
The TEGP generator

Lars Relund Nielsen∗

CORAL - Cluster for OR Applications in Logistics, Department of Economics and Business, School of Business and
Social Sciences, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark.

Version 1.66 - July 2013

Abstract: This manual provides documentation of the Time-Expanded Generator with Peaks (TEGP)
which generates instances of stochastic time-dependent networks. The program includes several features
inspired by typical aspects of road networks (congestion effects, waiting, random perturbations etc.).

Keywords: stochastic time-dependent networks, testing, generator.

Contents

1 Introduction 1

2 Generating travel time distributions 2

3 Generating costs 3

3.1 Generating travel costs . 3

3.2 Generating waiting costs . 5

3.3 Generating penalty costs . 10

4 Calculating the time horizon 13

5 Running the program 13

6 Input parameters 14

7 Output 14

8 TEGP Class Documentation 15

8.1 GridNode Class Reference . 15

8.1.1 Detailed Description . 16

8.1.2 Constructor & Destructor Documentation . 16

8.1.3 Member Function Documentation . 16

8.2 Random Class Reference . 16
∗Corresponding author (lars@relund.dk).

i

lars@relund.dk

4 71

3 6 9

5 82

d

o

Figure 1: A topological grid network (3× 3 grid).

8.2.1 Detailed Description . 17

8.2.2 Member Function Documentation . 17

8.3 TegPeak Class Reference . 18

8.3.1 Detailed Description . 18

8.3.2 Constructor & Destructor Documentation . 18

8.3.3 Member Function Documentation . 18

A Stochastic time-dependent networks 19

A.1 Basic definitions . 19

A.2 Optimality criteria . 21

A.3 A directed hypergraph model for STD networks . 21

1 Introduction

The Time-Expanded Generator with Peaks (TEGP) generates instances of stochastic time-dependent net-
works (STD networks). The program includes several features inspired by typical aspects of road networks
(congestion effects, waiting, random perturbations etc.). Note that the TEGP generator like other gener-
ators only models a fraction of a real network. However, it provides alternative choices that may affect
the behavior of the algorithms. For an short introduction to STD networks and the notation used see Ap-
pendix A.

A topological grid network G of base b and height h is assumed, and we search for optimal strategies
from the bottom-right corner node (origin o) to the upper left corner node (destination d). This choice is
motivated by the fact that each origin-destination path has at least b+ h− 2 arcs, and the number of such
paths grows exponential with the size of G. A topological grid network G of base 3 and height 3 is shown
in Figure 1. Note that no arcs enter the origin and no arcs exit the destination.

The generator considers cyclic time periods (e.g. a day) and the time horizon H is the (finite) number of

1

leaving time

m
ea

n
tr

av
el

 ti
m

e

0 20 40 60

2.0

2.5

3.0

3.5

4.0

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●

Figure 2: Mean travel time for an arc (ψ = 100%).

time instances in a cycle multiplied by the number of cycles. In each cyclic period there are some peak
periods (e.g. rush hours). Each peak consists of three parts; a transient part where the traffic increases, a
pure peak part where the traffic stays the same and a transient part where the traffic decreases again. Peaks
are placed at the same time in each cycle. If no peaks are wanted then the length of the peak may be set to
zero.

2 Generating travel time distributions

The travel time distributions are found by first generating the off-peak mean travel times µ(u, v) ∈ {lbT , ..., ubT }
for all arcs (u, v).

Let µuv(t) denote the mean travel time for each possible leaving time t ∈ L(u, v). The mean µuv (t)
follows a pattern like the line in Figure 2 where the mean for each leaving time is shown with a circle. In
off-peaks µuv (t) = µ (u, v), i.e. the constant mean travel time in off-peaks. At the beginning of a peak,
µuv (t) increases from µ (u, v) to µ (u, v) (1 + ψ), where ψ denotes the peak increase parameter, then
stays the same during the pure peak period, and then decreases to µ (u, v) again. Which arc the peak effect
is applied to is controlled by the flag flagT which may take the following values

0 - The peak effect is applied to all arcs.

1 - The peak effect is applied to north and west arcs only. The other arcs (south and east) use µuv (t) =
µ (u, v) for all leaving times.

2 - The peak effect is applied to west and east arcs only. The other arcs use µuv (t) = µ (u, v) for all
leaving times.

Option 1 and 2 have been provided to model roads which not are so “Peak sensitive”.

Let X (u, v, t) denote the travel time to node v when leaving node u at time t along arc (u, v). Given the
mean travel time µuv(t) the travel time distribution is found as follows.

1. Find σuv (t) = ρµuv (t) where ρ is the standard deviation mean ratio.

2. The set of possible travel times is then {t1, ..., tκ(u,v,t)} = {bµuv(t)−σuv(t)c, ..., µuv(t), ..., dµuv(t)+
σuv(t)e}. Moreover, only positive travel times in {t1, ..., tκ(u,v,t)} are considered.

2

3. NoteX(u, v, t) = t1+Y (u, v, t) where Y is a discrete random variable taking the values {0, ..., κ(u, v, t)−
1}. Given the positive travel times {t1, ..., tκ(u,v,t)} we now set Pr(X = ti) = Pr(Y = i − 1)
where Y ∼ bi(q − 1, 1/2). As a result E(X) = µuv(t).

Note, using the setting above gives higher mean travel time and higher standard deviation in peaks. More-
over, only the interval of possible off-peak travel times {lbT , ..., ubT } is given as an input parameter to the
TEGP generator. The actual interval of possible travel times IT depends on the peak increase parameter ψ
and the standard deviation mean ratio ρ, i.e.

