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Abstract

Directed hypergraphs represent a general modelling and algorithmiavtioh
have been successfully used in many different research areassactificial in-
telligence, database systems, fuzzy systems, propositional logic anpldrtieon
networks. However, modelling Markov decision processes using difdgtpeer-
graphs has not yet been considered.

In this paper we consider finite-horizon Markov decision processE3Pg)
with finite state and action space and present an algorithm for finding thest
policies. Thatis, we are interested in ranking the fifgbolicies in non-decreasing
order using an additive criterion of optimality. The algorithm uses a diregted h
pergraph to model the finite-horizon MDP. It is shown that the problemmdifrig
the optimal policy can be formulated as a minimum weight hyperpath problem and
be solved in linear time, with respect to the input data representing the MIDB, us

different additive optimality criteria.

Keywords: Finite-horizon Markov decision processes, stochastiardia pro-

gramming, directed hypergraphs, hyperpaths, K best policies.
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1 Introduction

Many decision problems are dynamic in nature and must be re-evaluatetihoge
based on the state of some crucial underlying factors, e.g. machine statgmy
finances, etc. Often these problems can be modelled using Markov degision
cessesNIDPs) which have been widely used to model stochastic environments,
due to their expressiveness and analytical tractability.

MDPs model sequential decision-making problems. At a specified point in
time, a decision maker observes the state of a system and chooses anHution.
action choice and the state produce two results: the decision maker seeaeive
immediate reward (or incurs an immediate cost), and the system evolves proba-
bilistically to a new state at a subsequent discrete point in time. At this subgeque
point in time, the decision maker faces a similar problem. The observation made
from the system’s state now may be different from the previous obsenvafioe
goal is to find a policy of choosing actions (dependent on the observattithre
state) which maximizes the rewards after a certain time.

Finding an optimal policy for an MDP is a well studied topic. One of the first

books on the subject was by Howard [11]. As the titleiggests the idea of the
book was to combine the dynamic programming technique by Bellman [5] with the
mathematically well established notation of a Markov chain. Since the publication
of this book an intensive research in MDPs has been carried out.

A recent book on the subject summarizing results from the past deca@ast is
erman [26]. Here both finite and infinite horizon MDPs are considerednfa
either finite, countable or continuous state and action spaces. The optimidity cr
ria considered are the expected total reward, the expected discoutatiedteard
and the expected average reward.

Also constrainedMDPs have gained considerably interest, see e.g. Altman

[1], Altman and Shwartz [2]. Here the optimality criteria are maximized while

!Dynamic programming and Markov processes
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keeping other type of costs below some given bound. Often these problems
solved using linear programs, if the system can be described by a finiteenumb
of states and actions. The linear program formulation of an MDP was irdeadu
by Derman and Klein [8] and later further developed by Derman and AiRo\te
[7], Hordijk and Kallenberg [10], Kallenberg [13]. For a survey oe gBubject see
Kallenberg [14].

Hierarchic MDPs were introduced by Kristensen [15], Kristensen aard J
gensen [17]. It is a contribution to the solution of the problem referred tiha
“curse of dimensionality”, since it provides us with a way to reduce the gpaiees
of large problems. Recent, a standard software system for solving ldBsNnd
hierarchic MDPs has been developed by Kristensen [16].

Another research area that has been extensively studied in receatigeli-
rected hypergraphs. Directed hypergraphs are an extension ofedirgraphs and
undirected hypergraphs introduced by Berge [6]. Directed hypphgrrepresent a
general modelling and algorithmic tool, which has been successfully usechyn ma
different research areas such as artificial intelligence, databasernsy$uzzy sys-
tems, propositional logic, and transportation networks. For a genezaliew on
directed hypergraphs see Ausiello, Franciosa, and Frigioni [3].

The concepts of a hyperpath and a minimum weight hyperpath were inedduc
by Nguyen and Pallottino [18] and later the definition of a hyperpath in ateidec
hypergraph and a general formulation of the minimum weight hyperpathigo
were given by Gallo, Longo, Pallottino, and Nguyen [9]. In generalpiablem
is N'P-hard (see e.g. Ausiello, Nanni, and Italiano [4]), but for a speciasctsdH
weighting functions polynomial algorithms exist (see Gallo et al. [9]). Ficieht
data structures for storing hypergraphs see Nielsen [19].

