
Finding the K best policies in a finite-horizon Markov decision

process

Lars Relund Nielsen∗† Anders Ringgaard Kristensen

Department of Large Animal Sciences‡

Royal Veterinary and Agricultural University

Grønneg̊ardsvej 2

DK-1870 Frederiksberg C

Denmark

August 2, 2005

Abstract

Directed hypergraphs represent a general modelling and algorithmic tool, which have
been successfully used in many different research areas such as artificial intelligence, data-
base systems, fuzzy systems, propositional logic and transportation networks. However,
modelling Markov decision processes using directed hypergraphs has not yet been consid-
ered.

In this paper we consider finite-horizon Markov decision processes (MDPs) with finite
state and action space and present an algorithm for finding the K best deterministic
Markov policies. That is, we are interested in ranking the first K deterministic Markov
policies in non-decreasing order using an additive criterion of optimality. The algorithm
uses a directed hypergraph to model the finite-horizon MDP. It is shown that the problem
of finding the optimal policy can be formulated as a minimum weight hyperpath problem
and be solved in linear time, with respect to the input data representing the MDP, using
different additive optimality criteria.

Keywords: Finite-horizon Markov decision processes, stochastic dynamic programming,
directed hypergraphs, hyperpaths, K best policies.

1 Introduction

Many decision problems are dynamic in nature and must be re-evaluated over time based
on the state of some crucial underlying factors, e.g. machine state, company finances, etc.
Often these problems can be modelled using Markov decision processes (MDPs) which have
been widely used to model stochastic environments, due to their expressiveness and analytical
tractability.

∗Corresponding author.
†Present address: Research Unit of Statistics and Decision Analysis, Research Centre Foulum, P.O. Box

50, DK-8830 Tjele.
‡E-mail addresses: lars@relund.dk (L.R. Nielsen), ark@dina.kvl.dk (A.R. Kristensen).

1

MDPs model sequential decision-making problems. At a specified point in time, a decision
maker observes the state of a system and chooses an action. The action choice and the state
produce two results: the decision maker receives an immediate reward (or incurs an immediate
cost), and the system evolves probabilistically to a new state at a subsequent discrete point
in time. At this subsequent point in time, the decision maker faces a similar problem. The
observation made from the system’s state now may be different from the previous observation.
The goal is to find a policy of choosing actions (dependent on the observation of the state)
which maximizes the rewards after a certain time.

Finding an optimal policy for an MDP is a well studied topic. One of the first books on
the subject was by Howard [12]. As the title1 suggests the idea of the book was to combine
the dynamic programming technique by Bellman [6] with the mathematically well established
notation of a Markov chain. Since the publication of this book an intensive research in MDPs
has been carried out.

A recent book on the subject summarizing results from the past decades is Puterman [27].
Here both finite and infinite horizon MDPs are considered, having either finite, countable or
continuous state and action spaces. The optimality criteria considered are the expected total
reward, the expected discounted total reward and the expected average reward.

Also constrained MDPs have gained considerably interest, see e.g. Altman [1], Altman
and Shwartz [2]. Here the optimality criteria are maximized while keeping other type of costs
below some given bound. Often these problems are solved using linear programs, if the system
can be described by a finite number of states and actions. The linear program formulation of
an MDP was introduced by Derman and Klein [9] and later further developed by Derman and
A.F. Veinott [8], Hordijk and Kallenberg [11], Kallenberg [14]. For a survey on the subject
see Kallenberg [15].

Hierarchic MDPs were introduced by Kristensen [17], Kristensen and Jørgensen [18]. It
is a contribution to the solution of the problem referred to as the “curse of dimensionality”,
since it provides us with a way to reduce the state space of large problems. Recently, a
standard software system for solving both MDPs and hierarchic MDPs has been developed
by Kristensen [16].

Another research area that has been extensively studied in recent years is directed hyper-
graphs. Directed hypergraphs are an extension of directed graphs and undirected hypergraphs
introduced by Berge [7]. Directed hypergraphs represent a general modelling and algorithmic
tool, which has been successfully used in many different research areas such as artificial in-
telligence, database systems, fuzzy systems, propositional logic, and transportation networks.
For a general overview on directed hypergraphs see Ausiello, Franciosa, and Frigioni [4].

The concepts of a hyperpath and a minimum weight hyperpath were introduced by Nguyen
and Pallottino [19] and later the definition of a hyperpath in a directed hypergraph and a
general formulation of the minimum weight hyperpath problem were given by Gallo, Longo,
Pallottino, and Nguyen [10]. In general the problem is NP-hard (see e.g. Ausiello, Italiano,
and Nanni [5]), but for a special class of weighting functions polynomial algorithms exist (see
e.g. Ausiello et al. [5], Gallo et al. [10] and Ramalingam and Reps [28]). For efficient data
structures for storing hypergraphs see Nielsen [20] and Ausiello, Datri, and Sacca [3].

Recently, a general algorithm for finding the K minimum weight hyperpaths has been
presented in Nielsen, Andersen, and Pretolani [24] and in Nielsen, Pretolani, and Andersen
[21] the complexity of the algorithm is lowered. Algorithms for ranking solutions are useful

1Dynamic programming and Markov processes

2

since practical problems often include constraints which are hard to specify formally or hard
to optimize. In that case the algorithm may be used to enumerate suboptimal hyperpaths
until a hyperpath satisfying the hard constraint is found.

The study of directed hypergraphs has become an important aspect in finding optimal
strategies/paths in stochastic time-dependent networks, Nielsen [20], Pretolani [26]. Here the
travel time between two nodes is time-dependent, i.e. the travel time depends on the departure
time from a node. Furthermore, it is assumed that for each departure time, the travel time
may not be fully known and hence a probability function is used to express possible travel
times. By using the K minimum weight hyperpaths algorithm from Nielsen et al. [21] it is
possible to find the K best strategies/paths in stochastic time-dependent networks, Nielsen,
Pretolani, and Andersen [23]. Furthermore, in Nielsen [20], the algorithm is used as a sub
algorithm to solve bicriterion problems in stochastic time-dependent networks.