IT = {b(1− ρ) lbT c, . . . , d(1 + ψ) (1 + ρ)ubT e} (1)

A flag flagstatic have been provided such that it is possible to use static travel time and costs in off-peaks.
If flagstatic = 0 travel times are generated as described above. If flagstatic = 1 a deterministic travel
time µuv (t) = µ (u, v) is used in off-peaks. This feature is provided if you only want to have a stochastic
nature in peaks. For costs the random pertubation is ignored in off-peaks if flagstatic = 1 (see Section 3.1)

Finally, symmetric mean travel times can be used for the arcs in G. In this case µuv (t) = µvu (t). Note
symmetric mean travel times is not possible if flagT = 1

3 Generating costs

Three different types of costs are considered, namely, travel costs, waiting costs and penalty costs. Cur-
rently, negative costs are not accepted.

3.1 Generating travel costs

Two costs ci (u, v, t), i = 1, 2 for each arc (u, v) and leaving time t ∈ H are generated, since we may need
two costs if bicriterion route choice is considered. The way the costs are generated is controlled using two
flags. The first flag, flagcor, specify the correlation between the two off-peak costs ci (u, v), i = 1, 2. The
second flag, flagC , specify how the costs, given an arc, for different leaving times depend on each other.

The following values of flagcor are possible:

0 - both costs ci(u, v) are random in {lbC , ..., ubC}.

1 - c2(u, v) = ubC − (c1(u, v)− lbC)

2 - The costs are generated as follows:

c1 (u, v) <
ubC − lbC

2
⇒ c2 (u, v) ∈ {ubC − (c1 (u, v)− lbC) , . . . , ubC}

c1 (u, v) ≥
ubC − lbC

2
⇒ c2 (u, v) ∈ {lbC , . . . , lbC + (ubC − c1 (u, v))}

3 - NETMAKER costs see Skriver and Andersen [8]. “...if one cost is between 1 and 33, the other is
between 67 and 100”

Note for flagcor equal 1, 2 and 3 the two costs are negatively correlated. This is a typical situation in
hazardous material transportation, where travel cost and risk/exposure are conflicting.

Off-peak costs generated in the interval [1, 1000] × [1, 1000] for the four correlation types are shown in
Figure 3.

3

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000

●●●

●●●

●●●

●●●

●●●●

●●●●
●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●● ●●●●
●●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●●
●●●●

●●●
●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●● ●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●
●●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●● ●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●
●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●● ●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●● ●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●● ●●●●●

●●●●●●

●●●●●

●●●●
●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●
●●●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●● ●●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●●●
●●●●●

●●●●●
●●●●● ●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●● ●●●●

●●●●

●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●●

●●●●

●●●●

●●●● ●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●● ●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●● ●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●● ●●●●

●●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

(a) flagcor = 0

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000

●●●

●●●

●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●
●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●
●●●●

●●●

●●●
●●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●●●

●●●●
●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●●●

●●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●
●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●
●●●●●

●●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●
●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●
●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●
●●●●

●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●

●●●●
●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●●●

●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

(b) flagcor = 1

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000
●●●

●●●

●●●

●●● ●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●● ●●●
●●●●●●●

●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●
●●● ●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●
●●● ●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●●

●●●●
●●●

●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●● ●●●●

●●●

●●●

●●●●

●●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●●

●●●

●●● ●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●● ●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●● ●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●

●●●●

●●●●
●●●●

●●●

●●●

●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●● ●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●

●●●● ●●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●
●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●

●●●●● ●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●●●●●●

●●●●

●●●●●

●●●●●●
●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●● ●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●
●●●●

●●●●

●●●●

●●●●●●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●
●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●● ●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●

●●●

●●●●

●●●●
●●●●●●●

●●●

●●● ●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●● ●●●

●●●

●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●
●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●
●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●● ●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●● ●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●●●●●●

●●●●

●●●●●

●●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

(c) flagcor = 2

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000

●●●

●●●

●●●

●●●

●●●●

●●●●●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●●●

●●●●

●●●●

●●●●

●●●

●●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●● ●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●
●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●●●

●●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●

●●●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●● ●●●

●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●
●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●
●●●

●●●●

●●●●

●●●●
●●●

●●●

●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●●●●

●●●

●●●
●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●● ●●●

●●●●●●

●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●●

●●●

●●●

●●●

●●●
●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●● ●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●● ●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●
●●●●

●●●●

●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●● ●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●●

●●●

●●●

●●●●

●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●●

●●●●●

●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●

●●●●●

●●●● ●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●● ●●●●●●●●●

●●●

●●●

●●●●●●

●●● ●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●
●●●●●

●●●●●●

●●●●● ●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●
●●●●

●●●●●

●●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●●●
●●● ●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●● ●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●
●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●● ●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●● ●●●●

●●●●
●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●●

●●●

●●●

●●●●

●●●●●●●●
●●●

●●●●●●

●●●

●●●

●●●●

●●●●
●●●●

●●●

●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●

●●●
●●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●
●●● ●●●

●●●

●●●

●●● ●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●● ●●●●

●●●●

●●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●●
●●●●

●●●●●

●●●●●●

●●●●●
●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●● ●●●●●

●●●●

●●●●●

●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●
●●●

(d) flagcor = 3

Figure 3: Off-peak costs for the different correlation types.

Given costs ci(u, v) the generation of costs ci (u, v, t), i = 1, 2 may take three components into account:
the off-peak cost, the peak effect, and a random perturbation. The random perturbation introduces small
variations in the cost, due to other factors not intercepted by the peak, e.g. special information about the
cost at exactly that leaving time. Given a cost c, we generate a perturbation ξ ∈ [−rξ, rξ], where range rξ is
a small percentage. Then, the cost after applying the random perturbation becomes c(1+ξ). The following
values of flagC are possible:

0 - Costs are generated independently for each leaving time and correlated as specified by flagcor. That
is, we have costs in the interval {lbC , ..., ubC}. The random perturbation is not applied. A plot of the
costs for a specific arc is shown in Figure 4. In the left figure costs ci (u, v, t), i = 1, 2 are displayed
for each leaving time (1. cost is the solid line, 2. cost is the dotted line) and in the right figure the
costs (c1, c2) are shown. Note that by using this setting, e.g. the costs of leaving u at time t may be
10 and the costs of leaving u at time t+1 may be 500. In a road network this is probably not realistic
and peak dependent cost can be generated instead. However, random costs can be used to see if e.g.

