
Ranking paths in stochastic time-dependent networks∗

Lars Relund Nielsen† and Kim Allan Andersen
CORAL, Department of Economics and Business, Aarhus University, Denmark

Daniele Pretolani
Department of Sciences and Methods for Engineering , University of Modena and Reggio Emilia, Italy

October 30, 2012

Abstract: In this paper we address optimal routing problems in networks where travel times are both
stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but
rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in
some particular cases an origin-destination path must be chosen a priori, since time-adaptive choices
are not allowed. Unfortunately, finding the a priori shortest path is an NP-hard problem.
In this paper, we propose a solution method for the a priori shortest path problem, and we show that it
can be easily extended to the ranking of the first K shortest paths. Our method exploits the solution of
the time-adaptive routing problem as a relaxation of the a priori problem. Computational results are
presented showing that, under realistic distributions of travel times and costs, our solution methods
are effective and robust.

Keywords: shortest paths; ranking; stochastic time-dependent networks; routing.

1 Introduction

Classical optimization models for routing commodities, vehicles, passengers etc. in a transportation
network assume that link travel times are deterministically known and do not evolve over time. In real
cases this assumption is often unrealistic, indeed, several different ways of representing uncertainty
and/or variability have been proposed in the literature. In this paper we consider stochastic time-
dependent networks (STD networks) where link travel times are represented by random variables with
probability distributions varying as a function of departure times. We distinguish between discrete
and continuous STD networks, according to the representation of time and the nature of the random
variables. Routing models based on STD networks have been often adopted in application areas
such as hazardous material transportation [4], advanced vehicle navigation and traveler information
systems [2, 7] and transit passenger path choice [9].

Optimal routing in STD networks was first addressed by Hall [8], who considered the minimiza-
tion of expected travel time for a given origin/destination pair and starting time. Hall pointed out
two different ways of formulating the problem. If a route must be specified before travel begins, and
no deviations are permitted, a simple (i.e., loopless) path must be selected; this is referred to as a
priori route choice. However, the shortest route is not necessarily a path but rather a time-adaptive

∗Preprint of L.R. Nielsen, K.A. Andersen and D. Pretolani, Ranking paths in stochastic time-dependent networks. Eu-
ropean Journal of Operational Research, doi:10.1016/j.ejor.2013.10.022

†Corresponding author (lars@relund.dk)

1

http://dx.doi.org/10.1016/j.ejor.2013.10.022
mailto:lars@relund.dk

strategy that assigns optimal successors to a node as a function of leaving time; this is referred to as
time-adaptive route choice. The adaptive problem turns out to be computationally easy; in a discrete
STD-network an optimal strategy can be found in linear time in the size of the network description
[11, 19]. By contrast, a priori route choice has been shown to be strongly NP-hard also for discrete
and deterministic time-dependent networks [18, 19].

A solution approach for a priori routing, valid for both discrete and continuous STD networks,
was proposed by Hall [8]; his method enumerates loopless paths in a suitably defined deterministic
and static version of the STD network. As observed in [12], Hall’s method has relevant potential
drawbacks, since it may process all existing paths before termination. For discrete STD networks,
Miller-Hooks and Mahmassani [12] proposed a labeling algorithm that finds a priori optimal paths,
to a given destination, from all the other nodes and for all possible leaving times. In fact, they allow
the paths to be looping, which is a major depart from Hall’s original model. This method has similar
drawbacks to Hall’s method (see [12, Proposition 4]) but turns out to be quite effective for sparse
random networks. For continuous STD networks, Fu and Rilett [6] proposed a heuristic approach
based on a technique for approximating the expected length of a path. Based on similar techniques,
an efficient algorithm was devised by Fu [5], and later extended to the multicriterion case by Chang
et al. [4].

Despite being less flexible and computationally harder, a priori route choice may represent the
only alternative in several situations. This is the case, for example, if the traveller does not have
access, or is not willing (think of a daily commuter) to react to information made available during
the travel. Another relevant example is the transportation of highly sensitive substances, where it is
necessary to commit in advance to a specific path, that must be preapproved and monitored; Chang
et al. [4] address a priori routing in this context. Moreover, on the strategic level the difference
between the minimum cost under a priori and time-adaptive routing may provide an indication of the
value of using on-line information. This indication may support the decision of investing in on-board
navigation systems and road infrastructures, see e.g. [2, 3, 7] for some related issues. A comparison
between a priori and adaptive routing goes beyond the scope of this work; the interested reader may
find some results in [12, 13].

In many cases where a priori routing is mandatory, finding a single shortest path may not be satis-
factory, and it becomes relevant to determine a set of alternative optimal or nearly-optimal paths. This
allows e.g. to select the shortest path satisfying some additional constraints not captured by the net-
work model. In other cases we may be interested in selecting a set of spatially dissimilar paths, rather
than a single one; this typically happens in hazardous materials transportation, in order to equally
distribute the risk among the population. A common approach (see e.g. [1]) consists in selecting dis-
similar paths out of a (large) set of previously generated “attractive” paths. In the situations above,
one needs effective methods for ranking a priori paths, that is, the STD counterpart of the classical K
shortest (loopless) paths in directed graphs [20]. However, to the best of our knowledge, ranking of a
priori paths in STD networks has never been addressed in the literature, with the exception of Nielsen
et al. [17] where a ranking procedure was embedded in a two phase method for bicriterion a priori
routing.

In this paper we consider a priori route choice in discrete STD networks, for a single origin,
a single destination, and a given departure time. Our goals are to devise solution methods for the
shortest and K shortest path problems, and to evaluate their effectiveness and robustness against a
set of challenging instances. In the following we describe in detail the aim and contribution of our
work. First, it is worthwhile to add a couple of remarks on the model considered here. Since we
address a priori route choice, we ignore all kind of on-line information, including arrival times at
intermediate nodes, which implies that waiting is forbidden. Furthermore, according to the original

2

model proposed by Hall, we assume that travel times are independent random variables. Models of
STD networks with correlated travel times have been proposed, see e.g. [10] for a priori route choice;
these models are much more computationally demanding than the classical one.

We devise a best-first branch and bound method, where subproblems correspond to subnetworks
of the STD network. Due to the best-first policy this method generates paths in non-decreasing order
of cost, and thus deals quite naturally with the ranking of a priori paths. A relevant methodological
contribution of our approach is that we solve time-adaptive problems as a relaxation of a priori prob-
lems. The fact that the former problem is a relaxation of the latter has already been pointed out [12],
but has never been exploited for algorithmic purposes. Within our method, the use of the adaptive
relaxation allows to skip (or at least delay) the processing of unpromising subproblems, thus avoiding
the pitfalls of the previously proposed methods. We also devise a version of our method solving time-
adaptive subproblems via reoptimization, see Nielsen, Pretolani, and Andersen [16]. This version
turns out to be consistently faster.

To the best of our knowledge, our work is the first one addressing the ranking of a priori paths in
STD networks, both from a methodological and a computational point of view. It is instructive to point
out that previous approaches for the shortest a priori path do not seem suitable for ranking purposes.
This may shed light on the motivations and the relevance of our methodological contribution. The
method proposed by Hall, despite some similarities to our one, does not necessarily generate paths in
nondecreasing order of travel time. Indeed, it generates paths in nondecreasing order of length, which
is a (quite loose) lower bound on the expected travel time. As a consequence, the path generation stops
only when the length of the last generated path meets the K-th best solution found so far, provided
this happens before enumerating all the existing paths. Similar and possibly worse drawbacks affect
labeling methods, in particular label correcting ones. In fact, we do not know how a labeling method
may be extended to ranking in STD networks, at least without the addition of suitable bounds or
domination rules. Note that the above drawbacks are avoided in our method, due to the best-first
policy and the use of the time-adaptive relaxation.

When considering finding the shortest a priori path (i.e., the case K = 1) we do not make strong
claims on the merits of our approach, since our setting differs substantially from those of previous
proposals. Indeed, labeling methods for the discrete case are conceived for a much more general
version of the problem; on the other hand, solution methods based on the continuous model are inher-
ently approximate, even if they may offer a better trade-off between computational cost and solution
quality. Based on these premises, it seems apparent that a direct computational comparison to pre-
vious algorithmic proposals would be questionable, if not arbitrary. Therefore, in our computational
analysis we concentrate on the validation of our ranking methodology, which is the main focus of this
paper. In fact, an appraisal of the merits and drawbacks of the many existing approaches to a priori
routing in STD networks would be an interesting contribution, but this goes far beyond the scope of
this paper.

