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Abstract: Livestock farming problems are often sequential in nature. For instance at a specific
time instance the decision on whether to replace an animal or not is based on known information
and expectation about the future. At the next decision epoch updated information is available and
the decision choice is re-evaluated. As a result Markov decision processes (MDPs) have been
used to model livestock decision problems over the last decades. The objective of this chapter is
to review the increasing amount of papers using MDPs to model livestock farming systems and
provide an overview over the recent advances within this branch of research. Moreover, theory
and algorithms for solving both ordinary and hierarchical MDPs are given and possible software
for solving MDPs are considered.

1 Introduction
Mathematical models for livestock farming systems have been used since the fifties. Examples
of techniques used include deterministic optimization such as linear programming (for an early
example, see Fisher and Schruben, 1953) and dynamic programming (with White, 1959, as one
of the first applications to livestock farming) as well as stochastic models based on Monte Carlo
simulation (e.g. Sørensen et al, 1992) and Markov decision processes (MDPs).

The nature of livestock systems differ from other industrial systems. Compared to, e.g., mod-
eling the state of a machine, modeling the state of, e.g., a cow is more complex. First, the traits
of an animal is harder to estimate and animals like humans differ, i.e., the variance between ani-
mals is much higher and it is harder to determine which state the animal is in. Second, livestock
systems have a cyclic nature. In most cases an animal is inserted into the herd and after some
cyclic periods (lactations, parity, feeding cycle) replaced with a new animal. Decisions regarding
which cycle and when to replace the animal within the cycle have to be taken. Finally, often
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the supply of animals is not unlimited, e.g., a cow cannot be replaced if we do not have a heifer
available. These three characteristics have also been referred to as the uniformity, reproductive
cycle, and availability features of livestock systems (Ben-Ari et al, 1983).

Livestock farming is often sequential in nature. For instance at a specific time instance the
decision on whether or not to replace an animal is based on observed information and expectation
about the future. At the next decision epoch updated information is available and the decision
choice is re-evaluated. Since random variation is a core property of a livestock system, MDPs
have often been used to model livestock decision problems over the last decades (see Kristensen,
1994, for an overview). At a specified point in time, the decision maker observes the state of
a system and makes a decision. The decision and the state of the process produce two results:
the decision maker receives an immediate reward (or incurs an immediate cost), and the system
evolves probabilistically to a new state at a subsequent discrete point in time. At this subsequent
point in time, the decision maker faces a similar problem. However, the observed state may be
different from the previously observed state. The goal is to find a policy of decisions (dependent
on the observation of the state) that maximizes, for example, the expected discounted reward.

In the MDP the state of the animal is defined by a set of state variables, each representing
a trait relevant for the livestock system under consideration, e.g. for a dairy cow state variables
could be milk yield level, lactation number, days in milk, reproductive status etc. It is assumed
that the value of the state variable belongs to a finite set of levels/classes that represent the value
of the trait. Often a trait is continuous and must be discretized into a set of levels. If we consider
a realistic number of levels we may face the problem known as the “curse of dimensionality”: the
number of possible states grows exponentially with the number of state variables (the state space
is often formed as the cartesian product of the number of levels of each of the state variables).
This is one of the major drawbacks of using a MDP to model a livestock system.

Hierarchical MDPs (HMDPs) are an attempt to decompose the state space and to reduce
the number of states in the MDP. The model is a series of finite time MDPs built together into
one MDP called the founder process. As a result, the age of the animal can be omitted in the
state space compared with an ordinary MDP model. Moreover, it takes into account that the
production is cyclic. When a replacement occurs, not just a regular state transition takes place
but rather the process (life cycle of the replacement animal) is restarted. HMDPs were first
considered by Kristensen (1988) assuming 2 levels in the HMDP. Later, Kristensen and Jørgensen
(2000) extended the methodology to multi-level HMDPs such that MDPs can be built together
at multiple levels. Note that an HMDP is an infinite-stage MDP with parameters defined in a
special way, but nevertheless in accordance with all usual rules and conditions relating to such
processes. The basic idea of the hierarchic structure is that stages of the process can be expanded
to the so-called child processes, which again may expand stages further to new child processes
leading to multiple levels. Even though that HMDPs may help to reduce the number of state
variables, the curse of dimensionality is still a problem.

In most papers an MDP is used to model a single animal and its successors (single-component).
Hence herd constraints (heifers, feed, milk-quota, etc.) are not taken into account. To represent
the whole herd a multi-component MDP has to be considered as discussed in Ben-Ari and Gal
(1986) and Kristensen (1992). The multi-component model is based on single-component MDPs
representing a single animal and its future successors. However, the model is far too large for
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optimization in practice. Therefore, the need for an approximate method emerged, and a method
called parameter iteration was introduced by Ben-Ari and Gal (1986) and later modified by
Kristensen (1992) to whom reference is made for details. To the authors’ knowledge the pa-
rameter iteration method has only been applied under a constraint of a limited supply of heifers
Kristensen (1992).

The state of an MDP must be directly observable. Since the state in the model represents the
present traits of the animal in question, this means that the traits are assumed to be well defined
and directly observable. This is not always the case. Traits of an animal vary no matter whether
we are considering the milk yield of a dairy cow or the litter size of a sow. Moreover, it is not
obvious to what extent the observed trait is a result of a permanent property of the animal or a
temporary random fluctuation. Most often the observed value is the result of several permanent
and random effects. This problem can be solved by modeling the trait as a stochastic process
and embedding the parameters of the process into the MDP instead of the observed value of the
trait. The technique is referred to as Bayesian updating. As observations are done, the Bayesian
approach is used to increase the knowledge on the true value of the trait. The technique was first
used in practise by Kennedy and Stott (1993) for milk yield and has been described in detail by
Kristensen (1993) and generalized in Nielsen et al (2011).

For an MDP to be valid the Markov property must be fulfilled. It implies that the state space
at any decision epoch (or stage) must contain sufficient information for determination of the
probability distribution of the state to be observed at next decision epoch. In a straight forward
formulation of a decision problem this is rarely the case, and various tricks must be used in
order to make the process Markovian. The most common trick is to include memory variables
in the state space (for instance the milk yield of previous lactation(s) in dairy cow models). This
approach has been used in numerous models in practice. A more elaborate approach is to use
Bayesian updating to estimate latent traits (for instance an abstract milk yield capacity of a dairy
cow) as observations are done over time.

The objective of this chapter is to review the increasing amount of papers using MDPs to
model livestock farming systems and provide an overview over the recent advances within this
branch of research. Moreover, theory and algorithms for solving both ordinary and hierarchical
MDPs are given and possible software for solving MDPs are considered. The chapter provides
and updated overview compared to the latest survey (Kristensen, 1994) which is almost 20 years
old. The authors have tried to include all peer-review articles using MDPs to model livestock
systems which resulted in more than 80 papers in total. Some very old applications (mainly from
the sixties and seventies) have been omitted in the overview. Most of those early applications
were deterministic and some of them were published in research reports which are not available
online . Readers who are interested in those papers are referred to Kennedy (1986) who gives an
overview of applications until the early eighties.

