discrete facility location problems com-
prising many well studied location problems as special cases. We establish the computational
complexity of the problem and prove the problem to be tractable. Furthermore, we propose
a scheme for solving the problem by means of an ε–constrained method. We suggest two
ways to accommodate the issue of generating weakly efficient solutions: First, a simple
change of the cost matrix that imposes the non–linear ε–constraint on the center objective.
Second, we outline a scheme based on lexicographic branch–and–bound which generates
no weakly efficient solutions. Last, we compare the ε–constraint algorithm to a two–phase
implementation. The main contributions of the paper can thus be summarized as follows:

1. We propose a family of discrete bi–objective facility location problems, encompassing
many problems known from the literature.

2. We show that even though the problems are generally NP–hard, they are computa-
tionally tractable in a certain sense.

3. We propose a simple methodology, based on the ε–constraint method, for solving these
problems.

4. Through extensive experiments we show that the methodology is indeed very efficient
compared to other algorithms from the literature.
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The remaining of this paper is organized as follows: Section 4.2 introduces the cost–
bottleneck location problem and Section 4.3 outlines the preliminaries of bi–objective combi-
natorial optimization and establishes the computation complexity of the problem. Section 4.4
outlines the ε–constraint algorithm proposed to solve the problem and finally, results from
extensive computational experiments are reported in Section 4.5.

4.2 The bi–objective cost–bottleneck location
problem

A large number of facility location problems are special cases of the general integer program

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (4.1a)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J , (4.1b)

xij − yi ≤ 0, ∀i ∈ I, j ∈ J , (4.1c)

(xi, yi) ∈ Xi, ∀i ∈ I, (4.1d)

y ∈ Y. (4.1e)

Here J is the set of demand points which need to be served by a set of open facilities
picked among the potential facility sites in I. The cost of servicing all of customer j’s
demand from facility i amounts to cij ≥ 0 while opening a facility i results in a fixed charge
of fi ≥ 0. It is assumed, that both cij and fi are non–negative integers. Constraints (4.1b)
ensure that all demand at customer j is covered by allocating the demand to at least one
open facility while constraints (4.1c) ensure that demand can only be allocated to open
facilities. Constraints (4.1d) restrict the possible assignments xi = (xij)j∈J of demand points
to facilities. Possible assignments are single–sourced if demand points are assigned to only
one facility, that is Xi ⊆ {0, 1}|J |+1. Otherwise we have Xi ⊆ [0, 1]|J | × {0, 1}. Finally,
Y ⊆ {0, 1}|I| may introduce further restrictions on the locational decisions yi.

Special cases of the program (4.1) comprise among others the uncapacitated facility
location problem, the capacitated facility location problem with and without single-sourcing,
and the p–median problem.

When the sum of costs is minimized, the relation to the individual demand point is not
taken into account meaning that in a spatial setting some customers might be located far
from the open facilities. To overcome this issue we introduce yet another objective, namely
to minimize the travel time of the worst assignment, effectively introducing the bottleneck
objective

min max
i∈I,j∈J

{tij : xij > 0}. (4.2)



4.3. Preliminaries 87

It is again assumed that tij is a non–negative integer for all i ∈ I and all j ∈ J . In this
setting, one can consider the tij as the travel time from demand point j to facility i while
cij is the cost incurred by this assignment. The introduction of this additional objective
function leads to the BOCO problem

min

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi , max
i∈I,j∈J

{tij : xij > 0}


s.t.:

∑
i∈I

xij = 1, ∀j ∈ J ,

xij − yi ≤ 0, ∀i ∈ I, j ∈ J ,

(xi, yi) ∈ Xi, ∀i ∈ I,

y ∈ Y,

(4.3)

which will be referred to as the bi–objective cost–bottleneck location problem (BO–CBLP).

4.3 Preliminaries

In the remainder of this paper, we will adopt the notation from Ehrgott (2005) to induce
orderings on R2. Let z1, z2 ∈ R2. Then

z1 ≤ z2 ⇔z1
k ≤ z2

k, k = 1, 2 and z1 6= z2

z1 <lex z
2 ⇔z1 6= z2 and z1

q < z2
q , where q = min{k = 1, 2 : z1

k 6= z2
k}

z1 ≤lex z
2 ⇔z1 = z2 or z1 <lex z

2

If z1 ≤ z2 we say that z1 dominates z2. Similarly, if z1 ≤lex z
2 we say that z1 lexicographically

dominates z2. Note the implication that if z1 ≤ z2 then z1 ≤lex z
2.

The focus of this section will be on a generic bi-objective combinatorial optimization
(BOCO) problem of the form

min{(f1(x), f2(x)) : x ∈ X} (4.4)

where f1 : X → R and f2 : X → Z are defined over the mixed integer set X ⊆ {0, 1}n1×[0, 1]n2 .
The set X is the set of feasible solutions, also referred to as the feasible set in decision space.
The image of X , Z := f(X ) ⊆ Z2, is referred to as the feasible set in outcome space. For
brevity of notation, we will often write f(x) = (f1(x), f2(x)). It is not obvious what is meant
by (4.4). To clarify this we use the concept of Pareto optimality or efficiency:

Definition 4.1. A feasible solution x̂ ∈ X is called Pareto optimal or efficient if there does
not exist any x̄ ∈ X such that f(x̄) ≤ f(x̂). The image f(x̂) = (f1(x̂), f2(x̂)) is then called
non-dominated.
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A feasible solution x̂ ∈ X is called weakly efficient if there does not exist any x̄ ∈ X such
that f1(x̄) < f1(x̂) and f2(x̄) < f2(x̂).

From Definition 4.1 we have the following connection between the lexicographic ordering
≤lex and efficiency:

Lemma 4.1 (Ehrgott (2005)). Let x̂ ∈ X satisfy f(x̂) ≤lex f(x) for all x ∈ X . Then x̂ is
efficient.

Let XE denote the set of efficient solutions and let ZN = f(XE) be the image of this
set. The set of non-dominated solutions ZN will also be referred to as the non–dominated
frontier. We distinguish between efficient solutions which are supported, extreme supported,
and unsupported.

Definition 4.2. 1. A solution x ∈ X is a supported efficient solution if there exists a
λ > 0 such that x is an optimal solution to

min{(λc1 + (1− λ)c2)x : x ∈ X}

The corresponding outcome vector, z := f(x), is called a supported non–dominated
outcome vector. The set of supported non–dominated outcomes is denoted ZsN .

2. If z is also an extreme point of conv(ZN ), then x is called an extreme supported efficient
solution and the outcome vector z is called an extreme supported non–dominated
outcome vector.

3. If x ∈ XE and z := f(x) 6∈ ZsN , then x is said to be an unsupported efficient solution
and z is called an unsupported non–dominated outcome.

If two feasible solutions x1, x2 ∈ X map into the same outcome vector, z ∈ Z, that
is f(x1) = f(x2) = z, the solutions x1 and x2 are called equivalent. The literature is not
always precise on the outcome of a proposed algorithm and we therefore employ the following
definition from Hansen (1980):

Definition 4.3. A complete set C is a set of efficient solutions such that all x ∈ X\C are
either dominated by or equivalent to at least one x̂ ∈ C. Moreover we distinguish between
two types of complete sets:

1. A minimal complete set, Cmin is a complete set without equivalent solutions. Any
complete set contains a minimal complete set.

2. The maximal complete set, Cmax, is the complete set including all efficient solutions,
i.e., Cmax = XE .
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In this paper the focus is on generating a set Cmin, i.e., the efficient solutions found for
(4.4) constitute a minimal complete set. Finally, the concept of computational tractability is
defined:

Definition 4.4 (Ehrgott (2005)). The BOCO problem (4.4) is called intractable if the
cardinality of ZN can be exponential in the size of the input and tractable otherwise.

4.3.1 Characteristics of the BO–CBLP problem

Despite the relatively simple nature of the problem, the BO–CBLP (4.3) is a difficult
BOCO problem. The computational complexity of the BO–CBLP is stated in the following
proposition.

Proposition 4.1. The BO–CBLP (4.3) is NP–hard.

Proof. We show this by reducing the set covering problem to BO–CBLP. Let cij = 0 if
demand point j ∈ J can be covered by facility i ∈ I and cij = M otherwise. Furthermore, let
tij = cij for all i ∈ I and all j ∈ J and fi = 1 for all i ∈ I. Let K be the minimum number
of facilities needed to cover all customers. Then the problem exhibits two non–dominated
solutions. The first opens the K facilities needed to cover the demand points, resulting in the
outcome vector (K, 0). Any efficient solution mapping to another non–dominated outcome
does not cover at least one customer. Hence such an efficient solution opens any single facility
resulting in the outcome (1,M). The latter is trivial to compute, but the first requires to
solve the set covering problem.

However, despite the fact that the BO–CBLP is NP–hard, the problem is in fact tractable
in the sense of Definition 4.4:

Proposition 4.2. The BO–CBLP is tractable.

Proof. As the travel time matrix (tij)i∈I,j∈J comprises at most |I| × |J | different values,
the center objective (4.2) can attain no more than |I| × |J | different values, implying
|ZN | ≤ |I| × |J |, which is polynomial in the input size.

Proposition 4.2 tells us, that even though the BO–CBLP is NP–hard, we only need to
solve a polynomial number of NP–hard problems in order to generate the non–dominated
frontier, ZN .
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of Theorem 4.1.

center

median

1

2

3
n4

n5

n6

(b) Solutions in outcome space for the graph
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Figure 4.1: Illustrations of the example used in the proof of Theorem 4.1.

4.3.2 A link to the weighted p–centdian problem

The p–centdian problem is a combination of the p–median and the p–center problems where
the objective function is a convex combination of the median/cost and the center/bottleneck
objectives. Given a graph G = (V,E), let P (G) be the set of all points on G and let d(l, h)
be the distance of a shortest path between points l and h on G (note that the points l and
h might be interior points on the edges of G). Furthermore, given a set of points S ⊆ P (G)
we define d(S, h) = min{d(l, h) : l ∈ S}. In addition, let wj ≥ 0 and vj ≥ 0 be weights of
the node j ∈ V representing, for example, the number of customers or some other measure
of attractiveness of the node j. For 0 ≤ λ ≤ 1 the p–centdian problem may then be stated as

min λ
∑
j∈V

wjd(S, j) + (1− λ) max
j∈V

vjd(S, j)

s.t.: S ⊆ P (G)

|S| = p

(4.5)

It has been shown in Perez-Brito et al. (1997) that there exists a finite set of points on G
containing an optimal solution to the p–centdian. In what follows, the problem

min{

∑
j∈V

wjd(S, j),max
j∈V

vjd(S, j)

 : S ⊆ P (G), |S| = p}

is denoted the bi–objective p–centdian problem. It turns out that there can be infinitely
many Pareto optimal solutions to this problem.

Theorem 4.1. The set of Pareto optimal solutions to the bi–objective p–centdian problem
on a network can be uncountably infinite even for p = 1 when S ⊆ P (G).

Proof. We show the result by giving an example having this property. Consider the graph
given in Figure 4.1a, where the edge lengths are given by d(1, 2) = d(2, 1) = 1, d(2, 3) =
d(3, 2) = 2, and wj = vj = 1 for all j ∈ V . Furthermore, suppose p = 1, that is, we want to
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place one facility on G. The intersection points (see Kariv and Hakimi (1979) for a definition)
on G are denoted by n4, n5, and n6. It is easily verified that locating a facility at node 2 is
an optimal solution to the 1–median problem with outcome vector (3, 2) whereas placing a
facility at n5 is an optimal solution for the 1–center problem, resulting in the outcome vector
(3.5, 1.5). As the solutions are unique optimal solutions they are efficient. In Figure 4.1b
the outcome vectors for all points on the graph G have been plotted. All points on the edge
(1, 2) map into the dashed line, while all solutions on the edges (n5, n6) and (n6, 3) map
into the dotted line. However, all points on the edge (2, n5) map into the solid line which
is non–dominated. As there are an uncountable infinite number of points on this edge, the
result follows.

Note that the bi–objective p–centdian is not covered by the general BO–CBLP as the
set I of potential facility sites has to be finite in the definition of the BO–CBLP. However,
letting the sets I and J equal the set V , the (vertex) p–centdian problem (4.5) can be stated
as the following scalarized version of the BO–CBLP:

min λ

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi

+ (1− λ) max
i∈I,j∈J

{tij : xij > 0}

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J ,

(xi, yi) ∈ Xi, ∀i ∈ I,

y ∈ Y,

where Xi = {(xi, yi) ∈ {0, 1}|J |+1 : xij ≤ yi}, Y = {y ∈ Rn :
∑
i∈I yi = p}, fi = 0,

cij = wjd(i, j), and tij = vjd(i, j) for all i ∈ I and j ∈ J . In many practical applications
it will suffice to consider placing facilities only at the nodes of the graph. For 0 < λ < 1 a
solution to the vertex–p–centdian problem corresponds to a supported efficient solution of
the BO–CBLP (4.3) with the sets I, J , Xi, Y and the coefficients fi, cij , and tij defined as
above. This means that solving the BO–CBLP yields a solution to the vertex–p–centdian
problem for each value of λ > 0. Most literature considers special structured graphs such
as trees when solving the p–centdian problem. This approach offers a means to solve the
vertex–p–centdian problem for all values of 0 < λ < 1 on a general graph with no assumption
other than that facilities should be located on nodes only.