To assess the quality and robustness of our methods we set up a particularly challenging experi-
mental setting. To this aim, we concentrate on networks with a grid topology, and we exclude the final
steady state adopted e.g. in [10, 12]. The combined impact of these two choices on the difficulty of the
instances is discussed in detail in Section 4. For grids of different size and shape, we consider several
different models for the link behaviour, i.e., different width and shape of the fluctuations of link travel
times and costs. The most important issue in our tests is that we address minimization of costs, in
addition to minimization of travel times usually addressed in the literature. Instances involving costs
instead of travel times turn out to be computationally much more demanding; a possible explanation
of this behaviour is given in Section 4. Nevertheless, our methods turn out to be reasonably stable
under many different scenarios.

3

We remark that the restriction to grid networks fits the aims of our analysis, and cannot be consid-
ered as a limitation. In particular, our benchmark instances simulate road networks with congestion
effects, and thus can be considered as a realistic representation (and most likely, a “worst case” ex-
ample) of “real world” transportation networks. Benchmarks derived from road networks have been
occasionally used in the literature on STD networks, but we believe that they would be redundant in
our case. Besides, adapting the available network descriptions to our setting would be rather arbitrary,
since there is no clearly established methodology for assessing the link behaviour.

The paper is organized as follows. The definitions of discrete STD networks and of the related
routing problems are given in Section 2. In Section 3 we provide our algorithms for the a priori short-
est and K shortest path problems. In Section 4 we describe our test instances, and report computational
results for finding the shortest and K shortest a priori paths. Finally, we summarize original contri-
butions and directions for further research in Section 5. Appendix A provides an example illustrating
several concepts introduced throughout the paper.

2 Stochastic time-dependent networks

We consider discrete STD networks where departure times are integer and travel times are independent
integer-valued discrete random variables with time-dependent density functions. We assume that
departure and arrival times belong to a finite time horizon, i.e. a set H = {0,1, ..., tmax} of integer
values. In practice, we assume that the relevant time period is discretized into time intervals of length
δ , i.e., the time horizon H corresponds to the set of time instances 0,δ ,2δ , ..., tmaxδ .

Let G = (N,A) be a directed network with node set N and arc set A. We will refer to G as the
topological network. As usual, FS(u) = {(u,v) ∈ A} denotes the forward star of node u. Let o ∈ N
and d ∈ N denote the origin and destination node in G, respectively.

For each arc (u,v) ∈ A let L(u,v)⊂ H be the set of possible leaving times from node u along arc
(u,v). Moreover, let L(u) , u 6= d denote the set of possible leaving times from node u, i.e.,

L(u) =
⋃

(u,v)∈FS(u)

L(u,v) .

Throughout the paper we assume L(o) = {0}, that is, it is only possible to leave the origin at time zero.
For each arc (u,v) ∈ A and t ∈ L(u,v), let X (u,v, t) denote the arrival time at node v when leaving
node u at time t along arc (u,v) . The arrival time X (u,v, t) is a discrete random variable with density

Pr(X (u,v, t) = ti) = θuvt (ti) , ti ∈ I (u,v, t)

where
I (u,v, t) =

{
t1, ..., tκ(u,v,t)

}
denotes the set of κ (u,v, t) possible arrival times at node v when leaving node u at time t along arc
(u,v). That is, for each ti ∈ I (u,v, t) the probability of arriving at node v at time ti when leaving node
u at time t is θuvt (ti). We assume that travel times are positive, that is, ti > t for each ti ∈ I (u,v, t). We
denote by

κ = ∑
(u,v)∈A, t∈L(u,v)

κ (u,v, t)

the total number of possible arrival times over all arcs and possible departure times. The value κ can
be considered as the space required to describe the STD network, that is, the size of the input to our

4

problem. Note that κ grows with the number of arcs, the length of the time horizon, and the size of
the support of the random travel time variables.

Adaptive routing in the STD network is described by a (time-adaptive) strategy, that is, a function
s : (N \{d}×H)→ A that assigns to each node u 6= d and time t ∈ L(u) a successor arc s(u, t) = (u,v)
such that t ∈ L(u,v). According to s, a traveller leaving a node u at time t ∈ L(u) travels along arc
s(u, t). From now on, we concentrate on travellers leaving the origin node o at time zero.

Definition 1 A route is a pair R = (DR,sR) where sR is the restriction of some strategy s over the
domain DR, and DR ⊆ (N \{d}×H) is recursively defined as follows:

1. (o,0) ∈ DR;

2. if (u, t) ∈ DR, s(u, t) = (u,v) and v 6= d then (v, t ′) ∈ DR for each t ′ ∈ I(u,v, t).

A route R provides a complete and minimal set of routing choices for a traveller that leaves the origin
at time zero and moves towards the destination. Indeed, DR contains a pair (u, t) if and only if the
traveller has a non-zero probability of leaving node u at time t. Note that we do not allow waiting at
intermediate nodes: a traveller arriving at node u 6= d at time t leaves u at time t, along arc sR(u, t).
A route allows the traveller to arrive at node d within time tmax for every possible realization of the
travel times. In other words, a route R exists if and only if the STD network allows to travel from o to
d. We refer the reader to [19] for a formal discussion of these properties.

Definition 2 Given a route R = (DR,sR), let GR = (VR,AR) denote the subgraph of G defined by R,
where

VR = {u ∈V : ∃(u, t) ∈ DR}∪{d} , AR = ∪(u,t)∈DR{sR(u, t)}. (1)

The network GR contains the arcs which may be used with a positive probability when following the
route R. Note that GR may contain several o-d paths, and is not necessarily acyclic.

Definition 3 A route R is a path-route if GR is a directed and loopless o-d path.

Let P = (o = u1,u2, . . . ,ul,ul+1 = d) be a loopless o-d path in G. A traveller following path P
adopts a time-independent routing choice, that is, travels along arc (ui,ui+1) regardless of the leaving
time from node ui. We say that P is feasible if a traveller following P, and leaving o at time zero,
arrives at d within time tmax for every possible realization of the travel times. In other words, a path P
is feasible if a traveller following P cannot arrive at an intermediate node ui at time t 6∈ L(ui,ui+1).

Theorem 1 There is a one-to-one correspondence between feasible o-d paths in G and path-routes in
the STD network.

Proof By definition, a path-route defines a unique feasible path. To prove the converse, consider a
feasible path P = (o = u1,u2, . . . ,ul,ul+1 = d) in G. Let DP denote the set of pairs (u, t) such that
a traveller following P has a non-zero probability of leaving u at time t. The set DP can be defined
recursively as follows:

1. (o,0) ∈ DP;

2. if (ui, t) ∈ DP and ui 6= d then (ui+1, t ′) ∈ DP for each t ′ ∈ I(ui,ui+1, t).

5

Indeed, feasibility of P implies that t ∈ L(ui,ui+1) for each pair (ui, t) ∈ DP. Furthermore, define the
function sP : DP→ A such that sP(ui, t) = (ui,ui+1) for each pair (ui, t) ∈DP. Clearly, R = (DP,sP) is
a path-route.

Several optimality criteria for routing in STD networks have been considered in the literature.
Let us consider the minimization of expected cost. Costs can be introduced in our STD model by
letting c(u,v, t), t ∈ L(u,v) denote the expected travel cost of leaving node u at time t along arc (u,v).
Moreover, we let gd(t) be a penalty cost of arriving at node d at time t. The expected cost of a route
R = (DR,sR) can be defined by means of recursive equations, associating a value ER(u, t) to each pair
(u, t) ∈ DR. In particular, if sR(u, t) = (u,v) we have:

ER(u, t) = c(u,v, t)+ ∑
t ′∈I(u,v,t)

θuvt(t ′)ER(v, t ′)

where ER(d, t) = gd(t) for each t ∈ H. The value ER(u, t) is the expected cost incurred when leaving
node u at time t, following R towards d. The expected cost of R is therefore ER(o,0), which we denote
c(R). Note that the minimization of expected costs includes as particular cases the minimization of
the expected travel time and the maximization of the reliability, that is, the probability of arriving at
d within a given time. In particular, the former case can be formulated as the minimization of the
expected cost by setting gd(t) = t for each t ∈H and c(u,v, t) = 0 for each (u,v) and t ∈ L(u,v). Other
optimality criteria may be dealt with by our solution methods, but we only consider expected travel
time and cost in our computational experience.