Recently, a general algorithm for finding tli& minimum weight hyperpaths
has been presented in Nielsen, Andersen, and Pretolani [21] andlgeNi®re-
tolani, and Andersen [22] the complexity of the algorithm is lowered. Algorithms

for ranking solutions are useful since practical problems often inclodstraints
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which are hard to specify formally or hard to optimize. In that case the algorith
may be used to enumerate suboptimal hyperpaths until a hyperpath satibiying

hard constraint is found.

The study of directed hypergraphs has become an important aspediimgfin
optimal strategies/paths in stochastic time-dependent networks, Nielse®{&9]
tolani [25]. Here the travel time between two nodes is time-dependent, i.e. the
travel time depends on the leaving time from a node. Furthermore, it is assumed
that, for each leaving time, the travel time may not be fully known and hence a
probability function is used to express possible travel times. By usingthani-
mum weight hyperpaths algorithm from Nielsen et al. [22] it is possible totfied
K best strategies/paths in stochastic time-dependent networks, Nielsextamire
and Andersen [23]. Furthermore, in Nielsen [19], the algorithm is usea sub
algorithm to solve bicriterion problems in stochastic time-dependent networks.

By replacing leaving times with states and travel time with costs in the hy-
pergraph model for stochastic time-dependent networks, it is apherityper-
graphs also can be used to model MDPs. However, to the author’s lagevie
one has considered this way of modelling MDPs. Moreover, by modelling $1DP
by hypergraphs we may find th€ best policies by adapting existidg minimum
weight hyperpath algorithms.

In this paper we consider finite-horizon Markov decision processesfinita
state and action space and present an algorithm for findind<threst policies.
That is, we are interested in ranking the fifstpolicies in non-decreasing order
using a certain optimality criterion. The algorithm uses a state-expendededirec
hypergraph representing the finite-horizon Markov decision prodéss shown
that the problem of finding the optimal policy can be formulated as a minimum

weight hyperpath problem and be solved in linear time, with respect to thefsize
the input datarepresenting the MDP, using different optimality criterion.

Possible applications are ranking policies until a policy satisfying a hard con

2See Sectioh 2.1 for a formal definition of input data.
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Decision Decision Decision Decision Decision
Epoch Epoch Epoch Epoch Epoch
1 2 3 N-1 N
I | | | |
! Stage 1 ! Stage 2 ! ! Stage N-1 !

Figure 1: Decision epochs and stages.

straint for the MDP is found and solving bicriterion problems in MDPs. Here f
instance the objective may be to minimize both the expected total cost and the
expected total risk (which may be modelled using the variance).

The paper is organized as follows. Finite-horizon MDPs are introduced in
Section_2 where also a short introduction to directed hypergraphs is.gire
Section_3 a hypergraph model for MDPs is given together with results an ho
the best policy may be found. The algorithm for finding thkiebest policies are

presented in Section 4. Conclusions are drawn in Section 5.

2 Preliminaries

In this section preliminaries on finite-horizon Markov decision processdsla

rected hypergraphs are given.

2.1 Finite-horizon Markov decision processes

We consider a finite-horizon Markov decision process With..., N} decisions
andN — 1 stageqsee Figure 1). That is, decision numbeis made at the begin-
ning of stagen.

At stagen the system occupies state We denote the set of finite system
statesS,,. Given the decision maker observes state S,, at stagen, he may
choose araction a from the set of finite allowable actiond,,, generatingcost
cn (s,a) (areward if negative). Moreover, we et (- | s, a) denote thgrobability

distributionor transition probabilitiesof obtaining states’ € S,, 1 at stage: + 1.
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Since no decision is made at the end of staAge- 1, the cost at this point of
time is a function of the statec Sy denoted:y (s, ax) which is often referred to
as thesalvage cosbr scrap costHerea  denotes a deterministic (dummy) action.