By replacing departure times with states, and travel time with costs in the hypergraph
model for stochastic time-dependent networks, it is apparent that hypergraphs also can be
used to model MDPs. However, to the authors’ knowledge no one has considered this way
of modelling MDPs. Moreover, by modelling MDPs by hypergraphs we may find the K best
policies by adapting existing K minimum weight hyperpath algorithms.

In this paper we consider finite-horizon Markov decision processes with finite state and
action space and present an algorithm for finding the K best policies. That is, we are
interested in ranking the first K policies in non-decreasing order using a certain optimality
criterion. The algorithm uses a state-expanded directed hypergraph representing the finite-
horizon Markov decision process. It is shown that the problem of finding the optimal policy
can be formulated as a minimum weight hyperpath problem and be solved in linear time,
with respect to the size of the input data2 representing the MDP, using different optimality
criterion.

Possible applications of the algorithm could involve presenting a set of near optimal policies
for the decision maker from which he may pick the best policy fitting other preferences not
contained in the Markov decision model. The algorithm can also be used for ranking of policies
until a policy satisfying a hard constraint for the MDP is found. Note the constraints could
be of different nature: constraints specifying that different types of costs must be below some
given bounds or constraints imposed on the actual sample path, e.g. the policy must satisfy
that action “maintain” must by used only once. Finally, an algorithm for finding the K best
policies can be used to solve bicriterion problems in MDPs (using the two-phase approach).
Here for instance the goal may be to minimize two objectives e.g. the expected total cost
and the expected total risk. The latter perspective has served as the main motivation for
the study, because a bicriterion optimization algorithm was needed in a forest management
project with emphasis on risk.

The paper is organized as follows. Finite-horizon MDPs are introduced in Section 2 where
also a short introduction to directed hypergraphs is given. In Section 3 a hypergraph model
for MDPs is given together with results on how the best policy may be found. The algorithm
for finding the K best policies is presented in Section 4. Conclusions are drawn in Section 5.

2See Section 2.1 for a formal definition of input data.

3

Decision

Epoch

1

Decision

Epoch

2

Decision

Epoch

3

Decision

Epoch

N-1

Decision

Epoch

N

Stage 1 Stage 2 Stage N-1

Figure 1: Decision epochs and stages.

2 Preliminaries

In this section preliminaries on finite-horizon Markov decision processes and directed hyper-
graphs are given.

2.1 Finite-horizon Markov decision processes

Markov decision processes are models for sequential decision making when outcomes are
uncertain.

In this paper we consider a finite-horizon Markov decision process with {1, ..., N} decisions
and N −1 stages (see Figure 1). That is, decision number n is made at the beginning of stage
n which corresponds to the time interval from decision number n to decision number n + 1
(not including this time point).

At stage n the system occupies a state. We denote the finite set of system states Sn. Given
the decision maker observes state s ∈ Sn at stage n, he may choose an action a from the set
of finite allowable actions As,n generating cost cn (s, a) (a reward if negative). Moreover, we
let pn (· | s, a) denote the probability distribution or transition probabilities of obtaining states
s′ ∈ Sn+1 at stage n + 1.

Since no decision is made at the end of stage N − 1, the cost at this point of time is a
function of the state s ∈ SN denoted cN (s, aN) which is often referred to as the salvage cost
or scrap cost. Here aN denotes a deterministic (dummy) action.

A deterministic Markovian decision rule at stage n is a function dn : Sn → As,n which
specifies the action choice given state s at stage n. It is called deterministic because it chooses
an action with certainty and Markovian (memoryless) since it depends only on the current
system state. We let Dn denote the set of possible deterministic Markovian decision rules
at stage n. Dn are a subset of more general rules where the action may depend on the past
history of the system and actions may not be chosen with certainty but rather according to
a probability distribution.

A policy or strategy specifies the decision rules to be used at all stages and provides the
decision maker with a plan of which action to take given stage and state. That is, a policy
δ is a sequence of decision rules, δ = (d1, ..., dN) with dn ∈ Dn for n = 1, ..., N . We restrict
ourselves to ranking policies δ belonging to the set ∆ of deterministic Markov policies (if
randomized policies were included, the set of policies would not be countable). In some
problems, the decision maker only focuses on this subset of policies, e.g because randomized
policies are hard to manage in practice or restrictions in management strategy. Moreover, if
the states at a given time instance corresponds to different physical locations implementation
of policies having a single action at each location may only be acceptable.

In this paper we only consider one criterion of optimality, namely the expected total cost

4

criterion. However, as pointed out in Section 3.1 the results can easily be extended to other
criteria. Let Xn denote the state of the system at stage n, i.e. Xn is a random variable taking
values in Sn. Then the expected total cost given policy δ and starting state s at stage 1 is

ETCδ (s) = E
δ
s

(

N
∑

n=1

cn (Xn, dn (Xn))

)

(1)

In (1) we assume that the decision maker wishes to choose a policy given an initial system
state s. In this paper we alternatively consider the case where he might seek a policy prior
to knowing the initial state. Let p0 (s) denote the probability of starting in state s ∈ S1. In
this case he seeks a policy δ ∈ ∆ which minimizes

ETCδ =
∑

s∈S1

p0 (s)ETCδ (s) (2)

This corresponds to defining a policy to δ = (d0, d1, ..., dN) where d0 is the decision rule
corresponding to a deterministic dummy action a0. That is, we define stage 0 with S0 = {s0}
where s0 represents the system before the state of the system at stage 1 is known and let
c0 (s0, a0) denote the cost. Moreover, we set p0 (s′ | s0, a0) = p0 (s′).