In light of Theorem 1, the shortest a priori path problem (SAP) addressed in this paper can be
formulated as finding the path-route R with minimum expected cost c(R). This problem is well known
to be NP-hard [18]. The ranking version of SAP, that is the K-shortest a priori path problem (K-SAP)
consists in generating the first K path-routes in nondecreasing order of expected cost.

Under time-adaptive route choice, the optimal routing problem can be formulated as finding the
route R (not necessarily a path-route) with minimum c(R). This problem can be solved in linear time;
more precisely, it takes O(κ) time to find the optimal route R or show that no feasible route exists. In
Appendix A we present an example showing how the optimal route R can be computed, both for the
case of costs and of travel times.

Since path-routes are a subset of routes, the time-adaptive problem is a relaxation of SAP, referred
to as the time-adaptive relaxation in the following. Note in particular that the cost of a path-route R
is the same in SAP and in the time-adaptive relaxation, a fact that will be exploited in our solution
methods.

3 Finding and ranking path-routes in STD networks

In this section we first present our algorithm for SAP, and then describe the extension to K-SAP.
Furthermore, we devise a faster variant that exploits reoptimization techniques.

In their overall structure our algorithms bear some resemblance with the classical Yen’s method [20]
for ranking loopless paths in directed graphs. There are, however, significant technical differences,
as can be expected since, in STD networks, even finding the shortest path is NP-hard. In fact, our
approach consists in adapting path-ranking methods in directed graphs and combining them with the
solution of the time-adaptive relaxation.

6

3.1 An enumeration algorithm for SAP

Our solution algorithm for SAP is essentially a branch and bound method, where each sub-problem
corresponds to a sub-network of the original STD network, defined by a subgraph of the topological
network G. In particular, we adopt a best-first enumeration strategy, that is, we select subproblems to
be processed in nondecreasing order according to a lower bound on their optimal solution value. The
lower bound is obtained by solving a time-adaptive relaxation for each generated sub-problem.

Consider a generic subproblem S, defined by the subgraph GS, and let R denote the optimal route
returned by the time-adaptive relaxation of S. Clearly, if R is a path-route then it is also the optimal
solution to S. Suppose otherwise that S is selected but R is not a path-route; in this case we need to
apply a branching operation. The goal of our branching rule is to partition the set of loopless o-d
paths in GS; to this aim, we adapt the branching rule defined by Yen [20] for ranking paths in directed
graphs. Our partition technique is based on a branching path pR, contained in the graph GR defined
by R, that starts from the origin o but is not necessarily an o-d path. From now on, let us denote by
FSR(u) the forward star of a node u in the graph GR.

Definition 4 Given a route R, a branching path pR = (o = u1, . . . ,ul,ul+1) in GR is a path satisfying

1. FSR(ui) = {(ui,ui+1)} ,∀i = 1, . . . , l−1.

2. |FSR(ul)| ≥ 2.

Note that GR always contains a branching path with l ≥ 2, since we assume L(o) = {0} and therefore
(o,0) is the only pair (o, t) contained in DR, that is, FSR(o) = {(u1,u2)}. Note also that we may have
ul+1 = d. By definition, GR contains a unique path from o to ul , while several arcs may be used as the
last arc in pR; we do not make any assumption about the way this arc is chosen. Let ΠS denote the set
of o-d paths in GS.

Definition 5 Given a branching path pR = (o = u1, ...,ul+1) we partition the set ΠS into the subsets
Π

(i)
S ⊂ΠS, 1≤ i≤ l +1, as follows:

1. for 1 ≤ i ≤ l, paths in Π
(i)
S contain the subpath p(i)R = (u1, ...,ui) of pR but do not contain arc

(ui,ui+1);

2. paths in Π
(l+1)
S contain the branching path pR.

Note that one or more of the sets Π
(i)
S in Definition 5 may be empty. The partition of ΠS implicitly

defines a family of subgraphs of GS.

Definition 6 Given a branching path pR = (o = u1, ...,ul+1) the subgraph G(i)
S , i = 1, ..., l + 1, is

obtained from GS as follows:

1. For each node u j, j = 1, ..., i− 1, remove each arc in FS(u j) except (u j,u j+1), i.e., fix arc
(u j,u j+1);

2. If i 6= l +1, remove arc (ui,ui+1).

The following result is rather intuitive; a formal proof may be given by adapting the proof of correct-
ness for Yen’s algorithm.

7

Step 1 (initialization) let Q = {(MinCost(G),G)};
Step 2 (selection) if Q = /0 then STOP (no feasible path); otherwise, remove from Q a pair

(lbS,GS) with minimum lbS; let R = OptRoute(GS);

Step 3 (branching) if R is a path-route go to Step 5; otherwise, choose a branching path pR

and let F = F(GS, pR);

Step 4 (bounding) for each subgraph G(i)
S ∈ F such that MinCost(G(i)

S)<+∞ insert into Q
the pair (MinCost(G(i)

S),G(i)
S); go to Step 2;

Step 5 (termination) OUTPUT R and STOP.

Figure 1: The branch and bound algorithm for SAP.

Lemma 1 Given a branching path pR = (o = u1, ...,ul+1), for each 1≤ i≤ l +1 we have that Π
(i)
S is

the set of loopless o-d paths in subgraph G(i)
S .

In light of Lemma 1, in our branching operation we select a path pR and we create l +1 subprob-
lems S(1), . . . ,S(l+1), where each S(i) corresponds to the STD sub-network defined by subgraph G(i)

S .
For each subproblem S(i) we solve the time-adaptive relaxation, and we distinguish two possible cases.
If the relaxation yields an optimal route R(i) then we assign to S(i) the lower bound c(R(i)), and we
store S(i) for later processing. Otherwise, we discard S(i) since the corresponding STD sub-network
does not contain any feasible route. An example of application of our branching rule is worked out in
details in Appendix A. Some relevant properties are worth pointing out.

Property 1 Given a branching path pR = (o = u1, ...,ul+1), the following statements hold true:

1. none of the subgraphs G(i)
S , 1≤ i≤ l+1, contains all the arcs in GR, and thus, all the arcs in GS;

2. if Π
(i)
S = /0 then the subproblem S(i) is discarded;

3. none of the subproblems S(i), 1≤ i≤ l +1, admits R as a feasible route.

A summary of our branch and bound method is given in Figure 1. We use a priority queue Q
to store subproblems to be processed; actually Q stores pairs (lb′,G′), where lb′ is the lower bound
assigned to the STD subnetwork defined by subgraph G′. We denote by F(GS, pR) the family of sub-
graphs in Definition 6. We also introduce two functions, namely MinCost(G′) and OptRoute(G′),
that solve a time-adaptive relaxation in the STD network defined by graph G′. Function MinCost(G′)
returns the minimum expected route cost, or +∞ if no feasible route exists; function OptRoute(G′) re-
turns the optimum route, assuming that one exists, that is MinCost(G′)<+∞. Note that the algorithm
terminates as soon as a path-route R = OptRoute(G′) is found in Step 2. For the sake of simplicity,
we assume MinCost(G) < +∞, that is, that the original STD network contains at least one feasible
adaptive route.

Theorem 2 The algorithm given in Figure 1 correctly solves the SAP problem in a finite number of
iterations.

Proof Finiteness follows from Property 1. Correctness follows from Lemma 1 and from the termina-
tion rule in Step 3; indeed, if R = OptRoute(GS) is a path-route we have lbS = c(R), thus no other
path-route may have a cost less than c(R).

8

The worst case complexity is exponential, since it may be necessary to enumerate all the subgraphs
of G. Note, however, that the algorithm takes linear time O(κ) for each subproblem inserted into Q.
We claim (omitting proof) that a smart implementation takes time O(|Π|κ), where Π is the set of
loopless o-d paths in G. This implies a polynomial complexity in the (rather unlikely) case where
Π is polynomial in the input size κ . Concerning the space complexity a (small) constant amount of
information needs to be stored for each subproblem inserted into Q. The interested reader may consult
[13] for a description of the data structures and the implementation details.

3.2 An enumerative method for K-SAP

As discussed above, our algorithm for SAP has several similarities with Yen’s method for ranking
paths in directed graphs. Thus the extension to K-SAP is rather straightforward: instead of stopping
the enumeration as soon as a path-route is found, we apply Yen’s branching rule to the corresponding
o-d path, and continue until K path-routes are obtained.

