
Finding the K shortest hyperpaths

Lars Relund Nielsen

Department of Operations Research

University of Aarhus

Ny Munkegade, building 530

DK-8000 Aarhus C

Denmark

Kim Allan Andersen
∗

Department of Management Science and Logistics

Aarhus School of Business

Fuglesangs Allé 4

DK-8210 Aarhus V

Denmark

Daniele Pretolani†

Dipartimento di Matematica e Informatica

Università di Camerino

Via Madonna delle Carceri

I-62032 Camerino (MC)

Italy

Abstract

The K shortest paths problem has been extensively studied for many years. Efficient methods
have been devised, and many practical applications are known. Shortest hyperpath models
have been proposed for several problems in different areas, for example in relation with
routing in dynamic networks. However, the K shortest hyperpaths problem has not yet
been investigated.

In this paper we present procedures for finding the K shortest hyperpaths in a directed
hypergraph. This is done by extending existing algorithms for K shortest loopless paths.
Computational experiments on the proposed procedures are performed, and applications in
transportation, planning and combinatorial optimization are discussed.

Keywords: Network programming, Directed hypergraphs, K shortest hyperpaths, K short-

est paths.

1 Introduction

One classical problem encountered in the analysis of networks is the ranking of paths in
nondecreasing order of length, known as K shortest paths. As early as 1959 attention was
drawn to this problem [11]. Usually, two different situations are distinguished.

In the general (unrestricted) problem the paths are allowed to be looping, i.e. to contain
cycles. Several techniques, based e.g. on dynamic programming or sophisticated data struc-

∗Corresponding author - e-mail: kia@asb.dk - fax +45 89486660
†e-mail: daniele.pretolani@unicam.it

1

tures, have been applied to this problem, obtaining algorithms that are fast from a practical
as well as theoretical point of view; see for example the recent results in [4, 12].

The restricted problem where only loopless paths are accepted is considered to be harder
to solve. In practice, solution methods proposed so far are based on the branching approach
by Yen [21], later discussed by Lawler [13] in the more general framework of finding the K
best solutions to a discrete optimization problem.

The applications of the K shortest paths problem are numerous. First, practical problems
often include constraints which are hard to specify formally or hard to optimize. Here an
optimal solution can be found by enumerating suboptimal paths until a path satisfying the
hard constraints is found. Second, by computing more than one shortest path, one can to a
certain extent determine how sensitive the optimal solution is to variations of the parameters
in the model. Last but not least, the K shortest paths problem often appears as a subproblem
within algorithms for the bicriterion shortest path problem, see for example [3, 10]. A complete
survey of the existing literature on K shortest paths does not fall into the scope of this paper;
the interested reader is referred to the work of Eppstein [4].

Directed hypergraphs are an extension of directed graphs, and have often been used in
several areas as a modelling and algorithmic tool. A technical as well as historical introduction
to directed hypergraphs has been given by Gallo et al. [6]. Hyperpaths in hypergraphs are
a nontrivial extension of directed paths whose expressive power allows us to deal with more
complex situations. In fact, several applications of shortest hyperpath methods are known.
Similar to what is discussed above for K shortest paths, applications and solution methods
based on shortest hyperpaths would take advantage of the availability of alternate optimal
or sub-optimal solutions. However, to the authors’ knowledge, no one has considered the
problem of finding the K shortest hyperpaths. Possible applications of K shortest hyperpath
algorithms are numerous.

A shortest hyperpath model has been proposed for routing problems in discrete ran-

dom time-dependent networks (RTD networks), where the travel time through an arc is a
random variable whose distribution depends on the departure time. Problems on random
time-dependent networks related to applications such as hazardous material transportation
or packet routing in congested communication networks have recently attracted a growing
attention [15, 16]. In these contexts, it is relevant to provide alternate solutions to allow for
real-time routing decisions. Hall [9] introduced the problem of finding the minimum expected
travel time (MET) through a RTD network. He pointed out that the best route does not
necessarily correspond to an origin-destination path. Instead, a strategy must be found that
assigns optimal successors to a node as a function of time. As shown in [19], directed hyper-
graphs can be used to model discrete RTD networks, and the MET problem can be reduced
to solving a shortest hyperpath problem in a suitable acyclic time-expanded hypergraph. A
deep computational analysis of hypergraph algorithms for the MET problem can be found
in [15]. In addition, the hypergraph model shows a high degree of flexibility. Optimal strate-
gies under different objectives, such as min-max travel time, min expected cost and min-max
cost, can be found by using suitable weights and weighting functions [19]. Often in a real
application hard constraints not intercepted by the model may occur. In this case, an optimal
stategy may be found by enumerating suboptimal strategies until the hard constraints are
satisfied. Here the K best strategies can be obtained by finding the K shortest hyperpaths
in the time-expanded hypergraph.

Algorithms based on K shortest paths procedures have been proposed for the bicriterion

shortest path problem. Assume that two criteria, e.g. time and cost, are associated with

2

each arc of a graph. In general, there does not exist a path that is optimal for both criteria.
Instead, a decision maker would be interested in finding efficient paths, that is solutions
where the cost (respectively, time) criterion cannot be improved without getting a worse time
(respectively, cost). A possible approach to these problems is based on a two-phase method
[2]. Here first phase finds a subset of the efficient paths (“supported” paths). In the second
phase, a K shortest paths procedure is used to find all of (or some of) the remaining efficient
paths. Clearly, the bicriterion problem can be extended to hypergraphs, and solved by a two-
phases approach. In this case, a K shortest hyperpaths procedure would be used in the second
phase. The bicriterion shortest hyperpath problem may be quite relevant in the context of
RTD networks. For instance, in hazardous material transportation one may be interested in
minimizing both expected travel time and expected risk. These problems have recently been
investigated in [18]; a related problem has been considered in [16].

Propositional satisfiability problems represent another research area where directed hy-
pergraphs are widely used, see e.g. [5, 6]. For instance, the maximum satisfiability problem
for Horn formulas (Max Horn SAT) turns out to be equivalent to the problem of finding a
minimum cut in a directed hypergraph (MCH) [5]. Since Max Horn SAT is NP-hard, also
MCH is, opposed to the well-known minimum cut problem in graphs. A branch and cut

algorithm for MCH has been devised in [5]. This algorithm is based on a particular cut gen-

eration technique, that requires to find hyperpaths with a cost less than one, where the cost

of a hyperpath is the sum of the weights of its hyperarcs. It has been proved in [1] that the
problem of finding a minimum cost s-t hyperpath is strongly NP-hard. Therefore, finding
hyperpaths with a cost less than one is in general hard. In order to overcome this difficulty, a
quite simple heuristic is adopted in [5], that consists in computing shortest hyperpaths for the
sum and distance weighting functions; as we shall see, this can be done in polynomial time.
Even though this heuristic performs well for some classes of instances, more sophisticated
techniques seem to be necessary to improve the effectiveness of the algorithm. To this aim,
K shortest hyperpaths procedures can be used. Since the sum gives an upper bound on the
cost, one may enumerate the hyperpaths with sum less than one. This defines a (possibly
empty) set of cuts that can be generated “easily”. Furthermore, the distance function gives
a lower bound on the cost. Hence finding all the hyperpaths with a distance less than one
provides a superset of the valid cuts.