Let |pn (· | s, a)| be the number of positive elements in the probability distribution and
denote by

M =
∑

n=0,...,N, s∈Sn, a∈As,n

|pn (· | s, a)| (3)

the total number of possible transitions. Note that the size of the input data representing the
MDP is O (M).

It is well known that there exist a deterministic Markovian policy δ which minimizes (1),
see e.g. Puterman [27, chap. 4]. Let the cost to go uδ

n (s) denote the expected total cost given
policy δ at stage n, ...,N , i.e.

uδ
n (s) = E

δ
s

(

N
∑

i=n

ci (Xi, di (Xn))

)

Then uδ
n (s) can be found using the recursive equations

uδ
n (s) =

{

cn (s, a) +
∑

s′∈Sn+1
p (s′ | s, a) uδ

n+1 (s′) n < N

cN (s, aN) n = N
(4)

That is, the optimal policy with minimal expected total cost for all stages n and states s ∈ Sn

can be found using the following Bellman equations, Bellman [6]:

u∗
n (s) =

{

mina∈As,n

{

cn (s, a) +
∑

s′∈Sn+1
p (s′ | s, a) u∗

n+1 (s′)
}

n < N

cN (s, aN) n = N
(5)

indicating that the optimal policy can be found by analyzing a sequence of simpler inductively
defined single-stage problems. This is often referred to as value iteration or backward induc-
tion (dynamic programming). The value iteration procedure for finding u∗

n (s) for n = 0, ..., N
and s ∈ Sn is shown in Figure 2.

5

1 procedure ValueIte
2 for (s ∈ SN) do u∗

N(s) := cN(s, aN);
3 for (n = N − 1 to 0) do

4 for (s ∈ Sn) do

5 find u∗
n(s) using (5) and set d∗n(s) equal

6 to the corresponding optimal action;
7 end for

8 end for

9 end procedure

Figure 2: The value iteration procedure.

2.2 Directed hypergraphs

A directed hypergraph is a pair H = (V , E), where V = (v1, ..., v|V|) is the set of nodes, and
E = (e1, ..., e|E|) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node. Note
that a hyperarc has exactly one node in the head, and possibly several nodes in the tail. A
hypergraph is shown in Figure 3.

The cardinality of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)| + 1.
We call e an arc if |e| = 2. The size of H is the sum of the cardinalities. Without loss of
generality, we assume size(H) > |V |. We denote by

FS(v) = {e ∈ E | v ∈ T (e)} , BS(v) = {e ∈ E | v = h(e)}

the forward star and the backward star of node v, respectively.
A hypergraph H̃ = (Ṽ , Ẽ) is a subhypergraph of H = (V , E), if Ṽ ⊆ V and Ẽ ⊆ E . A sub-

hypergraph is proper if at least one of the inclusions is strict.
An valid ordering V =

(

v1, v2, . . . , v|V|

)

of H is a topological ordering of the nodes such
that, for any e ∈ E , if h(e) = vi and vj ∈ T (e) then j < i. Note that, in a valid ordering any
node vj ∈ T (e) precedes node h(e). A o-t path in H is a sequence

(o = v1, e1, v2, e2, ..., eq , vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u if a u-v
path exists in H. A cycle is a o-t path, where t ∈ T (e1). This is in particular true if t = o.
If H contains no cycles, it is acyclic. It is well-known that H is acyclic if and only if a valid
ordering of the nodes in H is possible (Gallo et al. [10]).

2.2.1 Hyperpaths and hypertrees

Definition 1 A hyperpath πot = (Vπ, Eπ) from origin o to target t, is a subhypergraph of H
satisfying that, if t = o, then Eπ = ∅; otherwise the q ≥ 1 hyperarcs in Eπ can be ordered in
a sequence (e1, ..., eq) such that

1. t = h (eq) .

2. T (ei) ⊆ {o} ∪ {h (e1) , ..., h (ei−1)} , ∀ei ∈ Eπ.

6

1

2

34

t o
e2

e1

e3

e4

e5

e7

e6

e8

Figure 3: A hypergraph H.

3. No proper subhypergraph of πot is an o-t hyperpath.

A node t is hyperconnected to o in H if there exists a hyperpath πot in H. Note that
condition 2 above implies that a valid ordering of πot is (o, h (e1) , ..., h (eq)) . That is, a
hyperpath is acyclic. Furthermore, condition 3 implies that, for each u ∈ Vπ \ {o}, there
exists a unique hyperarc e ∈ Eπ, such that h(e) = u and hence for each node u ∈ Vπ there is
a unique subhyperpath πou contained in πot. We denote hyperarc e as the predecessor of u in
πot. The definition of a hyperpath can be extended to hypertrees.

Definition 2 A directed hypertree of H with root o is an acyclic subhypergraph To = ({o}∪
N , ET) with o 6∈ N satisfying

BST (o) = ∅, |BST (v)| = 1, ∀v ∈ N

A directed hypertree To contains a unique o-u hyperpath for each node u ∈ N (see [10]).
That is, To is the union of hyperpaths from o to all nodes in N . Moreover, To can be described
by a predecessor function g : N → E ; for each u ∈ N , g(u) is the unique hyperarc in To which
has node u as the head. Note that any hyperpath is a hypertree, in particular, it can be
defined by a predecessor function.

Example 1 A hypergraph H = (V, E) is shown in Figure 3. H has a unique valid ordering,
namely V = (o, 1, 2, 3, 4, t). Below we give two hyperpaths in H, namely a hyperpath from o
to t and a hyperpath from o to 4.

πot =
(

{o, 1, 2, t}, {e1 , e2, e3}
)

πo4 =
(

{o, 2, 3, 4}, {e2 , e4, e5}
)

.