The chapter is organized as follows. In Section 2 a short introduction to ordinary MDPs and
hierarchical MDPs is given and algorithms for optimizing the process are described. Next, a
survey over papers using MDPs applied to cattle farming problems is given in Section 3. Dairy
production is the most successful area on which MDPs have been applied. The chapter is con-
tinued in Section 4 with a survey over papers within the area of pig production. Finally, a few
papers which lies outside these two areas are considered in Section 5. Software for solving both
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ordinary and hierarchical MDPs are discussed in Section 6. At last conclusions and directions
for future research are discussed in Section 7.

2 Methodology
We briefly introduce the methodology of MDPs and describe the different algorithms which can
be used to find an optimal policy under different criteria. Many papers using MDPs to solve
livestock problems consider a stochastic process where the length of a stage is not constant. This
is actually an extension of the MDP methodology (where a constant stage length is assumed),
referred to as a semi MDP (Tijms, 2003). However, due to the use of the term MDP instead of
a semi MDP in the past we will stick to this. Indeed, throughout the rest of the paper we will
use the term MDP for both ordinary and hierarchical (semi) MDPs and explicit write ordinary or
hierarchical if needed.

2.1 Finite-horizon Markov decision processes
We consider an ordinary finite-horizon MDP with N stages. At stage n the system occupies
a state belonging to the finite set of system states Sn. Given that the decision maker observes
state s ∈ Sn at stage n, he must choose an action a from the set of finite allowable actions As,n
generating an immediate reward ra

s (n). Let ta
s (n) denote the expected length of stage n, i.e.,

the time until the system evolves probabilistically to a new state (decision epoch) and β a
s (n) the

corresponding discount rate of the stage. Note that if α denotes the interest rate per time unit, and
the stage length is L, then the discount factor is exp(−αL) if we assume continuous compounding
or 1/(1+α)L if we assume periodic compounding. Let pa

sŝ (n) denote the transition probabilities
of observing state ŝ ∈ Sn+1 at stage n+1 given state s and action a.

A policy δ is a function that assigns to each state s a fixed action a = δ (s), i.e., a policy
provides the decision maker with a plan of which action to take given stage and state. Under a
given policy we write ra

s (n), ta
s (n) and pa

sŝ (n) as rδ
s (n), tδ

s (n) and pδ
sŝ (n), respectively.

Let Xn denote the state of the system at the n’th decision epoch. Under a finite time-horizon
the total expected discounted reward criterion may be relevant when consider livestock problems:

h(δ ) = E

(
N

∑
n=1

rδ
Xn
(n)

n−1

∏
i=1

β
δ
Xi
(i)

)
, (1)

where the product is the total discount factor need to discount the reward at stage n back to stage
1. Moreover, if no discounting is used (α = 0) then (1) calculates the total expected reward.
It is assumed that no decision is taken at decision epoch N, i.e. a deterministic dummy action
aN = δ (XN) is taken. The reward raN

XN
(N) is often referred to as the terminal or salvage reward.

Having introduced the notation for an MDP, we are also able to give a formal definition of
the Markov property mentioned in the introduction. The Markov property is satisfied in an MDP
if and only if

Pa(Xn+1|Xn) = Pa(Xn+1|Xn, . . . ,X1) = pa
XnXn+1

,∀n < N,Xn ∈ Sn,a ∈ AXn,n,
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where Pa denotes the probability function under the decision a. In words it means that the state
at next stage is only allowed to depend on the present state and action. Any other historical
information is of no relevance. It is essential for the correctness of the results from an MDP that
this property is satisfied.

An optimal policy maximizing (1) can be found using the following Bellman equations, Bell-
man (1957):

vn (s) =
{

maxa∈As,n

{
ra

s (n)+β a
s (n)∑ŝ∈Sn+1 pa

sŝ (n)vn+1 (ŝ)
}

n < N
raN

s (N) n = N
, (2)

where vn(s) is the total expected discounted reward in state s at stage n under the optimal policy
until the process terminates. Equations (2) shows that the optimal policy can be found by ana-
lyzing a sequence of simpler inductively defined single-stage problems. This is often referred to
as value iteration.

2.2 Infinite-horizon Markov decision processes
A situation where the stage of termination is unknown (or at least far ahead) is usually modeled
using an infinite planning horizon (N = ∞). Given that the process is time homogeneous, i.e.,
the states and actions are independent of stage number and the policy stationary (constant over
stages), we can drop the index n from the notation given in Section 2.1. Criterion (1) can still
be considered (now an infinite sum) and will converge toward a fixed value when increasing N if
discount rates are less than one.

Let Z(t) denote the total reward incurred until time t and assume that the MDP is unichain
(see Tijms (2003) for a formal definition). As an alternative criterion we may consider the aver-
age reward per time unit:

g(δ ) = lim
t→∞

Z(t)
t

=
∑s∈S πδ

s rδ
s

∑s∈S πδ
s tδ

s
(3)

where πδ
s are the limiting state probabilities or equilibrium distribution probabilities given policy

δ . Other criteria such as the average reward per physical output can also be considered and are
defined as in (3) by redefining ta

s as the physical output instead. For instance, Nielsen et al
(2004) maximize the average reward per steer. Furthermore, if all stages have equal length the
denominator of (3) equals one and (3) reduces to the well-known formula for an ordinary MDP.

Various optimization techniques can be used to find the optimal policy such as value iteration,
policy iteration and linear programming. We will restrict ourselves to the first two here since
linear programming has only been used in two of the papers reviewed.

Value iteration can be used to approximate the optimal policy. It has been used in the majority
of papers since it is relatively straightforward to implement the algorithm. Moreover, the algo-
rithm is good for solving large-scale MDP problems since there is no need for solving a large set
of equations simultaneously. However, the number of iterations is problem dependent and typ-
ically increases in the number of states of the problem under consideration. The value iteration
algorithm is given in Figure 1. The algorithm is initialized in Step 0 where a pre-specified small
accuracy number ε is chosen. Next, we use the recursive equations to update vs (n), which under
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Step 0: Set vs (0) such that 0≤ vs (0)≤mina∈As{ra
s /ta

s }, ∀s ∈ S. Choose a number ε > 0, set n←0 and
τ = mins∈S,a∈As{ta

s } (under criterion (3)).
Step 1: For each s ∈ S compute vs (n) using the recursive equation in Table 1 and let δ be the
policy whose actions maximize vs (n).

Step 2: Compute the bounds mn = mins∈S {vs (n)− vs (n−1)} and Mn = maxs∈S {vs (n)− vs (n−1)}
Step 3: If the condition in Table 1 is statisfied then stop; otherwise set n← n+1 and go to
Step 1.

Figure 1: Value iteration algorithm for an infinite-horizon ordinary MDP.