A deterministic Markovian decision rulg stagen is a functiono,, : S, —
A, which specify the action choice given statat stagen. It is called deter-
ministic because it chooses an action with certainty and Markovian (memagryless
since it depends only on the current system state. W@, Jaenote the set of pos-
sible Markovian decision rules at stageMarkovian decision rules are a subset of
more general rules where the action may depend on the past history gbtems
and actions may not be chosen with certainty but rather according to alpliob

distribution. We restrict ourselves to the set of Markovian decision rulélisn
paper.

A policy or strategyspecifies the decision rule to be used at all stages and
provides the decision maker with a plan of which action to take given stage and
state. That is, a policy is a sequence of decision rules= (01, ...,0x) with
0, € D, forn = 1,...,N. We let A denote the set of possible deterministic
Markovian policies.

In this paper we only consider one criterion of optimality, namely the expected
total cost criterion. However, as pointed out in Section 3.1 the resultsasilly be
extended to other criteria. L&f,, denote the state of the system at stagee. X,
is a random variable taking values$h. Then the expected total cost given policy

0 and starting state at stagel is

N
ETC’(s)=FE (Z en (X, 00 (Xn))> ., X1=s 1)
n=1

In (1) we assume that the decision maker wishes to choose a policy given an
initial system states. In this paper we alternatively consider the case where he
might seek a policy prior to knowing the initial state. Lgt(s) denote the prob-

ability of starting in states € S;. In this case he seeks a polidye A which
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minimizes

ETC® =) po(s) ETC® (s) (2)
SES1

This corresponds to defining a policy do= (99,01, ..., 0x) Whered is the de-
cision rule corresponding to a deterministic dummy actigpn That is, we define
stage 0 withSy = {so} wheres, represents the system before the state of the
system at stage 1 is known and {gt(so, ag) denote the cost. Moreover, we set
po (s | s0,a0) = po (s').

Let |p,, (- | s,a)| be the number of elements in the probability distribution and

denote by

M= Z pn (| 5,0) 3)

n=0,...,N, s€Sn, a€As
the total number of possible transitions. Note that the size of the input data rep
senting the MDP i© (M).

It is well known that there exist a deterministic Markovian polioyhich min-
imize (1), see e.g. Puterman [26, chap. 4]. L&i(s) denote the expected total

cost given policy at stagen, ..., N, i.e.
N
up, (s) = B2 (Z ci (X, 0 (Xn))>

Thenu? (s) can be found using the recursive equations

) Cn (5) CL) + ZS’GSnJrl p (S/ ’ S, a) u2+1 (S,) n <N (4)

“n(s)_{ en (,an) n=N

That is, the optimal policy with minimal expected total cost for all stagesd

statess € .S,, can be found using the followingellman equationBellman [5]:

ut (S) — minaEAs,n {Cn (S)a) + 28/65n+1p(3/ | S,CL) u:+1 (8/)} n<N
CN (S,CLN) n = N

(5)
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procedure Valuelte
for (s € Sy) do uy(s) :=cn(s,an);
for(n=N —1to0)do
for (s € S,) do
find u (s) using (5) and set, (s) equal
to the corresponding optimal action;

end for
end for
end procedure

ooo~NOOO U WNE

Figure 2: The value iteration procedure.

indicating that the optimal policy can be found by analyzing a sequence @& mor
simpel inductively defined single-stage problems. This is often referrag value
iteration or backward induction (dynamic programming). The value iteration pr

cedure for finding:;, (s) forn =0, ..., N ands € S, is shown in Figure 2.

2.2 Directed hypergraphs

A directed hypergraplis a pairt = (V, ), whereV = (vi, ..., v)y)) is the set of
nodesand€ = (e1, ..., eg|) is the set ohyperarcs A hyperarce € £ is a paire =

(T'(e),h(e)), whereT'(e) C V denotes the set @éil nodes andi(e) € V \ T'(e)
denotes théaeadnode. Note that a hyperarc has exactly one node in the head, and
possibly several nodes in the tail. A hypergraph is shown in Figure 3.

The cardinality of a hyperarc is the number of nodes it contains, ile} =
|T'(e)|+1. We calle anarcif |e| = 2. Thesizeof H is the sum of the cardinalities.