A hypertree To in H is shown with solid lines. It is the union of the two hyperpaths given
above. Several valid orderings for To exist; one of them is V = (o, 1, 2, t, 3, 4).

2.2.2 Weighting functions

Assume that each hyperarc e is assigned a real weight vector w (e) = (w1(e), ..., wL(e)).
Given an o-t hyperpath π defined by predecessor function g, a weighting function W is a node
function assigning real weights W (u) to all nodes in π. The weight of hyperpath π is W (t)
(or W (π)). We shall restrict ourselves to additive weighting functions introduced by Gallo
et al. [10], defined by the recursive equations:

W (v) =

{

0 v = o
l (w(g(v))) + f(g(v)) v ∈ Vπ \ {o}

(6)

7

1 procedure SHTacyclic(o, V,H)
2 W (v1) := 0; for (i = 2 to |V|) do W (vi) := ∞;
3 for (i = 2 to |V|) do

4 for (e ∈ BS(vi)) do

5 if (W (vi) > l(w(e)) + f (e)) then

6 W (vi) := l(w(e)) + f (e); g (vi) := e;
7 end for

8 end for

9 end procedure

Figure 4: A procedure for finding the minimum weight hypertree in an acyclic hypergraph.

Here l (·) denote a non-decreasing function of w (e) and f(·) a non-decreasing function of the
weights in the nodes of T (e). Furthermore, let me(v) denote a nonnegative multiplier defined
for each hyperarc e and node v ∈ T (e). A particular case of (6) is the value function which
has been studied in detail (see e.g. Gallo et al. [10], Jeroslow, Martin, Rardin, and Wang
[13]) obtained by setting

W (v) =

{

0 v = o
w(g(v)) +

∑

v∈T (g(v)) mg(v) (v) W (v) v ∈ Vπ \ {o}
(7)

2.2.3 Minimum weight hyperpaths

The minimum weight hyperpath problem or shortest hyperpath problem can be viewed as
a natural generalization of the shortest path problem and consists in finding the minimum
weight hyperpaths from a source o to all nodes in H hyperconnected to o. The result is a min-
imum weight hypertree containing minimum weight hyperpaths to all nodes hyperconnected
to o.

If H is acyclic and the weighting function is additive a fast polynomial algorithm exist (see
[10]). The procedure is shown in Figure 4 and needs a valid ordering V =

(

o = v1, v2, . . . , v|V|

)

of H. Since each hyperarc is examined once, the procedure runs in O (size (H)) time.

Example 1 (continued) Assume that each hyperarc e is assigned a scalar weight as shown
in Figure 5 and multipliers me (v) = 1/ |T (e)| , v ∈ T (e). Then the weight of πot is 5 and the
weight of π04 is 8 when the value weighting function (7) is used. Both hyperpaths are minimum
weight hyperpaths to their corresponding target and the union of the two hyperpaths is a
minimum weight hypertree.

3 A hypergraph model for finite-horizon Markov decision processes

Consider a finite-horizon Markov decision process with finite state and action spaces.

8

1

2

34

t o

4

2

3

1

1

6

4

8

Figure 5: A hypergraph H with scalar weights.

(n, s) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2)

cn (s, a) -70 -50 -70 -50 -70 -50
s′ {1, 2} {2, 3} {1, 2} {2, 3} {1, 2} {2, 3}
pn (· | s, a)

{

6
10 , 4

10

} {

6
10 , 4

10

} {

5
10 , 5

10

} {

5
10 , 5

10

} {

2
10 , 8

10

} {

2
10 , 8

10

}

Table 1: Input data for the problem Example 2 given action nmt.

Definition 3 Let the state-expanded hypergraph H = (V, E) be obtained by defining the node
and hyperarc set as follows

V = {vs,n | n = 0, ..., N, s ∈ Sn} ∪ {vN+1}

E = {ea,s,n | n = 0, ..., N − 1, s ∈ Sn, a ∈ As,n} ∪ {es,N | s ∈ SN}

with

ea,s,n =
({

vs′,n+1 | s′ ∈ Sn+1, pn

(

s′ | s, a
)

> 0
}

, vs,n

)

, es,N = ({vN+1} , vs,N)

The following example illustrates how the state-expanded hypergraph is created.

Example 2 We consider a simple machine replacement problem. The state of the machine
may be: good, average, and not working. Given the machine’s state we may maintain the
machine. In this case the machine’s state will be good at the next decision epoch. Otherwise,
the machine’s state will not be better at next decision epoch. The machine is always replaced
after 4 decision epochs. Furthermore, if the machine is not working then the machine may
be replaced before decision epoch 4. Finally, when the machine is bought it may be either in
state good or average.

The problem of when to replace the machine can be modelled using a Markov decision
process with N = 4 decision epochs. We use system states good (1), average (2), and not
working (3) together with actions buy, maintain (mt), no maintenance (nmt), and replace
(rep). The system state sets Sn and action sets As,n becomes

Sn =

{s0} n = 0
{1, 2} n = 1
{1, 2, 3} n = 2, 3, 4

, As,n =

{buy} n = 0, s = s0

{mt, nmt} n = 1, 2, 3, s = 1, 2
{mt, rep} n = 2, 3, s = 3
{rep} n = 4, s = 1, 2, 3

The state set S0 contains a single dummy state s0 representing the machine before knowing
its initial state and As0,0 containing the deterministic action buy. Moreover, As,4, s ∈ S4

contains the deterministic action rep.

9

state/stage 1 2 3 4

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy1

2

3

0

s0,0

Figure 6: The state-expanded hypergraph.