4.4 Solution methodologies

One of the most well–known approaches for establishing the complete set of Pareto optimal
solutions to a bi–objective optimization problem is probably the ε-constrained method. This
method turns one of the objectives into a constraint. The scalar ε represents the upper bounds
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Input: Functions f1 and f2 and a feasible set X .
Output: A solution (Cmin,ZN) ⊆ X × Z to (4.4) or a proof that XE = ∅.

Step 0: (Initialization) Set Cmin = ∅, ZN = ∅, ε =∞ and k = 1.
Step 1: (Subproblem) If min{fi(x) : x ∈ X , fj(x) ≤ ε} is feasible let xk be an

optimal solution. Else go to Step 3.
Step 2: (Update) Set Cmin = Cmin ∪ {xk}, ZN = ZN ∪ {f(xk)}, ε = f2(xk)− 1 and

k = k + 1. Return to Step 1.
Step 3: Remove dominated solutions from Cmin and their outcome vectors from ZN

and return (Cmin,ZN) as an optimal solution.

Algorithm 4.1: Summary of the ε–constraint based algorithm.

on the objective, and by varying this scalar in an appropriate way, the complete efficient
frontier can be generated. Recently, Bérubé, Gendreau, and Potvin (2009) successfully applied
this method to the traveling salesman problem with profits. The literature also suggests
a number of variations of this method. Two recent versions are: Filippi and Stevanato
(2013) combine the weighted sum scalarization technique with the ε-constrained method
and show that exactly 2|ZN | − 1 single objective optimization problems have to be solved in
order to produce the entire set of non-dominated outcomes. Two box algorithms based on a
combination of lexicographic optimization and the ε-constrained method (the lexicographic ε-
constrained method) are proposed by Hamacher, Pedersen, and Ruzika (2007). The proposed
algorithm also solves at most 2|ZN | − 1 lexicographic optimization problems.

In this section we describe an ε–constrained method for finding a minimal complete set
for the BO–CBLP. The two ε–constrained problems arising in terms of the general BOCO
(4.4) are

min{fi(x) : x ∈ X , fj(x) ≤ εj}, (P ij )

where i, j = 1, 2 and i 6= j. It is well known that all non–dominated solutions can be found
by varying the ε–parameter in an appropriate manner (see e.g. Ehrgott (2005)). BOCO
problems yield a straightforward variation scheme for the ε parameter. One simply constructs
a sequence where ε is initially set equal to a substantially large value and progressively lowered.
An outline of a generic ε–constrained method is given in Algorithm 4.1.

Note that it is crucial for the procedure that f2(x) ∈ Z for all x ∈ X such that a strict
improvement in the objective moved into the constraints can be modeled as a less or equal
constraint.

A major drawback of the ε–constrained method is that the set of solutions produced by
Steps 1 and 2 in Algorithm 4.1 usually contains (weakly) dominated solutions, such that
the method presumably solves far more ε–constrained programs than actually required. One
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way of preventing this is to obtain a lexicographically optimal solution to the ε–constrained
subproblem in Step 1 in Algorithm 4.1. This way, by Lemma 4.1, the solution obtained
in this step is guaranteed to be efficient, and Step 3 can be skipped. We describe how
such a lexicographically optimal solution can be obtained in Section 4.4.2. Another weak
point of the ε–constrained algorithm is that the ε–constraint might ruin the structure of the
underlying problem. This issue is addressed in Section 4.4.1.

4.4.1 The ε–constrained method for BO–CBLP

In the ε–constrained method for BO–CBLP we choose to move the non–linear center–objective
into the constraints and obtain the problem

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (4.6a)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J (4.6b)

xij − yi ≤ 0, ∀i ∈ I, j ∈ J , (4.6c)

max
i∈I,j∈J

{tij : xij > 0} ≤ ε, (4.6d)

(xi, yi) ∈ Xi, ∀i ∈ I (4.6e)

y ∈ Y. (4.6f)

The program (4.6a)–(4.6f) differs from the general facility location problem (4.1) only in the
non–linear constraint (4.6d). The presence of this constraint might ruin the structure of the
problem and, furthermore, the program cannot be handed directly to a MILP–solver.

Fortunately, for the BO–CBLP the ε–constraint (4.6d) can be taken into account by
simple variable elimination:

Lemma 4.2. The constraints

xij = 0, ∀i ∈ I, j ∈ J : tij > ε (4.7)

are equivalent to the constraint maxi∈I,j∈J {tij : xij > 0} ≤ ε.

This variable elimination, constraints (4.7), can easily be implemented while maintaining
the structure of the general facility location problem, simply by changing the cost matrix as
follows

cij =

cij , if tij ≤ ε

M, otherwise,

where M is a sufficiently large number. With this transformation of the cost matrix, the
ε–constrained facility location problem, (4.6a)–(4.6f), can be solved as an ordinary facility
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Input: Cost matrix cij and travel time matrix tij.
Output: A solution (Cmin,ZN) to the BO-CBLP problem (4.3).

Step 0: (Initialization) Set Cmin = ∅, ZN = ∅, ε =∞, k = 1, and M =∞.
Step 1: (Subproblem) Solve the facility location problem (4.1) with assignment cost

matrix c. Let (xk, yk) be an optimal solution and set zk1 = ∑
i∈I

∑
j∈J cijx

k
ij +∑

i∈I fiy
k
i and zk2 = maxi∈I,j∈J {tij : xkij > 0}. If zk2 = M go to Step 3 else go

to Step 2.
Step 2 (Update) Set Cmin = Cmin ∪ {(xk, yk)}, ZN = ZN ∪ {(zk1 , zk2 )} and ε = zk2 − 1.

Update the cost matrix

cij =

cij, if tij ≤ ε

M, otherwise,

and set k = k + 1. Return to Step 1.
Step 3 Remove dominated solutions from Cmin and their outcome vectors from ZN

and return (Cmin,ZN) as an optimal solution.

Algorithm 4.2: Summary of the ε–constrained method applied to the BO–CBLP.

location problem as links (i, j) will not be used unless the travel time on the arc is less than
or equal to ε. This leads to the ε–constrained algorithm for the BO-CBLP problem given
in Algorithm 4.2. The adaptation of the generic ε–constrained algorithm to the BO–CBLP
happens in Step 1 and Step 2 of Algorithm 4.2. Instead of solving an ε–constrained problem
in Step 1, we simply solve the single objective cost modified facility location problem which
preserves its structure. In Step 2 the ε–constraint is “added” to the model by changing the
cost matrix.

Rather intriguingly, this implies that a specialized algorithm for the single objective
minisum facility location problem (4.1) can be used to solve the subproblems arising in Step
1 of Algorithm 4.2, often resulting in quite large problem instances solved relatively fast.

Furthermore, as the center objective maxi∈I,j∈J {tij : xij > 0} attains at most |I| × |J |
different values, we have Proposition 4.3:

Proposition 4.3. The ε–constraint algorithm in Algorithm 4.2 solves at most (|I|−1)×|J |
general facility location problems.

Proof. The maximum number of problems solved is reached if the algorithm fixes only one
xij–variable in each iteration. However, each customer point j ∈ J must have at least one
possible assignment for the problem to be feasible. This implies that the algorithm performs
at most (|I| − 1)× |J | iterations.
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Corollary 4.1. The BO–CBLP is NP–hard if and only if the single objective facility location
problem (4.1a)–(4.1e) is NP–hard.

Proof. The⇐ direction of the bi–implication follows immediately. The converse follows from
the fact that if the single objective facility location problem (4.1a)–(4.1e) can be solved in
polynomial time, then so can the BO–CBLP by Proposition 4.3.

4.4.2 Solving a lexicographic BOCO problem

In this section we describe how a lexicographic optimization problem can be dealt with (the
problem is also discussed by Ralphs, Saltzman, and Wiecek (2006) who apply a weighted
Chebyshev norm approach). To make the exposition as general as possible, we use the
terminology of the general BOCO problem (4.4).

One simple possibility is to employ a scalarization of the BOCO that only puts little
weight on the second objective, obtaining the scalarized problem

min{λf1(x) + (1− λ)f2(x) : x ∈ X , f2(x) ≤ ε}

where λ is very close to one. This approach does, however, suffer from “bad scaling” of the
objective function coefficients which often leads to problems that are very hard to solve and
numerically unstable.

Another approach is to implicitly enumerate all optimal solutions to the ε–constrained
problem

min{f1(x) : x ∈ X , f2(x) ≤ ε}. (4.8)

This can be done by modifying the branch–and–cut algorithm used to solve the ε–constraint
problem. To that end, let x∗ be the current incumbent of the ε–constrained problem and
let z∗1 = f1(x∗) be the corresponding solution value. A node in the branching tree is then
pruned only if it is infeasible or if it shows a lower bound strictly greater than z∗1 . Conversely,
if the lower bound of the node equals z∗1 then the first objective cannot strictly improve in
subsequent subproblems. However, there might exist solutions improving the second objective.
Solutions in the subsequent subproblems need to strictly improve the second objective in
order to improve the solution and therefore the constraint f2(x) ≤ f2(x∗)− 1 can be used as
a local cutting plane (or branching constraint).

The incumbent is updated during the modified branch–and–cut algorithm whenever a
feasible solution, x̄, is found such that f1(x̄) < z∗1 or (non–exclusively) such that f1(x̄) ≤ z∗1
and f2(x̄) < f2(x∗).

This way, all optimal solutions to (4.8) are implicitly enumerated and the lexicographically
best solution is found. This guarantees that the solution returned is efficient.
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Lexicographic branch–and–bound applied to the BO–CBLP problem

The lexicographic combinatorial optimization problem that need to be solved in each iteration
of the ε–constrained algorithm in Algorithm 4.2 is

lexmin

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi , max{tij : xij > 0}


s.t.:

∑
i∈I

xij = 1, ∀j ∈ J ,

xij − yi ≤ 0, ∀i ∈ I, j ∈ J ,

max{tij : xij > 0} ≤ ε,

(xi, yi) ∈ Xi, ∀i ∈ I,

y ∈ Y.

The branch–and–cut algorithm used to solve this problem is implemented as a best first
search. A node in the branching tree is pruned if the node is LP–infeasible or if a lower
bound, say LB, is strictly greater than the incumbent, z∗1 (tolerances are used to ensure
numerical stability). If, on the other hand, LB ≤ z∗1 , it is necessary to distinguish between
two different cases. In the first case, when the node is integer feasible, a single child node
is created by adding the branching constraints xij = 0 for all i ∈ I and j ∈ J where
tij ≥ maxi∈I,j∈J {tij : x∗ij > 0}. In the second case, when the node shows a fractional LP
solution, the node is separated using a variable dichotomy by selecting an integer infeasible
variable and creating two child nodes: one forcing the variable to zero, the other to one.
The constraints described above that force xij to zero in order to improve the bottleneck
objective are added to both child nodes as well. To determine the branching variable, we
adopt the Pseudocost branching rule described in the excellent paper by Achterberg, Koch,
and Martin (2005).

4.5 Computational results

The purpose of the computational tests is fourfold: first, we examine whether it is worthwhile
to compute a lexicographically optimal solution to the subproblems arising in the ε–constraint
algorithm. Secondly, we examine the extent to which the proposed ε–constrained algorithm
is efficient for solving different BO–CBLP problems. Next, we test if the methodology is
appropriate for solving these problems. This is done by comparing the ε–constrained method
to an implementation of the two–phase method. And finally, a customized solver for the
single–source capacitated facility location problem is used to test to which extent such a
solver can be used to speed up the computation of the non–dominated set. In total, 1398
different problems have been solved and four algorithmic approaches have been tested.
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Table 4.1: Description of the column headings

Heading Description
# Number of instances over which the averages are taken in the

corresponding row.
Size Displays the size of the instances of the corresponding row as

|I| × |J |.
Time Reports the average time consumption in CPU seconds for calcu-

lating the entire frontier.
% times Average of the percentage CPU time[ε−alg]

CPU time [two-phase method]100.
∆z2 Reports the average difference in the second coordinate of the

lexicographic minima. Note that ∆z2 + 1 gives an upper bound on
the number of non–dominated outcomes.

|ZN | Reports the average number of non–dominated solutions for the
instances of the corresponding row.

N Contains the average number of dominated solutions generated by
the algorithm. That is, the number of unnecessary iterations of the
ε–constrained algorithm.

|ZN |P2/|ZN |P1 Reports the average ratio between the points found in phase two
of the two–phase method and those found in phase one.

All algorithms have been coded in C++11 and compiled using the GNU GCC compiler
with optimization option O3. All the experiments were carried out on a Fujitsu Esprimo
Q920 desktop with 16GB RAM and a 2.20 GHz Intel Core i7-4785T processor running
a 64 bit version of Linux Ubuntu. The lexicographic branch–and–cut algorithm described
in Sections 4.4.2 was coded using the branch– and incumbent callbacks of the C++ API
of CPLEX concert technology. The integer feasible solutions are kept in an external data-
structure and CPLEX is then told to reject all solutions such that it does not terminate
when a zero gap is obtained. The ParallelMode switch in CPLEX is set to deterministic. The
absolute and the relative optimality gaps are set to 0.0. All other parameters are at their
default values. The code, instances, and detailed results for each instance are all publicly
available (Gadegaard, Klose, and Nielsen, 2016b).