4

a priori algorithms are robust, see Nielsen, Pretolani, and Andersen [6].

1 - Consider node u having a west, north, east and south arc.1 First the off-peak costs ci(u, v) ∈
{lbC , ..., ubC}, i = 1, 2, are generated for the west and north arcs with a correlation as specified
by flagcor. Let cmin

i denote the minimum cost generated for criterion i of the north and west arcs.
For the east and south arc off-peak costs ci(u, v) ∈ {lbC , ..., cmin

i }, i = 1, 2, are now generated. In
this way, east and south arcs are expected to have smaller costs than the corresponding west or north
arcs. Finally, the costs ci (u, v, t), i = 1, 2 are found by applying the random perturbation. Note can
only be used with non symmetric arcs. Costs of a west arc (5, 2) and an east arc (5, 8) (of the grid in
Figure 1) are given in Figure 5. Note the only difference in e.g. c1(5, 2, t), t = 1, ...,H is due to the
random perturbation (equal 10%).

2 - First the off-peak costs ci(u, v) ∈ {lbC , ..., ubC}, i = 1, 2, are generated with a correlation as speci-
fied by flagcor. Next, the costs ci (u, v, t), i = 1, 2 are found by applying the random perturbation.
A plot of the costs for a specific arc are given in Figure 6.

3 - Generation of peak dependent costs: First, the off-peaks cost ci (u, v) ∈ {lbC , ..., ubC}, i = 1, 2,
are generated with a correlation as specified by flagcor. After generating the off-peak costs the peak
effect is taken into account. For each arc (u, v), the costs, if leaving node u at an off-peak time,
are ĉi (u, v, t) = ci (u, v) , i = 1, 2. At the beginning of a peak, the costs ĉi (u, v, t) increase from
ci (u, v) to ci (u, v) (1 + ψ), then stays the same during the pure peak period, and then decrease to
ci (u, v) again. Finally, the costs ci (u, v, t), i = 1, 2 are found by applying the random perturbation
to ĉi (u, v, t). A plot of the costs for a specific arc are given in Figure 7.

4 - Peak dependent costs: The first cost act like for flagC = 3. But the second cost decrease in peaks
instead of increasing. A plot of the costs for a specific arc is given in Figure 8.

5 - Peak dependent costs: The off-peak costs ci (u, v) are generated as under flagC = 3. If c1 (u, v) <
c2 (u, v) then a peak cost cp1(u, v) is generated randomly in {c1 (u, v) , . . . , c2 (u, v)} and a peak
cost cp2(u, v,) is generated randomly in {c2 (u, v) , . . . , ubC}. As a result c1 (u, v) ≤ cp1(u, v,) ≤
c2 (u, v) ≤ cp2(u, v). Similar is the case c1 (u, v) ≥ c2 (u, v). Next, the costs ci (u, v, t), i = 1, 2 are
found by applying the random perturbation to ci(u, v) in off-peaks and cpi (u, v) in peaks. A plot of
the costs for a specific arc is given in Figure 9.

6 - Peak dependent costs as if flagC = 3 for horizontal arcs and costs are generated as for flagC = 2
for vertical arcs. A plot of the costs for a vertical and a horizontal arc are given in Figure 10.

Symmetric travel costs may be used. However, note the costs are symmetric before the random perturbation
is applied, i.e. ĉi (u, v, t) = ĉi (v, u, t) , i = 1, 2 and then the random perturbation is applied to obtain
ci (u, v, t). As a result we do not have exact symmetry, costs may vary a bit. If you want exact symmetry
you may set the range rξ of the random perturbation to zero. Symmetric travel costs are controlled with
the flagsym flag. Possible options are:

0 - Do not consider symmetry.

1 - Consider symmetry.

3.2 Generating waiting costs

Waiting are considered if the input parameter ubW > 0. In this case waiting costs ci (u, t, t+ 1) , i = 1, 2
for each node u in the grid except for the origin o and destination d are generated.

How waiting costs are generated are specified by the flagW flag. We have 2 possible values:

1Some arcs are not considered in output if the arc do not exist in the underlying grid.

5

leaving time

co
st

0 10 20 30 40 50 60

0

200

400

600

800

1000

1. cost

2.
 c

os
t

500 1000 1500 2000

500

1000

1500

2000

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

Figure 4: Travel costs for flagC = 0 and flagcor = 2.

leaving time

co
st

0 20 40 60

0

200

400

600

800

(5,2)
0

200

400

600

800

(5,8)

1. cost

2.
 c

os
t

500 1000 1500 2000

500

1000

1500

2000

0000000000

00000000000000000
0000000
00000000000000000000000

000000000000000000000000000000000000

000000000
000000000

000000000
000000000
000000000
000000000
00000000000000
00000000000000
0000000000

00000

00000
00000
00000
0000000
0000000
00000000000000000000000
000000000

000000000000000000
000000000
000000000
000000000000000000000000000
000000000

000000000
000000000000000000000

0000000
0000000000

00000
00000
00000

00000

0000000000000000000000000000

000000000
000000000000000000

(5,2)

500

1000

1500

2000

000

(5,8)

Figure 5: Travel costs for flagC = 1 and flagcor = 2.

6

leaving time

co
st

0 10 20 30 40 50 60

200

400

600

800

1. cost
2.

 c
os

t

500 1000 1500 2000

500

1000

1500

2000

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●
●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

Figure 6: Travel costs for flagC = 2 and flagcor = 2.

leaving time

co
st

0 10 20 30 40 50 60

500

1000

1500

1. cost

2.
 c

os
t

500 1000 1500 2000

500

1000

1500

2000

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

Figure 7: Travel costs for flagC = 3 and flagcor = 2.