The cost of buying the machine is 100 with p0 (1) = 0.7 and p0 (2) = 0.3. The reward (scrap
value) of replacing a machine is 30, 10, and 5 in state 1, 2, and 3, respectively. The reward
of the machine given action mt becomes 55, 40, and 30 given state 1, 2, and 3, respectively.
Moreover, the system enters state 1 with probability 1 at the next stage. Finally, Table 1
shows the cost, transition states and probabilities given action nmt.

The state-expanded hypergraph H is shown in Figure 6 with the subscript of node vs,n

shown in each node and action a corresponding to the hyperarc ea,s,n shown beside it. H
contains a hyperarc ea,s,n for each possible action a given stage n and s ∈ Sn and a node
vs,n ∈ V for all stages n and states s ∈ Sn. The head node of a hyperarc corresponds to the
state of the system before action a is taken at the tail nodes to the possible system states after
action a is taken. Furthermore, H contains a dummy node vN+1 which may be considered
as the final system state representing the system after the machine has been replaced. Note
this is often modelled using a dummy state replaced at each stage where the system stays
in this state if it first enters it. However, this is avoided in the state-expanded hypergraph.
Moreover, H contains arcs es,N , with tail node vN+1, corresponding to the deterministic action
rep. Finally, note that the direction of the hyperarcs are backward in time.

It is obvious that the head node of a hyperarc in the state-expanded hypergraph always
corresponds to an earlier stage than any of its tail nodes (refer to Figure 6 for an illustration).
Thus, no hyperarcs exists between nodes corresponding to the same stage. Hence the following
property holds.

Property 1 The state-expanded hypergraph H is acyclic. A valid ordering V is given by, first
starting with node vN+1, and next ordering the nodes vs,n in decreasing order for n = 0, ..., N .
The nodes vs,n, s ∈ Sn for given n may be ordered arbitrarily in V .

Moreover, since the size of the input data of the MDP is O (M), the following is easily realized.

Property 2 The state-expanded hypergraph can be built in O (M) time and size(H) = O (M).

Observe that there is a one to one correspondence between policies and predecessor func-
tions g on H. Indeed, choosing g (vs,n) = ea,s,n is equivalent to choosing dn (s) = a. Moreover,
g (vs,N) = es,N is the only possible predecessor for node vs,N indicating that only a determin-
istic dummy action aN is possible at stage N . The same holds for node vs0,0.

10

Since a predecessor function g : V\ {vN+1} → E according to Definition 2 define a hyper-
tree with root vN+1 we have the following lemma.

Lemma 1 Consider a finite-horizon MDP and its corresponding state-expanded hypergraph
H. Then the following holds

1. A hypertree TvN+1
= ({vN+1}∪V, ET) defined by predecessor function g defines a policy

δ.

2. A policy δ = (d0, ..., dN) defines a unique hypertree TvN+1
in H.

Assign weights to the hyperarcs of H as follows

w1 (e) =

{

cn (s, a) e = ea,s,n

cN (s, aN) e = es,N
(8)

Moreover, for each hyperarc e assign multipliers

me(v) =

{

pn (s′ | s, a) e = ea,s,n, v = vs′,n+1 ∈ T (e)
1 e = es,N , v = vN+1

(9)

Theorem 1 Consider a policy δ defined by hypertree TvN+1
= ({o}∪V, ET). Then the expected

total cost uδ
n (s), defined in (4), is equal to the weight W (vs,n) found using the value weighting

function with weights (8) and multipliers (9).

Proof Consider the recursive definition of the value weighting function (7), applied to the
nodes of the hypertree. For node vs,N , s ∈ SN , we have that

W (vs,N) = cN (s, aN) = uδ
N (sN)

For node vs,n, n = 0, ..., N − 1 with predecessor hyperarc ea,s,n, we have that

W (vs,n) = w (ea,s,n) +
∑

v∈T (e)

me (v) W (v)

= cn (s, a) +
∑

s′∈Sn+1

p
(

s′ | s, a
)

uδ
n+1 (s)

Since the recursive definitions of W and uδ
n are identical, W (vs,n) = uδ

n (s).

Theorem 1 implies that an optimal policy δ with uδ
n (s) = u∗

n (s) can be found by finding
an optimal predecessor function in H. Moreover, by using procedure SHTacyclic, shown in
Figure 4, this can be done in O (size (H)) time, i.e. linear in the size of the input data
representing the MDP.

Corollary 1 The problem of finding an optimal policy δ with uδ
n (s) = u∗

n (s) , for all n =
0, ..., N , s ∈ Sn can be formulated as a minimum weight hyperpath problem on H and solved
in O (M) time.

11

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy

-102.2

-55 -55 -55

-40 -40 -40

-30
-30

100

-50 -50 -50

-70 -70 -70

-5

-5

-5

-10

-30
s0,0

Figure 7: The optimal policy.

Note that the worst case complexity of procedure ValueIte in Figure 2 and procedure
SHTacyclic in Figure 4 are the same. Procedure SHTacyclic may be considered as a variant
of procedure ValueIte using another underlying data structure, namely, a directed hypergraph.

Example 2 (continued) Assume that weights (8) and multipliers (9) are assigned to the
hyperarcs of the state-expanded hypergraph. Then the optimal policy can be found using
procedure SHTacyclic shown in Figure 4. The hyperpath corresponding to the optimal policy
is shown in bold in Figure 7. The expected total reward is 102.2. Note each time the machine
reaches the average state it is maintained.

3.1 Other criteria of optimality

Besides the minimization of the expected total cost several other criteria for selecting an
optimal policy can be taken into account. For example, we may assign a discounting rate
λn (s, a) of taking action a in state s at stage n. Let the weight of hyperarc e be defined as
follows

w (e) = (w1 (e) , w2 (e)) =

{

(cn (s, a) , λn (s, a)) e = ea,s,n

(cN (s, aN) , 0) e = es,N
(10)

Then the expected total discounted reward can be found using weights (10) and multipliers
(9) and the weighting function (6) with

l (w (e)) = cn (s, a) , f (e) = λn (s, a)
∑

v∈T (e)

me (v)W (v)

The proof is similar to the one for Theorem 1. Other criteria such as the expected total
reward per unit time may be modelled similarly.

