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1 Introduction

Risk management has received increased attention in the forest economics litera-
ture. However, with a few exceptions, the risks involved have not been subject to
attention in the analyses.

Forest owners making harvesting decisions face many uncertain parameters
such as price uncertainty, uncertainty about future growth and quality of retained
stands and often forestry decisions about the management of the forest have a long
time horizon. As a result, the size of the variation in consequences as a proportion
of the decision-maker’s wealth can be large and the cost of ignoring risk aversion
may be high. Moreover, a forest owner’s risk aversion may be important in the
choice of an optimal rotation strategy.

Most analyses of optimal rotation in a stochastic setting are solved when un-
certainties concerning long stand growth and quality, harvesting costs, planting
costs etc. are taken into account. The problem is often formulated as a multistage
decision process, and solved using aMarkov decision process(MDP).

MDPs model sequential decision-making problems. At a specified point in
time, a decision maker observes the state of a system and chooses an action. The
action choice and the state produce two results: the decision maker incurs an im-
mediate reward or cost, and the system evolves probabilistically to a new state at
a subsequent discrete point in time. At this subsequent point in time, the decision
maker faces a similar problem. The goal is to find an optimalpolicy of choosing
actions (dependent on the observations of the state) which is minimal with respect
to a certain criterion.

The majority of the work in the area of MDPs has focused on optimization cri-
teria that are based on expected values of the rewards or costs, see e.g. Howard [6]
and Puterman [16]. However, such risk-neutral approaches are not always applica-
ble and expressive enough and risk sensitive criteria have to be considered.

A common problem with dynamic programming is "the curse of dimension-
ality". Multi-level hierarchic Markov decision process(MLHMP), see Kristensen
[7], is a stochastic process that reduces the dimensionality difficulties. Moreover,
the process is specially designed to solve dynamic decisions problems involving
decisions with varying time horizon. The MLHMP approach has so far mainly
been applied within animal production, but this approach also applies to other ar-
eas of agriculture and non-agriculture management.

In this paper we model a forest stand using an MLHMP. The forest stand
owner’s objective is in general to maximize the total expected reward. However, as
pointed out above, risk management may also play an important role in which strat-
egy/policy to choose. For instance, policies where the actual total reward obtained
may deviate much from the total expected reward due to price changes, disasters
or insect attacks will often be considered “risky”. As a result the decision maker is
not only interested in maximizing total expected reward but also in minimizing the
risk measure. That is, we have a bicriterion optimization problem. In general it is
not possible to find a single policy optimizing both objectives. Instead we are inter-
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ested in finding a policy where the trade-off between reward and risk is acceptable
among the set of so calledefficient policieswhere the weight of the one criterion
cannot be reduced without increasing the weight of the other criterion.

Note that the word risk may have many different meanings depending on how
risk is modelled, e.g. we talk about risk of disasters, risk of price changes etc.
Different risk criteria are pointed out in Section4.

A hypergraph model is used to model the MLHMP. Directed hypergraphs are
an extension of directed graphs and undirected hypergraphs introduced by Berge
[2]. The concept of a hyperpath and a shortest hyperpath was introduced by
Nguyen and Pallottino [9] and later the definition of a hyperpath in a directed hy-
pergraph and a general formulation of the shortest hyperpath problem were given
by Gallo, Longo, Pallottino, and Nguyen [5]. For a general overview on directed
hypergraphs see Ausiello, Franciosa, and Frigioni [1].

Recently, the study of directed hypergraphs has become an important aspect in
finding optimal strategies/paths in stochastic time-dependent networks, see Nielsen
[10], Pretolani [15] and Nielsen, Andersen, and Pretolani [12]. Moreover, algo-
rithms to solve bicriterion problems in stochastic time-dependent networks have
been developed, see Nielsen [10], Nielsen, Andersen, and Pretolani [11].

As pointed out in a recent paper by Nielsen and Kristensen [13], by having a
look on the hypergraph model for stochastic time-dependent networks it is apparent
that, hypergraphs also can be used to model finite-horizon MDPs. Here an MDP
can be modelled using astate-expanded directed hypergraphand the problem of
finding the optimal policy under different optimality criteria can be formulated as
a shortest hyperpath problem.

The paper is organized as follows. Notation for MLHMP is introduced in Sec-
tion 2. The MLHMP model for the forest stand is given in Section3. Section4
considers different risk criteria. In Section5 bicriterion solution techniques are
discussed. Conclusions and directions for further research are pointed out in Sec-
tion 6. Finally, AppendixA describes how to build the state-expanded hypergraph.