To ease the reading, we summarize our test statistics in Table 4.1. For all tests except
the ones carried out with the lexicographic branch–and–bound algorithm, we used a time
limit of one hour for the generation of the non–dominated frontier.

4.5.1 Test classes

We report the results of tests conducted on three different classes of facility location problems
known from the literature. The problem classes are the uncapacitated facility location
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problem, and the capacitated facility location problem with and without single-source
constraints. In the following, we give a short description of the three problem classes.

The capacitated facility location problem

The capacitated facility location problem (CFLP) is a widely studied combinatorial optimiza-
tion problem. It consists of opening a set of facilities and assigning demand points to these
facilities in such a way that all capacities are respected and the cost of assigning demand
points and opening facilities is minimized. The CFLP assumes that

1. Each demand point has a fixed and known demand, dj > 0.

2. Each facility has a fixed and known capacity, si > 0, which must be respected.

3. Each customer does not need to be assigned to a single facility; its demand can be
split between several open facilities.

4. The cost of assigning a customer j to facility i depends linearly on the fraction of the
demand dj transported on the link (i, j).

This leads to the set of possible assignments, Xi, being defined as

Xi = {(xi, yi) ∈ [0, 1]|J | × {0, 1} :
∑
j∈J

djxij ≤ siyi, xij − yi ≤ 0, ∀i ∈ I, j ∈ J }

The set Y is equal to {y ∈ {0, 1}|J | :
∑
i∈I siyi ≥

∑
j∈J dj}. The constraints xij − yi ≤ 0

and
∑
i∈I siyi ≥

∑
j∈J dj are implied by the other constraints, but they often strengthen

the LP relaxation. We denote the BO–CBLP arising from the CFLP the capacitated bi–
objective cost–bottleneck location problem (capacitated BO–CBLP). The instances for the
capacitated BO–CBLP are a subset of the test bed created for the paper Klose and Görtz
(2007) consisting of 45 instances ranging from 100 customers and 100 facility sites to 200
customers and 200 facility sites.

The uncapacitated facility location problem

The uncapacitated facility location problem (UFLP) is very similar to the CFLP. As the
name suggests it is a version of the CFLP where all facilities have sufficient capacity to
potentially serve all demand points. Therefore, no additional restrictions on the assignments
are needed and the UFLP can be defined by the sets Xi given by

Xi = R|J |+1.

As there is no restriction on the number of facilities to be open in a feasible solution either,
we have Y = {0, 1}|I|. We denote the BO–CBLP arising from the UFLP the uncapacitated
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bi–objective cost–bottleneck location problem (uncapacitated BO–CBLP). For the uncapaci-
tated BO–CBLP we use a slightly larger subset of the instances created by Klose and Görtz
(2007) consisting of 60 instances ranging in size from 100 customers and 100 facilities to 100
customers and 500 facility sites.

The single–source capacitated facility location problem

The single–source capacitated facility location problem (SSCFLP) is also a variant of the
CFLP where each demand point has to be assigned to exactly one open facility. The SSCFLP
can be described in terms of the general facility location problem (4.1) by setting

Xi = {(xi, yi) ∈ {0, 1}|J |+1 :
∑
j∈J

djxij ≤ siyi, xij − yi ≤ 0, ∀i ∈ I, j ∈ J },

and the extra requirement on the y-variables is given by

Y = {y ∈ {0, 1}|I| :
∑
i∈I

siyi ≥
∑
j∈J

dj}.

Note that the constraint defining the set Y and the constraints xij − yi ≤ 0 are redundant as
was the case for the capacitated BO–CBLP. We denote the resulting bi–objective location
problem the single–source capacitated bi–objective center location problem (single–source
capacitated BO–CBLP).

In order to test the algorithms, we include the test bed proposed in Holmberg, Rönnqvist,
and Yuan (1999) that consists of 71 instances as well as 57 instances from the testbed used
in Díaz and Fernández (2002).

4.5.2 Cost structures

We use the cost matrix and cost vector provided by the instances for the travel costs and the
fixed opening costs, respectively. Regarding the travel times we generate three new instances
for each instance with travel costs defined as follows:

1. tij = cij . This suggests that travel time is equivalent to travel distance/cost. A plot of
this cost structure, here referred to as C1, is provided in Figure 4.2a.

2. tij = max{0, cij + U(−d, d)}. Here U(k1, k2) denotes a discrete uniform distribution
on the interval [k1, k2]. This implies that travel times are positively correlated with
the travel cost, but that there is some noise which increases (decreases) the travel
time for some distances. This is, for example, the case in geographically challenging
countries like Denmark. A plot of cost structure C2 is given in Figure 4.2b.

3. Finally, we generate the tij ’s such that corr(tij , cij) < 0, suggesting that large values
of cij lead to small values of tij and vice versa. Such instances occur in e.g. supplier
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cij

tij

(a) Cost structure C1.
cij

tij

(b) Cost structure C2.
cij

tij

(c) Cost structure C3.

Figure 4.2: A plot of the three different cost structures for the assignment of customers
to facilities.

selection problems (see Current and Weber (1994) for more on location problems
used in supplier selection problems). One can think of cij as the cost of procuring the
required amount per period of product j from supplier i, where fi is a fixed cost of
placing an order, whilst tij is the delivery time. This model then minimizes total cost
and the time until the last order arrives. We have generated the travel times in the
following way: let Cmax and Cmin be the largest and the smallest assignment costs,
respectively. Then

cij <
Cmax − Cmin

2 ⇒ tij = U(Cmax + Cmin − cij , Cmax)

cij ≥
Cmax − Cmin

2 ⇒ tij = U(Cmin, Cmax + Cmin − cij)

The cost structure C3 is illustrated in Figure 4.2c.

4.5.3 Performance of the lexicographic branch–and–bound
approach

We carried out the experiments for the lexicographic branch–and–bound procedure only
for the capacitated BO–CBLP as this problem exhibits characteristics of all three problem
classes, and only the locational decisions, the y–variables, need to be integer. We found
that only some of the smaller problems could be solved directly using the lexicographic
branch–and–bound algorithm. As can be seen in Table 4.2 we succeeded in solving some
problems with 100 facility sites and up to 200 customers. It is quite obvious that when
the ratio between the total capacity and total demand becomes larger, the lexicographic
branch–and–bound algorithm becomes more time consuming and less effective. This seems
to be due to the larger number of feasible solutions to the problems, as the algorithm has a
very hard time fathoming branching nodes after branching on integer feasible nodes. When
we increase the size of the instances, the time consumption increases drastically. We were not
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Table 4.2: Results obtained using the lexicographic branch–and–bound algorithm.

Time

# Size C12 C2 C3

R1= 3
5 100x100 1101.34 1865.48 —
5 100x200 1945.25 — —

R1= 5
5 100x100 5242.64 — 5817.79

R1= 10
5 100x100 7274.67 — 6137.56

1 R =
∑

i∈I si/
∑

j∈J dj .
2 Ci = cost structure i = 1, 2, 3.
— Indicates that none of the instances of that
particular (row,column)–combination could
be solved within one hour of computation time.

able to solve larger instances as the branching tree became too large to fit in memory. The
implemented lexicographic branch–and–bound algorithm thus seems unsuitable as a solution
procedure for these problem types. Even though no weakly efficient solutions are generated,
enumerating all optimal solutions of the subproblems of the ε–constrained algorithm becomes
prohibitive even for smaller problems. Therefore, we did not perform further tests with the
lexicographic branch–and–bound algorithm, and the following results are carried out using
CPLEX as a single objective solver for the subproblems.

4.5.4 Performance of the ε–constrained algorithm

In this section we report the results obtained with the ε–constrained algorithm using CPLEX
as a single objective solver for the subproblems arising in the ε–algorithm described in
Algorithm 4.2.

Results for the capacitated BO–CBLP

We report the results obtained when applying the ε-algorithm to the 45 instances in the
capacitated BO-CBLP class that could be solved within one hour of computation time.
Table 4.3 shows that problems of up to 200 facilities and 200 customers could be solved.
Furthermore, the number of non-dominated solutions does not vary much within each cost
structure, but substantial variations are seen between cost structures: when considering
the cost structure C2 many more non–dominated points are generated compared to C1
and C3. Intuitively, one would expect cost structure C3 to produce more non–dominated
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Table 4.3: Summary of the results obtained for the capacitated BO–CBLP.

Time ∆z2 |ZN | N

# Size C1‡ C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

R† = 3
5 100× 100 17.91 81.24 45.35 34.80 117.20 32.60 8.20 43.00 33.60 0.00 0.00 0.00
5 100× 200 68.92 243.62 130.02 29.40 74.40 31.00 13.40 44.80 32.00 0.00 0.00 0.00
5 200× 200 291.73 775.31 285.59 37.00 91.60 34.80 18.80 53.40 35.80 0.00 0.00 0.00
R† = 5
5 100× 100 52.24 150.11 85.05 53.00 90.40 36.40 20.80 50.60 35.40 0.00 0.00 0.00
5 100× 200 122.42 569.50 353.63 39.80 117.00 33.80 19.40 64.80 34.80 0.00 0.00 0.00
5 200× 200 437.54 1163.85 425.62 39.60 82.60 32.40 21.20 60.80 33.40 0.00 0.00 0.00
R† = 10
5 100× 100 67.89 166.90 213.00 53.00 82.60 37.20 23.80 38.20 38.00 0.00 0.00 0.00
5 100× 200 231.57 893.594 2521.073 67.60 82.60 32.20 34.00 51.80 33.20 0.00 0.00 0.00
5 200× 200 384.43 1070.58 584.13 55.80 111.20 37.60 22.00 64.20 36.00 0.00 0.80 0.00
†R =

∑
i∈I si/

∑
j∈J dj . ‡ Ci = cost structure i = 1, 2, 3.

Superscripts: Indicates the number of instances of that particular (row,column)–combination that could be
solved within one hour of computation time. If no superscript, all instances were solved.

points as the coefficients are negatively correlated. However, when we divide the range of the
coefficients tij into three equal segments, it turns out that for the cost structure C3, about
two thirds of the entries in the travel time matrix lie in the largest third. This means that
many variables are fixed in the first couple of iterations. Thus, producing solutions improving
the center/bottleneck objective quickly becomes infeasible, implying smaller values of |ZN |
for this cost structure. By comparison, for cost structures C1 and C2, about 60 percent of
the travel time coefficients lie in the middle third. This explains why the cost structure C3
produces less efficient solutions than expected.

Another interesting point in relation to cost structure C3 is that in many cases the upper
bound on the number of non–dominated outcomes given by ∆z2 + 1 is strict. That is, there
is almost always a non–dominated solution for each value between zmin

2 = min{z2 : z ∈ ZN}
and zmax

2 = max{z2 : z ∈ ZN} of the bottleneck objective. This seems to be due to
the antagonistic relationship between the objectives when the coefficients cij and tij are
negatively correlated: The cost objective tries to pick the assignments with small values of
cij resulting in long travel times for that assignment.

Note that strikingly few weakly efficient solutions are generated for all of the three
cost structures. The low numbers of weakly efficient solutions confirm the suitability of the
ε–constraint approach for these cost–bottleneck location problems.

Results for the uncapacitated BO–CBLP

We were able to solve slightly larger problems of the uncapacitated BO–CBLP class compared
to the capacitated version. This means that instances ranging from 100 facilities and 100
customers to instances with 100 facilities and 500 customers were solved to optimality. As
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Table 4.4: Summary of the results obtained for the uncapacitated BO–CBLP.

Time ∆z2 |ZN | N

# Size C11 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

15 100× 100 19.73 55.96 30.18 84.53 137.87 34.73 27.00 57.33 35.20 0.07 0.40 0.00
15 100× 200 74.71 227.93 145.45 77.33 122.20 32.33 27.67 62.87 33.33 0.00 0.33 0.00
15 200× 200 459.46 1190.83 791.66 67.80 117.93 34.07 39.27 82.00 35.07 0.00 0.53 0.00
15 500× 500 402.88 1464.44 1043.93 25.47 76.73 29.33 23.13 69.73 30.33 0.00 0.40 0.00

1 Ci = cost structure i = 1, 2, 3

there is no capacity limit on the facilities in this problem type, the instances are grouped by
size only.

In Table 4.4, we see the same pattern as for the capacitated BO–CBLP, namely that
the cost structure C2 yields larger values of |ZN |. And again, the number of non–dominated
outcomes in cost structure C3 reaches the upper bound ∆z2 + 1 in most of the instances.
Furthermore, a slightly higher number of non–dominated solutions is generated compared to
the capacitated BO–CBLP. This phenomenon was expected as there is no capacity constraints
to conflict with the fixation of assignment variables.

The reader should again note the remarkably small number of weakly efficient solutions
which underpins the appropriateness of the ε–constraint approach.