Besides the specific application to cut generation discussed above, it is apparent that a
K shortest hyperpaths procedure can be used to find a minimum cost s-t hyperpath. More
precisely, we can rank hyperpaths by distance, keeping track of the minimum cost hyperpath
generated in the process. The procedure terminates as soon as the distance function of the
next ranked hyperpath is greater than or equal to the minimum cost found so far. Here we
exploit again the fact that the distance is a lower bound on the cost.

Algorithms for finding the K shortest hyperpaths may also be used to solve minimum

makespan assembly problems. As shown in [8], an assembly line can be represented by a suit-
able acyclic directed hypergraph, where each hyperarc represents a machine operation linking
two or more subassemblies together. A hyperpath thus represents a particular assembly plan.
Assuming that each operation has a cost as well as an execution time, shortest hyperpaths
with respect to the sum and distance weighting functions give assembly plans with minimum
total cost or minimum execution time (with an unlimited number of machines) respectively.
Observe that a “good” assembly plan should represent a trade-off between execution time and
cost; clearly, this is related to the aforementioned bicriterion shortest hyperpath problem. In
general, scheduling a given assembly plan on a fixed number of machines in order to mini-

3

mize its makespan is a hard problem; approximated methods are discussed in [8]. A possible
approach for refining these methods would be to generate several candidate assembly plans;
an “optimal” plan would then be chosen according to its approximated minimum makespan
scheduling, possibly taking into account other objectives.

A further application deserves to be mentioned, related to the hypergraph model for
transit networks proposed by Nguyen and Pallottino [17, 6]. Transit networks consist of a
set of bus lines connected to stop nodes where passengers board or unboard buses. In the
hypergraph model, a hyperarc represents the set of attractive bus lines for a passenger waiting
at a stop node; a shortest hyperpath represents a set of attractive origin-destination routes.
The hypergraph model is embedded within a traffic assignment model, based on Wardrop’s
equilibrium, where passengers are assumed to travel along their shortest available hyperpaths.
In the context of iterative methods for traffic assignment, it may be computationally useful
to identify alternate optimal hyperpaths by using a K shortest hyperpath procedure.

In this paper we propose algorithms for the K shortest hyperpaths problem. Moreover
computational test are performed on these algorithms. Since hyperpaths in our context are
acyclic, we extend to directed hypergraphs Yen’s method for loopless paths; as we shall see,
this extension is not straightforward.

The paper is organized as follows. Directed hypergraphs are introduced in Section 2. In
Section 3 different procedures to find the K shortest hyperpaths are developed. Computa-
tional results are reported in Section 4. Finally, we summarize original contributions and
topics for further research in Section 5.

2 Directed Hypergraphs

A directed hypergraph is a pair H = (V, E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the tail nodes and h(e) ∈ V \ T (e) denotes the head node. The cardinality

of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)| + 1. If |e| = 2, hyperarc e
is an arc. The size of H is the sum of the cardinalities of its hyperarcs:

size(H) =
∑

e∈E

|e| .

Without loss of generality, we assume size(H) > n. We denote by

FS(u) = {e ∈ E | u ∈ T (e)} , BS(u) = {e ∈ E | u = h(e)}

the forward star and the backward star of node u, respectively. A hypergraph H̃ = (Ṽ, Ẽ) is
a sub-hypergraph of H = (V , E), if Ṽ ⊆ V and Ẽ ⊆ E . This is written H̃ ⊆ H or we say that H̃
is contained in H. A path Pst in a hypergraph H is a sequence of nodes and hyperarcs in H:

Pst = (s = v1, e1, v2, e2, ..., eq , vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node t is connected to node s if a path
Pst exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular true if t = s. If
H contains no cycles, it is acyclic.

Definition 1 Let H = (V , E) be a hypergraph. A valid ordering in H is a topological ordering
of the nodes

V = {u1, u2, . . . , un}

4

such that, for any e ∈ E : (uj ∈ T (e)) ∧ (h(e) = ui) ⇒ j < i.

Notice that, in a valid ordering any node uj ∈ T (e) precedes node h(e). The next theorem
is a generalization of a similar result for acyclic directed graphs, see [20].

Theorem 1 H acyclic ⇔ A valid ordering of the nodes in H is possible.

Theorem 1 is proven in [6], where an O(size(H)) algorithm finding a valid ordering of the
nodes in an acyclic hypergraph is presented. It should be noticed that a valid ordering in
general is not unique, which is also the case for acyclic directed graphs.

2.1 Hyperpaths and hypertrees

Consider a hypergraph H = (V, E). A hyperpath πst of origin s and destination t, is an
acyclic minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ =
⋃

e∈Eπ

(
T (e) ∪ {h(e)}

)

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

Note that condition 3 implies that, for each u ∈ Vπ \ {s}, there exists a hyperarc e ∈ Eπ,
such that h(e) = u. It follows from minimality that e is unique; hyperarc e is the predecessor

of u in πst. Conversely, condition 3 can be replaced by condition 4 below, where N = Vπ \{s}.
Minimality also implies that, for any node u ∈ Vπ \ {t}, there is at least one hyperarc h ∈ Eπ

such that u ∈ T (h), thus there is a u-t path in πst. We say that node t is hyperconnected to
s in H if there exists in H a hyperpath πst.

Let s ∈ V be a given root node and let N ⊆ V \ {s} be a set of nodes hyperconnected to
s.

Definition 2 A directed hypertree with rootnode s is an acyclic hypergraph Ts = ({s}∪N , ET)
with s 6∈ N such that:

4. BS (s) = ∅; |BS(v)| = 1 ∀v ∈ N .

Note that a directed hypertree is the union of hyperpaths from s to all nodes in N . A
hypertree Ts = ({s}∪N , ET) in a hypergraph H is defined by a predecessor function p : V → E ;
for each u ∈ N , p(u) is the unique hyperarc in Ts which has node u as the head. A sub-

hypertree (or simply a subtree) of a hypertree Ts is a hypertree with root s contained in
Ts. Note that any hyperpath is a hypertree, in particular it can be defined by a predecessor
function. Moreover, different hypertrees can share the same hyperpath πst as a subtree.

We point out some relevant differences between paths in directed graphs and hyperpaths
in hypergraphs. Assume that a path Pst from node s to node t in a directed graph G = (N,A)
is known:

Pst = (s, a1, u1, a2, . . . , aq, uq = t).

5

s t

1

2

3 4

e
2

e
1

e
3

e
4

e
5

e
7

e
6

e
8

e
9

(a) A hypergraph H with a cy-
cle.

� �

1

2

3 4

(b) A hypertree in H.

Figure 1: The running example hypergraph.

Clearly, Pst is the concatenation of a subpath Psui
from node s to node ui and a subpath Puit

from node ui to node t, where

Psui
= (s, a1, u1, a1, . . . , ai, ui)

Puit = (ui, ai+1, . . . , aq, uq = t).