7

leaving time

co
st

0 10 20 30 40 50 60

0

200

400

600

800

1. cost
2.

 c
os

t

500 1000 1500 2000

500

1000

1500

2000

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

Figure 8: Travel costs for flagC = 4 and flagcor = 2.

leaving time

co
st

0 10 20 30 40 50 60

200

400

600

800

1. cost

2.
 c

os
t

500 1000 1500 2000

500

1000

1500

2000

●●●●●●●●●●

●●●●● ●●●●● ●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●
●●●●●●●

●●●●●●● ●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

Figure 9: Travel costs for flagC = 5 and flagcor = 2.

8

leaving time

co
st

0 20 40 60

500

1000

1500

(2,3)

500

1000

1500

(2,5)

1. cost

2.
 c

os
t

500 1000 1500 2000

500

1000

1500

2000

000000000000000
00000
00000
0000000000000000
000000

000000000000

00000000000000

0000000
0000000
0000000000000
000000

000000000000000000000000000
000000000000000
00000
00000
00000000000000000000000000
000000

000000
0000000000000
0000000
0000000
00000000000000
000000
000000

000000

000000
00000
000000000000000
00000
00000
00000
00000
0000000000
00000
00000
000000000000
000000
000000
0000000
0000000
00000000000000

0000000
000000000000
000000
000000

00000

00000

(2,3)

500

1000

1500

2000

000
000000000
000

0000000
000

0000

0000
0000

000000000 000
00000000000

0000000

000
0000000

000000000 000000
000

000
0000
000
000
0000

0000
0000 000

000

000000
0000000

0000

0000000
000

0000000
000

000
000
000
000

000
000

0000 000000

0000

0000

0000

000000000000
000
0000

0000

0000
000

0000000000

000
000000000

(2,5)

Figure 10: Travel costs for flagC = 6 and flagcor = 2.

9

leaving time

co
st

0 20 40 60 80

200

400

600

800

1000

1. cost

2.
 c

os
t

200 400 600 800

200

400

600

800

●●
●

●● ●●●●
●

●
●

● ●
● ●

●
● ●● ●● ●●

●
● ●● ●●● ●● ●● ●●●●

●
●

●● ●
●

●●●●
●● ●

●
●●● ●●●●●● ● ●

●●
●●●●
●● ● ●● ●● ●●●

Figure 11: Waiting costs for flagW = 0 and flagcor = 2.

0 - Node waiting cost ci (u) is generated in {lbW , ..., ubW } and correlated as specified by the flagcor.
Waiting costs ci (u, t, t+ 1) are then generated by applying the random perturbation. A plot of the
waiting costs is given in Figure 11.

1 - Waiting costs ci (u, t, t+ 1) are generated independently for each leaving time in {lbW , ..., ubW } and
correlated as specified by the flagcor. The random perturbation is not applied. A plot of the waiting
costs is given in Figure 12.

Note the peak effect is not used for waiting costs.

3.3 Generating penalty costs

Penalty costs for the destination node d are generated if the input parameter ubP > 0. Otherwise, the
penalty costs are zero. How penalty costs are generated is specified by the flagP flag. We have 4 possible
values:

0 - Penalty costs are generated independently for each arrival time in the interval {lbP , ..., ubP } and cor-
related as specified by the flagcor. A plot of the penalty costs is given in Figure 13.

1 - Both costs penalizes arrivals in the middle of the time horizon H . A plot of the penalty costs is given
in Figure 14 (first and second cost equals the solid line).

2 - Both costs penalizes early/late arrivals. A plot of the penalty costs is given in Figure 15.

3 - The second cost penalizes arrivals in the middle of the time horizon the first cost penalizes early/late
arrivals. A plot of the penalty costs is given in Figure 16.

Note the random perturbation is NOT used when generating penalty costs and for flagP > 0 the flagcor
have no effect on the penalty costs.

10

leaving time

co
st

0 20 40 60 80

0

200

400

600

800

1000

1. cost
2.

 c
os

t

0 200 400 600 800 1000

0

200

400

600

800

1000

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

Figure 12: Waiting costs for flagW = 1 and flagcor = 2.

leaving time

co
st

0 20 40 60 80

0

200

400

600

800

1000

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 13: Penalty costs for flagP = 0 and flagcor = 2.

11

leaving time

co
st

0 20 40 60 80

0

200

400

600

800

1000

1. cost
2.

 c
os

t

0 200 400 600 800 1000

0

200

400

600

800

1000

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Figure 14: Penalty costs for flagP = 1.

leaving time

co
st

0 20 40 60 80

0

200

400

600

800

1000

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000 ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Figure 15: Penalty costs for flagP = 2.

12

leaving time

co
st

0 20 40 60 80

0

200

400

600

800

1000

1. cost

2.
 c

os
t

0 200 400 600 800 1000

0

200

400

600

800

1000

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Figure 16: Penalty costs for flagP = 3.

4 Calculating the time horizon

The time horizon H for the STD network may be given as an input parameter to the TEGP generator (if
has a positive value, see Section 6).

Note that the time horizon depends on the size of G and the possible travel times generated for the arcs in
G. If the input parameter specifying H is not positive then the time horizon is found using a preprocessing
step:

First, note that due to (1) an upper bound on a possible travel time for an arc is ub = (1 + ψ)(1 + ρ)ubT .
As result Hub = (b + h)ub is an upper bound on the travel time of a path of length b + h. Upper bound
ub is in general not very tight since there may be large fluctuations in travel time for different arcs and
leaving time. Hence we use an estimate for the average maximal travel time for a path. This is done by
generating all travel time distributions for each arc and leaving time for time horizon Hub. Now by storing
the maximum possible travel time for each distribution we can calculate the average maximum possible
travel time ubave. We now set the time horizon H to

H = (b+ h)ubave

As a result “roughly” all o − −d paths of length b + h can be traveled in the time horizon. Moreover,
note that often there exists many paths containing arcs with maximum possible travel time below ubave.
Therefore paths of length greater than b+ h may often be possible to travel in the time horizon.