Results for the single–source capacitated BO–CBLP

The 71 problems from Holmberg et al. (1999) are divided into five subsets and the 57
instances of Díaz and Fernández (2002) are divided into 7 subsets based on the dimensions
of the problems. Table 4.5 summarizes the results obtained for the single–source capacitated
BO–CBLP.

As opposed to the capacitated and the uncapacitated cost–bottleneck location problems,
the size of ZN is significantly larger for the instances with negatively correlated travel costs
and travel times compared to the two other cost structures. The number of weakly efficient
solutions described in column N is again remarkably small, which suggests that the problem
instances for the single–source case also only have a few alternative optimal solutions and
that, therefore, the ε–constraint method is a well–suited approach.

It is interesting to note, that for the Holmberg et al. instances of size 30× 150, only one
efficient solution is found for all of the 15 instances with cost structure C1. This happens,
because the cij ’s are relatively large compared to the fixed opening costs, fi, leading to more
facilities being open in an optimal solution to the minisum problem. As the travel time
coefficients tij = cij in cost structure C1, the cost objective and the bottleneck objectives
are not in conflict at all, and hence, the optimal solution to the cost objective, turns out to
be optimal for the bottleneck objective as well.
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Table 4.5: Summary of the results obtained for the single–source capacitated BO–
CBLP.

Time ∆z2 |ZN | N

# Size C12 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Intances from (Holmberg et al., 1999)
12 10× 50 0.13 0.42 8.75 60.42 161.83 574.25 3.75 9.92 137.33 0.00 0.08 0.08
12 20× 50 0.45 1.08 44.21 93.17 142.00 571.25 12.08 16.00 172.33 0.00 0.00 0.33
16 10× 901 0.93 3.50 46.22 53.20 81.27 143.93 10.27 15.40 93.53 0.00 0.07 0.47
15 30× 150 0.80 10.42 16.87 0.00 162.06 42.38 1.00 25.19 43.38 0.00 0.44 0.00
16 30× 200 13.10 41.22 957.8615 88.44 176.00 335.69 23.25 53.00 313.80 0.19 0.13 0.27

Instances from Díaz and Fernández (2002)
6 10× 20 0.48 0.72 4.01 31.83 43.00 83.33 4.33 7.67 33.67 0.00 0.00 0.17
11 15× 30 2.19 3.02 16.67 32.27 39.36 88.82 10.45 13.45 45.73 0.00 0.09 0.18
8 20× 40 4.93 7.12 51.78 25.38 34.25 93.29 12.00 15.00 59.25 0.00 0.00 0.00
8 20× 50 372.47 353.99 45.526 29.50 40.00 92.33 12.50 18.25 64.33 0.13 0.13 0.67
8 30× 60 27.41 49.62 153.80 33.25 39.88 94.63 17.67 23.78 74.11 0.22 0.44 0.33
8 30× 75 84.557 225.387 1407.97 28.00 44.50 94.60 16.00 28.14 78.43 0.14 0.00 0.57
8 30× 90 492.08 706.926 220.436 25.38 30.50 95.33 15.00 17.00 81.17 0.13 0.17 0.17

1 These instances ranges from 10 × 90 to 30 × 70. 2 Ci = cost structure i = 1, 2, 3.
Superscripts: Indicates the number of instances of that particular (row,column)–combination that could be
solved within one hour of computation time. If no superscript, all instances were solved.

4.5.5 Comparison with the two–phase method

In order to validate the effectiveness of the ε–constrained method proposed in this paper, we
have implemented a two–phase method for solving the BO–CBLP as well. We have chosen
to implement this solution methodology as it is probably the most widely used solution
method for bi–objective combinatorial optimization next to the ε–constrained method (for a
thorough treatment of two–phase methods the reader is referred to Przybylski, Gandibleuz,
and Ehrgott (2011) and references therein).

In the first phase of the two–phase method, the set ZsN is generated by solving weighted
sum scalarized versions of the BO–CBLP for different weight vectors. Phase two consists
of a method capable of generating the remaining non–dominated outcomes, ZnN . We have
implemented the so–called “Perpendicular Search Method” (PSM) suggested by Chalmet,
Lemonidis, and Elzinga (1986) for generating the non–extreme supported non–dominated
outcomes. Contrary to the ε–constrained method, the PSM algorithm computes no weakly
non–dominated solutions. However, similar to the ε–constrained method the implementation
is straightforward.

To meet the potential critique that the two–phase method is badly implemented, we here
mention that between 99.6% and 100.0% of the running time was spent by CPLEX solving
the subproblems. We also note that a first implementation where the second phase consisted
of ranking solutions using no–good inequalities performed very poorly. Thus, we chose to
implement the PSM method instead.

Using the two–phase method and the PSM method requires the non–linear min–max
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objective to be linearized. For the SSCFLP and the UFLP this is easily done by replacing
the objective with a new continuous variable ρ and including the set of constraints:

ρ ≥
∑
i∈I

tijxij , ∀j ∈ J .

For the CFLP, where the xij–variables are continuous, we need to introduce a set of new
binary variables ξij equaling one if and only if xij > 0. The following constraints are then
added to the formulation of the CFLP:

ρ ≥ tijξij , ∀i ∈ I, j ∈ J ,

ξij ≥ xij , ∀i ∈ I, j ∈ J ,

ξij ∈ {0, 1}, ∀i ∈ I, j ∈ J .

The results obtained with the two–phase method has been aggregated in Table 4.6. If the
algorithm failed to solve all instances corresponding to a row in Table 4.6 within one hour
of computation time, the number of actually solved instances is indicated in the “%–time”
columns using superscript. It is obvious that the overall performance of the two-phase method
is very poor compared to the ε–constrained method. In fact, the ε–constrained method is 2
to 160 times faster than the two–phase method on average. For the uncapacitated as well
as for the capacitated BO–CBLP, the relative performance across the cost structures seems
stable. However, for the single–source capacitated BO–CBLP, the ε–constraint algorithm
becomes better relative to the two–phase method when the coefficients cij and tij become
negatively correlated. The explanation for this behavior is easily found in the columns entitled
“|ZN |P2/|ZN |P1”. These columns display the ratio between the number of solutions found
in phase one and phase two, respectively. This ratio increases significantly for most of the
instances in cost structure C3 indicating that only few extreme supported non–dominated
outcomes exists for these problems. As this ratio grows, the two–phase method loses its
power as the first phase cannot divide the search space into sufficiently small regions for the
second phase to be effective.

Furthermore, it was only possible to solve the small instances of the capacitated BO–
CBLP and the uncapacitated BO–CBLP. In particular, we cannot solve many of the capaci-
tated BO–CBLP within one hour of computation time. This is mainly due to the linearization
of the objective function which requires the introduction of |I| × |J | new binary variables
as well as |I| × |J | new constraints. In the linearization of the min–max objective in the
uncapacitated and the single–source capacitated BO–CBLP, only one additional continuous
variable and |J | new constraints are needed. Therefore these problems scale slightly better.
It should, however, be very clear, that the two–phase method is also less suited for these
problems than the ε–constraint method.
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Table 4.6: Comparison of the results obtained with the two phase method and the
ε–constrained method.

# Size % time |ZN |P 2/|ZN |P 1

C13 C2 C3 C1 C2 C3

Capacitated BO–CBLP
R2 = 3
5 100× 100 0.623 0.471 — 1.16 1.83 —

R2 = 5
5 100× 100 — — — — — —

R2 = 10
5 100× 100 1.841 3.831 — 1.22 1.20 —

Uncapacitated BO–CBLP
15 100× 100 3.55 3.56 3.60 2.15 1.96 0.95
15 100× 200 3.33 4.18 2.76 1.61 2.03 0.43

Single–source capacitated BO–CBLP
Intances from (Holmberg et al., 1999)
12 10× 50 16.58 18.59 4.75 0.32 1.11 49.72
12 20× 50 11.33 17.07 2.38 0.83 1.67 70.13
16 10× 901 17.58 12.80 2.07 0.96 1.60 40.15
15 30× 150 38.07 2.91 1.03 0.00 2.46 8.16
16 30× 200 1.19 1.12 — 2.27 4.25 —

Intances from (Díaz and Fernández, 2002)
6 10× 20 8.51 8.47 10.46 0.25 0.62 5.63
11 15× 30 14.63 15.85 4.72 0.96 1.53 7.61
8 20× 40 0.72 0.84 3.995 0.97 1.03 6.79
8 20× 50 12.016 15.825 8.973 1.20 1.71 6.98
8 30× 60 55.965 22.554 13.123 1.05 1.18 4.90
8 30× 75 — — — — — —
8 30× 90 — — — — — —

1 These instances ranges from 10× 90 to 30× 70. 2 R =
∑

i∈I si/
∑

j∈J dj . 3 Ci = cost structure
i = 1, 2, 3. Superscripts: Indicates the number of instances of that particular (row,column)–
combination that could be solved within one hour of computation time. If no superscript, all instances
were solved. — Indicates that none of the instances of that particular (row,column)–combination
could be solved using the two phase method within one hour of computation time.

4.5.6 Utilizing a customized solver for the single–source
capacitated BO–CBLP

As a quite efficient solver for the single–source capacitated facility location problem was
available to the authors, we wanted to test the capabilities of the method. The specialized
solver is based on a cut–and–solve framework with upper bounds generated using a local
branching heuristic. The lower bound of the problem is strengthened by exact knapsack
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Table 4.7: Summary of the results obtained for the single–source capacitated BO–CBLP
using a specialized solver.

Time |ZN | N

# Size C12 C2 C3 C1 C2 C3 C1 C2 C3

12 10× 50 0.26 0.74 11.20 3.75 9.50 104.00 0.00 0.00 0.00
12 20× 50 1.44 3.79 92.81 1.44 3.79 92.81 0.00 0.08 0.17
16 10× 901 0.73 9.95 12.30 1.00 21.44 22.06 0.00 0.38 0.00
15 30× 150 6.45 12.11 36.58 8.40 12.07 53.60 0.00 0.07 0.00
16 30× 200 33.02 93.63 1086.10 17.44 39.19 161.88 0.00 0.13 0.06

6 10× 20 0.81 1.10 4.12 4.00 6.83 22.50 0.00 0.00 0.00
11 15× 30 3.36 4.69 17.75 7.82 9.55 28.45 0.09 0.18 0.18
8 20× 40 5.78 6.89 34.33 8.25 11.00 34.75 0.00 0.00 0.13
8 20× 50 9.77 14.20 73.01 8.50 11.88 37.25 0.00 0.00 0.13
8 30× 60 19.78 202.18 48.49 11.25 13.75 40.88 0.13 0.00 0.25
8 30× 75 17.51 23.71 159.28 10.00 15.75 42.50 0.00 0.00 0.00
8 30× 90 26.80 33.70 408.78 9.38 12.50 44.25 0.00 0.00 0.13

1 These instances ranges from 10× 90 to 30× 70. 2 Ci = cost structure i = 1, 2, 3

separation (the code is available on request). In Table 4.7, we report the results obtained
using this specialized solver as a black box engine for solving the subproblems arising in
each iteration of the ε–constraint algorithm.

With this solver as black box engine, we were easily able to solve the largest instances
in both of the testbeds and we saved a significant amount of time on the largest instances.
The smaller instances were often solved in less time using CPLEX (see Table 4.5), however.
This basically boils down to our implementation: The implementation using CPLEX fixes
the xij–variables and resolves the model. This allows CPLEX to utilize basis, incumbent,
and branching information from previous problems. When we use the specialized solver, the
problem is solved from scratch every time, implying that no information from previously
solved problems is used.

4.6 Conclusion

In this paper we investigated the very general bi-objective center location problem. We
proved that even though the problem is NP–hard, it is in fact tractable, in the sense that
the size of the efficient frontier of the bi–objective problem is always limited by a polynomial
in the input size.

We proposed a scheme for solving the BO-CBLP that relies on an ε–constrained method.
We suggested two ways to accommodate the issues of generating weakly efficient solutions
in the ε–constraint: First, a simple change of the cost matrix which is both a necessary and
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sufficient condition in order to impose the non–linear ε–constraint on the center objective.
This implies, the structure of the underlying location problem is kept, and specialized solvers
can be used as a subroutine reducing the computation time. Secondly, we outlined a scheme
based on lexicographic branch–and–bound leading to no weakly efficient solutions being
generated. Furthermore, the number of iterations performed by the algorithm is bounded by
a polynomial in the input size.

We also linked the BO–CBLP to the p–centdian location problem studied in the literature.
We found that the bi–objective p–centdian problem on a graph might have an uncountably
infinite number of Pareto optimal solutions and noted that given a computationally efficient
way of solving the BO–CBLP, the vertex–p–centdian problem can be solved efficiently for
all values of the scaling parameter λ. As many very efficient algorithms for the p-median
problem exist, and the p–centdian on a graph can be reduced to a discrete problem, our
algorithm may constitute an efficient way of solving the p–centdian problem.

Through extensive computational tests we have shown that the proposed method is
capable of efficiently and exactly solving even large BO–CBLPs. In addition, the tests
showed that remarkably few weakly non–dominated solutions exist for these very large
combinatorial optimization problems. This leads to the lexicographic branch–and–bound
based algorithm being very inferior compared to the ε–constrained algorithm. Furthermore,
the proposed algorithm outperforms a two–phase method by several orders of magnitude as
well.