In other words, for each 1 ≤ i ≤ q + 1 we can split path Pst into the subpaths Psui
and Puit.

Unfortunately, this need not be so for hyperpaths. In general a hyperpath πst is not the
concatenation of two hyperpaths πsu and πut (consider e.g. πst in Example 1). However, we
can define a “splitting” operation on a hyperpath πst = (Vπ, Eπ) as follows. Recall that πst is
a hypertree Ts defined by a predecessor function p.

Definition 3 Let V = {s, u1, u2, . . . , uq = t} be a valid ordering of hyperpath πst. For each
1 ≤ i ≤ q, the splitting around ui of πst defines two hypergraphs τ i and ηi where:

τ i = (Vτ , Eτ), Vτ = {s, u1, . . . , ui}, Eτ = {p(u1), . . . , p(ui)}
ηi = (Vη, Eη), Eη = {p(ui+1), . . . , p(uq)},Vη =

⋃
e∈Eη

T (e) ∪ {h(e)}

Note that Vπ = Vτ ∪Vη, Eπ = Eτ ∪Eη and Eτ ∩Eη = ∅. Clearly, τ i is a subtree of Ts = πst.
On the contrary, ηi is not a hypertree in general; we call ηi an end-tree. Observe that for any
node u 6= t in ηi there is a u-t path in ηi. The above splitting operation will be exploited in
our algorithms for K-shortest hyperpaths.

Example 1 A hypergraph H = (V, E) is shown in Figure 1(a). Below we give two hyperpaths
in H, namely a hyperpath from s to t and a hyperpath from s to 4.

πst =
(
{s, 1, 2, t}, {e1 , e2, e3}

)
πs4 =

(
{s, 2, 3, 4}, {e2 , e4, e5}

)
.

The hypergraph H becomes acyclic when hyperarc e9 is deleted and has a unique valid
ordering, namely V = ({s, 1, 2, 3, 4, t}. A hypertree Ts in H is shown with solid lines in Figure
1(b). It is the union of the two hyperpaths given above. Several valid orderings for Ts exist;
one of them is V = ({s, 1, 2, t, 3, 4}. According to V , the subtree τ 3 corresponds to hyperpath
πst above.

6

2.2 Weighted hypergraphs and shortest hyperpaths

A weighted hypergraph is a hypergraph where each hyperarc e is assigned a real weight w(e).
In this paper we shall assume that all weights are non-negative. Given a hyperpath πst, a
weighting function W is a node function assigning weights W (u) to all nodes in πst. The
weight of hyperpath πst is W (t). We shall restrict ourselves to additive weighting functions,
defined by the recursive equations:

W (u) =

{
w(p(u)) + F (p(u)) u ∈ Vπ \ {s}
0 u = s

where F (e) is a nondecreasing function of the weights of the nodes in T (e). We shall consider
two particular weighting functions, namely the distance and the value. The distance function
is obtained by defining F (e) as follows:

F (e) = max
v∈T (e)

{W (v)}

and the value function is obtained as follows:

F (e) =
∑

v∈T (e)

ae (v) W (v)

where ae(v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e). With
respect to the value function there are two interesting cases which may arise:

• If ae(v) = 1, ∀ e ∈ E , ∀ v ∈ T (e), then the weighting function is called the sum

function.

• If
∑

v∈T (e)

ae(v) = 1, ∀ e ∈ E , then the weighting function is called the mean function.

The shortest hyperpath problem consists in finding the minimum weight hyperpaths (with
respect to a particular weighting function) from an origin s to all nodes in H hyperconnected
to s. The result is a shortest hypertree Ts containing minimum weight hyperpaths to all
hyperconnected nodes (see [6]).

Example 1 (continued) Consider again the hypergraph in Figure 1(a), and suppose all edge
weights are equal to 1. In this case, Figure 1(b) shows the shortest hypertree with respect to
the sum as well as to the distance weighting function.

The shortest hyperpath problem has been shown in [6] to be polynomially solvable pro-
vided that the weighting function is additive, the weights are nonnegative and that all cycles
are nondecreasing. According to the sufficient conditions given in [6], cycles are guaranteed
to be nondecreasing for the sum and distance weighting functions; obviously, the condition
holds true for every additive weighting function if the hypergraph is acyclic.

A general shortest hyperpath algorithm was proposed in [6]: namely, procedure SBT (s,H)1,
that finds a shortest hypertree rooted at s in hypergraph H. A particular version of SBT,
called SBT-heap in [6], generalizes Dijkstra’s algorithm for shortest paths, and takes O(m log n+

1Abbreviation for shortest B-tree, which is a hypertree in our paper.

7

size(H)) time. It can be shown that the order in which nodes are processed in SBT-heap gives
a valid ordering for the nodes in the shortest hypertree. We assume that SBT-heap and the
corresponding valid orderings are used in the K shortest hyperpath algorithms described in
the next section.

For the particular case where the hypergraph is acyclic, a simpler and faster procedure
exists denoted procedure SBT acyclic(s,H) (see [7]). In procedure SBT acyclic, nodes are
processed according to a valid ordering V of H and when a node is processed, the shortest
hyperpaths to all the nodes preceding it in V are known. In this case, the computational
complexity is linear, i.e. O(size(H)).

3 Finding the K shortest hyperpaths

The K shortest hyperpaths problem addressed in this paper is as follows: given a hypergraph
H, an origin node s and a destination node t, generate the K shortest s-t hyperpaths in
H in nondecreasing order of weight; hyperpaths with the same weight can be generated in
arbitrary order. Obviously, a problem is characterized by the chosen weighting function.
In the following we shall consider the sum and distance weighting functions on general and
acyclic hypergraphs. Moreover, we consider the mean function on acyclic hypergraphs. Our
algorithms extend the K shortest loopless paths procedure by Yen [21]; therefore we briefly
recall this procedure first. The extension to the hyperpath case is then discussed in detail
and some improvements are proposed.

In general terms, Yen’s algorithm is an implicit enumeration method, where the set of
solutions is partitioned into smaller sets by recursively applying a branching step. Given a
graph G = (N,A), and two nodes s, t ∈ N , denote by P the set of paths from s to t in G.
Assume that a shortest s-t path Pst is known, where

Pst = (s = u1, a1, u2, a2, . . . , aq, uq+1 = t).

In the branching step, the set P \ {Pst} is partitioned into q subsets P i, 1 ≤ i ≤ q. Each set
Pi contains the deviations from Pst at i, that is: each s-t path in P i is the concatenation of
Psui

(the subpath of Pst from s to ui) and a path from ui to t not containing arc ai (some of
the sets P i may be empty).