2 Multi-level hierarchic Markov decision processes - some
definitions

We consider a multi-level hierarchic Markov process which is an infinite-horizon
Markov decision process with parameters defined in a special way, but nevertheless
in accordance with all usual rules and conditions relating to such processes. The
basic idea is to expand stages of the processes to so-called child processes, which
again may be expanded to further child processes. Only one process in the structure
is not the child of a parent process denoted thefounder processρ0. The index 0
indicate that the process has no ancestral processes. Sinceρ0 is running over a
infinite number of stages, we assume that all stages have identical state and action
spaces. Each stage ofρ0 is represented by a child process with a planning horizon
equal to the length of the state ofρ0. Often several alternative child processes are



Risk management in forestry - Possible solution approaches 7

available (depending on the action taken and the state of the parent level). A child
process may further expand some stages to further child processes.

Consider a finite-horizon child processρl with l ancestors. At stagen the sys-
tem occupies astate. At stagen the set of finite system states isSl

n. Given the
decision maker observes states ∈ Sl

n, he may choose anaction a from the set
of finite allowable actionsAl

s,n, generatingcost cl
n (s, a) (a reward if negative).

Moreover, let0 < λl
n (s, a) ≤ 1 denote the corresponding discount factor and let

pl
n (· | s, a) denote theprobability distributionor transition probabilitiesof obtain-

ing statess′ ∈ Sl
n+1 at stagen + 1.

Assume thatρl haveN decision epochs. Since no decision is made at the end
of stageN − 1, the cost at this time point is a function of the states ∈ Sl

N denoted
cl
N (s, aN ) which is often referred to as thesalvage costor scrap cost. HereaN

denotes a deterministic (dummy) action.
Note that we may use the same notation for the founder process as defined

above. Furthermore, since the founder process runs over an infinite time-horizon
we may drop indexn.

A processρl with l ancestors is uniquely identified by the stage, actions and
states of its ancestors necessary to start the process. Often we assume that these
stages, actions and states are know implicitly and just writeρl; however, we may
write ρl explicitly using the following notation

ρl =
((

s0, a0
)
,
(
n1, s1, a1

)
, ...,

(
nl−1, sl−1, al−1

))

A policy or strategyδ is a function which specifies the action to choose for all
(child) processes given its stage and state. That is, a policy provide the decision
maker with a management plan.

2.1 Finding the optimal policy

Note that an MLHMP may be considered as a stochastic process{Xi}i=1,...,∞
where random variableXi denote the state of the process at decision epochi.
Moreover, we define random variableli andni used to identify the correspond-
ing child process and its stage at decision epochi.

In general the goal of the decision maker is to find an optimal policy according
to a certain criterion which is a function ofXi, i = 1, ...,∞.

Definition 1 Given policyδ let random variableTDCδ
s denote thetotal discounted

economic costwhen the initial state iss. That is,

TDCδ
s =

∞∑

i=1




i−1∏

j=1

λ
lj
nj (Xj , δ (Xj))


 cli

ni
(Xi, δ (Xi)) , X1 = s (1)

For a risk neutral forest owner operating under no risk, a well-known criterion
is to find the policy that minimize the expected total discounted economic cost

ETDCδ
s = E

(
TDCδ

s

)
(2)
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1 procedure policy_ite()
2 choose a policyδ;
3 optimal := false
4 while (not optimal)do
5 givenδ find the unique solution to equations (3);
6 determine policyδ′ using equations (4);
7 if (δ = δ′) then optimal := true;
8 else δ := δ′;
9 end while

10 returnδ′;
11 end procedure

Figure 1:Policy iteration procedure (ETDC).

In the following we summarize how to findf δ
s =ETDCδ

s using policy iteration and
value iteration.

Given an MDP it is well-known thatf δ
s , s ∈ S0 can be found by solving the

following equations

f δ
s = c0 (s, δ (s)) + λ0 (s, δ (s))

∑

s′∈S0

p0
(
s′ | s, δ (s)

)
f δ

s′ (3)

Furthermore, policyδ can be improved by for eachs ∈ S0 selecting actiona′ ∈ A0
s

minimizing

a′s = arg min
a∈A0

s



c0 (s, a) + λ0 (s, δ (s))

∑

s′∈S0

p0
(
s′ | s, δ (s)

)
f δ

s′



 (4)

Let δ′ denote the policy withδ′ (s) = a′s, s ∈ S0, then it is easy to see thatδ′ is
an improved policy. Moreover, ifδ = δ′ thenδ is optimal. The policy iteration
procedure, shown in Figure1, repeats the above operations until an optimal policy
are found.

If we consider a MLHMP instead the policy iteration procedure only have to be
changed slightly. In this casec0 (s, δ (s)) andλ0 (s, δ (s)) are the expected cost and
discount rate of the child processes when using policyδ. Moreover,a′s in (4) is the
optimal actions for the whole child process. These values can be calculated using
value iteration, see Kristensen and Jørgensen [8] or a shortest hyperpath algorithm
as pointed out in AppendixA.