Another possibility is to consider worst cases (maximum possible cost), rather than the
average behaviour. This situation can be modelled, with a proper choice of hyperarc weights
and weighting function. For instance, the policy minimizing the maximum possible total cost
can be found using weighting function (6) with

l (w (e)) = w1 (e) = cn (s, a) , f (e) = max
v∈T (e)

{W (v)}

This weighting function is also known as the distance in the literature (see e.g. Gallo et al.
[10], Nielsen, Andersen, and Pretolani [22]).

12

4 Finding the K best policies

Consider the state-expanded hypergraph H of a finite-horizon MDP. We consider the problem
of finding the K best policies. That is, ranking the first K policies in non-decreasing order
using criterion (2). According to Theorem 1 a policy δ corresponds to a hypertree T with root
vN+1. Moreover, the expected total cost prior to knowing the initial state is equal the weight
of the hyperpath π ⊆ T with origin vN+1 and target vs0,0. Hence finding the K best policies
using criterion (2) corresponds to finding the K minimum weight hyperpaths from origin
vN+1 to target vs0,0 in the state-expanded hypergraph using the value weighting function
with weights (8) and multipliers (9).

Efficient algorithms for finding the K minimum weight hyperpaths were developed by
Nielsen et al. [21]. These algorithms are based on an implicit enumeration method, where
the set of hyperpaths is partitioned into smaller subsets by recursively applying a branching
operation. In the following we give a short description of the algorithm.

Let Π denote the set of hyperpaths in H with origin o = vN+1 and target t = vs0,0.
Consider the minimum weight hyperpath π defined by predecessor function g and with valid
ordering

Vπ = (o, u1, ...uq = t)

Given the minimum weight hyperpath π of Π and valid ordering Vπ, the set Π \ {π} can now
be partitioned into q disjoint subsets Πi, 1 ≤ i ≤ q using the following branching operation
(for a formal proof see Nielsen [20]).

1. Hyperpaths in Πq do not contain hyperarc g(uq), that is g(t).

2. For 1 ≤ i < q, hyperpaths in Πi contain hyperarcs g (uj) , i + 1 ≤ j ≤ q, and do not
contain hyperarc g(ui).

It is evident that by taking the minimum weight hyperpath in ∪i=1,...,qΠ
i we find the

second minimum weight hyperpath. Furthermore, the branching operation can be applied to
the second minimum weight hyperpath recursively.

Let δ denote a optimal policy. In terms of MDPs the above branching operation corre-
sponds to partition the set ∆ \ {δ} of deterministic Markov policies into q disjoint subsets
from which the second best policy can be found.

The branching operation partitions the set Π in a way that simplifies finding the minimum
weight hyperpath in each subset. Indeed, finding the minimum weight hyperpath πi ∈ Πi,
i = 1, ..., q, reduces to solving a minimum weight hyperpath problem on the subhypergraph
Hi obtained from H as follows:

1. For each node uj, i + 1 ≤ j ≤ q, remove each hyperarc in BS(uj) except g(uj).

2. Remove hyperarc g(ui) from BS(ui).

We say that hyperarc g(uj), i + 1 ≤ j ≤ q is fixed, since all other hyperarcs have been
removed from the backward star of uj . Note that subhypergraph Hi is the state-expanded
hypergraph for the MDP where the actions corresponding to hyperarc g(ui+1), ..., g(uq) must
be taken and the action corresponding to hyperarc g(ui) cannot be taken.

Given subhypergraph Hi the following are equivalent for i = 1, ..., q.

13

1 procedure K-BP(H, o, t, K)
2 SHTacyclic(o,H);
3 if (W (t) < ∞) then insert((π,H));
4 else stop (there is no o-t hyperpath);
5 for (k := 1 to K) do

6 (π̃, H̃) := delMin();
7 if ((π̃, H̃) = null) then stop (there are no more o-t hyperpaths);
8 output the k’th hyperpath π̃;
9 (o, u1, ..., uq) := findV(π̃);

10 for (i := q to 1) do

11 H̃i := findH(H̃, ui);
12 π̃i := findPi(H̃i);
13 insert((π̃i, H̃i));
14 end for

15 end for

16 end procedure

Figure 8: Finding the K best policies.

1. π ∈ Πi.

2. π is an o-t hyperpath in Hi.

As a consequence, each set Πi can be represented by its corresponding subhypergraph Hi.
Hence in order to find the K minimum weight hyperpaths, we implicitly have to maintain
a candidate set of pairs (π̃, H̃), where π̃ is a minimum weight hyperpath in H̃. Assuming
that the first k minimum weight hyperpaths π1, ..., πk have been found, the candidate set
represents a partition of Π \ {π1, ..., πk}. Hyperpath πk+1, i.e. the K + 1’th best policy,
is then found by picking and removing the pair representing the hyperpath with minimum
weight in the candidate set. Then the branching operation is applied using hyperpath πk+1,
possibly obtaining new pairs that are added to the candidate set.

A compact version of the algorithm for finding the K minimum weight hyperpaths in
an acyclic hypergraph, i.e. finding the K best policies is shown in Figure 8. The following
subprocedures are used.