Let us briefly discuss the meaning of Yen’s branching rule when applied in our context. Consider
a subproblem S defined by graph GS, assume that R = OptRoute(GS) is a path-route, and let GR

correspond to the loopless path p = (o = u1, ...,uq+1 = d). We partition the set ΠS \{p} into q subsets
Π(i), 1 ≤ i ≤ q. Accordingly, we generate q proper subgraphs G(i)

S of GS, for 1 ≤ i ≤ q, such that
Π(i) is the set of o-d paths in G(i)

S . For completeness, recall that we obtain the subgraph G(i)
S from GS

by removing the arc (ui,ui+1) and by fixing arc (u j,u j+1) for each j = 1, ..., i− 1. We then create a
subproblem S(i) for each G(i)

S , and we proceed as in the SAP algorithm.
Let us denote by F(GS,R) the family of subgraphs defined by Yen’s rule for a subproblem S with

shortest path-route R. The algorithm for K-SAP is obtained from the one in Figure 1 replacing Step 5
with the following step, where we assume that the counter k is initialized to zero at the outset:

Step 5’ (Yen’s rule) OUTPUT R; let k = k+1; if k =K then STOP, otherwise let F =F(GS,R)
and go to Step 4.

The correctness of the K-SAP algorithm then follows from the correctness of Yen’s method and from
Theorem 2.

3.3 A faster method based on reoptimization

A clear drawback of our solution methods for SAP and K-SAP is that, in Step 4, the time-adaptive
relaxation MinCost(G(i)

S) is solved for each generated subproblem S(i), including discarded ones. This
is quite expensive in terms of computation times. A possible alternative is to compute a lower bound
LB(G(i)

S) on the minimal route cost, instead of MinCost(G(i)
S). In this way, the time-adaptive relaxation

is solved only when (and if) the subproblem is selected from Q in Step 2. As a consequence, however,
subproblems are not necessarily selected in the desired order. Moreover, a subproblem S(i) such
that MinCost(G(i)

S) = +∞ may fail to be discarded, and enter Q with a finite lower bound LB(G(i)
S).

Therefore, a more complex treatment of the selection phase is necessary.
Consider the pair (lbS,GS) removed from Q in Step 2, and let lbmin = min{l : (l,g) ∈ Q} denote

the minimum lower bound among the pairs remaining in Q; we have lbmin =+∞ if Q is empty. Solving
the time-adaptive relaxation, three mutually exclusive cases may arise.

1. MinCost(GS) = +∞: in this case, we discard (lbS,GS) and repeat Step 2;

9

2. lbmin < MinCost(GS) < +∞: in this case, we discard (lbS,GS), but we insert into Q the pair
(MinCost(GS),GS), and repeat Step 2;

3. MinCost(GS)<+∞ and MinCost(GS)≤ lbmin: we let R = OptRoute(GS) and go to Step 3.

Note that in case 2 the subproblem is reinserted in Q with the lower bound MinCost(GS); thus a
subproblem cannot be reinserted more than once. Moreover, in case 3 the selection of (lbS,GS) is
correct even if we have LB(GS) < MinCost(GS). Since the new algorithm only differs slightly from
the algorithm in Figure 1, we omit a pseudo-code description here.

A fast and tight lower bound on the expected cost of the optimal route can be computed by exploit-
ing the reoptimization techniques proposed by Nielsen, Andersen, and Pretolani [15], Nielsen et al.
[16], in the context of K shortest hyperpaths procedures. The results in [15, 16] are technically rather
involved, and are not described here. Reoptimization techniques cannot be deployed in full strength
in our context, since they are devised for a different branching rule, and for searching in a different
solution space. Nevertheless, they turn out to be quite useful in practice, as we shall see in the next
section.

4 Computational results

In this section we report the results of the computational experience with our methods for a priori
paths. In our tests we only consider the ranking version of the algorithm; however, we also address
problem SAP, since we report statistics about the generation of the first (and thus shortest) path. Two
optimization criteria are tested, namely, the minimization of expected travel time (referred to as MET)
and expected cost (MEC).

We address the versions of the ranking algorithm with and without reoptimization, respectively
denoted by K-SAPreopt and K-SAP. Both versions have been implemented in C++ and tested on a 2.9
GHz Intel Core i7 laptop with 16 GB RAM using a Windows 7 operating system (Enterprise 64-bit
SP1). The programs have been compiled with the GNU C++ compiler (mingw32-g++) with optimize
option -O2.

4.1 Test classes

In all our tests, the underlying topological network G is assumed to be a grid of base b and height
h, with origin o in the bottom-right corner node and destination d in the upper-left corner node. The
choice of grids aims at obtaining challenging benchmarks. Indeed, in a b× h grid the topological
length (i.e., number of arcs) of an o-d path is at least b+h−2; moreover, the number of these topo-
logically shorter paths grows exponentially with b and h. A first consequence is that the solution space
to be explored is quite dense: even recognizing that the K shortest paths are likely to be topologically
short, the number of candidate paths remains large and grows quickly with the grid dimensions. More
important, in an STD network, longer paths imply more intermediate nodes and arrival times spread
in a wider interval, and this in turns imply more opportunities for an optimal adaptive route to divert
from an a priori path; as we shall see, the adaptive behaviour of routes makes SAP and K-SAP harder.
A further effect is due to the absence of a final steady state, which requires every feasible route to
terminate at d within the time horizon H = {0,1, ..., tmax}. In order to grant feasibility of the routes
of interest for K-SAP, tmax cannot be chosen arbitrarily, but must increase with the grid dimensions.
In particular, in our instances tmax grows with the topological length of paths, i.e., roughly linearly in
b+h. Now suppose that both b and h are increased by a multiplicative factor f , leaving the average

10

leaving time

m
ea

n
tr

av
el

 ti
m

e

5

6

7

8

9

10

0 50 100 150

Figure 2: Peak effect on mean travel time and cost.

value κ (u,v, t) unchanged; since the number of arcs is linear in b×h, the input size κ increases by a
factor roughly f 3.

All tests are performed on STD networks generated with the TEGP (Time-Expanded Generator
with Peaks) generator [14]. TEGP includes several features inspired by typical aspects of road net-
works, in particular for the simulation of congestion effects. We consider cyclic time periods (cycles)
of 144 time instances (e.g. 12 minutes with a time step δ of 5 seconds) where each cycle contains one
or more peaks. Each peak consists of three parts: a transient part of length ttrans where the mean
travel time (congestion) increases, a pure peak part of length tpure where it stays the same, and a tran-
sient part of length ttrans where it decreases again. This feature gives travel time distributions with
higher mean and higher standard deviation in peaks. The pattern of the mean travel time µ(u,v, t) on
a grid arc (u,v), when two peaks are considered, is shown in Figure 2. The mean travel time µ(u,v, t)
equals the off-peak mean travel time µuv until it reaches the transient part of the first peak, where it
increases up to (1+ψ)µuv, where ψ denotes the peak increase factor. Next the mean travel time stays
the same during the pure peak part and then decreases again to µuv where it stays the same until the
second peak is reached.

The off-peak mean travel time µuv is generated randomly, for each grid arc (u,v), in the interval
[2,6]. We somehow take for granted that a wider interval of values for µuv results in more difficult
instances, and we do not explore this possibility in our tests. Given µ(u,v, t), possible travel times
are the integers in the interval [b0.75µ(u,v, t)c,d1.25µ(u,v, t)e]; probabilities are calculated using a
binomial distribution. In most cases, we shall assume a peak increase factor of ψ = 1 (100%), i.e., the
mean travel time can increase up to 12, and the maximum travel time can be at most 15.

Under the MEC criterion peak dependent costs are generated. That is, the travel cost c(u,v, t)
follows the same pattern as the mean travel time in Figure 2. Off-peak costs are generated in the
interval [1,1000]; this gives travel costs in the interval [0,2000] during peaks. Note that off-peak costs
and travel times are generated independently, and are not correlated to each other. The penalty costs
gd(t) are set to zero for each time t.

11

In our instances the time horizon length tmax is computed as an upper bound on the expected travel
time along a topologically short o-d path; the computation takes into account all the features described
above, see [14] for details. As long as MET is considered, the resulting tmax is large enough to grant
feasibility of every route of interest for K-SAP. This is no longer guaranteed if MEC is considered:
since travel times and costs are not correlated, a cheap path may need a long travel time. Nevertheless,
we decided to keep the same tmax for both MET and MEC in our tests, to avoid an unreasonable
growth of the problem size. Note that a time horizon of the desired length tmax is obtained considering
a sequence of successive cyclic periods, where possibly the last one is truncated to a time instant
smaller than 144.

In the following, we use the term test class to define a particular setting of the TEGP input param-
eters; for each class, different STD networks (i.e. different instances of each class) can be generated
by choosing different seeds. In our tests, ten instances were generated for each class.