The shortest s-t path in each subset P i can be found by a standard shortest path pro-
cedure. Indeed, it suffices to find a shortest path from ui to t in a subgraph Gi, obtained
from G by deleting each node uj in Psui

except ui, and deleting arc ai as well. That is, each
set P i can be represented by a pair (Psui

, Gi). Yen’s algorithm maintains a list of such pairs
(P ′, G′), where P ′ is a path from s to a node u 6= t, and a shortest s-t path P ′

st is defined by
the concatenation of P ′ and the shortest u-t path in G′. Initially, the list contains a single
pair with P ′ = (s) and G′ = G; here, (s) is a path containing the single node s. At step k,
the shortest s-t path in the list is ranked as the kth shortest path. A branching step is then
applied on the shortest s-t path, obtaining a set of pairs that replace (P ′, G′) in the list. The
algorithm terminates when the K shortest paths are found, or when the list is empty.

At the beginning of step k + 1, the list of pairs represents a partition of P \ {P 1, . . . , P k},
where {P 1, . . . , P k} are the previously found k shortest paths. When a pair (P ′, G′) is inserted
in the list, the optimal s-t path must be computed. Since O(n) pairs can be generated at
each branching step, Yen’s algorithms must solve O(Kn) shortest path problems.

8

Finally, note that Yen’s algorithm follow a “forward branching” approach, since we process
the arcs in Pst from s to t, i.e. paths in P i must contain the subpath Psui

. However, the
“forward branching” described above can be replaced by a “backward branching”, where
path Pst is processed from t to s. In the latter case, each path in the set P i would be the
concatenation of a path from s to ui+1, not containing arc ai, and the subpath of Pst from
ui+1 to t. From a theoretical point of view, the two approaches are equivalent; as we shall
see, this symmetry does no longer hold when hypergraphs are considered.

3.1 Branching on Hyperpaths

In order to extend Yen’s algorithm to hypergraphs, we need to devise a suitable branching
rule, i.e. a partition technique so that finding the best hyperpath in each subset is easy, in
particular solved by procedure SBT.

Consider a hypergraph H = (V, E), and two nodes s, t ∈ V. In the following we let Π
denote the set of hyperpaths from s to t in H. We assume that a shortest s-t hyperpath
πst = (Vπ, Eπ) is known, and is defined by a predecessor function p : Vπ \ {s} → E ; moreover,
a valid ordering:

Vπ = (s = u1, u2, . . . , uq, uq+1 = t)

for the nodes in πst is at hand.
Since a hyperpath is not in general the concatenation of two hyperpaths, a direct appli-

cation of Yen’s branching technique is not possible. However, we may still follow a forward
branching approach, where we split a hyperpath around each node ui (see Definition 3) ac-
cording to the given valid ordering. That is, we partition the set Π \ {πst} into q subsets Πi,
1 ≤ i ≤ q; each s-t hyperpath in Πi must contain the subtree τ i of πst spanning the first i
nodes, and cannot contain hyperarc p(ui+1).

Unfortunately, the forward branching approach turns out to be computationally intractable.
Indeed, finding the shortest hyperpath πi in Πi corresponds to solving a Subtree Constrained

hyperpath problem (SCH), which is NP-hard; a proof of this claim, and the definition of
(SCH), are given in the Appendix. Here we state the following theorem

Theorem 2 The problem of finding the minimal weight hyperpath π i in Πi, using the forward
branching approach, is NP-hard.

We shall therefore follow a different approach, in particular one based on backward branching.

Definition 4 (backward branching): Given the shortest hyperpath πst in Π and the valid
ordering Vπ, the set Π \ {πst} can be partitioned into q subsets Πi, 1 ≤ i ≤ q as follows:

- Hyperpaths in Πq do not contain hyperarc p(uq+1), that is p(t);

- For 1 ≤ i < q, hyperpaths in Πi contain the end-tree ηi+1, and do not contain hyperarc
p(ui+1).

It is easy to see that the above sets Πi are disjoint, and give a partition of Π. Now consider the
problem of finding the minimal weight hyperpath πi ∈ Πi. This problem reduces to solving a
shortest hyperpath problem on a hypergraph Hi obtained from H as follows:

- for each node uj, i + 1 < j ≤ q + 1, remove each hyperarc in BS(uj) except p(uj);

9

- remove hyperarc p(ui+1) from BS(ui+1).

We say that in Hi each hyperarc p(uj), i + 1 < j ≤ q + 1, is fixed, while p(ui+1) is deleted.
Note that for 1 ≤ i < q hypergraph Hi contains the hyperarcs in the end-tree ηi+1.

Theorem 3 Each hyperpath in Πi is also an s-t hyperpath in Hi; conversely, each s-t hy-
perpath in Hi belongs to Πi.

Proof The first claim is trivial, since a hyperpath in Πi contains hyperarcs that also belong
to Hi. The converse claim is trivial for i = q, since p(t) is deleted in Hq. In order to prove
the converse claim for 1 ≤ i < q, we have to show that each s-t hyperpath π in Hi contains
the end-tree ηi+1, that is, contains hyperarc p(uj) for i + 1 < j ≤ q + 1. This can be done
by induction. Observe that π must contain p(t), since p(t) is fixed in Hi, i.e. BS(t) = {p(t)}.
Now assume that π contains p(uk) for each j < k ≤ q+1, and consider node uj, with i+1 < j.
Since ηi+1 contains a path from uj to t, uj belongs to the tail of p(uk) for some k > j, thus
uj is in π; since p(uj) is fixed in Hi, p(uj) must be in π.

Theorem 3 provides us with the following useful result.

Corollary 1 Finding the minimal weight hyperpath πi ∈ Πi, i = 1, ..., q, reduces to solving
a shortest hyperpath problem on Hi.

As a consequence, each set Πi is represented by the corresponding hypergraph Hi. In other
words, a backward branching operation on πst returns the set of hypergraphs B(H) = {Hi :
1 ≤ i ≤ q}, representing the partition {Πi : 1 ≤ i ≤ q} of Π \ {πst}. Recall that a branching
operation is related to an underlying valid ordering Vπ; a different order may result in a
different set of hypergraphs.

Adopting the backward branching technique, we can extend Yen’s algorithm to hyper-
graphs. The algorithm maintains a list L of subproblems. Each subproblem is represented
by the pair (H̃, π̃), where π̃ is a shortest s-t hyperpath in H̃. Note that we assume t hyper-
connected to s in each subproblem. Initially, L contains the pair (H, πst). In iteration k we
remove from L a pair (H̃, π̃), such that π̃ has minimum weight among the subproblems in L;
π̃ is the k’th shortest hyperpath. Then backward branching is applied to π̃, and for each sub-
hypergraph H̃i ∈ B(H̃), the shortest hypertree rooted at s is computed; if t is hyperconnected
to s in H̃i, the pair (H̃i, π̃i) is inserted into L, where π̃i denotes the shortest s-t hyperpath in
H̃i. Otherwise, H̃i is discarded. The algorithm terminates when L becomes empty or at the
end of iteration K.

Procedure Yen, given below, formally describes our K shortest hyperpaths algorithm.
Here W (π) denotes the weight of hyperpath π, and we assume W (π̃ i) = +∞, if t is not
hyperconnected to s in H̃i.