SHTacyclic(o,H): Find the minimum weight hypertree of H, i.e the best policy (repre-
sented by π) of the MDP corresponding to H (see Figure 4).

delMin(): Select, remove and return the pair (π̃, H̃) with minimum hyperpath weight
from the candidate set.

insert((π̃, H̃)): Insert the pair (π̃, H̃) into the candidate set.

findV (π̃): Return a valid ordering Vπ̃ ⊆ VH of the nodes in π̃.

findH (H, ui): Create and return the subhypergraph Hi.

findPi
(

Hi
)

: Find and return the minimum weight hyperpath of Hi.

14

-96.65

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

(a) subhypergraph H
8

-101.56

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1

mt

nmt

mt

mt

nmt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

(b) subhypergraph H
3

Figure 9: Subhypergraph H8 and H3.

The best policy, i.e. the minimum weight hyperpath π of H is found and inserted into the
candidate set on line 2-4. If no hyperpath exists, i.e. the weight W (t) of the hyperpath is
infinity, then no optimal policy exists. Line 5-15 contains the main loop. In the k ’th iteration
the minimum weight pair (π̃, H̃) is picked and we output the k’th policy. The branching
operation is performed on line 10-14.

Different implementations of the procedures findH and findPi have been given in the
literature. The algorithm from Nielsen et al. [24] find π̃ using procedure SHTacyclic each
time a pair is selected form the candidate set. Moreover, in the branching operation, each
hyperpath π̃i is found using procedure SHTacyclic on subhypergraph H̃i. The main drawback
of this algorithm is that a minimum weight hyperpath problem must be solved for each
subhypergraph generated during the branching operation. The number of minimum weight
hyperpath problems to solve is therefore much larger than K.

In Nielsen et al. [21], the complexity of the algorithm is improved by using reoptimization
techniques to avoid solving minimum weight hyperpath problems. Here procedure SHTacyclic
is called only once, namely when the minimum weight hyperpath of H is found. Afterwards,
hypergraph H̃ and hyperpath π̃ is created implicitly by reusing information. Finally, the
minimum weight hyperpath π̃i in subhypergraph H̃i is found using simple calculations on the
hyperarcs in the backward star of the node ui. By using reoptimization the complexity can
be improved to O (size (H)K). Hence we have the following theorem.

Theorem 2 Procedure K-BP finds the K best policies in worst time complexity O (MK).

Example 2 (continued) Due to outside safety regulations assume that the probability of
a machine being maintained more than once during its lifetime must be zero. That is, the

15

-96.5
5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

Figure 10: The optimal policy under the constraint (k = 10).

actual sample path of the policy must satisfy that action “maintain” is used at most once.
This constraint corresponds to the hyperpath with origin o = vN+1 and target t = vs0,0

may only contain o-t paths with at most a single arc corresponding to action mt. Note that
for a given policy this can be checked in O(|V|) time by visiting the nodes in the corresponding
hyperpath using the valid ordering of the time-expanded hypergraph.

The constraint is not fulfilled for the optimal policy, i.e. the hyperpath π1 in Figure 7.
We use procedure K-BP to rank the policies until a policy satisfying the constraint is found.
A valid ordering of π1 (defined by predecessor function g) is

Vπ1
= (o, u1, ..., u9) = (o, v1,4, v2,4, v1,3, v2,3, v1,2, v2,2, v1,1, v2,1, vs0,0 = t)

Hence using the branching operation on π1 corresponds to creating 9 subhypergraphsH9, ...,H1.
Subhypergraph H9 is created by removing g (u9), i.e. action buy. Since g (u9) is the only hy-
perarc in the backward star of node u9, we have that no o-t hyperpath exists in H9, that is,
no policy exists and it can be ignored. Subhypergraph H8, shown in Figure 9(a), is obtained
by fixing g (u9) (shown in bold) and removing g (u8), i.e action maintain in state average at
time instance one. The minimum weight hyperpath of H8 are shown with solid lines. The
expected total reward of the policy is 96.65.

Similar we find H7, ...,H1 and their corresponding minimum weight hyperpath. Compar-
ing the hyperpath weights of H9, ...,H1, the second best policy is the policy corresponding
to the minimum weight hyperpath of H3, shown in Figure 9(b), with expected total reward
101.56.

Note that this policy does not satisfy the constraint and the branching operation is used
on the second best policy. The branching operation is repeated recursively until the first
policy which fulfill the constraint is found which is the k = 10’th policy with reward 96.5,
shown in Figure 10.

5 Conclusions

In this paper we considered the problem of finding the K best policies in a finite-horizon
Markov decision processes with finite state and action space. That is, ranking the first K
policies in non-decreasing order using a certain optimality criterion. Finite-horizon MDPs
have been considered for many years. However, the problem of finding the K best policies
has not yet been solved. The results in this paper were motivated by recent results on

16

stochastic time-dependent networks which have similarities to finite-horizon MDPs. The
main contributions of this paper can be summarized as follows.

A finite-horizon MDP can be modelled using a state-expended directed hypergraph. Even
though several hyperpath models have been proposed in the literature, no one have modelled
finite-horizon MDPs using hypergraphs.

Hyperpaths in the state-expanded hypergraph are equivalent to a policy in the MDP. As
a result the problem of finding the optimal policy can be formulated as a minimum weight
hyperpath problem and be solved in linear time, with respect to the size of the input data
of the MDP. Moreover, different optimality criterion can easily be modelled using different
weights and weighting functions on the state-expanded hypergraph.

Since a policy corresponds to a hypertree T and the expected total cost prior, to knowing
the initial state, is equal the weight of the vN+1-vs0,0 hyperpath π ⊆ T we have that finding the
K best policies using criterion (2) corresponds to finding the K minimum weight vN+1-vs0,0

hyperpaths using the value weighting function with weights (8) and multipliers (9). Hence
using recent efficient algorithms for finding the K shortest hyperpaths, Nielsen et al. [21, 24],
we have that the K best policies can be found in O (MK) time.