Directions for further research include the testing of the approach for the p–centdian
problem. That is, to investigate if it is in fact possible to solve large problem instances of
the p–centdian problem using an algorithm tailored for the p–median problem. It would also
be interesting to apply the methodology on other types of more complex facility location
models, such as multi–stage and dynamic models.
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Abstract

Most real–world optimization problems are of a multi–objective nature, involving objec-
tives which are conflicting and incomparable. Solving a multi–objective optimization problem
requires a method which can generate the set of rational compromises between the objectives.
In this paper, we propose two distinct bound set based branch–and–cut algorithms for
bi–objective combinatorial optimization problems, based on implicitly and explicitly stated
lower bound sets, respectively. The algorithm based on explicitly given lower bound sets
computes for each branching node a lower bound set and compares it to an upper bound
set. The implicit bound set based algorithm, on the other hand, fathoms branching nodes
by generating a single point on the lower bound set for each local Nadir point. We outline
several approaches for fathoming branching nodes and we propose an updating scheme for
the lower bound sets that prevents us from solving the bi–objective LP–relaxation of each
branching node. To strengthen the lower bound sets, we propose a bi–objective cutting
plane algorithm that dynamically adjusts the weights of the objective functions such that
different parts of the feasible set are strengthened by cutting planes. In addition, we suggest
an extension of the branching strategy “Pareto branching”. Extensive computational results
obtained for the bi–objective single–source capacitated facility location problem prove the
effectiveness of the algorithms.

Keywords: bi–objective branch–and–cut; bi–objective optimization; combinatorial opti-
mization; branch–and–cut.
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5.1 Introduction

A general definition of a multi–objective decision problem with k objectives can be given
as follows: Let X be a set of decisions available to a decision maker, and let x ∈ X be a
specific decision. Now assume that the decision x can be quantified by real valued functions
fi : X → R, i = 1, . . . , k. The multi–objective optimization problem then consists in finding
all decisions constituting rational compromises (Pareto–optimal solutions), with respect to
the objective functions fi, i = 1, . . . , k. When the decisions X are implicitly given by a set
of constraints, the problem belongs to the set of multi–objective programming problems,
and if the objective functions fi and the constraints are all linear, the problem is denoted a
multi–objective linear programming problem. In this paper, we will consider the problem
where all variables are restricted to be either zero or one and for which only two linear
objective functions are present. Such a problem is usually named a bi–objective combinatorial
optimization (BOCO) problem.

In the following paragraphs we provide an overview of some of the most important contri-
butions to the development of branch–and–bound algorithms for general BOCO problems. A
schematic overview is also given in Table 5.1. In the column headed “x” we have illustrated
the domain of the variables where we use the convention that B = {0, 1}. Furthermore, when
the problem is a mixed integer BOCO, we write MIS where (S) is the discrete domain for
the integer restricted variables. The “f” column shows the domain of the objective functions,
that is, “(R,Z)” means that the first objective maps to the real numbers and the second is
restricted to map into the integers. Furthermore, if the corresponding paper treats problems
with more than two objectives, we simply write “(R, . . . ,R)”. Surprisingly little research has
been devoted to branch–and–bound algorithms for general BOCO problems although many
problems can be fitted into this framework, for example the bi-objective knapsack problem
(Ulungu and Teghem, 1997), the bi–objective assignment problem (Przybylski, Gandibleux,
and Ehrgott, 2008; Pedersen, Nielsen, and Andersen, 2008), bi–objective facility location
problems (Fernández and Puerto, 2003), and the bi–objective TSP (Bérubé, Gendreau, and
Potvin, 2009).

However, more effort has been put into the development of branch–and–bound algorithms
for BOCO problems lately. Klein and Hannan (1982) propose what is probably the first
branch–and–bound algorithm for BOCO problems. During the eighties and nineties, only
very few researchers followed up on this idea, as examples we mention Kiziltan and Yucaoğlu
(1983), Ulungu and Teghem (1997), Ramos et al. (1998) and Visée et al. (1998) (although
the latter three are problem specific). Since the turn of the millennium more attention has
been brought to this solution approach and even generalizations where both integer and
continuous variables are allowed (mixed integer BOCO problems) were considered. Mavrotas
and Diakoulaki (1998) are among those who develop a branch-and-bound algorithm for
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BOCO problems. They develop a depth first branch–and–bound algorithm capable of finding
all non–dominated outcome vectors of a mixed integer BOCO problem. Whenever a leaf node
is reached (that is, when all integer variables have been fixed), the resulting bi–objective
linear program is solved. The resulting outcome vectors are compared to solutions in the
incumbent set; all outcomes in the set of yet non–dominated outcomes dominated by the
outcome vector of a new solution are removed and only non–dominated outcomes are added.
A node is fathomed in the branching tree if it is infeasible or if the ideal point of the
node is dominated by a point in the set of yet non–dominated points. Later, Mavrotas and
Diakoulaki (2005) published a number of improvements. The algorithm was adapted to
binary combinatorial optimization problems (all variables are either zero or one) and was
applied to multi–objective, multi–dimensional knapsack problems in Florios et al. (2010).

Unfortunately the algorithm proposed in the two papers by Mavrotas and Diakoulaki
(1998, 2005) might return dominated solutions. The issue originates in the fact that not
only the extreme points of the non–dominated frontier found at the leaf nodes might be
non–dominated. Also the line segments joining these need to be considered. This issue is
addressed in Vincent (2009) and corrected for the bi–objective case by Vincent et al. (2013).
In the latter paper a number of lower bound sets are introduced and promising results are
reported with up to 60 constraints and 60 variables, of which 30 are binary.

Sourd, Spanjaard, and Perny (2006) and Sourd and Spanjaard (2008) develop a branch–
and–bound framework where the branching part is identical to a single objective branch–and–
bound algorithm. However, the bounding part is performed via a set of points rather than
the single ideal point. The current node can be discarded if a hypersurface separates the set
of feasible solutions in the subproblem from the incumbent set (the set of non–dominated
points). Sourd and Spanjaard use a rather sophisticated problem–specific hypersurface and
obtain promising experimental results for the bi–objective spanning tree problem.

Very recently Stidsen et al. (2014) introduced the concept of Pareto branching where
branching is performed in outcome space. Also, they proposed slicing the outcome space and
thereby obtaining better upper bounds for fathoming nodes in the branching tree. Promising
test results are provided for a range of bi–objective combinatorial optimization problems.

Although several novel and efficient approaches have been proposed in the past, none of
these takes advantage of the lower bound set available from the bi–objective LP–relaxation.
Furthermore, none of the previously mentioned algorithms incorporates cutting planes, even
though effective separation routines have resulted in a significant speedup for single objective
problems. Therefore, we propose two novel bound set based branch–and–cut algorithms
for bi–objective linear combinatorial optimization problems. The algorithms rely on either
explicitly or implicitly given lower bound sets obtained from the bi–objective LP–relaxation.
To summarize, the main contributions of this paper are as follows:
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1. We propose a bi–objective cutting plane algorithm which dynamically changes weights
of the objectives in order to approximate the best possible lower bound set obtainable
from the LP–relaxation.

2. We develop a simple updating scheme for explicit lower bound sets that reduces the
number of bi–objective LPs that need to be solved.

3. We propose a simple method for implicitly describing the lower bound set obtained
from the bi–objective LP–relaxation.

4. The Pareto branching strategy is strengthened to what we call extended Pareto
branching.

5. In total 8 different branch–and–cut implementations are evaluated on the bi–objective
single source–capacitated facility location problem, which, to the best of our knowledge,
is solved for the first time in the literature.

The remainder of this paper is organized as follows: Section 5.2 gives the basic definitions
of bi–objective optimization. Section 5.3 starts with a short theoretical description of a generic
bi–objective branch–and–cut algorithm and afterwards we describe the main components of
the branch–and–cut algorithm in detail. Finally, different implementations of the algorithm
developed in the paper are tested in Section 5.4.

5.2 Preliminaries

The focus of this section will be on a generic linear bi-objective combinatorial optimization
(BOCO) problem of the form

min{Cx : x ∈ X} (5.1)

where C = (c1, c2) is a 2 × n dimensional matrix with all entries being integral and the
feasible set is defined by X = {x ∈ {0, 1}n : Ax 5 b}. The set X of feasible solutions is also
referred to as the feasible set in decision space and the image of X under the linear mapping
C is called the feasible set in objective space and is here denoted Z.

To compare vectors in R2 we adopt the notation from Ehrgott (2005). Let z1, z2 ∈ R2,
then

z1 5 z2 ⇔ z1
k 5 z2

k, for k = 1, 2

z1 ≤ z2 ⇔ z1 5 z2 and z1 6= z2

z1 < z2 ⇔ z1
k < z2

k, for k = 1, 2.

We define the set R2
= = {z ∈ R2 : z = 0} and analogously R2

≥ and R2
>. Furthermore, given

a set S ⊆ R2 let SN = {s ∈ S : ({s} − R2
=) ∩ S = {s}}, where ({s} − R2

=) = {z ∈ R2 : z =
s− r, r ∈ R2

=}. The set SN is called the non–dominated set of S.
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The problem (5.1) does not immediately reveal what an “optimal solution” should be.
To clarify this we use the concept of Pareto optimality or efficiency:

Definition 5.1. A feasible solution x̂ ∈ X is called Pareto optimal or efficient if there does
not exist any x ∈ X such that Cx ≤ Cx̂. The image Cx̂ is then called non-dominated.

A feasible solution x̂ ∈ X is called weakly efficient if there does not exist any x ∈ X such
that Cx < Cx̂.

Let XE denote the set of all efficient solutions. Then the image of XE under the linear
mapping C is exactly ZN , that is, ZN = CXE . The set ZN is referred to as the set of
non–dominated outcomes. A subset X ∗ ⊆ XE where CX ∗ = ZN and Cx 6= Cx′ for all
x, x′ ∈ X ∗ will be considered an optimal solution to (5.1). Note that an optimal solution X ∗

is a set of efficient solutions.
The sets XE and ZN need to be further divided into two subsets. An efficient solution

x̂ ∈ XE is said to be a supported efficient solution if there exists a weight λ ∈ (0, 1) such
that λc1x̂ + (1 − λ)c2x̂ 5 λc1x + (1 − λ)c2x for all x ∈ X . The set of supported efficient
solutions is denoted XSE . The elements in XNE = XE \XSE are called non–supported efficient
solutions. Analogously, the set ZN is partitioned into two subsets, namely ZSN = CXSE
and ZnN = CXNE .

5.3 Bi–objective bound set based branch–and–cut

A branch–and–cut framework provides a very successful standard method for solving single
objective combinatorial optimization problems (see e.g. Nemhauser and Wolsey (1988) or
Martin (1999) for a detailed description). Here, the set of feasible solutions to the optimization
problem is partitioned into disjoint subproblems which can be displayed in a tree–structure
where each node represents a subproblem. We say that a branching node is fathomed if it
has been proven that the subproblem corresponding to that branching node cannot contain
solutions improving the current best solution or if the corresponding subproblem is infeasible.
The algorithm keeps a set H of active nodes, that have not been fathomed. A specific
active branching node is denoted η. Let X (η) denote the set of feasible solutions of the
subproblem corresponding to branching node η. That is, the solutions in X satisfying all
branching constraints added on the unique path from the root node to the branching node
η. Furthermore, we let X (X (η)) denote the set X (X (η)) with all integrality constraints
removed.

For single objective optimization problems only a single optimal solution value exists,
say z∗ ∈ R. Thus, upper and lower bounds on z∗ are given by numbers u, l ∈ R satisfying
l 5 z∗ 5 u. To adapt a branch–and–cut framework to BOCO problems we need to consider
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bounds on the set ZN of non–dominated solution values, hence we naturally need to extend
the concept of bounds to bound sets. We use the definition of bound sets given in Ehrgott
and Gandibleux (2007), stated for the bi–objective case below.

Definition 5.2 (Bound sets). Lower and upper bound sets are defined as follows:

1. A lower bound set on ZN is a subset L ⊆ R2 such that L is an R2
=–closed and

R2
=–bounded set with L = LN such that

ZN ⊆ (L+ R2
=).

Given two lower bound sets L1 and L2 we say that L1 dominates L2 if L1 ⊆ L2 + R2
=.

If furthermore L1 + R2
= 6= L2 + R2

= we say that L1 strictly dominates L2.

2. An upper bound set on ZN is a subset U ⊆ R2 such that U is an R2
=–closed and

R2
=–bounded set with U = UN such that

ZN ⊆ cl
(
R2 \ (U + R2

=)
)
,

where cl(S) denotes the closure of a set S ⊆ R2.

The lower bound set L is called R2
=–convex if the set (L+ R2

=) is convex. In this paper
we will focus on the R2

=–convex lower bound set available from the non–dominated frontier
of the LP-relaxation of the BOCO, that is

(CX )N = {z ∈ R2 : z = Cx, Ax 5 b, x ∈ [0, 1]n}N .

From Definition 5.2 it is also readily seen that any set of feasible solutions filtered by
dominance gives rise to an upper bound set. A R2

=–convex lower bound set and an upper
bound set is illustrated in Figure 5.1a.