Procedure Yen(H, s, t,K)

Step 0 L =
{
(H, πst)

}
; k = 1;

Step 1 if L = ∅ then stop; otherwise, let L = L \ {(H̃, π̃)} where

W (π̃) = min
(H′,π′)∈L

W (π′);

10

Step 2 output π̃; k = k + 1; if k > K then stop;

Step 3 for each H̃i in B(H̃) do:

(a) apply procedure SBT (s, H̃i);

(b) if W (π̃i) < +∞ then L = L ∪
{
(H̃i, π̃i)

}
;

go to Step 1.

In step 3 q sub-hypergraphs are generated, i.e. q shortest hyperpath problems must be
solved. In practice, however, it is not always necessary to process all the hypergraphs in B(H̃).
Consider the case where, in order to obtain H̃i, we must deleted a hyperarc p(u) that has
been fixed in a previous branching operation. As follows from Theorem 3, no s-t hyperpath
exists in H̃i. In this case, we may assume that H̃i is not generated by the algorithm.

The correctness for Procedure Yen follows easily from Theorem 3, and from the fact that
backward branching provides a partition of Π \ {πst}. In order to evaluate the computational
complexity, observe that at most n subproblems are generated in Step 3 at each iterations.
Assuming that procedure SBT-heap is used in step 3, we have the following theorem:

Theorem 4 Procedure Yen finds the K shortest hyperpaths in O (Kn(m log n + size(H)))
time.

Example 2 Assume that we want to find the K = 3 shortest hyperpaths, with respect to
the sum function, in the hypergraph of Figure 1(a), where we assume unit weights on the hy-
perarcs. The minimal hypertree has been emphasized in Figure 1(b). The shortest hyperpath
from s to t, with weight 3, is the one given in Example 1, that is πst = ({t, 1, 2, s} , {e1, e2, e3}).

A valid ordering of the nodes in πst is V = {s, 1, 2, t}. Applying backward branching, three
sub-hypergraphs H3, H2 and H1 are created from H, as shown in Figure 2; H3 is obtained
by deleting p(t) = e3; H

2 is created by fixing e3 and deleting e2; H
1 is created by fixing e3

and e2, and by deleting e1. Subhypergraphs H3, H2 and H1 are shown in Figures 3(a)-3(c)
with minimal hypertrees emphasized; the shortest hyperpath weight appears close to t. In
each figure the fixed hyperarcs are marked with thick lines. Observe that arc e6 = ({1}, 2)
has been removed from H1, since e2 = ({s}, 2) has been fixed.

Assume that we select the shortest hyperpath π2
st in H2 next. Again, V = {s, 1, 2, t} is a

valid ordering. Since BS(t) and BS(2) have cardinality one, only hyperarc p(1) = e1 can be
deleted. This gives subhypergraph H21, shown in Figure 3(d), where no hyperpath from s to
t exists. The third shortest hyperpath thus becomes the hyperpath in H3, with weight 4.

3.2 An Improved Algorithm

The main drawback of Yen’s algorithm for K-shortest paths is that an SBT problem must be
solved for each Gi generated by branching. The number of SBT problems to solve is therefore
much larger than K, and possibly proportional to Kn. The efficiency of the branching phase
can be improved by applying reoptimization techniques (see e.g. [14]). These techniques can-
not be directly extended to hypergraphs, and are not discussed here. Instead, we propose
an improved version of procedure Yen, based on a new strategy. Our goal is to delay the
computation of shortest hypertrees. In particular, hypertrees are computed when a subprob-
lem is selected from the list L; the selection order is based on a lower bound on the shortest

11

H
3

e3

e2

e1

e1

H
2

H
1

H
21

πst
2

πst
1

delete

fix

Figure 2: The branching tree of H.

�

1

2

3 4

�4

(a) Hypergraph H3

s

1

2

3 4

t
4

(b) Hypergraph H2

s

1

2

3 4

t
6

(c) Hypergraph H1

s

1

2

3 4

t

8

(d) Hypergraph H21

Figure 3: Subhypergraphs generated during the procedure.

s-t hyperpath weight. The selected subproblems provide a superset of the K shortest hyper-
paths. Clearly, this technique is effective if the number of selections is small (e.g. close to K)
compared to the total size of L, which is O(Kn).

In order to compute a tight lower bound on hyperpath weight, we take advantage of some
properties that are known to hold for graphs, and can be extended to hypergraphs. Let the
predecessor function p define the shortest hypertree Ts in hypergraph H = (V, E). Moreover,
denote by W the vector of minimum weights, i.e. W (u) is the minimum weight of an s-u
hyperpath, and let F (W, e) denote the value of the weighting function F on hyperarc e with

12

respect to the weights W . For example, for the distance function we would have:

F (W, e) = max
v∈T (e)

{W (v)}.

Given node v 6= s, suppose that p(v) is removed from H, obtaining a sub-hypergraph H ′; let
BS′(v) 6= ∅ be the backward star of v in H′. Compute the value W (v) as follows:

W (v) = min
e∈BS′(v)

{F (W, e) + w(e)}

and let p be the predecessor function obtained from p by setting:

p(v) = arg min
e∈BS′(v)

{F (W, e) + w(e)}.

Note that p does not necessarily define a hypertree.

Theorem 5 The value W (v) is a lower bound on the minimum weight W ′(v) of an s-v
hyperpath in H′. Moreover, if p defines a hypertree, W (v) = W ′(v).

Proof Denote by W ′ the vector of minimum weights in H′; clearly, W ′ ≥ W , and thus
F (W ′, e) ≥ F (W, e) for each e in H′. This implies the first claim:

W (v) = min
e∈BS′(v)

{F (W, e) + w(e)} ≤ min
e∈BS′(v)

{F (W ′, e) + w(e)} = W ′(v).

To prove the second claim, assume that p defines a hypertree T ′, and let

V ′ = (s = u1, u2, . . . , v = ui, . . . , t = un)

be a valid ordering for T ′. Since p(uj) = p(uj) for each j < i, it follows that W ′(u) = W (u) for
each node u in T i−1. Thus we have F (W ′, p(v)) = F (W,p(v)), which implies W ′(v) ≤ W (v),
and the claim follows.

Let V = (s = u1, u2, . . . , v = ui+1, . . . , t = uq+1) be a valid ordering for the shortest
hyperpath πst in H, and consider the sub-hypergraph Hi in the branching step. Recall that
p(v) is deleted in Hi. As follows from Theorem 5, W (v) is a lower bound for the minimum
weight of an s-v hyperpath in Hi. We can extend the node function W to all the nodes in
πst as follows:

1. let W (uj) = W (uj) for 1 ≤ j ≤ i;

2. for i + 1 < j ≤ q + 1, let W (uj) = F (W,p(uj)) + w(p(uj)).

Consider the predecessor function p defined above; the following theorem holds true.

Theorem 6 The value W (t) is a valid lower bound on the minimum weight W i(t) of an s-t
hyperpath in Hi. Moreover, if p defines a hypertree, W (t) = W i(t).