5 Running the program

The program uses command line passing for catching a number of run directives. The following flags/options
can be used:

-verbose print out a lot of information to standard output (optional).

-out file name of the output file follows (without extension).

-xml Output file generated in xml format (see Section 7).

13

-f5 Output file generated in time-expanded hypergraph format (f5 format - see Section 7).

Input is read from standard input which can be piped.

Example: tegp < input -out output -xml

6 Input parameters

Input Parameters must be integers and are read from standard input or piped using a file with parameters
separated by spaces as illustrated below2.

b h Base and height in grid.
Hcycle Time instances in a cycle.
p Number of peaks in a cycle.
ttrans Time instances in transient peak.
tpure Time instances in pure peak.
tp First peak starting time.
H Time horizon used (if positive). If negative the time horizon is calculated by the generator

(see Section 4).
ψ Mean travel time/cost increase in peaks (pct).
ρ Variance/mean ratio (pct).
lbP ubP Min and max penalty cost. If ubP < 0 then no penalty costs are generated.
flagP Dependencies of the penalty costs (see Section 3.3).
lbT ubT The mean traveltime interval.
flagT Peak effect on arcs fag (see Section 2).
lbW ubW Min and max waiting cost. If ubW < 0 then no waiting arcs are generated.
flagW Waiting costs flag (see Section 3.2).
lbC ubC Min and max travel cost.
flagcost Dependencies of the travel costs (see Section 3.1).
flagsym Travel time symmetry flag (see Section 3.1).
flagcor Correlation type between costs (see Section 3.1).
rand Random perturbation (promille, see Section 3.1).
seed Seed.

Note that peaks are distributed evenly in the time interval [tp;Hcycle].

7 Output

Output is per default written to <filename>.xml where <filename> is the filename specified by -out. The
xml format is simple to understand and illustrated in Figure 17. Note, the probabilities of the travel time
distribution is NOT normalized. This have to be done by the program which uses the test instance.

In general, the xml format is very verbose resulting in large file sizes. However, the xml file may be
converted to a desired format, e.g. a time-expanded hypergraph [7], using an xslt stylesheet. For an intro-
duction to xml and xslt see Møller and Schwartzbach [4]. For very large test instances using a stylesheet
may not be possible. Hence an option -f5 to generate the output in a time-expanded hypergraph format is
also possible.

2The parameters may also be given on a single line.

14

<?xml version="1.0" encoding="ISO-8859-1"?>
<stdn nodes="9" arcs="20" timeHorizon="44" name="stdn.xml">

<node number="1">
<penalty t="0" c1="1000" c2="1"/>
<penalty t="1" c1="954" c2="47"/>
...

</node>
...
<node number="4">

<wait t="0" time="1" c1="485" c2="629"/>
<wait t="1" time="1" c1="491" c2="693"/>
...

</node>
...
<arc head="1" tail="2">

<leavingTime t="0" c1="872" c2="22">
<travelTime t="2" prob="250000"/>
<travelTime t="3" prob="500000"/>
<travelTime t="4" prob="250000"/>

</leavingTime>
...

</arc>
...

</stdn>

Figure 17: The xml output file.

8 TEGP Class Documentation

If you have to interact with the source code you will find documentation about the classes below.

8.1 GridNode Class Reference

Public Member Functions

• GridNode ()
• ∼GridNode ()
• void AllocMem (int H)
• void FreeMem ()

Public Attributes

• int cWait1
First off-peak cost for waiting in the node.

• int cWait2
Second off-peak cost for waiting in the node.

• int traveltime [4]
Mean off-peak travel times for grid arcs in forward star. Entrys are 0: north, 1: east, 2: south, 3: west.

• int(∗ c1)[4]
First cost array for leaving at time t. Example c1[t][2] is the 1. cost for leaving the south arc at time t.

• int(∗ c2)[4]
Second costs array leaving at time t. Example c2[t][2] is the 2. cost for leaving the south arc at time t.

15

8.1.1 Detailed Description

Class for representing a grid node and its forward star arcs.

Author

Lars Relund Nielsen.

Version

1.66

8.1.2 Constructor & Destructor Documentation

8.1.2.1 GridNode::GridNode () [inline] Constructor. Do not allocate memory which have to
be done with AllocMem.

8.1.2.2 GridNode::∼GridNode () [inline] Deconstructor. Free memory automatically.

8.1.3 Member Function Documentation

8.1.3.1 void GridNode::AllocMem (int H) [inline]

Allocate memory for the gridNode.

Parameters

H Time-horizon.

8.1.3.2 void GridNode::FreeMem () [inline] Free memory.

8.2 Random Class Reference

Public Member Functions

• int Clock seed ()
• void Init len (int seed)
• int Int length (int mid, int mad)
• void Init w (int seed)
• int Int weight (int l, int r)
• void Init sign (int seed)
• int Sign ()
• void Init num (int seed)
• int Int number (int mid, int mad)
• double BinomPdf (double n, double p, double x)

16

8.2.1 Detailed Description

Class for generating random integer numbers etc. Modified code from previous class of Daniele Pretolani.
Three routines can be used and a sign routine.

Author

Lars Relund Nielsen.

Version

0.5

8.2.2 Member Function Documentation

8.2.2.1 double Random::BinomPdf (double n, double p, double x)

Calculate \form#0 when \form#1.

Modification of the code of Joe Nellis (mrknowitall@mtcrossroads.org) at http://www.-
codeproject.com.

Precondition

Do no checking, i.e. assume that p ∈ [0, 1] and that x ∈ [0, n].

8.2.2.2 int Random::Clock seed () Return a seed using the clock value.

8.2.2.3 void Random::Init len (int seed) Initialization of random routine 1 (use X17).