3 The forest stand model

We consider a single forest stand over an infinite time-horizon. We start by consid-
ering the parameters and variables under consideration.
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3.1 Model parameters and variables

Forest management involves adoption to several variables and parameters from
planting to the final felling. We consider a simple model with the following as-
sumptions (unrealistic model assumptions are pointed out in Section6).

SpeciesGiven a forest stand we assume that the species is fixed.

Site qualities The production functions of forest stands differ according to their
site quality, which gives the production possibility to a certain location. Dif-
ferent parameters are used to determine the site quality, e.g. tree height
growth is almost perfectly correlated with the site quality. For instance,
the height of dominating trees at 40 years of age (i.e. 40 years from the
trees reached their breast height - 1.3 m) is used in Norway. In this paper
we assume that at a given time the site quality is known with (approximate)
certainty. As a result site quality is not included in the state space of the
model.

Reforestation/planting The scope of reforestation is to start the growth of a new
stand after final felling as soon as possible. Planting is especially important
where the site quality is good and future competition from other vegetation
is high. On dryer soil (for pine) natural regeneration is more (cost) efficient.
Some trees are left during the final felling in order to supply the site with
seeds enough for a new stand to growth. In order to improve such regenera-
tion, mechanical soil improvement (scarification) is often conducted.

Silviculture The scope of silviculture is to remove competitive vegetation and
trees in order to improve growth conditions. This activity involves only
costs, but is supposed to improve tree quality and diameter growth. Silvi-
culture activities are conducted from stand age 5 to 30, depending on the site
quality. A silviculture strategy could be to do silviculture every second year.

Thinnings Thinnings involve reducing the stem number in order to improve di-
ameter growth for the rest of the trees. Thinnings are conducted at age 30
to 60, and there can be several thinnings (or none at all), and are supposed
to give some revenues from timber sales (even though the costs associated
can exceed the income). Thinnings will in the short run decrease the volume
yield in a specific stand (a shift downwards in the production function) but
since it improves the growth condition the stand will recover this yield over
time (thus the production function also gets steeper).

Timber price The timber price is defined as a random autoregressive time series,
i.e. if the current timber price iŝp, then the pricet time periods after is

pt = exp (−αt) (p̂− µ) + ε

whereε ∼ N
(
µ, σ2

)
with µ equal to the expected timber price andσ2 the

variance. The timber price is illustrated in Figure2. It is assumed that the
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Figure 2:Timber prices for the random autoregressive process.

forest owner does not have any effect on the timber price. Moreover, note
that the forest stand cannot be harvested before year 60, i.e. price monitoring
is only needed from year 60 until felling where it must be predicted 5 years
ahead. Since there are at least 60 years between each felling, we assume that
the price between rotations are independent.

Catastrophe risk By using a random process to model the timber price we intro-
duce price risks into the model. Risk of catastrophes (e.g. fire) are introduced
into the model differently inspired by studies on catastrophe avoidance for
hazardous materials route planning, see Erkut and Ingolfsson [4].

Given the current state of the system we assume that the probability of a
catastrophe and e.g. the number of trees affected can be calculated. Further
details will be pointed out in Section4.

3.2 MLHMP formulation

An MLHMP with 2 levels is used to model the forest stand

Founder process (level 0)A stage of the founder process is one rotation, i.e. from
felling to felling.

State spaceSince we assume that the site quality is a known function of e.g.
the tree height, we define a single dummy state.

Action space The choice between planting versus natural regeneration.

Child level 1 The child process at level 1 begins at planting/reforestation. The
length is equal to the duration of a rotation. From year 0 to year 30 silvi-
culture is done according to a selected silviculture strategy (one stage). It is
assumed that thinning is considered every 10’th year from year 30 to year 60,
i.e. there will, as a maximum, be 3 thinnings. For the remaining years felling
is considered each 5. year. Moreover, we assume that felling is conducted
before year 100.
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1 Founder process (level 0):
2 Horizon: Infinite.
3 Stage length: From felling to felling (one rotation).
4 States: s ∈{ dummy} (stage independent).
5 Actions: a ∈{ plant,natural regeneration}.
6 Child process (level 1):
7 Given: reforestation action of the founder level.
8 Horizon: Finite (12 stages).
9 Stage 1:

10 Stage length: 30 years.
11 States: s ∈{ dummy}.
12 Actions: set of different silviculture strategies.
13 Stage 2-4:
14 Stage length: 10 years.
15 States: s ∈ TV .
16 Actions: a ∈{ thin,don’t thin}.
17 Stage 5-12:
18 Stage length: 5 years.
19 States: s ∈ TV × P .
20 Actions: a ∈{ fell,don’t fell}.

Figure 3:The MLHMP model for a forest stand.

Stage 1 The first stage covers the first 30 years. Only one dummy state
is defined. The action space is defined by the alternative silviculture
strategies.