Proof Denote by W i the vector of minimum weights in Hi, and consider the splitting of πst

around v, i.e. πst = τ i+1 ∪ ηi+1. Since the shortest s-t hyperpath in Hi contains ηi+1, W i(t)
is computed iteratively similar to W (t), that is:

W i(uj) = F (W i, p(uj)) + w(p(uj)), i + 1 < j ≤ q + 1.

13

The first claim then follows since, for each uj in τ i+1, we have W (uj) ≤ W i(uj) by Theorem 5.
Moreover, if p defines a hypertree, it is W (uj) = W i(uj) for each uj in τ i+1, and the second
claim follows.

In light of Theorem 6, we shall use the value W (t) as a lower bound on the shortest
hyperpath weight in Hi. In our modified Yen’s algorithm, a subproblem can be selected at
most twice: the first time to compute the minimum hypertree, and (possibly) the second time
to output the shortest s-t hyperpath and perform branching. Each subproblem is represented
by the triple (H̃, l̃b, T̃). Here, T̃ denotes a shortest hypertree in H̃, if such hypertree is known,
or nil otherwise; l̃b is a finite lower bound on the weight of the minimum s-t hyperpath π̃
in H̃. Initially, L contains the triple (H,W (πst), Ts). In each iteration, we remove from L a
subproblem (H̃, l̃b, T̃) with minimum value l̃b; The subproblem is then processed according
to T̃ . Two cases may arise:

T̃ = nil: we compute a shortest hypertree in H̃ and assign it to T̃ ; if t is not connected to
s in H̃, we discard the subproblem; otherwise, we assign to l̃b the weight W (π̃) of the
shortest s-t hyperpath π̃ in H̃, and reinsert (H̃, l̃b, T̃) into L.

T̃ 6= nil: we output π̃ as the next hyperpath, and we proceed to branching.

In the branching phase, we compute the lower bound W
i
(t) for each hypergraph H̃i into

B(H̃); if W
i
(t) is finite, we insert in L the subproblem (H̃,W

i
(t) , nil). Procedure LBYen,

given below, describes the improved algorithm. By T̃ = SBT (s, H̃) we mean that the shortest
hypertree in H̃ is stored in T̃ .

Procedure LBYen(H, s, t,K)

Step 0 L =
{
(H,W (πst), Ts)

}
; k = 1;

Step 1 if L = ∅ then stop; otherwise, let L = L \ {(H̃, l̃b, T̃)} where

l̃b = min
(H′,lb′,T ′)∈L

lb′;

Step 2 if T̃ 6= nil go to Step 4;

Step 3 set T̃ = SBT (s, H̃); if W (π̃) < ∞ then set l̃b = W (π̃)
and L = L ∪ {(H̃, l̃b, T̃)}; go to Step 1;

Step 4 output π̃; k = k + 1; if k > K then stop;

Step 5 for each H̃i in B(H̃) do:

(a) compute the lower bound W
i
(t);

(b) if W
i
(t) < +∞ then L = L ∪

{
(H̃i,W

i
(t) ,nil)

}
;

go to Step 1.

The correctness of Procedure LBYen follows immediately from the correctness of Procedure
Yen. Moreover, the computational complexity of the two procedures is the same, since in both
cases at most Kn subproblems are created, and Kn shortest hyperpath problems are solved.

14

Note that, for each subproblem, the time needed to compute the lower bound W (t) is linear
in the size of the shortest hyperpath, which is O(size(H)) and thus dominated by the time
needed to solve a shortest hyperpath problem.

Theorem 7 Procedure LBYen finds the K shortest hyperpaths in O(Kn(m log n+size(H)))
time.

Example 2 (continued) Assume that procedure LBYen is used in Example 2. The lower
bound W (t) for sub-hypergraphs H3, H2 and H1 is equal to the actual weight. Again, assume
we select H2 next. In order to compute W (t) for sub-hypergraph H21, we must compute W (1)
first; the backward star of node 1 in H21 contains the single arc e9 = ({4}, 1), which gives
W (1) = 5. We thus obtain W (2) = 6 and W (t) = 12, which is a weak lower bound on infinity.
Subproblem (H21, 12,nil) is inserted in L and, if selected later, it will be discarded in Step 3.

3.3 Acyclic Hypergraphs

The K shortest path problem in acyclic graphs is computationally much easier, since algo-
rithms allowing loops in paths can be used in this case. Up to a certain extent, this situation
extends to acyclic hypergraphs. Here we shall devise a specialized procedure where only one
shortest hypertree computation is needed.

Observe that, according to Theorem 6, the lower bound W (t) gives the actual shortest
hyperpath weight in an acyclic hypergraph. Indeed, the predecessor function p defines a
hypertree, as follows from Definition 2. Moreover, in order to compute the lower bounds in
the branching step, it is not necessary to find a shortest hypertree in each selected subproblem.
This can be explained as follows.

Consider an acyclic hypergraph H, and let V be a valid ordering of the nodes. Clearly,
V induces a valid ordering for the nodes in any s-t hyperpath; we assume that V is used in
the branching steps. Assume now that a sub-hypergraph H′ is obtained from H by deleting
hyperarc p(ui) and possibly by fixing the hyperarcs in an end-tree ηi. In order to obtain the
lower bound W (t) in H′, we need to know the shortest weights for the nodes that precede
ui in V . For these nodes, the shortest weights (as well as the corresponding shortest hyper-
paths) are the same as in H. Therefore, the value W (t) and the shortest hyperpath in each
subhypergraph can be computed using the shortest hypertree and hyperpath weights for H.

For acyclic hypergraphs, we devise a specialized version of Procedure Yen, referred to as
AYen, where we do not apply procedure SBT in Step 3(a). Instead, we compute the lower
bound W (t), which provides us with the shortest hyperpath π̃ i used in Step 3(b) to create a
new subproblem. As discussed above, the computation of the lower bound takes O(size(H))
time. We thus have the following theorem:

Theorem 8 Procedure AYen finds the K shortest hyperpaths in O(Knsize(H)) time.

Note that we can find the shortest hypertree in H̃i in time O(size(H)) by applying proce-
dure SBT acylic, instead of computing the lower bound. However, as we shall see in the next
section, the computation of the lower bound is much faster.

15

Class 1 2 3 4 5 6 7 8 9 10

Nodes 100 300 500 800 1000 1000 3000 5000 8000 10000

Arcs 400 1200 2000 3200 4000 2000 6000 10000 16000 20000

Harcs 5000 15000 25000 40000 50000 4000 12000 20000 32000 40000

Table 1: randomly generated test problems.

4 Computational Results

In this section we test the procedures described in Section 3. The procedures have been
implemented in C++ and run on a 700 MHz PIII computer with 512MB RAM using a Linux
operating system. The programs have been compiled using the GNU C++ compiler (version
2.96) with optimize option -O.

In our implementation, the branching tree representing the list L (see Figure 2) is imple-
mented as a dynamic binary tree; all the information related to the subproblems is associated
with nodes in the tree, while a heap of tree node pointers is used for the selection phase. In
fact, at the end of the procedure the branching tree provides a representation of the K short-
est hyperpaths. Anyway, we do not perform any actual “output” operation on the generated
hyperpaths.