8.2.2.4 void Random::Init num (int seed) Initialization of random routine 3 (use X15).

8.2.2.5 void Random::Init sign (int seed) Initialization of random sign routine (use X7).

8.2.2.6 void Random::Init w (int seed) Initialization of random routine 2 (use X11).

8.2.2.7 int Random::Int length (int mid, int mad) Returns an integer, in the interval {mid,...,mad}.

8.2.2.8 int Random::Int number (int mid, int mad) Returns an integer, in the interval {mid,...,mad}.

8.2.2.9 int Random::Int weight (int l, int r) Returns an integer, in the interval {l,...,r}.

8.2.2.10 int Random::Sign () Returns an zero/one value.

17

mailto:mrknowitall@mtcrossroads.org
http://www.codeproject.com
http://www.codeproject.com

8.3 TegPeak Class Reference

Public Member Functions

• void Run ()
• TegPeak (string filename, bool verbose, bool f5, bool xml)
• ∼TegPeak ()

8.3.1 Detailed Description

The class for generating STD networks.

Assumes a underlying topological grid network of size b × h. Every arc is “bi-directional”, but no arcs
enter the origin and no arcs exit the destination. Thus there are:

• h(b-1)-2 arcs east.

• b(h-1)-2 arcs south.

• h(b-1) arcs west.

• b(h-1) arcs north.

Grid nodes are numbered from the destination node 1 to the origin node b · h. This number increases by
one south and by h east. Thus, if u is the node with coordinates (x, y) (x right, y down), then node u have
number

(x− 1)h+ y

This number is used to identify a node in the array of GridNode objects Moreover, each arc in a node u is
numbered 0 (north), 1 (east), 2 (south) and 3 (west) if exists.

Author

Lars Relund Nielsen.

Version

1.66

8.3.2 Constructor & Destructor Documentation

8.3.2.1 TegPeak::TegPeak (string filename, bool verbose, bool f5, bool xml)

Read input parameters.

Moreover, set the output file name and the flag for verbose, f5 output and xml output.

8.3.2.2 TegPeak::∼TegPeak () Free memory.

8.3.3 Member Function Documentation

8.3.3.1 void TegPeak::Run () Run the generator and write the output to an xml file.

18

References
[1] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications. Discrete

Applied Mathematics, 42:177–201, 1993.

[2] R.W. Hall. The fastest path through a network with random time-dependent travel times. Transporta-
tion Science, 20(3):182–188, 1986.

[3] E.D. Miller-Hooks and H.S. Mahmassani. Least possible time paths in stochastic, time-varying net-
works. Computers & Operations Research, 25:1107–1125, 1998.

[4] A. Møller and M.I. Schwartzbach. An Introduction to XML and Web Technologies. Addison-Wesley
(in preparation), 2006.

[5] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD thesis, Department of
Operations Research, University of Aarhus, 2004.

[6] L.R. Nielsen, D. Pretolani, and K.A. Andersen. K shortest paths in stochastic time-dependent net-
works. Technical Report WP-L-2004-05, Department of Accounting, Finance and Logistics, Aarhus
School of Business, 2004. URL http://www.asb.dk/departments/afl/research/
lrg/workingpapers/. Submitted.

[7] D. Pretolani. A directed hypergraph model for random time-dependent shortest paths. European
Journal of Operational Research, 123:315–324, 2000.

[8] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion shortest path
problems. Computers & Operations Research, 27:507–524, sep 2000.

A Stochastic time-dependent networks

In this section we describe discrete stochastic time-dependent networks. Moreover we also present a class
of directed hypergraphs used to model STD networks. The hypergraph model is explained by means of an
example. For further details see Nielsen [5], Pretolani [7].

A.1 Basic definitions

We consider discrete STD networks where departure times are integer, and travel times are independent
integer-valued discrete random variables with time-dependent density functions. We assume that departure
and arrival times belong to a finite time horizon, i.e. a setH = {0, 1, ..., tmax} of integer values. In practice,
we assume that the relevant time period is discretized into time intervals of length δ, i.e., the time horizon
H corresponds to the set of time instances 0, δ, 2δ, ..., tmaxδ.

Let G = (N,A) be a directed graph with node set N and arc set A. We will refer to G as the topological
network. As usual, FS(u) = {(u, v) ∈ A} denotes the forward star of node u. Let o ∈ N and d ∈ N
denote the origin and destination node in G, respectively. For each arc (u, v) ∈ A let L (u, v) ⊂ H be the
set of possible leaving times from node u along arc (u, v). Moreover, let L (u) , u 6= d denote the set of
possible leaving times from node u, i.e.,

L (u) =
⋃

(u,v)∈FS(u)

L (u, v)

and let L (d) denote the set of possible arrival times at node d. For each arc (u, v) ∈ A and t ∈ L (u, v) ,
let X (u, v, t) denote the travel time to node v when leaving node u at time t along arc (u, v) . The travel
time X (u, v, t) is a discrete random variable with density

Pr (X (u, v, t) = ti) = θuvt (ti) , ti ∈ I (u, v, t)

19

http://www.asb.dk/departments/afl/research/lrg/workingpapers/
http://www.asb.dk/departments/afl/research/lrg/workingpapers/

where
I (u, v, t) =

{
t1, ..., tκ(u,v,t)

}
denotes the set of κ (u, v, t) possible arrival times at node v when leaving node u at time t along arc (u, v).
That is, for each ti ∈ I (u, v, t) the probability of arriving at node v at time ti when leaving node u at time
t is θuvt (ti). Denote by

κ =
∑

(u,v)∈A, t∈L(u,v)

κ (u, v, t)

the total number of possible travel times. The value κ can be considered as the size of the STD network.

We assume that travel times are positive and that the traveller cannot get stuck at an intermediate node v.
Hence, if it is possible to arrive at node v at time ti, then it is also possible to leave node v at time ti. Note
that a traveller cannot wait at intermediate nodes.