Stages 2-4Each stage has duration of 10 years. The states ∈ TV is the
present timber volume of the stand, whereTV = {tv1, ..., tvq} denote
the discretized set of possible timber volumes which can be obtained
during a rotation. The action space is defined as thinning versus no
thinning.

Stages 8-12Each stage has duration of 5 years. The states ∈ TV × P is
defined as the present timber volume of the stand and the price index,
whereP = {p1, ..., pl} denote the set of discretized possible timber
price levels. The action space is defined as felling versus no felling.

A compact representation of the MLHMP model is given in Figure3.
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4 Risk criteria for the forest stand model

Forestry is certainly exposed to risk: rot, insect attacks, wind throws, other pro-
duction risk, price risk etc. Moreover, the owners are most likely to have different
degrees of risk aversion. Finally, there exists different ways to quantify risk. In the
following sections we introduce risk criteria which may be relevant for the forest
owner.

4.1 The variance risk criterion

One way to consider risk is to consider thevariance risk criterion(VRC) defined
as the variance of the total discounted economic cost (1). i.e.

V RCδ
s = V

(
TDCδ

s

)

given policyδ and initial states. The variance is the most common measure of how
far the tails of a distribution extend, so it seems natural to use it as a risk measure.
Note that for the forest stand model the VRC only provide us with risk information
about the state variables included in the model, e.g. timber price. As concerns
other risk variables, such as fire or insect attacks, the criterion only measures the
effect of decreased timber volume as a consequence of those events.

Recursive equations for calculatingV RCδ
s are given in Nielsen and Kristensen

[14]. Unfortunately, in the same paper it was shown that Bellmans principle of
optimality does not hold for the VRC. That is, we cannot find the policyδ with
minimalV RCδ

s using standard dynamic programming methods.

4.2 The expected total consequence risk criterion

Due to the unfortunate properties for the VRC we choose to model risk of catas-
trophes differently inspired by studies on catastrophe avoidance for hazardous ma-
terials route planning, see Erkut and Ingolfsson [4].

Assume that we considercatastrophemeasuresr ∈ R such as rot, insect at-
tacks, wind throws etc and let theconsequenceof a catastropher denote a common
measure for all catastrophes inR, e.g. number of trees affected or the cost of the
catastrophe.

Consider processρl. Given the decision maker observes states at stagen
and chooses actiona the probability of catastropher ∈ R is θl

n (s, a, r) and the
consequence of the catastrophe is estimated to beκl

n (s, a, r). Then the expected
consequence of the catastrophes when the decision maker observes states and
chooses actiona is

ηl
n (s, a) =

∑

r∈R

θl
n (s, a, r) κl

n (s, a, r)
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Using valueηl
n (s, a) we can define a random variableTCRδ

s denoting the total
consequence risk similar to the total discounted cost in (1).

TCRδ
s =

∞∑

i=1

ηli
ni

(Xi, δ (Xi)) , X1 = s (5)

and rank policies using theexpected total consequence risk criterion(ETCR
criterion)

ETCRδ
s = E

(
TCRδ

s

)
(6)

Note that we do not model catastrophes using the state space but model them im-
plicit usingηl

n (s, a). Hence the model does not provide us with any information
about what happens when a catastrophe occur.

Since the ETCR criterion from a mathematical point of view is equivalent to the
ETDC criterion (2), the policy minimizingETCRδ

s can be found using dynamic
programming and policy iteration.

4.3 The catastrophe avoidance risk criterion

The ETCR criterion provided us with an easy way of ranking policies according
to expected risk. However, the ETCR criterion is risk neutral in the sense that a
decision maker is indifferent between two policies as long as their expected risk (6)
is the same. Often this is not the case when dealing with catastrophes having high
consequence but occurring with low probability. Here the human decision maker
may exhibit risk aversion trying to avoid catastrophes with high consequences even
though they occur with low probability. This kind of risk aversion can be modelled
using thecatastrophe avoidance risk criterion(CAR criterion)

CARδ
s (r) = max

i=1,...,∞
si∈{s:P (Xi=s)>0}

{
κli

ni
(si, δ (si) , r)

}

which simply specify the maximum possible consequence of catastropher given
policy δ. We are not interested in finding the policy with minimalCARδ

s (r) (there
may the many). Instead we assume that the decision maker put an upper bound
ubCAR on the maximum consequence acceptable, i.e. all policiesδ under consid-
eration most satisfy

CARδ
s (r) < ubCAR, ∀r ∈ R (7)

Of cause using a too low upper bound may result in that no management strat-
egy exists.