Table 1: Equations and expressions to be used in the value iteration algorithm.
Criterion Step 1 - Recursive equation Step 3 - Condition

(1) vs (n) = max
a∈As

{
ra

s +∑
ŝ∈S

β
a
s pa

sŝv
δ
ŝ (n−1)

}
Mn ≤ ε

(3) vs (n) = max
a∈As

{
ra

s
ta
s
+(1− τ

ta
s
)vs (n−1)+

τ

ta
s

∑
ŝ∈S

pa
sŝv

δ
ŝ (n−1)

}
0≤Mn−mn ≤ εmn

criterion (1) denotes the total expected discounted reward in state s with n periods left and a ter-
minal cost of vs (0). Under criterion (3) the recursive equation is based on a data transformation
method (see (Tijms, 2003)). This is repeated until the stopping condition is met (Step 3).

Note that if ε is sufficiently small and the same policy is found during several iterations, we
may be rather sure that the optimal policy has been found. However, there is no guarantee but
for practical purposes the deviation will have no significance. Under criterion (3) the stopping
criterion ensures that 0≤ (g∗−g(δ ))/g∗ ≤ ε , where g∗ denotes the optimal value to (3), i.e., the
average reward per time unit g(δ ) ∈ [mn,Mn] is at most 100ε% away from the optimal average
reward per time unit. Finally observe that if the time between each decision epoch is constant
(ta

s = 1 and β a
s = β ), then the recursive formulas in Table 1 reduces to the well-known formulas

for an ordinary MDP. During the years more advanced variants of value iteration algorithms have
been developed which provide faster convergence and better stopping conditions. The interested
reader is referred to Tijms (2003) and Puterman (1994) for details.

Policy iteration unlike value iteration finds an optimal policy in a finite number of steps. The
algorithm is robust in the sense that in general it converges very fast, the number of iterations
are independent of the number of states and varies typically between 3 and 15 (Tijms, 2003).
However, to use the algorithm |S| linear equations must be solved simultaneously which may be
computational costly for large state spaces. The policy iteration algorithm is given in Figure 2. In
Step 0 an arbitrary policy is chosen and in Step 1 the set of equations is solved. Under criterion
(1) vs denotes the total expected discounted reward of a process starting in state s and running
over an infinite number of stages. Under criterion (3) vs is the relative value compared to state
ŝ. The difference between the relative value of two states denotes the amount we are willing to
pay for stating in the state with the highest relative value. In Step 2 we update the current policy.
This is repeated until a better policy can not be found (Step 3). Finally, observe that if the time
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Step 0: Choose a policy δ.
Step 1: Solve the set of linear equations in Table 2.
Step 2: For each state s, find the action a that maximizes the expression given in Table 2, and
set δ ′(s) = a.

Step 3: If δ ′ = δ then stop; otherwise go to Step 1.

Figure 2: Policy iteration algorithm for an infinite-horizon ordinary MDP.

Table 2: Equations and expressions to be used in the policy iteration algorithm.

Step 1 Step 2

Criterion Equations Unknowns Expression

(1) vs = rδ
s +∑ŝ∈S β δ

s pδ
sŝvŝ,∀s ∈ S v1, . . . ,v|S| rδ

s +∑ŝ∈S β δ
s pδ

sŝv
δ
ŝ

(3) vs = rδ
s −gtδ

s +∑ŝ∈S pδ
sŝvŝ,∀s ∈ S,vŝ = 0 v1, . . . ,v|S|,g rδ

s − tδ
s g(δ )+∑ŝ∈S pδ

sŝv
δ
ŝ

between each decision epoch is constant (ta
s = 1 and β a

s = β ), then the recursive formulas in
Table 2 reduce to the well-known formulas for an ordinary MDP. For more advanced variants of
the policy iteration algorithm see Puterman (1994).

2.3 Hierarchical MDPs
Hierarchical MDPs are an attempt to decompose the state space and reduce the number of states
in the MDP. The approach also provide a more intuitively way of modeling the stochastic pro-
cess. Moreover, it reduces the number of equations which must be solved simultaneously under
policy iteration. We consider hierarchical MDPs with multiple levels also referred to as multi-
level hierarchic Markov processes. A hierarchical MDP is an infinite stage MDP with parameters
defined in a special way, but nevertheless in accordance with all usual rules and conditions relat-
ing to such processes. The basic idea of the hierarchic structure is that stages of the process can
be expanded to a so-called child processes which again may expand stages further to new child
processes leading to multiple levels.

A stage in a process with three levels is illustrated in Figure 3. The infinite horizon process
at level 0 is named the founder process and is the only process in the structure which is not the
child of a parent process. Each node corresponds to a state at different levels and stages. A
child process (oval box) is a finite horizon MDP and is uniquely defined by a given stage, state,
and action of its parent process (the specific link/edge from the parent to the child). For each
finite horizon process an initial probability distribution of the states at stage 1 is assumed, i.e., a
fictitious stage 0 with only one state and one action is added to the model. As a result given a state
and action at the parent level a transition to the child process can be represented deterministically
(edges in Figure 3). Moreover, a set of terminal probabilities are given representing the transition
probabilities back to the parent process when the last stage ends (the links from the last stage in
the child in Figure 3).

Note that a finite horizon process at level l > 0 is uniquely defined by a sequence of stages,
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child process

child process
child process

child process

child process

Decision
epoch

n n + 1

L
e
v
e
l
0

L
e
v
e
l
1

L
e
v
e
l
2

Figure 3: Illustration of a stage in a hierarchial MDP. Level 0 indicates the founder level, and
the nodes indicate states at the different levels and stages. A child process (oval box) represents
a finite horizon MDP and is uniquely defined by a given state and action of its parent process
(the specific link/edge from the parent to the child). Links at the last stage of a process illustrate
the possible transitions back to the parent process when the child process ends.
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Step 0: Set vs (0) = 0,∀s ∈ Sρ0 and g = 0 (under criterion (3)). Perform an expanded value iteration to

find the expanded policy δρ0 and parameters r
δρ0
s , t

δρ0
s , β

δρ0
s and p

δρ0
sŝ .

Step 1: Solve the set of linear equations in Table 2 using the parameters of the founder
process.

Step 2: Perform expanded value iteration to find the expanded policy δ ′ρ0
and parameters r

δ ′ρ0
s , t

δ ′ρ0
s

, β
δ ′ρ0
s and p

δ ′ρ0
sŝ .

Step 3: If δ ′ρ0
= δρ0 then stop; otherwise redefine δρ0 to the new policy and go to Step 1.

Figure 4: Hierarchical policy iteration algorithm for an hierarchical MDP.

states and actions ρ = (s0,a0,n1,s1,a1, . . . ,nl−1,sl−1,al−1) and at level 0 we only have the infi-
nite horizon founder process which we will denote ρ0. We will use the notation in Section 2.1
and Section 2.2 given a specific process ρ; however, an action a is not nessasarely identical to
an action as it is usually defined in an MDP. In addition to the selection of a specific process we
also have to choose which policy to follow during its child processes.