Possible applications are ranking policies until a policy satisfying a hard constraint for
the MDP is found and solving bicriterion problems in MDPs. Here for instance, the objective
may be to minimize both the expected total cost and the total risk.

Directions for further research include finding the K best deterministic Markov policies in a
infinite-horizon MDP, modelling random policies using directed hypergraphs and hypergraph
models for influence diagrams, see Nilsson [25].

Acknowledgements

The main part of this research was supported by a grant from SNS - the Nordic Forest
Research Cooperation Committee. Initial work was done at the Danish Institute of Agricul-
tural Sciences in the project Farrowing and nursing sows, loose housing and improved animal
welfare funded by The Danish Directorate for Food, Fisheries and Agri Business.

We are grateful to scientist Erik Jørgensen for useful comments and suggestions for im-
proving this paper.

References

[1] E. Altman. Constrained Markov Decision Processes. Chapman and HALL/CRC, 1999.

[2] E. Altman and A. Shwartz. Adaptive control of constrained Markov chains: Criteria and
policies. Annals of Operations Research, 28:101–134, 1991.

[3] G. Ausiello, A. Datri, and D. Sacca. Minimal representation of directed hypergraphs.
SIAM Journal on Computing, 15(2):418–431, 1986.

[4] G. Ausiello, P.G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algo-
rithmic results, and a novel decremental approach. Lecture Notes in Computer Science,
2202:312–328, 2001.

17

[5] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. Hypergraph tra-
versal revisited: Cost measures and dynamic algorithms. In Mathemati-
cal Foundations of Computer Science: 23rd International Symposium, volume
1450 of Lecture Notes in Computer Science, pages 1–16, August 1998. URL
http://www.springerlink.com/index/1RE5B6E5DUGN6Y6N.

[6] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[7] C. Berge. Graphs and hypergraphs. North-Holland, 1973.

[8] C. Derman and Jr. A.F. Veinott. Constrained Markov decision chains. Management
Science, 19:389–390, 1972.

[9] C. Derman and M. Klein. Some remarks on finite horizon Markovian decision models.
Operations Research, 13:272–278, 1965.

[10] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42:177–201, 1993.

[11] A. Hordijk and L.C.M. Kallenberg. Constrained undiscounted stochastic dynamic pro-
gramming. Mathematics of Operations Research, 9:276–289, 1984.

[12] R.A. Howard. Dynamic Programming and Markov processes. Cambridge, Massachusetts:
The M.I.T. Press, 1960.

[13] R.G. Jeroslow, K. Martin, R.L. Rardin, and J. Wang. Gainfree Leontief substitution flow
problems. Mathematical Programming, 57:375–414, 1992.

[14] L.C.M. Kallenberg. Linear programming and finite Markovian control problems. Math-
ematical Centre Tracts, 148, 1983. Amsterdam.

[15] L.C.M. Kallenberg. Survey of linear programming for standard and nonstandard Markov-
ian control problems, part I: Theory. ZOR - Methods and models in Operations Research,
40:1–42, 1994.

[16] A.R. Kristensen. A general software system for Markov decision processes in herd man-
agement applications. Computers and Electronics in Agriculture, 38(3):199–215, 2003.

[17] A.R. Kristensen. Hierarchic Markov processes and their applications in replacement
models. European Journal of Operational Research, 35:207–215, 1988.

[18] A.R. Kristensen and E. Jørgensen. Multi-level hierarchic Markov processes as a frame-
work for herd management support. Annals of Operations Research, 94(1):69–90, 2000.

[19] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In Combinator-
ial optimization (Como, 1986), volume 1403 of Lecture Notes in Math, pages 258–271.
Springer, 1989.

[20] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD thesis, De-
partment of Operations Research, University of Aarhus, 2004.

18

http://www.springerlink.com/index/1RE5B6E5DUGN6Y6N

[21] L.R. Nielsen, D. Pretolani, and K.A. Andersen. Finding the K shortest hyper-
paths using reoptimization. Accepted for publication in Operations Research Letters.
doi:10.1016/j.orl.2005.04.008.

[22] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bicriterion shortest hyperpaths in ran-
dom time-dependent networks. IMA Journal of Management Mathematics, 14(3):271–
303, 2003.

[23] L.R. Nielsen, D. Pretolani, and K.A. Andersen. K shortest paths in sto-
chastic time-dependent networks. Technical Report WP-L-2004-05, Department
of Accounting, Finance and Logistics, Aarhus School of Business, 2004. URL
http://www.asb.dk/departments/afl/research/lrg/workingpapers/. Submitted.

[24] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the K shortest hyperpaths.
Computers & Operations Research, 32(6):1477–1497, 2005. doi:10.1016/j.cor.2003.11.014.

[25] D. Nilsson. Finding Sets of Most Probable Configurations in Bayesian Networks and Best
Strategies in Infludence Diagrams. PhD thesis, Department of Mathematics, Aalborg
University, 1998.

[26] D. Pretolani. A directed hypergraph model for random time-dependent shortest paths.
European Journal of Operational Research, 123:315–324, 2000.

[27] M.L. Puterman. Markov Decision Processes. Wiley Series in Probability and Mathemat-
ical Statistics. Wiley-Interscience, 1994.

[28] G. Ramalingam and Thomas Reps. An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms, 21(2):267–305, 1996.

19

http://dx.doi.org/10.1016/j.orl.2005.04.008
http://www.asb.dk/departments/afl/research/lrg/workingpapers/
http://dx.doi.org/10.1016/j.cor.2003.11.014

	Introduction
	Preliminaries
	Finite-horizon Markov decision processes
	Directed hypergraphs
	Hyperpaths and hypertrees
	Weighting functions
	Minimum weight hyperpaths

	A hypergraph model for finite-horizon Markov decision processes
	Other criteria of optimality

	Finding the K best policies
	Conclusions