For single objective optimization problems an active node in the branching tree can be
fathomed if the subproblem corresponding to the branching node is infeasible or if the lower
bound of the subproblem is greater than or equal to the global upper bound. To extend this
result to a multi–objective branch–and–cut algorithm, we need the following definition.

Definition 5.3 (Local Nadir point). Let U = {z1, . . . , z|U |} ⊆ Z be an upper bound set of
feasible points ordered such that zu1 < zu+1

1 , for all zu, zu+1 ∈ U . Then the set of local Nadir
points is given by

N (U) =
|U |−1⋃
u=1
{(zu+1

1 , zu2 )}.

In a multi–objective branch–and–cut algorithm an active node η in the branching tree,
can be fathomed if the subproblem corresponding to the branching node is infeasible or if
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c2x

c1x

L

L + R2
=

(a) Upper and lower bound sets. The hatched
area is L+ R2

=.

c2x

c1xc1x

L

S1

(b) Search area S1 defined in (5.2) (hatched
area).

c2x

c1x

zul

zlr

(c) Search area S2 defined in (5.3) (hatched
and cross-hatched area). Note that if the lexico-
graphic minima are not part of the upper bound
set, then the cross-hatched areas are missing.

c2x

c1x

zul

zlr

L(η2) L(η1)

(d) The node η1 can be fathomed, since no lo-
cal Nadir point is positioned “above” the lower
bound set. The node η2 can not be fathomed.

Figure 5.1: Illustrations of the search area. Lower bound sets are illustrated with solid
black lines, upper bound sets with circles, and local Nadir points with squares.

every solution in the subproblem corresponding to η is dominated by at least one solution
in the upper bound set U . That is, the search area between the lower and upper bound sets
must be empty.

The search area may be defined in different ways. As noted by Przybylski, Gandibleux, and
Ehrgott (2010), given a branching node η, its feasible points in objective space Z(η) := CX (η),
a lower bound set L(η) of Z(η), and an upper bound set U we have

(Z(η) ∩ ZN ) ⊆
(
L(η) + R2

=

)
\
(
U + R2

>

)
= S1. (5.2)

That is, the search area is defined as S1 (see Figure 5.1b for an illustration). This representa-
tion is, however, not that useful in an algorithmic sense. By assuming that the lexicographic
minima are part of the upper bound set U , we get the inclusion

(Z(η) ∩ ZN ) ⊆
(
L(η) + R2

=

)
∩
(
N (U)− R2

=

)
= S2. (5.3)
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Step 1: Initialize the upper bound set U and set H equal to the root node.
Step 2: IfH = ∅, then return U = ZN and stop; otherwise select an active branching

node η ∈ H.
Step 3: Add cutting planes.
Step 4: Obtain a lower bound set L(η) of node η.
Step 5: Update the upper bound set U .
Step 6: If the node η can be fathomed, go to Step 1.
Step 7: Perform branching on η. Go to Step 1.

Algorithm 5.1: Generic multi–objective branch–and–cut algorithm based on bound
sets.

The search area S2 is illustrated in Figure 5.1c (hatched and cross-hatched area). Note
that if the lexicographic minima are not part of the upper bound set, then (5.3) does not
hold (the cross-hatched areas are missing). Given an upper bound set U including the
lexicographic minima and a lower bound set L(η) on Z(η), the search for non–dominated
points can be restricted to the search area S2 and a sufficient condition for fathoming a
branching node η is (

L(η) + R2
=

)
∩
(
N (U)− R2

=

)
= ∅ (5.4)

Moreover, the result can be strengthened further.

Proposition 5.1. Given an active branching node η, a lower bound set L(η), and an upper
bound set U including the lexicographic minima, the branching node η can be fathomed if(

L(η) + R2
=

)
∩N (U) = ∅. (5.5)

Proof. We show that (5.5) implies (5.4). Assume that (5.5) holds true and that z̄ ∈(
L(η) + R2

=

)
∩
(
N (U)− R2

=

)
6= ∅. Then z̄ ∈ (N (U) − R2

=) \ N (U) implying there ex-
ists a z̃ ∈ N (U) such that z̃ ∈ {z̄}+ R2

=. Since z̄ ∈ L(η) + R2
= then so is z̃. This contradicts

the starting assumption.

An illustration of the proposition is given in Figure 5.1d. Here the branching node η1

can be fathomed whereas node η2 cannot.
Based on the above results a general bi–objective branch–and–cut framework can now

be described as given in Algorithm 5.1. The algorithm is initialized by setting the upper
bound set equal to the lexicographic minima of each criterion in Step 0 and an active node
is chosen in Step 1. At each node, cuts can be added (Step 2) in order to strengthen the
lower bound set obtained in Step 3. If a feasible solution can be obtained from the node it
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might be a non–dominated solution, and the upper bound set is therefore updated in Step
4. After obtaining a lower bound set and updating the upper bound set, Step 5 is used to
test whether the branching node can be fathomed. If not, the branching node is split into
several new disjoint child nodes (Step 6). Note that Algorithm 5.1 implicitly enumerates all
solutions to the BOCO problem 5.1 implying that when H = ∅, the set of non–dominated
outcomes has been found. Furthermore, as the number of solutions to the BOCO problem is
finite, Algorithm 5.1 terminates in finite time if the individual steps can be performed in
finite time. In the following subsections we elaborate on Steps 2 through 6.

5.3.1 Step 2 - Adding cutting planes

A major challenge when designing algorithms for BOCO problems is to find a way to
efficiently utilize the numerous methods and strategies available for the single objective
versions of the BOCO problems. In this section, we propose a way to utilize cutting planes
to reduce the “gap” between the lower bound set provided by the bi–objective LP–relaxation
and the set of non–dominated outcomes to the BOCO problem (4.4).

In a single objective branch–and–cut algorithm, cutting planes are used before a branch–
and–bound algorithm is started, as a way to improve the lower bound. Or seen from another
perspective cuts are added to generate a tighter representation of the convex hull of integer
solutions in the direction of the objective function. In case of a BOCO problem there is
not a single direction of the objective function, and it is not obvious in which part of the
polyhedron corresponding to the LP-relaxation, cutting planes would be most beneficial.

Therefore, we solve the LP–relaxation of a weighted sum scalarization of the BOCO
problem and add cutting planes (in decision space) for different weights. The goal is to
generate a relaxation of the BOCO problem which provides a lower bound set as close to
conv(ZN )N as possible. Note, that the strongest R2

=–convex lower bound set is

conv(ZN )N = {z ∈ R2 : z = Cx, x ∈ conv(X )}N .

From this description, we see that by approximating conv(X ) using cutting planes, we also
approximate the strongest possible R2

=–convex lower bound set without having to solve a
series of integer programming problems.

An overview of the cutting plane algorithm is given in Algorithm 5.2. The algorithm
starts by choosing a search direction (or weight) in Step 2.1. When the weight has been
chosen, an ordinary cutting plane algorithm is used to separate cutting planes in the part of
the decision space identified by the search direction λ (Step 2.2 and Step 2.3). In Step 2.4 a
stopping criterion for the cutting plane algorithm is checked, allowing for multiple rounds of
cuts. Finally, in Step 2.5, we check if a new search direction should be chosen or not. The
algorithm described in Algorithm 5.2 distinguishes itself from a single objective cutting plane
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Step 2.1: Choose weight λ ∈ (0, 1).
Step 2.2: Solve the weighted sum scalarization of the BOCO problem

min{(λc1 + (1− λ)c2)x : x ∈ X},

and let x∗ be an optimal solution.
Step 2.3: If possible, separate x∗ using cutting planes and append the cutting planes

to the description of X .
Step 2.4: If we should add further cuts (e.g. if new cuts were added in Step 2.2),

go to Step 2.1.
Step 2.5: If we should apply a new search direction λ, go to Step 2.1; otherwise

stop.

Algorithm 5.2: Step 2 of Algorithm 5.1.

algorithm only by the outer loop where different search directions are used. This means that
problem specific cutting planes can be used in Step 2.3, if effective separation algorithms
are known.

The algorithmic framework in Algorithm 5.2 leaves two obvious ways of choosing the
search direction in Step 2.1: An a priori and a dynamic approach. An example of an a priori
approach would be to pick the values for λ from the set { 1

k ,
2
k , . . . ,

k−1
k }, for some number

k > 0, whereas a dynamic strategy would be to chose λ based on the previous iteration of
the algorithm. In this paper we have implemented a dynamic updating scheme based on a
modification of the so–called Non–Inferior Set Estimation framework proposed by Cohon
(1978), Aneja and Nair (1979), and Dial (1979).

5.3.2 Step 3 - Obtaining a lower bound set

In this section, we describe how we derive lower bound sets of the current branching node η
in Step 3 of Algorithm 5.1. Consider an active branching node η and let

LC(η) = (CX (η))N

denote the lower bound set equal to the set of non–dominated outcome vectors of the
bi–objective LP–relaxation of the current node. One approach to obtaining lower bound
sets would then be to solve the bi–objective LP–relaxation in each branching node and use
Proposition 5.1 to test if the node can be fathomed. However, it may be computationally
expensive to solve a bi–objective LP and checking condition (5.5) in Proposition 5.1 at every
branching node. Therefore, we only want to solve the bi–objective LP at branching nodes
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where there is a possibility that condition (5.5) holds (the search area S2 defined in (5.2) is
empty). Given λ ∈ (0, 1), let

Λλ(η) = min{(λc1 + (1− λ)c2)x : x ∈ X (η)} (5.6)

denote the optimal solution value of the λ–scalarized LP–relaxation of the node η and

xλ(η) ∈ arg min{(λc1 + (1− λ)c2)x : x ∈ X (η)},

an optimal solution to (5.6). The following proposition gives sufficient conditions to ensure
that S2 is non-empty.

Proposition 5.2. Consider upper bound set U and lower bound set L(η) = LC(η) and
assume that the solution xλ(η) satisfies

Cxλ(η) ≤ zn

for some zn ∈ N (U). Then (
L(η) + R2

=

)
∩N (U) 6= ∅.

Proof. Suppose there exists a local Nadir point zn ∈ N (U) such that Cxλ(η) ≤ zn. Since
Cxλ(η) ∈ L(η), we have that zn ∈ L(η) + R2

= implying
(
L(η) + R2

=

)
∩N (U) 6= ∅.

Proposition 5.2 suggests to always solve a λ–scalarized LP before solving the bi–objective
LP relaxation. If Proposition 5.2 holds, then there is no reason to solve the bi–objective LP,
since the branching node η cannot be fathomed. Furthermore, solving the λ–scalarized LP
provides us with a lower bound set

Lλ(η) = {z ∈ R2 : λz1 + (1− λ)z2 = Λλ(η)},

which may be used to find a lower bound set L(η) at branching node η as described in
Proposition 5.3.

Proposition 5.3. Given an active branching node η and parent node η0 with lower bound
set L(η0), the set

L(η) =
((
L(η0) + R2

=

)
∩
(
Lλ(η) + R2

=

))
N
,

is a lower bound set of branching node η dominating both L(η0) and Lλ(η).

Proof. Obviously, Lλ(η) is a lower bound set for η, and by relaxation so is L(η0). The rest
follows from Proposition 2 in Ehrgott and Gandibleux (2007).
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zI1

zI2

Step 3.1: If the branching at the par-
ent node η0 has been performed
in objective space, solve the LP–
relaxation and return LC(η).

Step 3.2: Solve the λ–scalarized LP
and find L(η) defined in Proposi-
tion 5.3.

Step 3.2: If L(η) strictly dominates
L(η0), then solve the LP–
relaxation and return LC(η);
otherwise return L(η).

Figure 5.2: Updating the lower bound
set using Proposition 5.3.

Algorithm 5.3: Step 3 of Algorithm 5.1.

Determining the set L(η) defined in Proposition 5.3 is straightforward. Assume that for
branching node η0 the lower bound set L(η0) is represented by an ordered list of extreme
points, {z1, . . . , zL}, with zl1 < zl+1

1 . The updating is then simply done by first finding two
pairs of points (zl1 , zl1+1) and (zl2 , zl2+1) satisfying

λzl11 + (1− λ)zl12 = Λλ(η) > λzl1+1 + (1− λ)zl1+1
2

and
λzl21 + (1− λ)zl22 < Λλ(η) 5 λzl2+1 + (1− λ)zl2+1

2 ,

as illustrated in Figure 5.2.
Having determined these two pairs of points, we simply calculate the intersection point

between the straight line defined by the two points zl1 and zl1+1 (respectively zl2 and zl2+1)
and the line defined by the lower bound set Lλ(η). The two intersection points, say zI1 and
zI2 , are inserted in the list and we obtain the new lower bound set L(η) defined by

L(η) = conv({z1, . . . , zl1 , zI1 , zI2 , zl2+1, . . . , zL})N .

Step 3 can now be specified in Algorithm 5.3. We are interested in solving the bi–objective
LP–relaxation as few times as possible as long as the updated lower bound set is of sufficient
quality. We use the heuristic rule that if the branching performed at the parent node was
performed in objective space (see Section 5.3.5), the bi–objective LP–relaxation is calculated
since we want new lower bound sets for different regions in the objective space (Step 3.0).
Otherwise we solve the λ–scalarized LP (Step 3.1) and if the lower bound set of the parent
node is strictly dominated by L(η) found in Proposition 5.3 (all the extreme points of L(η0)
lie below Lλ(η)), then we resolve the bi–objective LP–relaxation.
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Step 5.1: If the subproblem corresponding to node η is infeasible, fathom η and go
to Step 1.