Let δρ denote an expanded policy of process ρ , i.e., a function that assigns to each state s
a fixed action a = δρ(s), i.e., an expanded policy provides the decision maker with a plan of
which action to take given stage and state in the parent process and all its child processes. Then
the reward rδρ

s (n), expected length tδρ

s (n), discount factor β
δρ

s (n), and transition probabilities
pδρ

sŝ (n) can be calculated recursively by processing the child processes from the lowest levels and
upward toward the parent process ρ . Hence an expanded value iteration can be applied. Under
the total expected discounted reward criterion (1) and given a set of terminal rewards, the optimal
policy δρ of a finite horizon process can be found by recursively applying value iteration (2) from
the lowest levels and upward toward the parent process ρ . The same holds when considering the
average reward per time unit criterion (3) where we must solve the following recursive equations:

vn (s) =

{
maxa∈As,n

{
ra

s (n)−gta
s +∑ŝ∈Sn+1 pa

sŝ (n)vn+1 (ŝ)
}

n < N
raN

s (N) n = N
,

Note that an additional average reward g must be chosen together with the terminal values. For
further details see Kristensen and Jørgensen (2000).

We can also apply a single iteration of expanded value iteration to the founder process to de-
termine all the parameters needed to solve the set of equations when considering policy iteration.
A hierarchical policy iteration algorithm can now be formulated in Figure 4. It combines policy
iteration at the founder level and value iteration at the other levels. First some initial values are
chosen in Step 0 and the expanded policy and the parameters of the founder process are calcu-
lated. Next the linear equations at the founder level are solved in Step 1 and used as terminal
values in the expanded value iteration in Step 2. If no new policy is found the algorithm stops in
Step 3.
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3 MDP models applied to cattle farming
This section gives an overview of MDPs applied to cattle farming problems. Around 60 papers
describing more than 40 different models were found in this area. Table 3 summarizes the mod-
els by listing their structure in terms of the number of levels (the value 1 indicates an ordinary
MDP), the criterion of optimality, the state variables with number of levels/classes, stage lengths
with maximum number of stages, decisions being optimized, application area, and supplemen-
tary information. Each row in the table corresponds to a model and reference to the paper(s)
describing it is given in the first column. It should be noticed that it is not always clear whether a
paper should be classified as describing a new model (by further developing an existing model)
or it should be classified as just an application of an existing model.

Only decision models are included in the survey. Simple Markov chain models are not men-
tioned even though they are, of course, closely related to MDPs since an MDP with a predefined
policy is a Markov chain. Examples of such, not included, Markov chain models are Allore et al
(1998); Cabrera (2012); Giordano et al (2012); Noordegraaf et al (1998), as well as Jalvingh et al
(1993a,b, 1994).

Many of the models mentioned in the survey are by the authors themselves presented as
dynamic programming models and the term Markov decision process is seldom mentioned. Dy-
namic programming exists in a deterministic version and a stochastic version, and particularly
the stochastic version is identical to the MDP concept described in this chapter. Very often, how-
ever, the use of the term dynamic programming implies that the optimization method is value
iteration. The deterministic version is also compatible with an MDP, but such models are degen-
erate in the sense that for any stage n, state s, and action a there exists a state s′ at stage n+ 1
where pa

ss′ = 1. Accordingly, we have for any state ŝ 6= s′ that pa
sŝ = 0.

In a book Kennedy (1986) reviewed dynamic programming applications to agriculture until
the early eighties. As a main rule, models mentioned in that book are omitted, but for the most
important application area, which is dairy cow replacement, also models mentioned by Kennedy
(1986) are included. The main reason is that the study by Giaever (1966) is so important that it
would be preposterous to omit it.

The vast majority of papers and models address problems related to dairy cows. A few models
consider growing cattle (the review by Kennedy, 1986, contains several very early applications
to growing cattle). Nielsen et al (2004) and Nielsen and Kristensen (2007) consider the raising
of steers and Pihamaa and Pietola (2002) study the effect of beef cattle management under agri-
cultural policy reforms in Finland. Also management of heifers (Mourits et al, 1999a,b) has been
studied. All models are defined at the individual animal level and since all of them also basi-
cally consider the replacement problem, they reflect a chain of animals successively replacing
each others over a finite or infinite time horizon. They therefore all have the action “Replace”
as an option. The alternative to replacement is, of course, to keep the animal, and many models
only have “Keep” as an alternative to “Replace”. Many models describing cows and heifers also
have an “Inseminate” action, and the models optimizing raising of steers and heifers have actions
defining the feeding level in some sense.

The first models published until the mid-eighties were ordinary MDPs solved by value itera-
tion over a number of stages typically aiming at approximating an infinite horizon. The criterion

10



of optimality was typically maximization of expected discounted reward, which is still today the
most commonly used criterion. The concept of hierarchical MDPs was described by Kristensen
(1988), and over the following years it has been increasingly used in cattle models. In total, 11
of the models mentioned in Table 3 are hierarchical. Most of the recent hierarchical models have
been implemented in the MLHMP software system developed by Kristensen (2003). The tech-
nique has made it possible to handle even very large models with millions of states like Demeter
et al (2011), Nielsen et al (2010), and Houben et al (1994). The introduction of hierarchical
models also implies that policy iteration has become a common optimization technique (for the
founder process).

When it comes to state variables, the models include age of the animal as a state variable. For
dairy cows it is typically measured by lactation number and often also stage of lactation. Also
the reproductive state (typically measured by month of conception or length of calving interval)
and the milk yield level are usually included in the dairy cow models. In the beginning the health
status was not included in the models, but starting with Stott and Kennedy (1993), Kennedy and
Stott (1993), and Houben et al (1994) mastitis has often been included in the state space. In
recent years (Bar et al, 2008a,b; Cha et al, 2011; Heikkila et al, 2012) mastitis has been studied
intensively. Also other diseases have occasionally been included (Cha et al, 2010; Grohn et al,
2003; Heikkila et al, 2008).

When comparing state variables across models it is important to remember that in hierarchi-
cal models some of the state variables are typically implicitly given by stage number. This is
typically the case for properties like age (lactation number and lactation stage for dairy cows)
and/or season. Thus, in hierarchical models it is most often not necessary to include state vari-
ables for such properties because they are given by the model structure. Hence, the same problem
formulated as a hierarchical model will typically have fewer state variables than if it had been
formulated as an ordinary MDP.

Stage lengths (for hierarchical models at the most detailed level) vary from one day as in
Kalantari and Cabrera (2012); Nielsen et al (2010) to typically a lactation period in many early
models. Geographically, the largest number of models (12) describe US conditions, but also
models for UK conditions (8), Dutch conditions (6), Danish (4) and Finish conditions (4) are
common. Two models describe MDPs developed for New Zealand, two for Ireland, two for
Canada, and for each of the countries Iran, Costa Rica, France, and Israel one model has been
developed.