5 Optimization model and possible solutions methods

In this section we consider optimization models for finding a good set of policies
from where the decision maker can choose the management plan he finds best. We
start by presenting the optimization model.
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5.1 Optimization model formulation

In the previous sections a range of criteria which can be used to rank policies have
been presented. The goal is the find a policy minimizing point

P̂ δ =
(
ETDCδ

s , V RCδ
s , ETCRδ

s

)

under constraint (7). In general this is not possible to find a single minimal point
P̂ δ since given policyδ one criterion might be high while another criterion is low.
Instead we are interested in findingefficient policies, i.e. policies where the weight
of one criterion cannot be reduced without increasing the weight of another cri-
terion. If δ is an efficient policy we call̂P δ a nondominated point. We get the
following multi-criteria optimization problem

min
δ

(
ETDCδ

s , ETCRδ
s, V RCδ

s

)

st. CARδ
s (r) < ubCAR, ∀r ∈ R

(8)

Unfortunately, we cannot find the set of efficient policies to (8) due to the nonaddi-
tive properties of the variance risk criterion (see Section4.1). Instead we will find
an approximation of the set of efficient policies to (8) by solving the bicriterion
optimization problem

min
δ

(
ETDCδ

s , ETCRδ
s

)

st. CARδ
s (r) < ubCAR, ∀r ∈ R

(9)

That is, the variance criterion is not considered directly. However, during the so-
lution procedure for solving (9), we for each policyδ considered calculateV RCδ

s

and for efficient policies store point̂P δ instead of point
(
ETDCδ

s , ETCRδ
s

)
.

5.2 The bicriterion optimization problem

Consider bicriterion optimization problem (9). First note that each policyδ corre-
sponds to a pointP δ =

(
ETDCδ

s , ETCRδ
s

)
1 in thecriterion spaceand the goal

is to find all efficient points. This provide us with a set of points from which the
decision maker may pick the policy which fits best according to his risk adversity.

An example of points in the criterion space is shown in Figure4 (right side)
whereP δ

1 = ETDCδ
s andP δ

2 = ETCRδ
s. The pointsP 1, P 4 andP 5 are nondom-

inated points on the border of the criterion space also denotedextreme points.
Note that the domain of (9) is discrete. As a result efficient points are not al-

ways only located on the border. Instead the extreme points define a set of triangles
in which further nondominated points, such asP 8, may be found. Points outside
the triangles are always dominated by one of the extreme points. In the following
we shortly describe the two-phase approach for solving (9).

1We in the following only consider pointP δ instead ofP̂ δ, however the varianceV RCδ
s can be

stored as pointed out above.
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Figure 4:The criterion space (to the right) and its corresponding parametric space
(to the left).

5.3 Solution method

The two-phase approach is used to solve (9) which is a general method for solving
bicriterion combinatorial problems. As the name suggests, the two-phase approach
splits the search of nondominated points into two phases. In phase one the extreme
points are found. These extreme points define the triangles in which further non-
dominated points may be found. Phase two proceeds to search the triangles one by
one. This is done parametrically. The approach is illustrated by the set of criterion
points shown in Figure4 .

Let γ denote theparametric weightof a policyδ.

γ (δ, ρ) = P δ
1 ρ + P δ

2 (10)

Givenρ > 0, aminimum parametric weight policyδ (ρ), is a policy with min-
imal parametric weight (10) denotedγ (ρ) (how to findδ (ρ) is described in Sec-
tion 5.6).

5.4 Finding the extreme points - phase one

The criterion space and its corresponding parametric space are shown in Figure4.
For a given policyδ, each pointP δ corresponds to a line with slopeP δ

1 and in-
tersectionP δ

2 in the parametric space. Given a fixedρ > 0, we have a line in the
parametric space defined by someδ which minimizesγ(δ, ρ), see Figure4. More-
over, the lower envelope of the lines in the parametric space definesγ (ρ) , which
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P
+

P
-

ub

ub

Search direction

Figure 5:A triangle defined byP+ andP−.

is a non-decreasing piecewise linear function with break pointsρi. Note that each
breakpointρi corresponds to a value ofρ where two adjacent extreme points have
the same minimal parametric weight. For instance forρ = ρ2 we have thatP 4

andP 5 have the same minimal parametric weight, i.e. finding a minimal paramet-
ric weight policy δ (ρ2) corresponds to searching in the direction of the normal
betweenP 4 andP 5.

Obviously each piece ofγ (ρ) defines an extreme point. Hence the extreme
points can be found by finding a minimal parametric weight policyδ (ρ) for differ-
ent values ofρ. This is done by using a NISE2 algorithm (see Cohen [3]) which
first finds theupper/leftand thelower/right point (P 1 andP 9 in Figure4). The
upper/left point is the nondominated point which has minimum weight using the
second criterion when weight one is fixed to its minimum weight. Similarly, the
lower/right point is the nondominated point which has minimum weight using the
first criterion when weight two is fixed to its minimum weight. Given two non-
dominated pointsP+ andP−, we now calculate the search directionρ defined by
the slope of the line between the points and find the minimum parametric weight
policy δ (ρ). If P δ(ρ) corresponds to a new extreme point the pointsP+, P δ(ρ) and
P− define two new search directions which can be searched similarly. This step is
repeated until no new extreme points are found. Since the number of policies are
finite, we have that the number of lines definingγ (ρ) in the parametric space is
finite and hence the first phase will stop in a finite number of steps.