Step 5.2: If Proposition 5.2 holds, go to Step 6.
Step 5.3: If Proposition 5.1 holds, go to Step 1.

Algorithm 5.4: Step 5 of Algorithm 5.1.

5.3.3 Step 4 - Update the upper bound set

Throughout the branch–and–bound process an upper bound set, U , of feasible points in
objective space filtered by dominance is maintained and ordered such that zu1 < zu+1

1 for all
zu, zu+1 ∈ U . In Step 0 of Algorithm 5.1 U is initialized with the two lexicographic minima.
Whenever a feasible solution is found, the outcome vector of the solution is inserted into the
upper bound set U and the augmented set is filtered by dominance. In this way, the set U
is constantly improving and will at any time form an upper bound set. Note that solutions
can be obtained using heuristics from all active branching nodes even though the node is
not a leaf node (all integer variables are fixed).

5.3.4 Step 5 - Bound fathoming

Algorithm 5.4 checks if an active node η in the branching tree, can be fathomed. If the
subproblem corresponding to the branching node is infeasible, we fathom η and pick a new
active node (Step 5.0); otherwise Proposition 5.2 is used as a preliminary check for not
fathoming the node (Step 5.1). Finally, Proposition 5.1 is checked in Step 5.2. Proposition 5.1
can be checked using both an explicit and an implicitly given lower bound set L(η). Below
we describe three ways of testing Proposition 5.1.

Bound fathoming using an explicit lower bound set and LP

Assume that a lower bound set L(η) is stored as an explicit set using the extreme points
{z1, . . . , zL} of L(η). Note that when L(η) is R2

=–convex, the set L(η) + R2
= forms an

unbounded convex polygonal domain in R2, and the verification of the condition in Proposi-
tion 5.1 amounts to verifying if any of the points in N (U) lie in this convex polyhedron. A
simple, and straightforward way of performing this bound fathoming check is to solve the
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linear program
Z(zn) = min s1 + s2

s.t.:
L∑
l=1

zl1λk − s1 5 zn1

L∑
l=1

zl2λk − s2 5 zn2

L∑
l=1

λl = 1

λl, s1, s2 = 0, ∀l = 1, . . . , L

(5.7)

for all zn ∈ N (U). If Z(zn) > 0 for all zn ∈ N (U), the node η can be fathomed based on
bounding. Note that the linear programs (5.7) only have three constraints, leading to linear
programs which can be solved very quickly. Furthermore, for two different local Nadir points
zn and zn′ , the linear programs (5.7) differs in the right hand sides only. This means that
very few dual simplex iterations are usually needed in order to resolve these linear programs.

Bound fathoming using an explicit lower bound set and a point–in–
polytope algorithm

Let {z1, . . . , zL} denote the extreme points of L(η) and note that

ZN ⊆
(
{(zlr1 , zul2 )} − R2

=

)
,

where zul = lexmin{(c1x, c2x) : x ∈ X} and zlr = lexmin{(c2x, c1x) : x ∈ X} are the two
lexicographic minima. Hence Proposition 5.1 does not hold if a local Nadir point is in the
polygon given by

conv({(z1
1, z

ul
2 ), z1, . . . , zL, (zlr1 , zL2 ), (zlr1 , zul2 )}). (5.8)

This means that the condition in Proposition 5.1 can be tested by calling, for each local Nadir
point, a point–in–polytope algorithm which tests for inclusion in the polygon (5.8). As soon as
the algorithm declares that a local Nadir point is within the polygon, we know the branching
node cannot be fathomed. Fortunately, much research has gone into point–in–polytope (PIP)
algorithms and we refer the interested reader to the computational study by Schirra (2008)
of the reliability and speed of a number of different algorithmic approaches for the PIP
problem.

Bound fathoming using an implicit lower bound set and LP

The bound fathoming can also be done without explicitly maintaining a lower bound set.
Note that the condition in Proposition 5.1 asks if any point on the lower bound set dominates
a local Nadir point and that the lower bound set of the branching node η we are using is
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(CX (η))N . Deciding if there exists a point z ∈ (CX (η))N which (strictly) dominates a local
Nadir point zn ∈ N (U) is equivalent to having Z̃(zn) = 0 where

Z̃(zn) = min s1 + s2

s.t.: c1x− s1 5 zn1

c2x− s2 5 zn2

x ∈ X (η)

s1, s2 = 0.

(5.9)

Note that an optimal solution (x∗, s∗) to the linear program (5.9) either has Z̃(zn) = 0
implying Cx∗ ≤ zn (that is, there is a solution to the LP-relaxation which dominates zn) or
we have Z̃(zn) = s∗1 + s∗2 > 0. This leads to Proposition 5.4.

Proposition 5.4. The branching node η can be fathomed if the optimal solution value Z̃(zn)
of the program (5.9) is strictly positive for all zn ∈ N (U).

This implicit approach eliminates the need for generating the entire efficient frontier
of the LP-relaxation and only one linear program needs to be solved for each local Nadir
point. The approach might then have its merits for problems with few non–dominated
outcomes compared to the number of extreme points of (CX (η))N , but this is not a trivial
matter to decide a priori. A possible drawback compared to generating the complete set
(CX (η))N is that the updating scheme described in Proposition 5.3 no longer applies,
implying that additional linear programming problems need to be solved at each branching
node. Furthermore, the program (5.9) might be large and solving it may consequently be
rather time consuming. As the program (5.9) must potentially be solved for several local
Nadir points, this might lead to prohibitive computation times.

5.3.5 Step 6 - Performing branching

As the set of feasible solutions does not differ compared to a single objective combinatorial
optimization problem, the branching rules devised for these problems can be applied. However,
much information can be gained by utilizing the definition of an efficient solution and its non–
dominated outcome vector. As mentioned in Section 5.3.2, the bi–objective LP–relaxation is
not solved at each branching node. However, the weighted sum scalarization

min{(λc1 + (1− λ)c2)x : x ∈ X (η)} (5.10)

is solved. Let x(η) be an optimal solution to problem (5.10), and let z(η) = Cx(η) be
the corresponding outcome vector. First, we outline the very effective branching strategy
proposed in Stidsen et al. (2014) called Pareto branching (PB). PB is based on the observation
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that if z 5 z(η) for all z in the ordered sublist {z̄u1 , . . . , z̄uK} ⊆ U of the current upper
bound set, then the branching node η can be split by the disjunction

c1x 5 z̄u1
1 − 1 ∨ c2x 5 zuK

2 − 1.

We note, that in our implementation we update the upper bound set U before branching.
This means, that if a node results in an integer feasible solution, the outcome vector of
this solution is part of the upper bound set when branching is performed. Therefore, if
a branching node results in an integer feasible solution, Pareto branching can always be
performed and there is no need to add the weaker so–called no–good inequalities

∑
i:x(η)i=0

xi +
∑

i:x(η)i=1
(1− xi) = 1,

used in ranking based two–phase methods.
The idea of PB can be expanded to extended Pareto branching (EPB). From the definition

of the search area given in (5.3), it is evident that non–dominated outcomes can only exist
in the set ⋃

zn∈(L(η)+R2)∩N (U)

(
zn − R2

=

)
.

Before making a branching decision, we already check whether local Nadir points exist in
the set L(η) + R2

= (see Proposition 5.1 and Proposition 5.4),and therefore we can simply
create a child node for each local Nadir point found. Note that this split of the branching
node η might not separate the current LP–solution as we may have that

Cx(η) ∈
⋃

z∈(L(η)+R2)∩N (U)

(
z − R2

=

)
.

Therefore, we only perform extended Pareto branching when in fact there exits a z̄ ∈ U such
that z̄ ≤ z(η). This guarantees separation of the branching node.

Note that the EPB requires that all local Nadir points are checked. If the EPB rule is
not applied, finding a single local Nadir point dominated by the lower bound set leads to
the conclusion that branching node η cannot be fathomed. This implies a tradeoff between
stronger branching rules and faster treatment of branching nodes that cannot be fathomed.

If we cannot perform either extended Pareto branching or Pareto branching (note that
this means, that x(η) 6∈ {0, 1}n), the branching node is simply separated by a variable
dichotomy. The branching variable is chosen based on pseudo–cost information provided by
the solver (see for example Achterberg, Koch, and Martin (2005) for a discussion of variable
selection strategies in single objective combinatorial optimization).
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Table 5.2: Different implementations of the bi–objective branch–and–cut algorithm.

Abbreviation1 E-PB-PIP E-PB-LP E-EPB-PIP I-PB-LP I-EPB-LP

Node selection Best first Best first Best first Best first Best first
Cuts At root

node
At root
node

At root
node

At root
note

At root
node

Lower bound set Explicit Explicit Explicit Implicit Implicit
Fathoming nodes PIP LP PIP LP LP
Pareto Branching Yes Yes Yes Yes Yes
Extended PB No No Yes No Yes

1A–B–C. A: Lower bound set (E: explicit, I: implicit). B: Branching strategy (PB: Pareto
branching, EPB: extended Preto branching). C: Method for testing the condition in Propo-
sition 5.1 (LP: linear programming, PIP: point–in–polytope).

5.4 Computational results

In this section we report on the computational experiments conducted with the bi–objective
branch–and–cut algorithms for the bi–objective single–source capacitated facility location
problem (BO–SSCFLP) (see Appendix 5.A). The purpose of the computational study is to
answer the following questions:

(i) Which implementations based on explicit or implicit lower bound sets perform the
best?

(ii) Given an explicit lower bound set, does node fathoming based on linear programming
or point–in–polytope algorithms perform the best?

(iii) Is it worth performing extended Pareto branching?

(iv) Is adding cutting planes effective in improving the running time?

(v) Does the lower bound updating scheme given in Proposition 5.3 improve the perfor-
mance?

(vi) Is the bound set based branch–and–cut algorithm competitive with state–of–the art
algorithms?

To answer the first three questions above, we have implemented different versions of
Algorithm 5.1. An overview is given in Table 5.2. The algorithms prefixed with an E are
all based on explicitly generated lower bound sets while algorithms prefixed with an I rely
on implicit lower bound sets (see Section 5.3.4). The branching strategy is indicated using
the abbreviations PB for Pareto branching and EPB for extended Pareto branching (see
Section 5.3.5). For the explicit lower bounds, we proposed two ways of fathoming nodes;
one based on linear programming (LP) (see Section 5.3.4) and one based on the point–in–
polytope (PIP) algorithm (see Section 5.3.4). For the algorithms with implicitly given lower
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bound sets, nodes can only be fathomed using linear programming (see Section 5.3.4). Note
that all implementations use a best first search, where the node having the smallest value
of Λλ(η) is chosen as the next node to be processed. Since computational experience for
single objective optimization problems shows that cutting planes have a larger effect at the
root note compared to nodes deeper in the tree, we call Algorithm 5.2 only at the root
node. We use general lifted cover inequalities and Fenchel inequalities as cutting planes for
the knapsack structures arising from the capacity constraints of the BO–SSCFLP as they
have been shown to be effective for the SSCFLP (see e.g. Gadegaard, Klose, and Nielsen
(2016d)). Furthermore, Stidsen et al. (2014) established that Pareto branching in bi–objective
branch–and–bound gives a significant speed up compared to only branching on variables.
We therefore include Pareto branching in all algorithms.

After testing the five implementations specified in Table 5.2, we address the remaining
three questions as follows:

• We answer Question (iv) by comparing the best explicit and implicit implementations
with and without cutting planes added.

• We answer Question (v) by comparing the explicit lower bound set based algorithm
with and without the updating strategy.

• We finally answer Question (vi) by comparing the overall best implementation of
Algorithm 5.1 with two different implementations of the two–phase method.

5.4.1 Implementation details and test instances

All implementations have been coded in C and C++ and compiled using gcc and g++ with
optimization option O3 and C++11 enabled. They are all publicly available (see Gadegaard,
Nielsen, and Ehrgott (2016a)). All implementations use CPLEX 12.6 with callbacks as solver.
The ParallelMode switch is set to deterministic such that different runs can be compared,
the Reduce switch is set such that neither primal nor dual reduction is performed, and all
internal cuts of CPLEX are turned off. For all instances a fixed time limit of 3600 CPU
seconds (one hour of computation time) is set after which the search is aborted. As CPLEX
12.6 with callbacks is limited to creating at most two child nodes when branching, we only
perform extended Pareto branching when there are one or two local Nadir points in the
set (L(η) + R2

=). If there are more local Nadir points in (L(η) + R2
=), we resort to Pareto

branching as explained above. For E-PB-PIP and E-EPB-PIP the point–in–polytope problem
is solved using the PNPOLY algorithm developed by Franklin (2006) while all implementations
using linear programming for node fathoming are solved by CPLEX using the dual simplex
algorithm. Since CPLEX does not allow for changes in the objective function in the callbacks,
we use a fixed value of λ = 0.5 during the branch–and–cut process.
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Figure 5.3: Performance of implementations based on explicit lower bound sets.