Very few papers actively discuss how to satisfy the Markov property, but in many papers it is
obvious that the problem is considered (in other papers it is ignored). The preferred method for
(approximate) fulfilment of the Markov property has been by use of memory variables where
milk yield of previous lactation is remembered. This tradition goes back to van Arendonk
(1985b) and has been continued in many subsequent models using that model as a basis (see the
“Misc” column of Table 3). The same approach was used by Kristensen (1987, 1989). The main
drawback of memory variables is that they contribute considerably to the curse of dimensionality.
This was realized already by Giaever (1966) who instead defined milk yield as a weighted index
of all lactations until now. He showed how it was possible to define the weight coefficients of the
index in such a way that the Markov property was not violated. Also McArthur (1973) defined
an index which in his case was a simple average of lactation yields. Thus, the state space was
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reduced, but the Markov property was not satisfied.
Another approach used in several models is to express the milk yield as partly resulting

from a permanent property of the cow. This approach was used by Kristensen (1987, 1989) (as a
supplement to the memory variable also included). In the models developed at Cornell University
(Bar et al, 2008a,b; Cha et al, 2010, 2011) the permanent property was the only approach used
to satisfy the Markov property. All the models mentioned are hierarchical MDPs which are
particularly well suited for handling permanent traits. Nevertheless, Harris (1990) seems to have
used a similar principle in an ordinary MDP.

When the principles of Bayesian updating was described by Kristensen (1993) and (inde-
pendently) applied by Kennedy and Stott (1993) a new tool became available for model builders.
Instead of memory variables, the Bayesian updating focuses on estimating an abstract latent milk
yield capacity of a cow based on all observed milk yield records. It was, however, not until the
models by Nielsen et al (2010) and Demeter et al (2011) that it was implemented as a main fea-
ture. In other application areas (Kristensen and Søllested, 2004a,b; Lien et al, 2003; Verstegen
et al, 1998) it was used earlier.
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Table 3: Overview over literature using MDPs for modeling within cattle farming.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kalantari and Cabrera (2012) 1 DR (VI) lactation (9), days in preganacy (282),
DIM (750), milk yield (5)

day (∞) K, R dairy (US) Study the effect of reproductive
performance.

Heikkila et al (2012) 1 DR (PI) month (78), culling reason (3), mastitis
cases (5)

month (∞) K, R dairy (FIN) Focus on clinical mastitis

Langford and Stott (2012) 1 DR (VI) parity (12), milk yield level (15) parity (20) K, R dairy (UK) Extension of Stott (1994) which study the
effect on welfare

Cha et al (2011) 3 DR (HPI) permanent milk yield level (5); dummy
(1); temporary milk yield level (5),
pregnancy state (9), clinical mastitis state
(13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Extension of
the work by Bar et al (2008b) and Cha
et al (2010).

Demeter et al (2011) 4 DR (HPI) permanent milk yield potential (PMYP)
estimated at first calving(13); PMYP
estimated at the beginning of lactation
(13), months open previous lactation (8);
PMYP estimated this month (13),
temporary milk yield capacity (13),
pregnancy state (2); PMYP estimated this
month (13), temporary milk yield
capacity (13)

cow life (∞);
parity (12);
month/gestation
period (18);
month (9)

I, K, R dairy (NL) Used to assess herd level implication of
genetic selection strategies. Lactation
number, stage of lactation and month of
pregnancy known from stage numbers.

Cabrera (2010) 1 R/T (LP) parity (15), month in lactation (24),
pregnancy status (10)

month (∞) K, R dairy (US) Consider different diets and nitrogen
excretion

Cha et al (2010) 3 DR (HPI) permanent milk yield level (5); dummy
(1); temporary milk yield level (5),
pregnancy state (9), lameness state (13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Extension of
the work by Bar et al (2008b) with focus
on lameness.

Kalantari et al (2010) 1 DR (VI) lactation (12), month after calving (24),
milk production class (15), pregnancy
status (10)

lactation (180) K, R dairy (IR) A modification of van Arendonk and
Dijkhuizen (1985) applied to Iran
conditions.

Nielsen et al (2010) 3 DR (HPI) dummy (1); milk yield potential (MYP)
estimated at the beginning of lactation
(13); combination of MYP estimated until
present day and temporary milk yield
level (45 combinations), drying off week
(32)

cow life (∞);
parity (10); day
(483)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number. Focus on
management. Bayesian updating used.

Bar et al (2008a,b) 3 DR (HPI) permanent milk yield level (5); mastitis in
previous lactation (2); temporary milk
yield level (5), pregnancy state (9),
mastitis state in present lactation (13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Focus on cost
of clinical mastitis.

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table contin-
ued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Heikkila et al (2008) 1 DR (PI) lactation (10), milk yield (3), health status
(3)

lactation (∞) K, R dairy (FIN) Focus on diseases and milk yield.

Nielsen and Kristensen (2007);
Nielsen et al (2004)

4 R/T (HPI),
R/Q (HPI)

birth month (12); live weight (up to 26)
previous winter feeding level (2), weigh
gain (5); weight gain at fattening (3)

steer life (∞);
seasons
(summer/winter)
(6); month (up
to 6); month (4)

G, Fe, Fa,
R

steer (DK) Nielsen et al (2004) consider average
reward per steer while in Nielsen and
Kristensen (2007) the average reward per
time unit is maximized

de Vries (2006) 1 DR (VI) lactation (12), days open (10), month of
lactation (24), milk yield (15)

month (∞) K, R dairy (US) Extension of model by de Vries (2004).

Stott et al (2005) 1 DR (VI) lactation (12), milk yield (15) lactation (20) K, R dairy (UK) Studies financial incentive to control
paratuberculosis. Extension of model by
Stott (1994).

de Vries (2004) 1 DR (VI) lactation (12), days open (10), month of
lactation (24), milk yield (15), month of
calving (12)

month (∞) K, R dairy (US) Studies the effect of delayed replacement
with seasonal cow performance.

Grohn et al (2003) 1 DR (VI) lactation (12), days open (10), month of
lactation (20), milk yield (5), month of
calving (12), disease state (240)

month (60) I, K, R dairy (US) Extension of models by Delorenzo et al
(1992) and Mccullough and Delorenzo
(1996b).

Stott et al (2002) 1 DR (VI) lactation (12), milk yield (15), somatic
cell count (11)

lactation (20) K, R dairy (UK) Extension of model by Stott (1994).

Pihamaa and Pietola (2002) 1 DR (VI) live weight (507) week (326) Fe, K, R beef (FIN) Study the effect of agricultural policy
reforms in Finland.

Rajala-Schultz and Grohn (2001) 1 DR (VI) lactation (12), production level (5), month
of calving (12), month of lactation (19),
days open (10)

month (60) I, K, R dairy (FIN) Compares optimal decisions with farmer
decisions. Use of model by Mccullough
and Delorenzo (1996b).

Vargas et al (2001) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (180) I, K, R dairy (CR) Based on model by van Arendonk and
Dijkhuizen (1985).

Rajala-Schultz et al (2000a,b) 1 DR (VI) parity (12), days open (10), stage of
lactation (19), production level (3, 5, 7),
month of calving (12)

month (48-120) I, K, R dairy (FIN) Use of model by Mccullough and
Delorenzo (1996b).