Definition 1 A strategy is a function S with domain

Dm (S) ⊆ {(u, t) : u ∈ N \ {d} , t ∈ L (u)}

assigning to each pair (u, t) ∈ Dm (S) a successor arc (u, v) ∈ FS (u). Furthermore, strategy S must
satisfy the following conditions:

1. If (u, t) ∈ Dm (S) and S (u, t) = (u, v) then t ∈ L (u, v).

2. If (u, t) ∈ Dm (S) and S (u, t) = (u, v), v 6= d, then (v, t′) ∈ Dm (S) ,∀t′ ∈ I (u, v, t).

Strategy S provides routing choices for travelling from all nodes and leaving times in the domain Dm(S)
towards the destination d. Therefore, a traveller leaving node u at time t travels along arc S (u, t). Note
that a strategy S must provide a routing choice for each possible arrival time at an intermediate node, as
required by Condition 2 above. Moreover, given S, we denote by:

Dd(S) =
{
(d, t) : ∃(u, t′) ∈ Dm(S), S(u, t′) = (u, d), t ∈ I(u, d, t′)

}
the set of pairs (d, t) where t is a possible arrival time at dwhen following strategy S. Note that Definition 1
extends the definition given in [7] where a strategy had domain

D = {(u, t) : u ∈ N \ {d} , t ∈ L (u)} . (2)

Our assumption that a traveller cannot get stuck at intermediate nodes implies that any traveller who leaves
node i at time t arrives at the destination d within time tmax. This can be formally stated requiring that a
pair (i, t) belongs to D if and only if it belongs to the domain of some strategy.

In this paper we consider strategies providing route choices when leaving a specific node i at a specific
time t towards the destination d. This leads to the definition of an (i, t) strategy.

Definition 2 An (i, t) strategy is a minimal strategy S such that (i, t) ∈ Dm(S). Here, minimality means
that there does not exist another (i, t) strategy with domain strictly contained in Dm(S).

In particular, we are interested in (o, 0) strategies, defining the route travelled when leaving the origin node
o at time zero. In the following, unless otherwise specified, a strategy S refers to a (o, 0) strategy.

A strategy is a path-strategy if the successor arcs do not depend on time; in other words, a path-strategy
must satisfy

S (u, t) = S (u, t′) , ∀ (u, t) , (u, t′) ∈ Dm (S) . (3)

Clearly, a path-strategy S defines a unique, loopless o-d path in G. Indeed, S defines a unique successor
arc (u, v) for each u in G such that (u, t) ∈ Dm(S) for some t. Assume that for each arc (o, v) in G

20

it is possible to leave o at time zero travelling along (o, v), i.e., 0 ∈ L(o, v). With this assumption, each
loopless o-d path

P = (o = u1, u2, . . . , ul, ul+1 = d)

in G defines exactly one path-strategy S. In particular, we have

Dm(S) =

l⋃
i=1

D(i), Dd(S) = D(l+1) (4)

where D(1) = {(o, 0)} and, for 1 < i ≤ l + 1:

D(i) =
{
(ui, t) : t ∈ I(ui−1, ui, t′), (ui−1, t′) ∈ D(i−1)}. (5)

Clearly, we have S(ui, t) = (ui, ui+1) for each (ui, t) ∈ D(i), 1 ≤ i ≤ l. Based on the above observations,
we can state the following theorem.

Theorem 1 There is a one-to-one correspondence between o-d paths in G and path-strategies in the STD
network.

A.2 Optimality criteria

Several definitions of the weight of a strategy can be given, in fact, several optimality criteria have been
considered in the literature. The most frequently used criterion for finding the best strategy is the minimiza-
tion of the expected travel time, introduced by Hall [2]. In this case, the weight of a strategy corresponds
to the expected arrival time at the destination when leaving the origin at time zero. If travel costs are
considered, strategies can be ranked according to their expected cost. Moreover, instead of considering
expectations, worst cases may be of concern; i.e., our criterion becomes the minimization of maximum
possible travel time or cost. Other criteria, such as the minimum possible travel time, have been considered
in the literature [3].

The results reported in this paper apply to each of the criteria mentioned above. In our computational
experience we shall concentrate on expected costs. Costs can be introduced in our STD model by letting
c (u, v, t), t ∈ L (u, v) denote the travel cost of leaving node u at time t along arc (u, v). Note that we
assume that c is deterministic, although time-dependent. Moreover, let gd(t) be a penalty cost of arriving
at node d at time t. The expected cost of a strategy S can be defined by means of recursive equations,
associating a value to each pair (u, t) in Dm(S). In particular, if S(u, t) = (u, v), we have:

ES(u, t) = c(u, v, t) +
∑

t′∈I(u,v,t)

θuvt(t
′)ES(v, t′)

where ES(d, t) = gd(t) for each t ∈ H . Here, ES(u, t) represents the expected cost (including penalty
costs) incurred when leaving node u at time t following strategy S towards d. The expected cost of S is
therefore ES(o, 0). The other criteria cited above can be given a formal definition using similar recursive
equations, see Pretolani [7]. Recall that for all the above criteria, finding the best path-strategy is an NP-
hard problem, whereas the best strategy can be found in O(κ) time, see Pretolani [7]. Moreover, recall that
path-strategies are a subset of strategies and, therefore, the weight of the best strategy provides a (quite
efficiently computable) lower bound on the weight of the best path-strategy.

A.3 A directed hypergraph model for STD networks

A directed hypergraph is a pairH = (V, E), where V = (v1, ..., vn) is the set of nodes, and E = (e1, ..., em)
is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where T (e) ⊂ V denotes the set of tail
nodes and h(e) ∈ V \ T (e) denotes the head node. Note that a hyperarc has exactly one node in the head,

21

a

b

c

d

Figure 18: The topological network G.