Without loss of generality, we assuraegH) > |V|. We denote by
FSw)y={e€&|veT(e)}, BSw) ={ecf|v=nh(e)}

theforward starand thebackward stamof nodew, respectively.
A hypergraphH = (V, €) is asubhypergraptof H = (V, &), if V C V and
£ C &. A subhypergraph iproperif at least one of the inclusions is strict.

An valid orderingV = (vl, va, ... ’”\VI) of H is a topological ordering of the



Finding the K" best policies in finite-horizon Markov decision processes 9

nodes such that, for anye &, if h(e) = v; andv; € T'(e) thenj < i. Note that,
in a valid ordering any node; € 7'(e) precedes nodg(e). A o-t pathin 7 is a

sequence

(O = U1,€1,02,€2,...,€q, Ug+1 = t)

where, fori = 1,...,q, v; € T(e;) andv; 11 = h(e;). A nodew is connectedo
nodew if a u-v path exists ir{. A cycleis ao-t path, wherg € T'(e;). This is
in particular true ift = o. If H contains no cycles, it iacyclic It is well-known
thatH is acyclic if and only if a valid ordering of the nodes’his possible (Gallo

etal. [9]).

2.2.1 Hyperpaths and hypertrees

Definition 1 A hyperpathr,, = (Vr, &) from origin o to targett, is a subhyper-
graph ofH satisfying that, it = o, then&,; = @; otherwise the; > 1 hyperarcs

in & can be ordered in a sequereg, ..., ;) such that

1. t="heg).

2. T(ez) - {O} U {h (61) , ...,h(ei_l)}, Ve; € &r.

3. No proper subhypergraph of; is ano-t hyperpath.

A nodet is hyperconnectetb o in H if there exists a hyperpath,; in H. Note
that condition 2 above implies that a valid orderingrgf is (o, h (e1) , ..., h (eg)) .
That is, a hyperpath iacyclic Furthermore, condition 3 implies that, for each
u € Vr \ {0}, there exists a unique hyperare &, such that(e) = v and hence
for each node: € V, there is a unique subhyperpath, contained inm,;. We
denote hyperare as thepredecessoof u in 7.;. The definition of a hyperpath can

be extended to hypertrees.
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Figure 3: A hypergrapli.

Definition 2 A directed hypertree oK with root o is an acyclic subhypergraph

T, = ({o} UN, E7) with o ¢ N satisfying
BS7(0) =0, |BSr(v)|=1, YveN

A directed hypertre€, contains a unique-u hyperpath for each nodec N
(see [9]). ThatisZ, is the union of hyperpaths fromto all nodes in\/. Moreover,
7, can be described by@redecessor functiog : N' — &; for eachu € N, g(u)
is the unique hyperarc i, which has node as the head. Note that any hyperpath

is a hypertree, in particular, it can be defined by a predecessor fanctio

Example 1 A hypergraphH = (V, &) is shown in Figure3. H has a unique
valid ordering, namely = (o0, 1,2, 3,4,t). Below we give two hyperpaths iH,

namely a hyperpath fromto ¢ and a hyperpath fromto 4.

Tot = ({07 1727t}7 {61762763}> To4 = ({07273)4}7 {62764765})'

A hypertree7, in ‘H is shown with solid lines. It is the union of the two hy-
perpaths given above. Several valid orderingsZpexist; one of them i3/ =

(0,1,2,t,3,4). n

2.2.2 Weighting functions

Assume that each hyperarcs assigned real weight vecter(e) = (wi(e), ..., wr(e)).

Given ano-t hyperpathr defined by predecessor functigna weighting function
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W is a node function assigning real weight§«) to all nodes inr. The weight of
hyperpathr is W (t) (or W (x)). We shall restrict ourselves aalditive weighting

functionsintroduced by Gallo et al. [9], defined by the recursive equations:

0 V=0

W0 ={ oo + 60) »2 v\ (0} ©)

Herel (-) denote a non-decreasing functionofe) andf(-) a non-decreasing func-
tion of the weights in the nodes @f(e). Furthermore, letn.(v) denote a nonnega-
tive multiplier defined for each hyperaeand node. A particular case of (6) is the
value functionwhich has been studied in detail (see e.g. Gallo et al. [9], Jeroslow,