5.5 Finding points inside the triangles - phase two

Due to there may exist nondominated points inside the triangles, it is not in general
possible to find all nondominated points during the first phase. This can be seen in
Figure4 where nondominated pointP 8 cannot be found by the first phase since it
corresponds to a dashed line lying aboveγ (ρ) . Points likeP 8 are found in phase
two which searches each triangle defined by the set of extreme points found in

2Non-inferior set estimation.
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phase one. Consider the triangle defined by the extreme nondominated pointsP+

andP− (see Figure5). The second phase searches each triangle using aK best
policy procedure in the directionρ defined by the slope between the two points
defining the triangle. The procedure stops when an upper bound has been reached.
At start the upper bound isub0 = P−

1 ρ + P+
2 . However, when a new unsupported

nondominated point is found inside the triangle, the upper bound is updated toub1

(see Figure5). Note that the procedure may find points outside the triangle because
all points with parametric weight belowub1 are found.

5.6 Complexity of the solution method

Since the number of efficient points may grow exponential with the size of the prob-
lem the complexity of a bicriterion optimization problem is in generalNP-hard.
Moreover, the two-phase approach require that givenρ > 0, a minimum paramet-
ric weight policyδ (ρ) , with minimal parametric weight (10), can be found. This
is done using the state-expanded directed hypergraph of the MLHMP for the forest
stand. Here each hyperarc represent a specific stage, state and action. Now by
assigning weight

cl
n (s, a) ρ + ηl

n (s, a) (11)

to the corresponding hyperarc, policyδ (ρ) can be found by finding a shortest hy-
perpath in the state-expanded hypergraph.

Bicriterion optimization techniques using the two-phase approach for directed
hypergraphs modelling stochastic time-dependent networks have been addressed
by Nielsen [10]. Similar, we can solve problem (9) using the two-phase approach
on the state-expanded hypergraph. Here the constraints in (9) are kept simply by
removing hyperarcs in the hypergraph. A detailed description on how to build the
state expanded hypergraph is given in AppendixA.

Solution times for problem (9) are not known. However, since the structure
of the state-expanded hypergraph resembles the structure of the hypergraph repre-
senting the stochastic time-dependent network, the solution time may be quite the
same. In Nielsen [10] a good approximation of the efficient set could be found in
reasonable time.

Finally, note also that efficient policies may be found in interaction with the
decision maker. For instance the extreme points on the border, defining the trian-
gles in phase two, may be found. Next, the decision maker may choose the triangle
to search for further efficient policies.

5.7 Application of the solution method to the forest stand model

It is important in the optimization procedure to treat the forest management prob-
lem in a replacement framework. If the reward from future rotations is ignored,
the optimal felling time determined will inevitably be too high. Thus, optimiza-
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tion must basically be performed under infinite planning horizon using the policy
iteration technique as described in Section2.1.

When it comes to risk assessment, on the other hand, it may be more realistic
to evaluate the defined risk criteria inside a rotation, since the duration of a rotation
is at least 60 years. It is therefore neither realistic that the forest owner is the same
nor that the degree of risk aversion is the same during more than one rotation.

The following procedure for application of the solution method to the forest
stand model is therefore suggested:

1. An optimal policyδ′ according to theETDCδ
s criterion under infinite hori-

zon is calculated.

2. In each of the child processes (Level 1) representing a rotation, the solution
method described in the previous sections is applied. TheETDCδ

s criterion
is evaluated under infinite planning horizon assuming that the policyδ′ is
followed fromnextrotation, but during the present rotation any policyδ may
be used. TheV RCδ

s , ETCRsδ andCARδ
s(r) criteria are evaluated under

the time horizon of the rotation.

6 Conclusions

In this paper we have presented a model for risk management of a forest stand.
The stand is represented using a MLHMP which can be modelled using a state-
expanded hypergraph. For a risk-neutral decision maker the overall goal is to min-
imize the expected total discounted cost. However, due to risks in forestry we
introduce three risk criteria.

The variance risk criterion is used to provide us with risk information about
the state variables included in the model, e.g. timber price and timber volume.
It does not provide us with any information about other risks such as fire, insect
attacks etc. Instead catastrophes are introduced implicitly into the model and the
expected total consequence risk criterion is used to provide us with risk information
about the risk of catastrophes. The expected total consequence risk criterion is risk
neutral in the sense that a decision maker is indifferent between two policies as long
as there expected risk is the same. Often this is not the case when dealing with
catastrophes having high consequence but occurring with low probability. As a
result we introduce the catastrophe avoidance risk criterion which is not optimized.
However, the decision maker may put an upper bound on this criterion.