Yalcin and Stott (2000) 1 DR (VI) lactation (12), milk yield (15), somatic
cell count (11)

lactation (20) K, R dairy (UK) Extension of work by Stott (1994)

Cardoso et al (1999a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (240) I, K, R dairy (BR) Use of model by van Arendonk and
Dijkhuizen (1985).

Mourits et al (1999a,b) 2 DR (HPI) month of birth (12); body weight (173),
reproductive state (32), prepubertal
growth rate (3)

rearing period
(∞); month (30)

Fe, I, K,
R

heifers (NL) Age of heifer known from stage number.
The keep and inseminate decisions can be
done under different growth strategies

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table contin-
ued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Yates and Rehman (1998) 1 DR (LP) lactation (12), genetic level (4) year (10) K, R dairy (UK) The keep decision has 2 options: produce
calf for replacement or for beef.

Dekkers et al (1998) 1 DR (VI) lactation l (12), month in lactation (16),
milk yield l (15), calving intervals (6)

month (180) I, K, R dairy (CDN) Quantify the impact of persistency of
lactation. Adaptation of the work in van
Arendonk and Dijkhuizen (1985)

Haran (1997) 2 DR (HPI) month of first calving (12); current month
(12), milk production level (15), time of
conception (5)

cow life (∞);
lactation stage
(72)

I, K, R dairy (IRL) Lactation number and stage of lactation
known from stage number.

Mccullough and Delorenzo
(1996a,b)

1 DR (VI) lactation (12), production level (15),
month of calving (12), month of lactation
(19), days open (10)

month (60) I, K, R dairy (US) Focus: levels of state variables, milk price
and management inputs. Model based on
Delorenzo et al (1992)

Houben et al (1994) 2 R/T (HPI) dummy (1); milk production l (15), l−1
(15), calving interval (18), mastitis
current month (2), mastitis cases l (4),
l +1 (4)

life span of a
cow (∞); month
(204)

I, K, R dairy (NL) Focus on mastitis

Stott (1994) 1 DR (VI) lactation (12), yield class (15) lactation (∞) K, R dairy (UK) Uses bayesian updating for milk yield

Kennedy and Stott (1993) 1 DR (VI) lactation l (12), yield class (5), mastitis
status l−1 (2)

lactation (∞) K, R dairy (UK) Focus: model and bayesian updating

Stott and Kennedy (1993) 1 DR (VI) lactation number (12), mastitis state (2) lactation (∞) K, R dairy (UK) Focus on clinical mastitis.

Delorenzo et al (1992) 1 DR (VI) lactation (12), production level (15),
month of calving (12), month of lactation
(16), days open (7)

month (240) I, K, R dairy (US) Model based on van Arendonk (1986)

Dekkers (1991) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (CDN) Studies economic values for breeding
goals. Adaptation of the work in van
Arendonk and Dijkhuizen (1985)

Boichard (1990) 1 DR (VI) lactation l (6), lactation stage (22), stage
of conception (7), calving date (18), milk
yield in l (9), l−1 (9)

20 days (200) I, K, R dairy (F) Focus: economic value of conception

Harris (1990) 1 DR (VI) lactation (10), best linear prediction of
future milkfat production, milk volume
production, milk protein production,
breed, calving date (6)

year (20) K, R dairy (NZ) It is not clear from the description
whether an optimization is performed or
the model is only used for simulation.

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table contin-
ued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kristensen (1989); Kristensen and
Thysen (1991a,b)

2 R/Q (HPI) estimated genetic class at first calving (5);
milk yield of present lactation (15), milk
yield of previous lactation (15), length of
calving interval (8)

cow life (∞); 4
week period
(108)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number. Average
reward per kg milk is maximized.
Extension of work by Kristensen (1987).
The model is later applied by Kristensen
and Thysen (1991a,b)

Rogers et al (1988a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (US) Adaptation of the work in van Arendonk
and Dijkhuizen (1985)

Kristensen (1987) 2 DR (HPI) estimated genetic class at first calving (5);
milk yield of present lactation (15), milk
yield of previous lactation (15), length of
calving interval (8)

cow life (∞);
lactation stage
(24)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number.

van Arendonk (1986) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), time of conception (6),
month of calving (12)

month (180) I, K, R dairy (NL) Extension of the work in van Arendonk
(1985b)

van Arendonk (1988); van Aren-
donk and Dijkhuizen (1985)

1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (NL) Extension of the work in van Arendonk
(1985b)

van Arendonk (1985a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (240) I, K, R dairy (NL) The model has had a huge impact on later
models.

Ben-Ari and Gal (1986); Ben-Ari
et al (1983)

1 DR (VI) lactation, milk yield, body weight lactation (∞) K, R dairy (IL) Ben-Ari and Gal (1986) consider how to
solve the multi-component system.

Killen and Kearney (1978) 1 R (VI) lactation number (9) lactation (20) R, K dairy (IRL) Very small model.

Stewart et al (1977, 1978) 1 DR (VI) lactation (7), body weight (5), 305d milk
yield (11), milk fat pct (7)

lactation (10) R, K dairy (CDN) Stewart et al (1977) describe the model
and Stewart et al (1978) consider different
breeds. Culling decisions were assumed
to occur at 60 days postcalving

McArthur (1973) 1 R (VI) lactation number (7), milk production
level (80)

lactation (15) K, R dairy (NZ) Milk yield represented as average over
lactations.

Smith (1971, 1973) 1 DR (VI) lactation l (6), yield in l (29), l−1 (29),
calving interval (3)

lactation (15) R, K dairy (US) Far more detailed model than the one by
Giaever (1966).

Giaever (1966) 1 DR (VI) lactation number (5), calving interval (3),
milk yield (7)

dairy (US) Alternative optimization methods
described. Important considerations about
Markov property.

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = expected discounted reward, R = expected reward, R/T = average reward per time unit, R/Q average reward per quantity unit. Algorithm used is given in parentheses (VI = value
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iteration, PI = policy iteration, HPI = hierarchical policy iteration, LP = Linear programming).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level in the process (separated with semicolon). Maximum number of stages given in parentheses.
f R = replace, K = keep, I = Inseminate, G = Grazing, Fe = Feeding intensity, Fa = Fattening.
g Animal group applied to. The country from which the parameters has been estimated is given in parentheses.
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4 MDP models applied to pig farming
Table 4 summarizes MDPs applied to pig farming along the same guidelines as for the cattle
applications in Table 3. A total of 17 papers describing 12 different models were identified. As
with the cattle models only decision models are included implying that simple Markov chain
models are excluded. Examples of such not included Markov chain models are Jalvingh et al
(1992a,b) and Pla et al (2003).