Martin, Rardin, and Wang [12]) obtained by setting

0 v=o0
Wi = { w(0(0)) + Soerigy Mo @)W (@) veVi\{op O

2.2.3 Minimum weight hyperpaths

The minimum weight hyperpath probleor shortest hyperpath problem can be
viewed as a natural generalization of the shortest path problem antstsoms
finding the minimum weight hyperpaths from a sousd® all nodes inH hyper-
connected tw. The result is aninimum weight hypertreeontaining minimum

weight hyperpaths to all nodes hyperconnected to

If H is acyclic and the weighting function is additive a fast polynomial algo-

rithm exist (see [9]). The procedure is shown in Figure 4 and needlcbordering
V = (o = V1,09, ... ’U|V|) of H. Since each hyperarc is examined once, the pro-

cedure runs irD (size (H)) time.

Example/1 (continued) Assume that each hyperairis assigned a scalar weight

as shown in Figure|5 and multipliers. (v) = 1/|T (e)|, v € T (e). Then the
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1 procedure SHTacycli¢s, V, H)

2 W (vy) :=0;for (i = 2to|V]) do W (v;) := o0;
3 for (1 =2to|V|) do

4 for (e € BS(v;)) do

5 if (W (v;) > lw(e)) + f(e)) then

6 W(vi) := Uw(e)) +(e); g (vi) :=e;
7 end for

8 end for

end procedure

Figure 4: A procedure for finding the minimum weight hypertree in an acyclic
hypergraph.

Figure 5: A hypergrapf with scalar weigts.

weight of r,; is 5 and the weight ot is 8 when the value weighting function|(7)
is used. Both hyperpaths are minimum weight hyperpaths to their cormisgon

target and the union of the two hyperpaths is a minimum weight hypertreem

3 Ahypergraph model for finite-horizon Markov decision
processes

Consider a finite-horizon Markov decision process with finite state andrnactio
spaces.

Definition 3 Let thestate-expanded hypergragt = (), £) be obtained by defin-

ing the node and hyperarc set as follows
V=A{vsn|n=0,....,N,s€8,}U{ons1}

E={egsn|n=0,...N—-1,s€S,acA;,}U{esn|s€Sn}
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(n, 5) (1,1) 1,2) 2,1) (2,2) 3,1) (3,2)
cn (5, ) -70 -50 -70 -50 -70 -50
s/ (1,2} {23} {1,2} {23} {12}  {2,3}

pallsa) (hd) () (hid (hd) (i) (hi)

Table 1: Input data for the problem Example 2 given actiou.

with
€a,s,n = ({Us’,n—i—l ’ s’ S Sn+1) DPn (3/ | s,a) > O} 7vs,n) , Es,N = ({UN+1}’US,N)

The following example illustrates how the state-expanded hypergraph-is cre

ated.

Example 2 We consider a simple machine replacement problem. A machine may
be in three states: good, average, and not working. Given the madhirense
may maintain the machine. In this case the machine’s state will be good at the next
decision epoch. Otherwise, the machines state will not be better at nésiodec
epoch. The machine is always replaced after 4 decision epochs. fruotieg if the
machine is not working then the machine may be replaced before decisioh epo
4. Finally, when the machine is bought it may be either in state good or average
The problem of when to replace the machine can be modelled using a Markov
decision process wittv- = 4 decision epochs. We use system stafesd (1),
average(2), andnot working(3) together with actionduy, maintain (mt), no
maintenancénmt), andreplace(rep). The system state sef, and action sets

As , becomes

{so} n=0 {buy} n=0, s=sg
g _ {1,2} n=1 A {mt, nmt} n=123 s=1,2
") {1,2,3} n=2 " =) {mt,rep} n=23,5=3
{1,2,3,4} n=34 {rep} n=4, s=1,2,3

The state se$; contains a single dummy staig representing the machine before
knowing its initial state andi,, o containing the deterministic actidmy. More-

over, A, 4, s € S4 contains the deterministic actioap.
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state/stage 0 1 2 3 4

Figure 6: The state-expanded hypergraph.