Risk aversion is introduced into the model in two different ways. First, by
putting an upper bound on the catastrophe avoidance risk criterion, the decision
maker sets a limit on how big a catastrophe he is willing to risk. Of course setting a
too low limit will result in that no management strategy exists. Second, solving the
bicriterion optimization problem (9) give us a set of efficient policies from which
the decision maker may choose the policy which fits best according to his risk
aversion.
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The model in this paper is very simple and probably unrealistic. Some unreal-
istic assumptions are pointed out below.

• We assume that silviculture is done according to a silviculture strategy last-
ing 30 years, i.e no decisions are taken during the 30 years. A more realistic
model would probably split this time period into smaller parts where the sil-
viculture strategy may be revised. Moreover, intensity of thinning may vary,
i.e. more than two actions at stage 2-4 at child level 1.

• In a more realistic model the actions “plant” and “natural regeneration” at
the founder level could be replaced with alternative intensities of planting.

• We assume that, given the time from planting, the site quality is known. If
the site quality should be learned from data, a second child level could be
relevant for observation.

• In the current model we cannot harvest a stand before year 60 this might not
always be realistic.

• The way timber prices are modelled are properly not correct. Furthermore if
there is high variations in the prices of a tree bought for planting this price
should be modelled similar to the timber price.

• We do not consider the climate at all. An increase in temperature may result
in that other species have to be planted.

Although the model is simple it provides us with a good starting point for
further research.
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Appendix

A Modelling the MLHMP using a directed hypergraph

In this appendix we present results on how to build the state-expanded hypergraph
representing the MLHMP. We start by giving some formal definitions about di-
rected hypergraphs

A.1 Directed hypergraphs

A directed hypergraphis a pairH = (V, E), whereV = (v1, ..., v|V|) is the set of
nodes, andE = (e1, ..., e|E|) is the set ofhyperarcs. A hyperarce ∈ E is a paire =
(T (e), h(e)), whereT (e) ⊂ V denotes the set oftail nodes andh(e) ∈ V \ T (e)
denotes theheadnode. Note that a hyperarc has exactly one node in the head, and
possibly several nodes in the tail. We denote by

FS(v) = {e ∈ E | v ∈ T (e)} , BS(v) = {e ∈ E | v = h(e)}

the forward star and thebackward starof nodev, respectively. A directed hy-
pergraphH̃ = (Ṽ, Ẽ) is asubhypergraphof H = (V, E), if Ṽ ⊆ V andẼ ⊆ E . A
subhypergraph isproper if at least one of the inclusions is strict.

Definition 2 A hyperpathπot = (Vπ, Eπ) from origin o to target t, is a subhyper-
graph ofH satisfying that, ift = o, thenEπ = ∅; otherwise theq ≥ 1 hyperarcs
in Eπ can be ordered in a sequence(e1, ..., eq) such that

1. t = h (eq) .

2. T (ei) ⊆ {o} ∪ {h (e1) , ..., h (ei−1)} , ∀ei ∈ Eπ.

3. No proper subhypergraph ofπot is ano-t hyperpath.

Condition3 implies that, for eachu ∈ Vπ \ {o}, there exists a unique hyperarc
e ∈ Eπ, such thath(e) = u. We denote hyperarce as thepredecessorof u in πot.
As a resultπot can be described by apredecessor functiong : Vπ \{o} → Eπ; g(u)
is the unique hyperarc inπot which has nodeu as the head.

The weighting function of a hyperpath is defined as follows. Assume that each
hyperarce is assigned a nonnegative real weight vectorw (e) = (w1(e), ..., wK(e)).
Given hyperpathπ defined byg, a weighting functionW is a node function assign-
ing real weightsW (u) to all nodes inH. The weight ofπ is W (t) (or W (π)). We
shall restrict ourselves toadditive weighting functionsintroduced by Gallo et al.
[5], defined by the recursive equations:

W (v) =
{

0 v = o
l (w(g(v))) + f(g(v)) v ∈ Vπ \ {o} (12)
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Figure 6:The finite-horizon child processρ1
(
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)
at level 1 given actiona0 for the

founder process.

Herel (·) denote a non-decreasing function ofw (e) andf(·) a non-decreasing func-
tion of the weights in the nodes ofT (e) .

Finding a shortest hyperpath can be viewed as a natural generalization of the
shortest path problem and consists in finding the minimum weight for all nodes in
H. If H is acyclic (which is the case here) and the weighting function is additive a
fast polynomial algorithm exist (see [5]).