Analogously to the many dairy cow replacement models in the previous section a total of
6 sow replacement models were found. The remaining papers (6) address problems related to
production of finishers. Also the pig models are in some sense replacement models, but unlike
the cattle models there are also examples of MDPs defined at group level. Thus, Kristensen et al
(2012) model a pen, and Toft et al (2005) as well as Kure (1997a,b,c) model a batch of finishers.
There are, however, also examples of finisher models (Glenn, 1983; Jørgensen, 1993; Niemi,
2006) defined at individual animal level. The sow models are all defined at individual animal
level.

Decisions considered in the sow models are in addition to “Keep” and “Replace” also insem-
ination method and number of inseminations to accept before culling for infertility. In finisher
models decisions are the marketing policy and, some times, the feeding level. As concerns the
optimization method the first models published were ordinary MDPs based on value iteration
optimizing expected reward or expected discounted reward. Later hierarchical models became
the norm with the deterministic model by Niemi (2006) as an exception. Also for the hierarchi-
cal pig models the preferred software tool has been the MLHMP system described by Kristensen
(2003).

In all models the age of the animal(s) is included either as a state variable or indirectly
through the stage number in hierarchical models. In the sow models litter size is often included
either directly or through Bayesian updating of a latent litter size potential as in Kristensen and
Søllested (2004a,b) and Rodriguez et al (2011). Also, the number of unsuccessful inseminations
is sometimes directly or indirectly (through the model structure) taken into account. One model
by Rodriguez et al (2011) included a weak sow index defined by clinical observations in the state
space.

Stage lengths vary from one day as in Niemi (2006) to a reproduction period (parity) in
several models. Geographically, the largest number of models (7) describe Danish conditions,
but also models for Dutch, UK, Spanish, and Finish conditions are found.

As concerns the Markov property, the approach has been the same as with dairy models.
Dutch models (Huirne and Hardaker, 1998; Huirne et al, 1988, 1991, 1993) used memory vari-
ables (2 or 3 previous litter sizes). Later models (Jørgensen, 1992; Kristensen and Søllested,
2004a,b; Kristensen et al, 2012; Rodriguez et al, 2011) used Bayesian updating.
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Table 4: Overview over literature using MDPs for modeling pig farming.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kristensen et al (2012) 2 R/T (HPI) dummy (1); number of pigs remaining (21),
estimated permanent growth potential (7),
estimated temporary growth potential (7),
estimated within pen standard deviation (9)

prod. cycle in pen
(∞); week (17)

Dδ finishers (DK) Embeds a Dynamic Linear Model
linking automatically recorded live
weights to state variables. Group
level: models a pen.

Rodriguez et al (2011) 3 R/T (HPI) dummy (1); exp. serially correlated effect
(21), exp. permanent litter size potential
(21)h; health status (2), gestation status (3),
litter size (21), weak sow index of previous
parity (5), weak sow index of present parity
(5)

sow life (∞);
parity (12); parity
phases (3)

NM, AI,
R, K, Mi

sows (DK) Extension of work by Kristensen
and Søllested (2004a,b). The weak
sow index is based on clinical
observations.

Toft et al (2005) 2 ? (HPI) disease transition (5); configurations of
susceptible and infectious pigs (?), fraction of
pigs still present (5)

prod. cycle in pen
(∞); day and
week (88)

V, T, Dπ ,
K

finishers (DK) Group level: models a batch.

Niemi (2006) 1 DR (VI) lean tissue weight (37), fat tissue weight (52) day (1800) R, P, E finishers (FIN) Deterministic model. Very detailed
control options.

Kristensen and Søllested (2004a,b) 3 R/T dummy (1); exp. serially correlated effect
(21), exp. permanent litter size potential
(21)h; health status (2), gestation status (3),
litter size (21)

sow life (∞);
parity (12); parity
phases (3)

NI, AI, R,
K, Mi

sows (DK) Uses Bayesian updating to estimate
litter size

Pla et al (2004) 1 R/T (PI) reproductive state (9), parity (11) variable (from
event to event)

R, K sows (E) Uses herd data for estimation of
transition probabilities.

Kure (1997a,b,c) 2 DR (HPI) observed live weigh, observed carcass
leanness

prod. cycle in pen
(∞); weeks of
delivery (4)

Dδ , E finishers (DK) Uses Recursive Dynamic
Programming in child process.
Group level: models a batch.

Jørgensen (1993) 2 DR (VI) dummy (1); weeks since start (5), pigs in pen
(32) [161]

prod. cycle in pen
(∞); week (5)

Dδ , E finishers (DK) The first period at second level is
actually 10 weeks (minimum
feeding time)

Jørgensen (1992) 2 L/T (VI) dummy (1); parity (20), exp. random effect
and influence on litter size (100) [2001]

sow life (∞);
parity (20)

R, K sows (DK) Litter size based on bayesian
updating. Hierarchical structure
imply reduced state space compared
to (Huirne et al, 1993)

Huirne and Hardaker (1998);
Huirne et al (1991, 1993)

1 DR (VI) parity p (11), litter size in p−1, p−2 (12),
unsuccessful breedings in p (4) [5633]

parity (70) R, K sows (NL) Huirne and Hardaker (1998) uses
the MDP as a sub-model.

Huirne et al (1988) 1 DR (VI) parity p (15), litter size in p−1, p−2, p−3
(20)

parity (50) R, K sows (NL) Litter size based on a dynamic
formula

Glenn (1983) 1 R (VI) live weight (80), carcass composition () 5 days (17) G, P finishers (UK) Deterministic model

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = discounted reward, L/T = avg. litter size per time unit, R/T = avg. reward per time unit. Algorithm used is given in parentheses (VI = value iteration, PI = policy iteration, HPI =
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hierarchical policy iteration).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level (separated with semicolon). Maximum number of stages given in parentheses.
f V = vaccinate, T = treat, Dπ = deliver π pigs, R = replace, K = keep, Dδ = deliver pigs with weight above δ , E = empty the pen, NM = natural mating, AI = Artificial Insemination, Mi =

allow i matings, P = protein level, E = energy level, G = gain.
g Animal group applied to. The country from which the parameters has been estimated is given in parentheses.
h A dummy state representing the pig has been culled is also included in the model.
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5 MDP models applied to other areas
Even though most models have been developed for applications within cattle and pig production,
a few papers within other applications exist in the literature.

Table 5 summarizes MDPs applied to other areas within livestock farming along the same
guidelines as in the tables for cattle and pig applications (Table 3 and 4). A total of 5 papers were
identified. In addition to those listed in the table, Kennedy (1986) reviews a number of very early
applications to laying hens, broilers and sheep.

Verstegen et al (1998) used an MDP as a tool for comparing different management informa-
tion systems performance against the optimal decisions found by the MDP and van Asseldonk
et al (1999) used an MDP to optimize which IT solutions to implement on farm. The remain-
ing papers focus on food and mouth disease (FMD) (Ge et al, 2010a,b) and how to compute an
adaptive control strategy of an animal disease among a set of farms (Viet et al, 2012). Decisions
considered in the models are “Keep”, “Replace”, if the farm should investment in a certain IT
solution, vaccination strategy, and different FMD control options.