4.2 Aims and statistics

The aim of our computational experience is twofold. On the one hand, we try to evaluate the per-
formances of our procedures, pointing out the relevance of reoptimization techniques. On the other
hand, we try to explain the behaviour of our algorithms on the basis of the optimization criterion con-
sidered, the structure of the instances and of the solution sets. The reported statistics can be divided
into different groups. The first group considers the performance of the procedures; the abbreviations
used in the tables are given in parentheses.

CPU time (cpuK): CPU time in seconds for finding the K shortest paths. Does not include
input/output time.

First CPU time (cpu1): CPU time in seconds for finding the shortest path.

Number of iterations (iteK): The number of subproblems selected from the candidate set Q
before finding the K’th shortest path, that is, the overall number of iterations of the ranking
algorithm.

Number of iterations (ite1): The number of iterations before finding the shortest path.

Average number of subproblems created (aveBT): Average number of subproblems inserted into
the candidate set Q when branching, i.e. the average number of nodes added to the branch-
ing tree.

Number of reinsertions (reins): For K-SAPreopt, the number of pairs reinserted into the candi-
date set Q after computing the actual shortest route (see Section 3.3). Reported in percent
of the number of iterations iteK .

Note that the total number of subproblems inserted in the branching tree is given by iteK ·aveBT. The
second group of statistics is related to the cost (travel time for MET and travel cost for MEC) of the
solutions.

Relative increase in expected cost (inc1−K): The cost increase between the shortest and the
K’th shortest path. Reported in percent.

Relative increase route to shortest path (incR−P): The cost increase between the optimal time-
adaptive route and the shortest path. Reported in percent.

12

K-SAP K-SAPreopt

C
la

ss

Si
ze

|H
|

κ i
n
c

1−
K

i
n
c

R
−

P

i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

r
e
i
n
s

a
v
e
F
S

a
v
e
B
T

1 10×10 171 161608 5.86 0.00 4 0.02 122 0.62 3 0.00 123 0.15 1.22 1.05 7

2 20×20 327 1161842 2.13 0.01 2 0.28 154 10.66 2 0.04 154 1.94 0.00 1.03 10

3 30×30 482 3807538 1.18 0.01 5 1.73 181 54.92 5 0.23 181 7.40 0.00 1.03 14

4 40×40 638 8943761 0.50 0.01 16 10.86 228 196.90 16 1.64 228 22.68 0.00 1.03 17

5 6×18 202 166037 7.50 0.01 2 0.02 132 0.87 2 0.00 133 0.20 1.13 1.05 8

6 12×36 389 1416937 1.49 0.00 4 0.53 156 17.45 4 0.07 156 2.44 0.00 1.03 14

7 18×54 576 4680921 0.72 0.02 6 3.38 178 78.71 6 0.36 178 10.07 0.00 1.02 16

8 24×72 762 11027383 0.33 0.03 17 18.32 235 253.24 17 2.28 235 31.06 0.00 1.02 14

Table 1: Results for finding the K = 100 shortest paths under the MET criterion (2 peaks/cycle,
ttrans = tpure = 20 and ψ = 100%).

The last group contains one single statistic, related to the structure of the optimal route R returned by
the time-adaptive relaxation.

Average number of successor arcs (aveFS): The average number of arcs in the forward star of
the nodes in GR, omitting the destination d.

Recall that R is a path-route if and only if GR defines an o-d loopless path, that is, aveFS = 1. There-
fore, the lower the value of aveFS ≥ 1, the more “path-like” – i.e., the less “adaptive” – is the route R.
Since our algorithms are based on the time-adaptive relaxation, their performance is likely to depend
on how adaptive the optimal routes found are. If there are many routes R where GR does not resemble
a path we may have to branch many times before a path is found. On the contrary if the routes are
very “path-like”, i.e. GR is close to a path, the size of the branching tree will be smaller and ranking
paths will be faster.

4.3 Results

In Table 1 we report the results of our algorithms for the MET criterion, and for grid graphs of
increasing size. We consider square grids and rectangular grids with a ratio h/b = 3. Note that
rectangular grids have slightly more nodes and sligtly longer topologically shorter paths than the
corresponding square grids. We assume two peaks for each cyclic period, with ttrans = tpure = 20,
and with a peak increase factor ψ = 100%. The values aveFS and aveBT are reported only once, since
the difference in the values computed for K-SAP and K-SAPreopt is negligible.

Observe that square and rectangular grids give quite similar results, the latter being slightly more
difficult than the former, as expected due to the higher number of nodes and minimal path length
b+h−2. Algorithm K-SAPreopt turns out to be much faster than K-SAP; CPU times are reduced up
to 88% (class 4) and on average 84%. This is clearly due to the fact that the reoptimization technique
is very effective for these classes; indeed, the reoptimization bound is very tight, since there are no
reinsertions except for the smallest grid dimensions. In addition, the average number of insertions
per iteration (aveBT) is relatively high, which implies that many shortest route computations are saved
using reoptimization. Note that the reduction of CPU times obtained by K-SAPreopt is essentially the

13

C
la

ss

Si
ze

|H
|

κ Pe
ak

i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

a
v
e
F
S

a
v
e
B
T

i
n
c

1−
K

i
n
c

R
−

P

9 25×25 404 2092203 {1:40,40;100} 5 0.13 180 4.20 1.03 9.43 1.81 0.00

10 25×25 404 2202345 {2:20,20;100} 5 0.13 188 4.48 1.04 9.41 1.25 0.02

11 25×25 404 2234998 {4:10,10;100} 5 0.14 200 4.70 1.04 8.84 1.52 0.10

12 25×25 404 2127711 {8:5,5;100} 54 1.24 500 11.33 1.08 5.93 1.48 0.73

13 25×25 260 1030336 {2:20,20;0} 1 0.02 100 1.42 1.00 14.62 1.30 0.00

14 25×25 332 1596607 {2:20,20;50} 5 0.10 182 3.38 1.03 9.23 1.50 0.01

15 25×25 404 2202345 {2:20,20;100} 5 0.12 188 4.39 1.04 9.41 1.25 0.02

16 25×25 549 4097464 {2:20,20;200} 6 0.25 197 7.16 1.04 8.85 1.89 0.04

17 25×25 459 2631558 {2:5,50;100} 14 0.37 297 7.87 1.05 7.02 1.20 0.15

18 25×25 441 2563420 {2:10,40;100} 8 0.21 203 5.29 1.04 9.36 0.92 0.06

19 25×25 404 2202345 {2:20,20;100} 5 0.13 188 4.38 1.04 9.41 1.25 0.02

20 25×25 368 1966910 {2:30,0;100} 7 0.16 182 3.86 1.03 9.25 1.71 0.02

Table 2: Results for finding the K = 100 shortest paths under the MET criterion: varying peak effects.
Column “Peak” describes peaks in the format {peaks/cycle: ttrans, tpure; ψ}.

same (up to small fluctuations) for SAP and K-SAP, and for square and rectangular grids. In light of
the above results, we shall only report the results of algorithm K-SAPreopt in the forthcoming tables.

We remark that both our algorithms show a stable behaviour for increasing grid dimensions.
In particular, both the number of iterations (iteK) and the number of insertions (aveBT) grow less
than linearly with the problem size κ . Recall that algorithm K-SAP computes an optimal route
for each created subproblem, thus its execution time is expected to grow linearly in iteK · aveBT
·κ; for K-SAPreopt the growth factor decreases to iteK ·κ . Overall, the CPU times (cpuK) grow
more than linearly, but less than quadratically in the problem size κ; a rough estimation could be
iteK ≈ O(κ · log(κ)). Similar observations can be made if we consider SAP (i.e., ite1 and cpu1)
instead of K-SAP. Note that the solution space explored by our algorithms becomes more and more
dense for increasing grid dimensions, as shown by the the decreasing values of inc1−K (from 7.5%
to 0.33% for rectangular grids) that denote an increasing number of paths with expected travel time
close to the shortest path.

The good behaviour of our methods can be related to the low degree of adaptivity of routes.
Indeed, the value aveFS is always quite close to 1, and is lower for higher grid dimensions; therefore,
the optimal routes found are in general rather path-like. This is confirmed if we consider the increase
in travel time between the best route and the shortest path, which is close to zero (at most 0.03%) in
all cases.