A.2 Building the state-expanded hypergraph

We illustrate how to build the state-expanded hypergraph for the MLHMP by con-
sidering the MLHMP model for the forest stand given in Section3. First, note that
an example on how to build a state-expanded hypergraph for a finite-horizon MDP
is given in Nielsen and Kristensen [14] and Nielsen and Kristensen [13]. Moreover,
given the action chosen for the founder process, the child process is a finite-horizon
MDP. That is, each child processρ1

(
a0

)
with N = 12 stages is modelled using a

state-expanded hypergraph with nodes and hyperarcs defined as follows

V1 =
{
v1
s,n | n = 1, ..., N, s ∈ S1

n

} ∪ {
v1
N+1

}

E1 =
{
e1
a,s,n | n = 1, ..., N − 1, s ∈ S1

n, a ∈ A1
s,n

} ∪ {
e1
s,N | s ∈ S1

N

}
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with

e1
a,s,n =

({
v1
s′,n+1 | s′ ∈ S1

n+1, p1
n

(
s′ | s, a)

> 0
}

, v1
s,n

)
, e1

s,N =
({

v1
N+1

}
, v1

s,N

)

The state-expanded hypergraph forρ1
(
a0

)
is illustrated in Figure6. Here stage

1 has a single dummy state and a hyperarc in its backward star for each possible
silviculture strategy (assume 3 strategies possible). At stage 2-4 we have state
tvi ∈ TV defining the present timber volume of the stand and two possible actions
(hyperarcs) for each state (node). For stage 5-12 statecpi ∈ TV × P define the
present timber volume of the stand and the price index. Two actions are possible,
namely, fell or don’t fell. Note that if action fell is chosen then the process finishes,
i.e. it enters the dummy nodev1

13 representing the finished process.
Observe that there is a one to one correspondence between a policyδ and a

predecessor functiong : V1\{
v1
13

} → E1. Indeed, choosingg
(
v1
s,n

)
= e1

a,s,n

is equivalent to choosing actiona. Moreover,g
(
v1
s,12

)
= e1

s,12 is the only possi-
ble predecessor for nodev1

s,12 indicating that only the deterministic actionfell is
possible at stage12.

According to Definition2 predecessor functiong define ahyperpathwith root
v1
13 and targetv1

s,1. That is, choosing a hyperpath defined by predecessor function
g in the state-expanded hypergraph is equivalent to choosing a specific policy in
the MDP.

To build the state-expanded hypergraph for the whole MLHMP, we only need
to link the state-expanded hypergraphs at level 1 together by defining nodes and
hyperarcs representing the founder processρ0. Define the following node and hy-
perarc set

V0 =
{
v0
s,1 | s ∈ S0

} ∪ {
v0
s,2 | s ∈ S0

}

E0 =
{
e0
a,s | s ∈ S0, a ∈ A0

s

} ∪ {
e0
s,2 | s ∈ S0

}

with

e0
a,s =

({
v1
s′,1 | s′ ∈ S1

1 , p0
(
s′ | s, a)

> 0
}

, v0
s,1

)
, e0

s,2 =
({

v0
s,2

}
, v1

13

)

A compact representation of the state-expanded hypergraphH =
(V0∪V1, E0∪E1

)
is shown in Figure7. Note that we only need to represent two stages of the fonder
process since it runs over a infinite time-horizon.

A.3 Finding the optimal policy

Since a policyδ for the MLHMP is equivalent to a hyperpathπ in H the opti-
mal policy for all child processes with respect to a specific criterion can be found
by finding the shortest hyperpathπ with origin v0

d,2 and targetv0
d,1 using a spe-

cific weighting function. That is, the optimal action to choose in (4) of the policy
iteration procedure can be found solving a shortest hyperpath problem. For in-
stance if we consider the expected total discounted cost each nodev in H denote
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Figure 7:The state-expanded hypergraph for the MLHMP.

a state in a process and each hyperarce ∈ FS (v) corresponds to an action given
statev = h (e). Assign costc (e) to each hyperarce ∈ E wherec (e) denote
the economic cost of choosing actiona given stateh (e). Similar letλ (e) denote
the discount rate when choosing actiona given stateh (e). Finally, let multiplier
me(v), v ∈ T (e) be equal to the transition probability of obtaining the statev
when choosing actiona given stateh (e). Then the best policy can be found by
finding the shortest hyperpath when using the following weighting function

W (v) =
{

0 v = o
w(g(v)) + λ (g(v))

∑
u∈T (g(v)) mg(v) (u) W (u) v ∈ Vπ \ {o}

Note that, value iteration could have been used to find the optimal policy above.
However, modelling the MLHMP using the state-expanded hypergraph provide us
with efficient ways to calculate the optimal policy and to store the MLHMP. More
important, specialized algorithms for directed hypergraphs can now be used on the
state-expanded hypergraph. That is, we can now find theK best policies ranking
the policies in nondecreasing order of e.g. the expected total cost, Nielsen and Kris-
tensen [13] and use bicriterion optimization techniques for directed hypergraphs to
find the trade-off between two different criteria.
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