The cost of buying the machine is 100 with (1) = 0.7 andp, (2) = 0.3.
The reward (scrap value) of replacing a machine is 30, 10, and 5 in stajadd
3, respectively. The reward of the machine given actignbecomes 55, 40, and
30 given state 1, 2, and 3, respectively. Moreover, the system estédesl with
probability 1 at the next stage. Finally, Table 1 shows the cost, transitios stade

probabilities given actionmdt.

The state-expanded hypergrahhis shown in Figure 6 with the subscript of
nodew, , shown in each node and actiancorresponding to the hyperaeg ; ,,
shown beside itH contains a hyperarg, , ,, for each possible actiomgiven stage
n ands € S,, and a nodey,,, € V for all stages: and states < S,,. The head
node of a hyperarc corresponds to the state of the system before adsidaken
at the tail nodes to the possible system states after activtaken. Furthermore,

‘H contains a dummy nodey; which may be considered as the final system
state representing the system after the machine has been replaced. N@e this
often modelled using a dummy statplacedat each stage where the system stays
in this state if it first enters it. However, this is avoided in the state-expanded
hypergraph. Moreovef{ contain arcs:, , with tail nodevy., corresponding

to the deterministic actiomep are used. Finally, note that the direction of the

hyperarcs are backward in time. |
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It is obvious that the head node of a hyperarc in the state-expandecgngph
always corresponds to an earlier stage than any of its tail nodes toefegure 6
for an illustration). Thus, no hyperarcs exists between nodes comdsy to the

same stage. Hence the following property holds.

Property 1 The state-expanded hypergraphis acyclic. A valid orderingl” is
given by, first starting with nodey; and next ordering the nodes ,, in decreas-
inglyinn =0, ..., N. The nodes; ,,, s € S, for givenn may be ordered arbitrary

inV.

Moreover, since the size of the input data of the MD®)IiEM ), the following is

easily realized.

Property 2 The state-expanded hypergraph can be bui®if/) time andsizg H) =
O (M).

Observe that there is a one to one correspondence between policipseand
decessor functiong on H. Indeed, choosing (vs,) = eqs,n IS €quivalent to
choosingo,, (s) = a. Moreover,g (vs n) = e, n is the only possible predecessor
for nodev, y indicating that only a deterministic dummy actiof is possible at
stageN. The same holds for nodg, (.

Since a predecessor functign: V\ {vy4+1} — & according to Definition 2

define a hypertree with roety; we have the following lemma.

Lemma 1 Consider a finite-horizon MDP and its corresponding state-expanded

hypergraphH. Then the following holds

1. A hypertree7, = ({vn+1} UV, Er) defined by predecessor functign

N+1

defines a policy.

2. Apolicys = (0o, ..., 0y) defines a unique hypertrég , in H.
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Assign weights to the hyperarcs Hf as follows

w0 (€) = { e (s,:0) € =c€osn ®)

en (s, an) e=esN

Moreover, for each hyperarcassign multipliers

n (8] s,a €= ¢€qsn, V="0gn,11 €T (e
me(v):{};( ’ ) eie,, B n+1 () (9)
= €5 N, U=UN+1
Theorem 1 Consider a policys defined by hypertre@,, ., = ({o} U V,&r).

Then the expected total cas} (s), defined in(4), is equal to the weight (vs ,,)

found using the value weighting function with weigt@sand multipliers(9).

Proof Consider the recursive definition of the value weighting function (7)liegp

to the nodes of the hypertree. For nagev, s € Sy, we have that

W (vsn) =cn (s,an) = u?v (sn)

For nodev, ,,, n = 0, ..., N — 1 with predecessor hyperatg ; ,, we have that

W (Vsn) = W (€asn) + Y me(v) W (v)
veT (e)

—ci(sa)+ Y p(f [ sa)uly ()

8’65n+1

Since the recursive definitions & andu?, are identical}V (vs,,) = u’ (s). =

Theorem 1 implies that an optimal poliéywith «? (s) = u? (s) can be found
by finding an optimal predecessor function?t Moreover, by using procedure
SHTacycli¢ shown in Figure 4, this can be doneln(size (H)) time, i.e. linear

in the size of the input data representing the MDP.