Ten classes of randomly generated hypergraphs were considered, as shown in Table 1. The
generated hypergraphs can be divided into two groups. Hypergraphs in class 1-5 have fewer
nodes and are dense: the number of arcs is 4n and the number of “true hyperarcs” is 50n.
This gives an average number of 54 hyperarcs in the backward star of a node. Hypergraphs
in class 5-10 have more nodes and are sparse, the number of arcs is 2n and the number of
“true hyperarcs” is 4n resulting in an average number of 6 hyperarcs in the backward star of
a node.

For all classes, the size of each true hyperarc is randomly generated with a uniform distri-
bution in the interval [3, 5]. The weights for each arc is between 500 and 1000, and for each
hyperarc it is between 1 and 100. This choice has been made to favor hyperpaths with many
true hyperarcs; nevertheless, the percentage of arcs in the generated hyperpaths tends to be
relevant, in particular for sparse hypergraphs.

4.1 Non-acyclic hypergraphs

Our main goal here is to evaluate and compare the behavior of procedures Yen and LBYen;
we consider the sum and distance weighting function, and we generate K = 500 hyperpaths.
Five non-acyclic hypergraphs were generated for each class in Table 1; results are reported
in Table 2, where each row contains the average results over the five generated hypergraphs.
Column “Cardinality” contains the average size of the generated hyperpaths. Column “BT-
size” gives the total number of subproblems in the branching tree for procedure LBYen. The
branching tree for procedure Yen is approximately the same and is not reported. In column
“Reinsert” we give the number of subproblems reinserted in the list L by procedure LBYen.
Finally, columns “CPU - LB” and “CPU - Yen” contain the CPU time, reported in seconds,
for procedures LBYen and Yen, respectively.

As a preliminary remark, note that the sum weighting function gives hyperpaths of smaller
size, and containing fewer arcs, with respect to the distance function. This in turn has

16

Sum function Distance function
C

la
ss

N
o
d
es

A
rc

s

H
a
rc

s

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

R
ei

n
se

rt

C
P

U
-

L
B

C
P

U
-

Y
en

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

R
ei

n
se

rt

C
P

U
-
L
B

C
P

U
-

Y
en

1 100 400 5000 12,0 44,4 4314 12 1,7 15,1 43,5 20,9 10009 60 2,2 31,3

2 300 1200 15000 12,9 50,4 4794 3 8,0 78,3 55,7 34,6 13147 7 9,4 220,0

3 500 2000 25000 13,1 52,4 5026 6 14,5 147,6 66,4 39,8 14010 44 17,8 427,0

4 800 3200 40000 12,4 54,2 4811 3 24,4 234,0 62,9 46,2 11668 26 29,0 606,5

5 1000 4000 50000 11,9 54,4 4557 3 31,4 284,2 86,2 45,4 16590 11 36,4 1113,4

6 1000 2000 4000 11,2 79,8 3469 4 2,4 14,6 52,9 70,4 7820 6 2,8 35,8

7 3000 6000 12000 10,1 78,7 3467 2 11,1 68,1 55,4 72,3 8974 4 12,5 189,4

8 5000 10000 20000 9,6 78,7 3408 0 20,4 121,9 47,3 71,3 7972 0 22,6 301,8

9 8000 16000 32000 9,0 77,7 3282 0 34,9 196,9 41,7 72,7 6899 0 38,7 445,3

10 10000 20000 40000 8,5 78,1 3200 1 45,0 243,7 39,1 71,2 6832 3 50,0 563,4

Table 2: Sum and distance weighting functions, K = 500.

0 100 300 500 800 1000
0

500

1000

1500

0 1000
0

1500

S
e
c
o

n
d

s

n

LB

Yen

Figure 4: CPU times for dense hypergraphs of increasing size using the distance weighting
function.

an impact on the branching tree size, which is expected to be roughly proportional to the
hyperpath cardinality. This behavior is not surprising, since the sum weighting function can
grow quite rapidly if the hyperpath contains many large hyperarcs.

For what concerns our main goal here, procedure LBYen clearly outperforms procedure
Yen. Indeed, the results confirm that CPU time is roughly proportional to the number of
times the SBT procedure is used. Procedure Yen solves a shortest hyperpath problem for
each subproblem, while LBYen does so only for selected subproblems, i.e. K times plus the
number of reinsertions. It must be remarked that the actual number of reinsertions is quite
low (12% of K in the worst case), which implies that the lower bound is mostly tight.

Observe that the branching tree size is roughly constant within each group of results,
i.e. for a fixed weighting function and density. However, CPU times increase with n, due to

17

0 100 200 300 400 500
0

200

400

600

800

S
e
c
o

n
d

s

k

LB

Yen

Figure 5: CPU time per hyperpath (dense hypergraph - distance weighting function).

the fact that the SBT procedures are applied to larger hypergraphs. In order to investigate
this behavior more deeply, we plotted the CPU time against the number of nodes n for
each generated hypergraph. The results for the distance function on dense hypergraphs are
reported in Figure 4. The figure shows a linear dependence in n, even though procedure Yen

tends to be less stable for higher n. On the contrary, procedure LBYen is not only faster but
seemingly more stable. We omit the plots for the other groups of results, since they show a
similar linear dependence and an even more stable behavior.

We also tried to evaluate the computational effort required by each generated hyperpath.
To this aim, we recorded the elapsed CPU time for every ten generated hyperpaths. Figure
5 refers to a large dense hypergraph (class 5) using the distance weighting function. A linear
dependence is obvious. As before, the results obtained for other combinations of hypergraph
and weighting function show a similar dependence.

4.1.1 Acyclic Hypergraphs

The set of experiments described above for the non-acyclic case were replicated for the acyclic
case. In particular, five acyclic hypergraphs were generated for each class in Table 1. Besides
sum and distance, the mean weighting function was also tested, with multipliers given by
ae (u) = 1/ |T (e)|, u ∈ T (e). Most of the observations made for general hypergraphs apply
to acyclic hypergraphs too. Also in this case, procedure LBYen outperforms Yen; recall that
no reinsertions are performed by LBYen in this case. More important, AYen is about five
times faster than LBYen on average. This behaviour was expected, since AYen does not solve
shortest hyperpath problems on the generated sub-hypergraphs. Like for general hypergraphs,
we made plots similar to the ones in Figure 4 and 5. They revealed a similar behavior.

5 Conclusions

In this paper, we introduced and investigated the K shortest hyperpath problem in directed
hypergraphs. Even though several hyperpath models have been proposed in the literature,
this problem has not yet been considered. Several areas where K shortest hyperpaths algo-
rithms have potential applications was given. The main contributions of this paper can be
summarized as follows.

18

First, we pointed out the lack of symmetry between the graph and hypergraph case,
which prevents the “forward branching” approach from being used. Second, we extended to
hypergraphs the method of Yen. Next, we proposed an algorithmic improvement that turned
out to be quite effective in computational experiments. We also pointed out that acyclic
hypergraphs are an easier case, as happens for graphs, and we devised a quite fast specialized
procedure.