(u, v), t (a, b), 0 (b, c), 1 (b, c), 2 (b, d), 1 (b, d), 2 (c, d), 2 (c, d), 3 (c, d), 4
I(u, v, t) {1, 2} {2, 3} {3} {3} {6} {3, 4} {4, 5} {5, 6}

Table 1: Input parameters.

and one or more nodes in the tail. The cardinality of a hyperarc e is the number of nodes it contains, i.e.,
|e| = |T (e)|+ 1. We call e an arc if |e| = 2. The size ofH is the sum of the cardinalities of its hyperarcs.

In particular, we here consider acyclic hypergraphs, where there exists a valid ordering V = (v1, v2, . . . , vn)
of the nodes such that, for any e ∈ E , each node vj ∈ T (e) precedes node h(e) in V . The class of di-
rected hypergraphs used here was denoted acyclic B-graphs in Gallo, Longo, Pallottino, and Nguyen [1]
which considered the general class of directed hypergraphs. However, we here use the term “hypergraph”
to denote the subclass appropriate in this context.

As shown in Pretolani [7] a time-expanded hypergraphH = (V, E) can be used to model an STD network.
We illustrate the model by means of the following example.

Example 1 Consider the topological network G = (N,A) in Figure 18, where a is the origin node and
d is the destination node. For each arc in G, the possible departure and arrival times are listed in Table
1. Here a pair ((u, v), t) corresponds to a possible leaving time t from node u along arc (u, v). For the
sake of simplicity, we assume that X (u, v, t) has a uniform density, i.e., for each t′ ∈ I(u, v, t), we have
θuvt(t

′) = 1/|I(i, j, t)|. For example, if we leave node c at time 2 along arc (c, d), we arrive at node d at
time 3 or 4 with the same probability 1/2.

The time-expanded hypergraph H =(V, E) is shown in Figure 19; numbers and dotted lines will be ex-
plained below. The set V contains one node ut for each pair (u, t) , t ∈ L (u) and an origin node s. For
each (u, v) ∈ A and t ∈ L (u, v), we introduce a hyperarc

euv(t) =
(
{vti : ti ∈ I (u, v, t)}, ut

)
.

Moreover, a dummy arc ed (t) = ({s} , dt) is defined for each t ∈ L(d).

It is obvious that H is an acyclic hypergraph: a valid ordering can be found by ranking the nodes in
decreasing order of time. Furthermore, the size of H is O(κ) and H can be built in O (κ) time. Given any
strategy S, let us define the sets

VS =
{
ut : (u, t) ∈ Dm(S) ∪Dd(S)

}
∪
{
s
}

22

a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

0 0 0 0

8 2
9

1

5

52

2

0 0 0 0

8 1
2

57

8

Figure 19: The time-expanded hypergraphH.

and
ES =

{
euv(t) : (u, t) ∈ Dm(S), S(u, t) = (u, v)

}
∪
{
ed(t) : (d, t) ∈ Dd(S)

}
.

Note that VS contains a node ut for each pair (u, t) corresponding to either leaving from an intermediate
node or arriving at the destination. Moreover, for each node ut ∈ VS , a single hyperarc in VS with head ut

exists, more precisely, a dummy arc ed(t) if u = d, and a hyperarc euv(t) if u 6= d. Let us denote by r = o0

the node in H corresponding to the pair (o, 0). It has been shown in Pretolani [7] that πS = (VS , ES) is a
hyperpath from node s to node r (s-r hyperpath) inH. More precisely, the following property holds:

Property 1 There is a one-to-one correspondence between (o, 0) strategies and s-r hyperpaths inH.

Pretolani [7] showed that the value of a (o, 0) strategy under each one of the optimality criteria in Sec-
tion A.2 corresponds to the weight of the corresponding s-r hyperpath in H for a suitable definition of
hyperpath weight, given in terms of additive weighting functions, see Gallo et al. [1]. Therefore, the best
strategy can be found by finding the minimum weight s-r hyperpath, i.e., by solving a shortest hyperpath
problem in H. Quite efficient procedures for finding shortest hyperpaths are defined in Gallo et al. [1];
for acyclic hypergraphs, the computational complexity is linear in the size of the hypergraph. Thus, under
time-adaptive route choice, the best strategy can be found inO (κ) time. Clearly, this result does not extend
to the a priori case in which a path-strategy is required.

Example 1 (continued) Hyperarcs in solid lines in Figure 19 represent the s-r hyperpath πS corresponding
to the best (o, 0) strategy S for the expected cost criterion. Close to each hyperarc euv(t), we report cost
c(u, v, t); penalty costs are zero and reported close to dummy arcs ed(t). The number close to each node
ut is the expected travel cost ES(u, t); thus, the minimum expected cost is 8. We have S(c, t) = (c, d) for
each time t = 2, 3, thus, S defines a unique successor for node c. However, the successor of b is (b, c) at
time 2 and (b, d) at time 3, thus S is not a path-strategy.

Note that S defines the time-adaptive route to travel when leaving node a at time zero, but it does not define
a successor for all possible nodes and leaving times, e.g. for node c at time 4. A non-(o, 0) strategy S′

23

defining the route to travel for all possible nodes and leaving times (i.e., with domain Dm(S′) = D) is
obtained by adding the pair (c, 4) to Dm(S) and defining S′(c, 4) = (c, d).

Note also that it is not possible to arrive at node c at time 4. Thus, the pair (c, 4) might be eliminated from
V , i.e., time 4 might be eliminated from L(c) an L(c, d). However, pair (c, 4) shall be used later, in relation
to waiting.

24

	Introduction
	Generating travel time distributions
	Generating costs
	Generating travel costs
	Generating waiting costs
	Generating penalty costs

	Calculating the time horizon
	Running the program
	Input parameters
	Output
	TEGP Class Documentation
	GridNode Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	Random Class Reference
	Detailed Description
	Member Function Documentation

	TegPeak Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	Stochastic time-dependent networks
	Basic definitions
	Optimality criteria
	A directed hypergraph model for STD networks