Due to the various applications state variables differ much. Examples are IT investment
status, epidemic situation, infected, and month etc. Stage lengths vary from one day as in Ge
et al (2010a) to a year (van Asseldonk et al, 1999). Two papers use ordinary MDPs based on
value iteration optimizing expected discounted reward and three papers use hierarchical models,
with two implemented using the MLHMP software (Kristensen, 2003).

The models by Ge et al (2010a) and Ge et al (2010b) use Bayesian updating to estimate
the disease spread properties of the FMD virus causing the FMD outbreak, and Verstegen et al
(1998) use Bayesian updating to estimate the properties of hypothetical projects.
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Table 5: Overview over literature using MDPs within other areas than cattle and pig farm-
ing.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Viet et al (2012) 1 DR (VI) current month (12), S = susceptible
(N +1), I = infected (N +1), V =
vaccinated (N +1); only state
combinations where S+ I +V = N

1 month (∞) V, no V disease control (F) Total number of herds N varied
from 50 to 400.

Ge et al (2010b) 2 DR (HPI) epidemic situation (3), export ban (2),
infection index (5), estimated growth
potential of epidemic (5), uncertainty of
growth potential (5)

duration of
epidemic (∞); 10
day periods (10)

BP, V, PC FMD control (NL) Modification of work by Ge et al
(2010a).

Ge et al (2010a) 3 (HPI) epidemic situation (2), infection index (5),
estimated growth potential of epidemic
(5), uncertainty of growth potential (5)

duration of
epidemic (∞); 10
day periods (10);
1 day (10)

SP, BP,
V, PC,
STOP

FMD control (NL) See also Ge et al (2010b).

van Asseldonk et al (1999) 1 DR (VI) IT investment status (115): automatic
concentrate feeder (11), activity
measurement (11), milk production
measurement (11), milk temperature
measurement (11), conductivity
measurement (11)

year (20) Invest IT investment (NL) Studies investments in IT
equipment at farm level.
Deterministic model.

Verstegen et al (1998) 2 ? (HPI) number of production weeks, yield per
production week

project life (∞);
year (10)

R, K MISi evaluation (NL) Project age known from stage
number. Model with Bayesian
updating. Use the MDP as a tool
for comparing against farmers
choice.

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = discounted reward, L/T = litter size per time unit, R/T = reward per time unit. Algorithm used is given in parentheses (VI = value iteration, PI = policy iteration, HPI = hierarchical

policy iteration).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level (separated with semicolon). Maximum number of stages given in parentheses.
f V = vaccinate, BP = Basic control (FMD), PC = Preemptive culling (FMD), SP = Stop program (FMD), R = replace, K = keep.
g Animal group applied to. Country parameters have been estimated from given in parentheses.
i Management information system.
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6 Software for solving MDP models
The value iteration algorithm for ordinary MDPs is relatively easy to implement and most papers
have implemented the algorithm using various programming languages. The policy iteration is
harder to implement since we have to invert a matrix when solving the set of linear equations.
That is probably the reason that most studies reported in literature have used the more straight-
forward value iteration algorithm. In a few cases software packages in MATLAB1 have been
used to perform policy iteration (Heikkila et al, 2008, 2012). Linear programming can also be
used to find optimal policies but have only been used in two papers (Cabrera, 2010; Yates and
Rehman, 1998).

When considering hierarchical MDPs implementation becomes harder due to the nested
structure of the processes. Fortunately a general software system MLHMP for construction,
editing and optimization of Markov decision processes ranging from finite time ordinary MDPs
to hierarchical MDPs has been developed by Kristensen (2003). MLHMP is implemented in
Java2 with the possibility of building models as plug-ins. Moreover, it can handle all the criteria
mentioned in this paper. MLHMP has been used to solve almost all hierarchical MDPs in the
literature. Recently, a package “Markov decision processes (MDPs) in R” (Nielsen, 2011) has
been developed for model building in R3. It is based on a C++ implementation for fast execution
of policy and value iteration and can be used to solve both ordinary and hierarchical MDPs under
all criteria.

7 Conclusions and directions for further research
In this chapter MDPs have been considered to model livestock systems. Livestock farming prob-
lems are often sequential in nature and hence MDPs are suitable as a modeling tool.

A total of approximately 80 papers using a MDP for modeling the livestock system have
been reviewed with the first paper dating back to 1966 and the last paper in 2012. Only decision
models are included in the survey, i.e., simple Markov chain models are not mentioned even
though they are, of course, closely related to MDPs. Most papers have been considered within
dairy and some within pig production; however, MDPs have also been applied to other areas.

The papers may be divided into two categories, namely, papers using MDPs as a tool for
evaluating different herd effects, e.g., different reproductive programs (Kalantari and Cabrera,
2012) and papers formulating MDP models which may be embedded into a management decision
support system (DSS), e.g., a model for slaughter pig marketing (Kristensen et al, 2012).

The first category is mainly used by researchers as an evaluation tool and giving advise to the
industry. Several of the most advanced recent models are in this category. Thus, the models by
Bar et al (2008a,b) and Cha et al (2011) use the models to estimate the costs of clinical mastitis in
dairy cows and evaluate the treatment and prevention options, and Demeter et al (2011) use their

1MathWorks Inc. http://www.matlab.com.
2Oracle http://www.java.com/.
3R Development Core Team http://www.R-project.org/
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model to estimate the long-term consequences of different breeding strategies in dairy cows. It
is expected that many models developed in the future will belong to this category.

The aim of models in the second category is that they ultimately should be used within the
DSS on farm. However, the actual use of such models on farm has been limited. Reasons for
this may be that MDPs require access to good data for estimating the many parameters needed
in the model. Moreover the estimation process may be cumbersome and error-prone. As a result
there have been a growing focus on using on-farm biosensors for retrieving data and algorithms
for data filtration and parameter estimation based on Bayesian updating as in (Nielsen et al,
2010) for a dairy cow replacement model. An example from pig production is the work by Bono
et al (2012) where important litter size parameters to be used in a sow replacement models are
automatically and dynamically estimated from herd registrations and fed into the replacement
model. Furthermore, the states of the individual sows are automatically identified so that the
optimal decision can be returned by the optimization model. Providing direct links from data is
crucial if MDP models should be applied within farms since the parameter settings may be quite
different among farms.

Another issue is violated herd constraints. MDP models are often applied at animal level and
given replacement it is assumed that a new animal is available. As a result MDP models have
to be coordinated with other information streams and other models used in the farm DSS. This
calls for further research.

Due to the large number of state variables there is a trend in using hierarchical MDPs since
here state variables such as lactation number and lactation stage are implicitly given by the model
structure. Hence, the same problem formulated as a hierarchical model will typically have fewer
state variables than if it had been formulated as an ordinary MDP. Moreover, finding the optimal
policy using policy iteration is often faster.

Finally, the number of state variables may be so large that models may face the curse of
dimensionality. This calls for research in models which finds an approximate good policy using
techniques such as approximate dynamic programming (Powell, 2011).
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