For the computational study we have generated a number of instances of the BO-SSCFLP.
These instances were generated in the same way as was done by Stidsen et al. (2014) for
the uncapacitated version of the BO–SSCFLP. The demands were generated from the
set {5, . . . , 10} and the capacities from the set {10, . . . , 20}, both according to a uniform
distribution. The ratio between the total capacity and total demand is then scaled to equal
r ∈ R, where r is uniformly generated from the interval [1.5, 4]. For each instance size, defined
by |I| × |J |, we have generated 10 instances. The instance generator as well as the instances
are all publicly available (see Gadegaard, Nielsen, and Ehrgott (2016c)). The number of
facilities is |I| ∈ {5, 10, 15, . . . , 60} and the number of customers is set to |J | = 2|I|. This
leads to 120 instances of the SSCFLP ranging in sizes from 5× 10 to 60× 120, implying the
number of binary variables ranges from 55 to 7,260.

5.4.2 Questions (i)–(iii) – Comparison of implementations

Figure 5.3 shows a comparison of the implementations based on an explicitly given lower
bound set. From Figure 5.3a we see that all implementations based on explicit lower bounds
perform equally well. The time in CPU seconds is an average over all instances which could be
solved within an hour. All algorithms are able to solve most of the instances with up to 6,000
variables within an hour. However, when the instances grow beyond this size, the success
ratio begins to decrease, but as shown in Figure 5.3b, 50% of the instances having more
than 7,000 variables were still solvable within an hour. Note that E-PB-PIP and E-PB-LP

both fail to solve a single instance having 1,275 variables and E-PB-LP also fails to solve one
instance having 1,830 binary variables. The algorithm E-EPB-PIP does, however, solve all
these instances within an hour.

Considering the results obtained for implementations using explicitly given bound sets
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Figure 5.4: Performance of implementations based on implicit lower bound sets.

there is no clear winner, but as E-EPB-PIP solves slightly more instances within an hour
compared to E-PB-PIP and E-PB-LP, it therefore seems to be more robust.

Now consider the two implementations based on implicit lower bounds. As is shown in
Figure 5.4a the two implementations are comparable for relatively small problem instances,
but as the number of binary variables increases, I-EPB-LP becomes more time consuming
than I-PB-LP. From Figure 5.4b we see that I-EPB-LP was able to solve instances of up to
1,830 binary variables only, while I–PB–LP performed better by solving instances of up to
5,000 binary variables. The reason is that I-EPB-LP has to solve one LP for each local Nadir
point whereas I-PB-LP only has to find one local Nadir point for which the linear program
(5.9) has a strictly positive solution value.

When we compare the results against the implementations based on explicit lower bound
sets, we see that only significantly smaller instances could be solved using implicit lower bound
sets. The computational study of the E–implementations showed that in approximately half
of the branching nodes the lower bound set is updated using Proposition 5.3 (see Section 5.4.4
for a computational study of the effect of Proposition 5.3), whereas the I–implementations
need to solve the rather large LPs in (5.9) several times for each branching node. Especially
the I-EPB-LP suffers from this problem as more LPs need to be solved in order to perform
the extended Pareto branching.

The above tests clearly show, that the best explicit and implicit implementations are
E-EPB-PIP and I-PB-LP.

The overall best implementation seems to be E-EPB-PIP which is based on explicit lower
bound sets, extended Pareto branching, and a PIP algorithm to solve the fathoming test.
It outperforms the best implementation using implicit lower bound sets, the I-PB-LP. The
use of extended Pareto branching seems to make the algorithm more robust compared to
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Figure 5.5: The effect of cutting planes.

the other implementations with explicit lower bound sets. Hence in the following, we will
only perform further tests with the best implementations under explicit and implicit lower
bound sets (E-EPB-PIP and I-PB-LP). In the remainder of the paper we denote these two
implementations E* and I*, respectively.

5.4.3 Question (iv) – Is adding cuts worth the effort?

To test whether adding cuts at the root node as explained in Section 5.3.1 contributes posi-
tively to the solution time, we compare the performance of E* and I* with implementations
where the cutting plane algorithm is turned off. We denote these two new variants E*-NC and
I*-NC, where NC is an abbreviation for “No Cuts”. Instead we let CPLEX generate cutting
planes at the root node.

Figure 5.5 clearly shows that we get a positive effect by adding cuts to the bi-objective
LP. The addition of cuts at the root node has a high positive impact on the solution time
and solvability of the instances within the one hour limit. It seems that strong cutting planes
are necessary in order to use the bound set branch–and–cut algorithm.

In Figure 5.5c we see that the versions without the initial cutting plane algorithm
experience a substantially faster growth in the number of nodes that the algorithms need to
enumerate. A peculiar phenomenon is that the I*-NC enumerates more branching nodes than
the E*-NC, even though the E*-NC updates the lower bound set. This basically means that
the lower bound sets used in E*-NC are not as strong as those used in I*-NC. The explanation
seems to be that the solver chooses different search paths for the two algorithms and that the
search paths used for E*-NC lead to better feasible solutions faster, increasing the fathoming
potential. Overall, however, the addition of cuts at the root node has a high impact on the
solution times and the instance sizes solvable, and we dare conclude, that cutting planes are
necessary in order to solve these instances.
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Figure 5.6: Effect of Proposition 5.3.

5.4.4 Question (v) – Effect of using Proposition 5.3

To check if the lower bound updating strategy of Proposition 5.3 contributes positively to
the running times, we modified E* such that the bi–objective LP–relaxation is solved in
all branching nodes. That is, we obtain the best possible R2

=–convex lower bound set and
may fathom nodes faster. This may, however, come at the expense of a higher CPU time
needed to solve the bi-objective LP. We name this implementation E*-NU where NU is an
abbreviation for “No Updating”.

In Figure 5.6c it is seen that E* produces an order of magnitude more branching nodes
compared to the E*-NU. This was expected as the lower bound sets generated by the updating
strategy are weaker than those produced by LC(η). Figure 5.6a shows that the updating
strategy has a positive effect as the instances grow in size. Furthermore, using the updating
strategy makes the procedure more robust as can be seen in Figure 5.6b. When we solve a
bi–objective LP at each node, some instances become very time consuming, even for smaller
sizes. The reason is that solving a degenerate bi–objective LP requires the solution of several
degenerate single objective LPs. The updating strategy circumvents this issue by updating
the lower bound set via the solution of a single objective degenerate LP.

In summary, the updating scheme significantly improves the running time and robustness
of the E* algorithm, and we conclude that the updating scheme is necessary for the branch–
and–cut algorithm when solving larger instances.

5.4.5 Question (vi) – Comparing against the two–phase
method

To test the effectiveness of the overall best branch–and–cut approach, we compare E* with
two implementations of the two–phase method. Both implementations are publicly available
(see Gadegaard, Nielsen, and Ehrgott (2016b)).
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Figure 5.7: Comparison with the two–phase method.

The first two–phase method is implemented as indicated in Stidsen et al. (2014), namely
with a second phase based on ranking. We use the abbreviation TwoP-R to denote this
two-phase ranking method. The results obtained with the two–phase algorithm seem to be
consistent with the results obtained in Stidsen et al. (2014) where facility location problems
having up to 20 binary variables could be solved within 300 CPU seconds. Here, we can
solve instances of up to 500 binary variables within ten times the computation time. To
meet the potential critique that TwoP-R is badly implemented, we here mention that between
99.3% and 100.0% of the running time was spent by CPLEX solving the subproblems.
Furthermore, we have implemented TwoP-R such that CPLEX reoptimizes the MIPs arising
in the subproblems after adding branching constraints. This gives a significant speedup
compared to solving each MIP from scratch.

Figure 5.7 shows the performance of TwoP-R (dashed line) compared to that of E* (solid
line). It is clear from Figure 5.7a and Figure 5.7b that the ranking based two–phase method
is very inferior to the branch–and–bound algorithm E*. Figure 5.7c gives an explanation
of why TwoP-R performs badly compared to E*. When we look at the instances actually
solved by TwoP-R, we see a much faster increase in the number of branching nodes to be
enumerated in order for the algorithm to solve the instances compared to the E*. As TwoP-R

ranks the solutions between the supported non–dominated solutions found in the first phase,
it generates many equivalent solutions leading to a large number of MIPs solved redundantly.
Furthermore, even though TwoP-R is implemented such that the MIPs are reoptimized after
adding no–good constraints, a new root node has to be solved in each MIP leading to
excessive computation times.

As the results obtained with this standard ranking based two–phase method were rather
disappointing in terms of computation times, we also implemented a two–phase method
where the second phase is based on the perpendicular search method (PSM) proposed by
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Chalmet, Lemonidis, and Elzinga (1986). We denote the two–phase method based on PSM,
TwoP-PSM. The PSM is basically a branch–and–bound algorithm where an MIP is solved in
each node, and where all branching is performed in objective space. The branching strategy
in PSM is equivalent to single solution Pareto branching. This implies, that no equivalent
solutions are generated, and we thereby circumvent this obvious issue with TwoP-R.

Figure 5.7a shows that TwoP-PSM (dotted line) performs much better than TwoP-R and
that it even outperforms E* for smaller instances. Although TwoP-PSM is faster for the smaller
instances, it becomes unstable in the sense that some instances become unsolvable within
an hour whereas others can be solved within a few minutes. This can be seen in Figure 5.7b
where the success ratio for the TwoP-PSM drops much earlier than for the E* algorithm. One
of the main reasons why the TwoP-PSM is faster for small instances is that the preprocessing
done by CPLEX reduces the instances considerably. Also, CPLEX finds strong upper bounds
very quickly which means that the probing techniques implemented in the solver is able to
fix many variables at an early stage of the search. But as the instances grow larger, the
preprocessing and the internal heuristics seem to perform worse and more branching nodes
need to be enumerated. Both two-phase methods are also slowed down by the scaling of the
objective functions performed when searching the triangles created by the first phase; even
though the weights used are integers, the difference in the coefficients becomes very large and
the instances suffer from bad scaling which increases the computation times considerably.

In sum, both two-phase methods in our implementation are outperformed by E* on large
instances. In particular, the ranking based TwoP-R performs very poorly on all instances,
whereas the TwoP-PSM algorithm has its merits in case of smaller instances.

5.5 Conclusions

In this paper we have developed a novel bound set based branch–and–cut algorithm for
solving bi–objective combinatorial optimization problems. The algorithm were tested using
both explicit and implicit representations of lower bound sets, and we have shown that
the best algorithm based on explicit lower bound sets outperforms the best algorithm
based on implicit lower bound sets. We proposed an updating scheme that prevented the
algorithm from solving a bi–objective LP at each node. Computational results have shown
that the cost of weaker lower bound sets was by far outweighed by the improvement in
speed when a branching node is processed. The paper also suggests a simple bi–objective
cutting plane algorithm that significantly improves the performance of both the explicit and
the implicit lower bound based algorithms. Furthermore, we proposed an extension of the
Pareto branching strategy suggested in the literature and showed that it makes the explicit
lower bound set based algorithm more stable. Finally, we proved the effectiveness of the
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branch–and–cut algorithm by comparing it to two different implementations of the two–phase
method. Especially for larger instances, did the new branch–and–cut algorithm outperform
the two–phase methods. An interesting area for future research would be to investigate
extensions of the algorithms to multi–objective problems with more than two objectives.
Using a generalization of the local Nadir points to higher dimensions and the LP based
fathoming approaches, both the explicit and implicit lower bound based algorithms could be
extended to three or more criteria. Another fruitful area could be to extend the reduction
and preprocessing techniques developed for single objective combinatorial optimization to
the multi-objective versions. Last, a computational study with problems having a totally
unimodular constraint matrix is interesting as feasible solutions can be “harvested” when
solving the bi–objective LPs arising in the branching nodes.
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5.A The single–source capacitated facility
location problem

We have chosen to test our algorithm on the bi–objective single–source capacitated facility
location problem (BO–SSCFLP) which can be described as follows: given are a set I of
potential facility sites and a set J of demand points. Each facility i has a fixed opening cost
of fi > 0 and a capacity si > 0 while each demand point j has a fixed and known demand
of dj > 0. Each demand point j must be serviced by exactly one open facility i, resulting in
a cost of cij . It is assumed that all parameters are non–negative integers. The BO–SSCFLP
is then the problem of minimizing the total opening cost and the total servicing cost. Given
binary variables yi equaling one only if facility i is open and binary variable xij equaling one
if and only if customer j is serviced by facility i, the bi–objective SSCFLP can be stated as
the BOCO problem

min

∑
i∈I

∑
j∈J

cijxij ,
∑
i∈I

fiyi


s.t.:

∑
i∈I

xij = 1, ∀j ∈ J ,

∑
j∈J

djxij 5 siyi, ∀i ∈ I,

xij , yi ∈ {0, 1}, ∀j ∈ J , i ∈ I.

The SSCFLP matches the assumption of both objectives having integral values for all
feasible solutions. In addition, the bi–objective SSCFLP is a very natural BOCO problem as
the objectives are antagonistic by nature: opening an extra facility results in an increase in
fixed opening costs and a decrease in servicing costs.
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