The results in Table 1 show that, at least for the settings adopted in Classes 1–8, paths are com-
petitive with adaptive routes. However, different congestion effects (simulated by the peak feature of
TEGP) may lead to a different behaviour. Some results for different peak settings are given in Table 2
(class 9-20) for a fixed grid size of 25× 25. The column “Peak” provides a complete description of
the peak setting, i.e., the number of peaks per cycle, the transient length ttrans, the pure peak length
tpure, and the increase factor ψ , reported in percent.

In the first block (classes 9–12) we consider the number of peaks per cycle, increasing from one

14

to eight; clearly, the peak length decreases proportionally. Note that tmax does not change, but the
number of complete peaks arising throughout the time horizon H increases from 2 (class 9) to 22
(class 12). Increasing the number of peaks makes travel time fluctuate at a higher frequence. As can
be expected, this leads to a more adaptive behaviour, as shown by the value aveFS and also by the
branching path length aveBT. Interestingly, the performance of our algorithms does not seem to be
significantly affected, except for class 12; also in this case, however, iteK and cpuK increase less than
a factor 3. On the other hand, finding the shortest path becomes much harder (a factor around 10) for
class 12; this can be related to the fact that paths are less competitive w.r.t. adaptive routes, as shown
by incR−P.

In classes 13–16 we increase the factor ψ from 0% to 200%, wih two peaks per cycle . Clearly,
this gives a longer time horizon and therefore a greater problem size. Increasing ψ has a lesser impact
on the adaptivity of routes, but the behaviour of our methods remains quite similar to the one observed
for classes 1–8. Note that class 13 actually does not have any peak effect since ψ = 0. In this case we
have time-independent travel times and we do not find any optimal route with time-adaptive choices,
thus obtaining iteK = K.

Finally, consider class 17-20 where various peak shapes are tested, given a fixed total peak length,
and again with two peaks per cycle. Here a shorter pure peak length (i.e., a longer transient peak
length) leads to a less adaptive behaviour; this can be expected, since the pure peak period has a
stronger impact on travel times. Due to this effect, and to the reduction of the input size, the perfor-
mance of our algorithms improves for shorter pure peaks.

In Table 3 we simulate yet another setting of the peak feature, where the congestion effect (similar
e.g. to the “step networks” in [10]) affects only a subset of the links. More precisely, classes 21–
28 are equivalent to classes 1–8 except that the peak effect is applied only to “horizontal” grid arcs
(leading east or west) while “vertical” arcs (leading north and south) have time-independent off-peak
travel times. As a result, it may often be preferable to travel vertically to avoid a “long” horizontal
arc, in particular during peaks. Therefore, a more adaptive behaviour can be expected, and this is
confirmed by comparing the results in Table 3 to the ones in Table 1. In fact, the value aveFS increases
only slightly (less than 10%) but the more adaptive behaviour is confirmed by the shorter length
of the branching tree (aveBT) and by the relative increase incR−P. As a consequence, K-SAPreopt
obtains a worse performance, both in terms of iterations and CPU times; in the worst case (class
24) cpuK increases by an order of magnitude w.r.t. the corresponding class 4. Nevertheless, it must be
remarked that CPU times grow more or less quadratically in the input size. Note that the impact on the
performance is less relevant for rectangular grids where (since h = 3b) we mostly travel north (recall
we travel from the bottom-right to the upper-left corner) and thus we need less links with congestion
effects.

Under the MEC criterion the problem turns out to be much harder than under MET. Results for
increasing grid size are given in Table 4; we omitted larger grids due to the high CPU times and added
grids of intermediate size. The peak settings are the same in Table 4 and Table 1; in particular, as
long as travel times are considered, the STD networks in classes 30, 32, 34 and 36 are the same as in
classes 1, 2, 5 and 6, respectively.

As clearly shown by the iteration counters, algorithm K-SAPreopt does not show the same stable
behaviour as observed for MET. In particular, rectangular grids turn out to be much more challenging
than square grids of comparable dimensions; recall that the difference was rather limited for MET. For
example, CPU times for classes 32 and 36 differ by one order of magnitude; note that the minimum
topological length is b+h−2 = 38 for class 32 and 46 for class 36. This confirms that the algorithmic
performance is strongly affected even by small increase in the problem dimensions, which can be
expected since SAP is a strongly NP-hard problem.

15

C
la

ss

Si
ze

|H
|

κ i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

a
v
e
F
S

a
v
e
B
T

i
n
c

1−
K

i
n
c

R
−

P

21 10×10 171 161825 3 0.00 178 0.20 1.07 5.58 6.45 0.12

22 20×20 327 1216683 10 0.12 383 4.67 1.07 5.35 2.36 0.10

23 30×30 482 4039118 37 1.53 649 26.39 1.09 5.79 1.11 0.17

24 40×40 638 9492826 145 14.80 2257 227.75 1.12 4.44 0.57 0.35

25 6×18 202 197175 3 0.01 194 0.31 1.06 5.28 6.77 0.04

26 12×36 389 1618354 10 0.18 475 8.10 1.07 5.91 1.80 0.14

27 18×54 576 5418905 49 2.89 672 39.52 1.08 7.01 0.85 0.22

28 24×72 762 12836186 88 11.84 1209 160.78 1.09 5.27 0.62 0.38

Table 3: Results for finding the K = 100 shortest paths under the MET criterion; no peak-effect on
vertical grid arcs.

C
la

ss

Si
ze

|H
|

κ i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

a
v
e
F
S

a
v
e
B
T

i
n
c

1−
K

i
n
c

R
−

P

29 5×5 93 22708 8 0.00 255 0.02 1.16 3.14 77.93 16.64

30 10×10 171 161608 54 0.06 823 0.84 1.17 3.67 14.56 13.77

31 15×15 249 486917 148 0.64 1596 7.01 1.15 4.07 7.31 8.76

32 20×20 327 1161842 1187 13.48 9642 109.87 1.20 4.11 4.54 11.83

33 3×9 109 23649 7 0.00 260 0.03 1.11 3.46 46.07 14.02

34 6×18 202 166037 275 0.37 2435 3.18 1.11 4.09 12.24 14.34

35 9×27 296 618618 1991 12.51 16499 106.36 1.22 3.89 5.41 9.73

36 12×36 389 1416937 8973 130.08 71919 1048.35 1.21 4.01 3.81 9.59

Table 4: Results for finding the K = 100 shortest paths under the MEC criterion (2 peaks/cycle,
ttrans = tpure = 20 and ψ = 100).

The higher difficulty of MEC can be related to the greater degree of adaptivity shown by the
optimal routes, which is clearly shown by aveFS, aveBT, and incR−P. Also for MEC the solution space
becomes denser for increasing grid size, but the values inc1−K are about twice the ones observed
for MET: this fact, together with the higher values of incR−P, confirm that adaptive routes are more
competitive than paths, opposed to what observed for MET.

The hardness of MEC can be explained considering the cost structure. Recall that MET is obtained
by setting c(u,v, t) = 0 for each (u,v) ∈ A and t ∈ L(u,v), and thus MET can be considered as a quite
particular case of MEC. Due to the cost structure, the peak effect is likely to affect the cost of a path
more than it affects its travel time; in other words, the cost of a path (or subpath) may have wide
fluctuations depending on the leaving time. This in turn may explain the higher adaptive behaviour
observed for MEC.

Finally, results for different peak settings under MEC are given in Table 5; here the settings are the
same as in Table 2, except that a smaller (15×15) grid is used. The behaviour observed for MEC is

16

C
la

ss

Si
ze

|H
|

κ Pe
ak

i
t
e

1

c
p
u

1

i
t
e

K

c
p
u

K

a
v
e
F
S

a
v
e
B
T

i
n
c

1−
K

i
n
c

R
−

P

37 15×15 249 481982 {1:40,40;100} 29 0.14 422 2.02 1.08 4.53 6.94 4.14

38 15×15 249 486917 {2:20,20;100} 148 0.68 1596 7.44 1.15 4.07 7.31 8.76

39 15×15 249 483031 {4:10,10;100} 144 0.67 2274 10.79 1.23 3.62 8.26 8.12

40 15×15 249 468533 {8:5,5;100} 123 0.56 1883 8.56 1.28 3.39 8.14 5.69

41 15×15 160 226431 {2:20,20;0} 8 0.02 445 1.11 1.10 8.17 8.65 0.77

42 15×15 204 345646 {2:20,20;50} 63 0.22 1439 4.99 1.12 4.53 8.70 3.69

43 15×15 249 486917 {2:20,20;100} 148 0.67 1596 7.31 1.15 4.07 7.31 8.76

44 15×15 338 885470 {2:20,20;200} 1406 9.80 7891 55.24 1.19 3.55 7.37 18.79

45 15×15 282 542668 {2:5,50;100} 560 2.80 4813 24.06 1.19 3.67 7.67 9.35

46 15×15 271 520713 {2:10,40;100} 574 2.75 4491 21.55 1.16 3.89 7.06 10.83

47 15×15 249 486917 {2:20,20;100} 148 0.65 1596 7.13 1.15 4.07 7.31 8.76

48 15×15 227 436405 {2:30,0;100} 33 0.14 857 3.49 1.16 4.17 7.51 4.35

Table 5: Results for finding the K = 100 shortest paths under MEC under various peak effects.

essentially the same as pointed out for MET, but with a couple of significant differences. On one side,
increasing the number of peaks (classes 37-40) has a rather unpredictable impact on the performance.
On the other side, increasing the peak factor ψ (classes 41-44) has a much more impressive impact
compared to what observed for MET.