The results in this paper provide a starting point for further research, in particular for
what concerns routing problems in random time dependent networks. In this context, proce-
dure AYen has proven to be an effective tool for the implementation of a two-phase method
for the bicriterion shortest hyperpath problem [18]. Moreover, suitable extensions of the
methods described in this paper can be devised for the a priori version of the optimal routing
problem [9, 16], which is NP-hard [19]. This application is currently under investigation, and
will be the subject of a forthcoming paper.

References

[1] G. Ausiello, G. F. Italiano, and U. Nanni. Optimal traversal of directed hypergraphs.
Technical Report TR–92–073, International Computer Science Institute, Berkeley, CA,
September 1992.

[2] J. Cohen. Multiobjective Programming and Planning. Academic Press, New York, 1978.

[3] J. M. Coutinho-Rodrigues, J. C. N. Climaco, and J. R. Current. An interactive bi-
objective shortest path approach: Searching for unsupported nondominated solutions.
Computers and Operations Research, 26:789–798, 1999.

[4] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673,
1999.

[5] G. Gallo, C. Gentile, D. Pretolani, and G. Rago. Max Horn SAT and the minimum cut
problem in directed hypergraphs. Mathematical Programming, 80:213–237, 1998.

[6] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42:177–201, 1993.

[7] G. Gallo and S. Pallottino. Hypergraph models and algorithms for the assembly problem.
Technical Report 6, Dipartimento di Informatica, Università di Pisa, March 1992.

[8] G. Gallo and M. G. Scutellà. Minimum makespan assembly plans. Technical Report 10,
Dipartimento di Informatica, Università di Pisa, September 1998.

[9] R. W. Hall. The fastest path through a network with random time-dependent travel
times. Transportation Science, 20(3):182–188, 1986.

[10] G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem.
Networks, 10:293–310, 1980.

[11] W. Hoffman and R. Pavley. A method for the solution of the N’th best path problem.
Journal of the Association for Computing Machinery, 6:506 – 514, 1959.

19

[12] V. M. Jiménez and A. Marzal. Computing the k shortest paths: A new algorithm and
an experimental comparison. Lecture Notes in Computer Science, 1668:15 – 29, 1999.

[13] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path. Management Science, 18(7):401–405,
March 1972.

[14] E. Q. V Martins and M. M. B. Pascoal. A new implementation of Yen’s ranking loopless
paths algorithm. Technical report, Centro de Informatica e Sistemas, 2000. Available at
http://www.mat.uc.pt/∼eqvm/.

[15] E. D. Miller-Hooks. Adaptive least-expected time paths in stochastic, time-varying trans-
portation and data networks. Networks, 37(1):35–52, 2000.

[16] E. D. Miller-Hooks and H. S. Mahmassani. Optimal routing of hazardous materials
in stochastic, time-varying transportation networks. Transportation Research Record,
1645:143–151, 1998.

[17] S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large scale transit net-
works. European Journal of Operational Research, 37:176–186, 1988.

[18] L. R. Nielsen, K. A. Andersen, and D. Pretolani. Bicriterion shortest hyperpaths in ran-
dom time-dependent networks. Technical Report WP-2003-1, Department of Operations
Research, 2003. To appear in IMA Journal of Management Mathematics.

[19] D. Pretolani. A directed hypergraph model for random time dependent shortest paths.
European Journal of Operational Research, 123:315–324, June 2000.

[20] K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley - Inter-
science, 1992.

[21] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

20

3
v

s u1 2u u3
u

4

v2v
1

v
0

Figure 6: Hypergraph HC

Appendix: the Subtree Constrained Hyperpath Problem

Assume that we are given a weighted hypergraph H, a hypertree T rooted at s in H, and a
node t of H not in T . The Subtree Constrained Hyperpath problem (SCH) consists in finding
a shortest s-t hyperpath containing T as a subtree. We show that this problem is NP-hard,
also if T only contains arcs in FS(s). We consider the distance function here, a simpler
construction can be given for the value weighting function. We provide a reduction from the
Set Covering problem (SC), which is well-known to be strongly NP-hard. An instance of (SC)
is defined by a family F = {F1, F2, . . . , Fn} of subsets of {1, 2, . . . ,m}, where each Fi has a
cost ci. The problem is to find a subset C ⊆ {1, 2, . . . , n} with minimum cost c(C) =

∑
j∈C cj

and such that
{1, 2, . . . ,m} =

⋃

j∈C

Fj .

Theorem 9 Problem (SCH) for the distance function is NP-hard in the strong sense.

Proof Given an instance of (SC), define an instance of (SCH) as follows. Let HC = (VC , EC)
be a weighted hypergraph where

- VC = {s} ∪ {ui : 1 ≤ i ≤ m} ∪ {vj : 0 ≤ j ≤ n};

- EC = FS(s) ∪ {ea
j : 1 ≤ j ≤ n} ∪ {eh

j : 1 ≤ j ≤ n};

here FS(s) contains an arc from s to each node ui and an arc
(
{s}, {v0}

)
; moreover, for each

1 ≤ j ≤ n:

- ea
j =

(
{vj−1}, vj

)
;

- eh
j =

(
{ui : i ∈ Fj} ∪ {vj−1}, vj

)
.

The cost of each hyperarc eh
j is cj, arcs have zero costs. Finally, let the tree T contain the

arcs in FS(s), and choose the destination node t = vn.
Figure 6 shows the hypergraph HC for an (SC) instance where m = 4, n = 3, F1 = {1, 2},

F2 = {2, 3} and F3 = {3, 4}. The optimal hyperpath is represented by solid lines.
An s-t hyperpath in HC is feasible if it contains T . Observe that, in any feasible s-t

hyperpath π = (Vπ, Eπ) it is Vπ = VC , and for each j > 0, the predecessor p(vj) is either eh
j

or ea
j . Therefore π is univocally defined by the set

C = {j : eh
j ∈ Eπ},

21

and the weight using the distance function of each node vj , j > 0, is given by the weight of
vj−1 plus the cost of p(vj); the weight of π is thus c(C) =

∑
j∈C cj . Moreover, in a feasible π,

each node ui must belong to the tail of some hyperarc eh
j with j ∈ C. Therefore, hyperpath

π is feasible for (SCH) if and only if the corresponding C is a feasible solution for (SC). Since
the cost of π is c(C), we conclude that (SC) reduces to solving the above instance of (SCH),
and the thesis follows.

Consider again the forward branching approach defined in Section 3. It is easy to see
that every instance of (SCH) can be interpreted as finding the shortest hyperpath π i in a
set Πi. For example, consider the hypergraph HC in the proof of Theorem 9, and define a
new hyperarc h = ({v0} ∪ {ui : 1 ≤ i ≤ m}, t). By adding hyperarc h to T we obtain an s-t
hyperpath πst with q = m + 2 hyperarcs. When we apply forward branching to πst, it turns
out that finding the shortest hyperpath in Πq corresponds to solving the instance of (SCH)
defined on HC . This suffices to prove that finding the shortest hyperpath π i in Πi is NP-hard.

22