5 Conclusions

In this paper we devised a solution method for the a priori shortest path problem in discrete STD
networks, and extended this method to finding the K shortest a priori paths. We also devised a faster
version exploiting reoptimization techniques to compute fast lower bounds. We evaluated the ef-
fectiveness and robustness of our algorithms against a set of hard instances, and we pointed out the
impact of the problem structure on the performance of our algorithms. To the best of our knowledge,
our paper is the first one addressing the K shortest a priori path problem in STD networks.

From a computational point of view, the reported results are quite encouraging. For the mini-
mization of travel times (usually addressed in the literature on STD networks) our algorithms can be
expected to be effective for instances arising from (reasonable approximations of) real networks, and
rather robust when faced with larger or harder instances. We also addressed the minimization of travel
costs, which turned out to be much harder than the problem involving travel times. Note however that
we limited ourselves (due to space limitations) to the rather extreme case where travel costs are totally
independent from travel times. Further analysis is required to evaluate intermediate situations, where
costs and times may be partially correlated.

Observe that the implementation of our solution algorithms is rather straightforward: besides
reoptimization, we did not exploit any sophisticated data structure or algorithmic technique. Clearly,
further enhancements are possible. For example, faster and more effective reoptimization based lower
bounds may be devised. Moreover, a smart heuristic rule may be adopted to select the branching path
(see Section 3.1) giving priority to more promising sub-paths.

17

Finally, the extension of our approach to other variants or special cases of SAP and K-SAP (e.g. with
correlated travel times) seems to provide a challenging direction for further research.

References

[1] V. Akgün, E. Erkut, and R. Batta. On finding dissimilar paths. European Journal of Operational
Research, 121:232–246, 2000. doi:10.1016/S0377-2217(99)00214-3 .

[2] M.K. Ardakani and L. Sun. Decremental algorithm for adaptive routing incorporating traveler
information. Computers & Operations Research, 39(12):3012–3020, 2012. doi:10.1016/j.cor.
2012.03.006 .

[3] S.D. Boyles and S.T. Waller. Optimal information location for adaptive routing. Networks and
Spatial Economics, 11(2):233–254, June 2011. doi:10.1007/s11067-009-9108-9 .

[4] T.-S. Chang, L.K. Nozick, and M.A. Turnquist. Multiobjective path finding in stochastic dy-
namic networks, with application to routing hazardous materials shipments. Transportation
Science, 39(3):383–399, 2005. doi:10.1287/trsc.1040.0094 .

[5] L. Fu. An adaptive routing algorithm for in-vehicle route guidance systems with real-time
information. Transportation Research Part B: Methodological, 35:749–765, 2001. doi:
10.1016/S0191-2615(00)00019-9 .

[6] L. Fu and L.R. Rilett. Expected shortest paths in dynamic and stochastic traffic net-
works. Transportation Research Part B: Methodological, 32(7):499–516, 1998. doi:10.1016/
S0191-2615(98)00016-2 .

[7] S. Gao and H. Huang. Real-time traveler information for optimal adaptive routing in stochastic
time-dependent networks. Transportation Research Part C: Emerging Technologies, 21(1):196–
213, April 2012. doi:10.1016/j.trc.2011.09.007 .

[8] R.W. Hall. The fastest path through a network with random time-dependent travel times. Trans-
portation Science, 20(3):182–188, 1986. doi:10.1287/trsc.20.3.182 .

[9] M.D. Hickman and D.H. Bernstein. Transit service and path choice models in stochastic and
time-dependent networks. Transportation Science, 31(2):129–146, 1997. doi:10.1287/trsc.31.
2.129 .

[10] H. Huang and S. Gao. Optimal paths in dynamic networks with dependent random link travel
times. Transportation Research Part B: Methodological, 46:579–598, 2012. doi:10.1016/j.trb.
2012.01.005 .

[11] E.D. Miller-Hooks. Adaptive Least-Expected time paths in stochastic, time-varying transporta-
tion and data networks. Networks, 37(1):35–52, 2001. doi:10.1002/1097-0037(200101)37:
1<35::AID-NET4>3.0.CO;2-G .

[12] E.D. Miller-Hooks and H.S. Mahmassani. Least expected time paths in stochastic, time-varying
transportation networks. Transportation Science, 34(2):198–215, 2000. doi:10.1287/trsc.34.2.
198.12304 .

18

http://dx.doi.org/10.1016/S0377-2217(99)00214-3
http://dx.doi.org/10.1016/j.cor.2012.03.006
http://dx.doi.org/10.1016/j.cor.2012.03.006
http://dx.doi.org/10.1007/s11067-009-9108-9
http://dx.doi.org/10.1287/trsc.1040.0094
http://dx.doi.org/10.1016/S0191-2615(00)00019-9
http://dx.doi.org/10.1016/S0191-2615(00)00019-9
http://dx.doi.org/10.1016/S0191-2615(98)00016-2
http://dx.doi.org/10.1016/S0191-2615(98)00016-2
http://dx.doi.org/10.1016/j.trc.2011.09.007
http://dx.doi.org/10.1287/trsc.20.3.182
http://dx.doi.org/10.1287/trsc.31.2.129
http://dx.doi.org/10.1287/trsc.31.2.129
http://dx.doi.org/10.1016/j.trb.2012.01.005
http://dx.doi.org/10.1016/j.trb.2012.01.005
http://dx.doi.org/10.1002/1097-0037(200101)37:1<35::AID-NET4>3.0.CO;2-G
http://dx.doi.org/10.1002/1097-0037(200101)37:1<35::AID-NET4>3.0.CO;2-G
http://dx.doi.org/10.1287/trsc.34.2.198.12304
http://dx.doi.org/10.1287/trsc.34.2.198.12304

[13] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD thesis, Depart-
ment of Operations Research, University of Aarhus, 2004. URL http://www.imf.au.
dk/publs?id=499.

[14] L.R. Nielsen. TEGP - time-expanded generator with peaks, January 2006. URL http://www.
research.relund.dk.

[15] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the K shortest hyperpaths. Computers
& Operations Research, 32(6):1477–1497, 2005. doi:10.1016/j.cor.2003.11.014 .

[16] L.R. Nielsen, D. Pretolani, and K.A. Andersen. Finding the K shortest hyperpaths using reop-
timization. Operations Research Letters, 34(2):155–164, 2006. doi:10.1016/j.orl.2005.04.008
.

[17] L.R. Nielsen, D. Pretolani, and K.A. Andersen. Bicriterion shortest paths in stochastic time-
dependent networks. In V. Barichard, M. Ehrgott, X. Gandibleux, and V. T’Kindt, editors,
Multiobjective Programming and Goal Programming, volume 618 of Lecture Notes in Eco-
nomics and Mathematical Systems, pages 57–67. Springer Berlin Heidelberg, 2009. doi:
10.1007/978-3-540-85646-7_6 .

[18] A. Orda and R. Rom. Minimum weight paths in time-dependent networks. Networks, 21(3):
295–319, 1991. doi:10.1002/net.3230210304 .

[19] D. Pretolani. A directed hypergraph model for random time-dependent shortest paths. European
Journal of Operational Research, 123(2):315–324, 2000. doi:10.1016/S0377-2217(99)00259-3
.

[20] J.Y. Yen. Finding the K shortest loopless paths in a network. Management Science, 17(11):
712–716, 1971. doi:10.1287/mnsc.17.11.712 .

19

http://www.imf.au.dk/publs?id=499
http://www.imf.au.dk/publs?id=499
http://www.research.relund.dk
http://www.research.relund.dk
http://dx.doi.org/10.1016/j.cor.2003.11.014
http://dx.doi.org/10.1016/j.orl.2005.04.008
http://dx.doi.org/10.1007/978-3-540-85646-7_6
http://dx.doi.org/10.1007/978-3-540-85646-7_6
http://dx.doi.org/10.1002/net.3230210304
http://dx.doi.org/10.1016/S0377-2217(99)00259-3
http://dx.doi.org/10.1287/mnsc.17.11.712

Appendix A

The main definitions introduced throughout the paper are illustrated here. To this aim, we show a very
small example and we work out the details of our method, in particular, the computation of the optimal
adaptive route and the application of our branching rule. We treat the minimization of expected
cost first and in greater detail, and then the case of travel times more briefly. In order to represent
STD networks graphically we adopt the time expanded hypergraph representation introduced in [19].
However, we use hypergraphs only as a graphic tool, without discussing related theoretical concepts.

Consider the topological network G = (N,A) in Figure 3, where a is the origin node and d is
the destination node. We assume that the time horizon is H = [0,6]. In Table 6 we list the possible
departure times for each arc in G, together with the corresponding arrival times and travel costs. Here
a pair ((u,v), t) corresponds to a possible leaving time t from node u along arc (u,v), that is, t ∈ L(u,v).
Clearly, for the origin node a we have L(a) = {0}. For the sake of simplicity, we assume that X(u,v, t)
has a uniform density, i.e., for each t ′ ∈ I(u,v, t), we have θuvt(t ′) = 1/|I(i, j, t)|. For example, if we
leave node c at time 2 along arc (c,d), we arrive at node d at time 3 or 4 with the same probability
1/2. We denote by D = {3,4,5,6} the set of possible arrival times at destination d. The penalty cost
gd(t) is zero for each t ∈ D and the input size of the problem is κ = 13.

a

b

c

d

Figure 3: The topological network G.

(u,v), t (a,b),0 (b,c),1 (b,c),2 (b,d),1 (b,d),2 (c,d),2 (c,d),3 (c,d),4

I(u,v, t) {1,2} {2,3} {3} {3} {6} {3,4} {4,5} {5,6}
c(u,v, t) 2 2 5 9 5 8 2 1

Table 6: Arrival times and travel costs.

Minimization of expected cost

The representation of the resulting STD network is shown in Figure 4. We introduce a node (circle)
ut for each pair (u, t) with t ∈ L(u). For each (u,v) ∈ A and t ∈ L(u,v) we introduce a hyperarc euv(t)
that joins ut to the set of nodes vti , with ti ∈ I(u,v, t). Note that the arrow in euv(t) points towards ut ,
which represents the departure from node u at time t. The number close to each hyperarc euv(t) is the
travel cost c(u,v, t). We also introduce a dummy source s, and dummy arcs from s to each node dt

with t ∈ D. The aim of these arcs is to carry the penalty costs, which are zero in our example.
Hyperarcs in solid lines in Figure 4 represent the minimum expected cost route R = (DR,sR);

that is, for each pair (u, t) ∈ DR the optimal successor is the arc (u,v) = sR(u, t) such that euv(t)

20

appears in solid lines. The number close to each node ut is the value ER(u, t) obtained from the
successor (u,v) = sR(u, t), as shown in Section 2, where we additionally have ER(d, t) = gd(t) = 0
for each t ∈ D. Note that DR contains all the pairs (u, t) with u 6= d except (c,4). This means that a
traveller following R cannot arrive at node c at time 4. In fact, time 4 is not a possible arrival time
at node c, regardless of the chosen route. The computation of the shortest route R can be done as
follows. First, the value ER(d, t) = gd(t) = 0 is assigned to each node dt . Then the other nodes ut

are processed in reverse order of time (i.e., right to left in Figure 4) breaking ties arbitrarily. Each
node ut is assigned the minimum value ER(u, t) obtained from hyperarcs euv(t) pointing at ut . Take
for example node b1: the involved hyperarcs are ebd(1), yielding ER(b,1) = 0+ 9 = 9; and ebc(1)
yielding ER(b,1) = 2+(8+2)/2 = 7. The latter gives the minimum value and thus appears in solid
lines, denoting the optimal successor sR(b,1) = (b,c).

a 0

s

d 5d 4d 3

c 3c 2 c 4

b2b1

d 6

0 0 0 0

8 2
9

1

5

52

2

0 0 0 0

18 2

57

8

Figure 4: The STD network and the minimum cost route R.

Note that R is not a path-route, since we have sR(b,1) = (b,c) and sR(b,2) = (b,d). In fact, the
graph GR induced by R coincides with the whole graph G. We have FS(a) = {(a,b)} and |FS(b)|= 2,
thus we have two possible options for the branching path pR, namely, pR = (a,b,c) and pR = (a,b,d).
Suppose the latter is chosen: according to Definition 6 we obtain three subgraphs, that we denote by
G(i), 1≤ i≤ 3, since we have GS = G.

The subgraph G(1) is obtained from G by deleting the unique arc (a,b) in FS(a). Clearly, it is
not possible to travel from a to d in G(1). Therefore, we have MinCost(G(1)) = +∞ in Step 4 of
our algorithm, and the subproblem corresponding to G(1) is discarded. The other two subgraphs,
with the corresponding STD networks, are shown in Figure 5a and Figure 5b. The fixed arcs and
the corresponding hyperarcs are shown in bold lines; solid lines represent the shortest a-d route in
the subproblem. In both cases the shortest route is a path-route with expected cost 9. Therefore, the
branching rule inserts into the candidate set Q the two pairs (9,G(2)) and (9,G(3)). These pairs will be
selected (in whatever order) and clearly will not generate further subproblems where d is connected

21

to a.

0 0 0 0

8 2 1

52

2

a0

d 5d 4d 3

c 3c 2 c 4

b2b1

d 6

a

b

c

d

s

0 0 0 0

8 2

77

9

(a) Subgraph G(2)

0 0 0 0

8 2
9

1

5

2

a0

s

d 5d 4d 3

c 3c 2 c 4

b2b1

d 60 0 0 0

18 2

59

9 a

b

c

d

(b) Subgraph G(3)

Figure 5: Feasible subproblems obtained by branching on R.

Minimization of expected travel time

The resulting STD network is represented in Figure 6. The structure is the same obtained for costs,
but the values associated with arcs and hyperarcs change: hyperarcs euv(t) carry a zero cost, while
the arc from s to dt carries the “penalty” gd(t) = t. Solid lines represent the route R yielding mini-
mum expected travel time; note that R is not a path-route and differs from the route minimizing cost.
The computation of R is performed as shown before. Taking again node b1: hyperarc ebd(1) yields
ER(b,1) = 3, while hyperarc ebc(1) yields ER(b,1) = (3.5+4.5)/2 = 4. In this case the former gives
the minimum value, thus sR(b,1) = (b,d).

Also in this case the graph GR induced by R coincides with the whole graph G. Assume that
the branching path pR = (a,b,c) is chosen, i.e. the branching operation generates the subgraphs G(i),
1≤ i≤ 3, where it is not possible to travel from a to d in G(1). The two subgraphs G(2) and G(3), with
the corresponding STD networks and optimal routes, are shown in Figure 7a and Figure 7b. In this
case, the branching rule inserts into Q the two pairs (4.5,G(2)) and (4.25,G(3)), both corresponding
to path-routes. Clearly, the last pair is selected first and adds no pair to Q, thus the latter pair is the
next (and last) one selected.

22

3 4 5 6

0 0
0

0

00

0

a 0

s

d 5d 4d 3

c 3c 2 c 4

b2b1

d 6

0

3 4 5 6

5.53.5 4.5

4.53

3.75

Figure 6: The STD network and the minimum travel time route R.

a

b

c

d

3 4 5 6

0 0
0

0

0

a 0

s

d 5d 4d 3

c 3c 2 c 4

b2b1

d 6

0

3 4 5 6

5.53.5 4.5

63

4.5

(a) Subgraph G(2)

a

b

c

d

3 4 5 6

0 0 0

00

0

a 0

s

d 5d 4d 3

c 3c 2 c 4

b2b1

d 63 4 5 6

5.53.5 4.5

4.54

4.25

(b) Subgraph G(3)

Figure 7: Feasible subproblems obtained by branching on R.

23

	Introduction
	Stochastic time-dependent networks
	Finding and ranking path-routes in STD networks
	An enumeration algorithm for sap
	An enumerative method for k-sap
	A faster method based on reoptimization

	Computational results
	Test classes
	Aims and statistics
	Results

	Conclusions