Corollary 1 The problem of finding an optimal poligywith ud (s) = u (s),
foralln = 0,...,N, s € S, can be formulated as a minimum weight hyperpath

problem onH and solved irO (M) time.
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(1, 5
nmt , -30 2
N ( P ]
~ > ’ oy
X )
’ 1 ,I
L

Figure 7: The optimal policy.

Example 2 (continued) Assume that weights (8) and multipliers (9) are assigned
to the hyperarcs of the state-expanded hypergraph. Then the optilicg! gan be
found using procedur8HTacyclicshown in Figure 4. The hyperpath correspond-
ing to the optimal policy is shown in bold in Figure 7. The expected total reward is

102.2. Note each time the machine reachestleragestate it is maintained. m

3.1 Other criteria of optimality

Besides the minimization of the expected total cost several other criterialémt-s
ing an optimal policy can be taken into account. For example, we may assign a
discounting rate\, (s, a) of taking actionu in states at stagen. Let the weight of

hyperarce be defined as follows

w(e) = (wy (e),ws (€)) = { (cn (s, 0a) 7)>‘n (s,a)) € = €a,s,n (10)

(en (s,an),0) e=esN

Then the expected total discounted reward can be found using weightar{d

multipliers (9) and the weighting function (6) with

The proof is similar to the one for Theorem 1. Other criteria such as the®ge

total reward per unit time may be modelled similarly.
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Another possibility is to consider worst cases (maximum possible cost)r rathe
than the average behavior. This situation can be modelled, with a propee dfo
hyperarc weights and weighting function. For instance, the policy minimizing the
maximum possible total cost can be found using weighting function (6) with

[(w(e)) =wi(e) =cn(s,a), fle)= lggg){W(v)}
This weighting function is also known as tHistancein the literature (see e.g.

Gallo et al. [9], Nielsen, Andersen, and Pretolani [20]).

4 Finding the K best policies

Consider the state-expanded hypergrapbf a finite-horizon MDP. We consider
the problem of finding theX best policies. That is, ranking the fir&t policies
in non-decreasing order using criterion (2). According to Theorenmpbliay &
corresponds to a hypertré&e with root vy 1. Moreover, the expected total cost
prior to knowing the initial state is equal the weight of the hyperpath 7 with
origin vy and target,, o. Hence finding thei best policies using criterion
(2) corresponds to finding th€ minimum weight hyperpaths from originy ., to
targetvs, o using the value weighting function with weights (8) and multipliers (9).
Efficient algorithms for finding thé& minimum weight hyperpaths were devel-
oped by Nielsen et al. [22]. These algorithms are based on an implicit eatiomer
method, where the set of hyperpaths is partitioned into smaller subsetsusy rec
sively applying @ranching operationin the following we give a short description
of the algorithm.
Let IT denote the set of hyperpaths H with origin o = vy, and target
t = vs,0. Consider the minimum weight hyperpathdefined by predecessor

functiong and with valid ordering
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Given the minimum weight hyperpathof IT and valid ordering/;, the sefll\ {r}

can now be partitioned intg disjoint subsetdI?, 1 < i < ¢ using the following

branching operation (for a formal proof see Nielsen [19]).
1. Hyperpaths il do not contain hyperarg(u, ), that isg(t).

2. Forl < i < g, hyperpaths idl’ contain hyperarcg (u;),i+ 1 < j < g,

and do not contain hyperaggu; ).

It is evident that by taking the minimum weight hyperpathiin.; _,II° we

-----

find the second minimum weight hyperpath. Furthermore, the branchimgtape
can be applied to the second minimum weight hyperpath recursively.

The branching operation partitions the Beih a way that simplifies finding the
minimum weight hyperpath in each subset. Indeed, finding the minimum weight
hyperpathr? € II%, i = 1,...,q, reduces to solving a minimum weight hyperpath

problem on the subhypergrapti obtained froniH as follows:

1. For each node;, i + 1 < j < g, remove each hyperarc 8S(u;) except

g(u;).

2. Remove hyperarg(u;) from BS(u;).

We say that hyperarg(u;), i + 1 < j < ¢ is fixed since all other hyperarcs

have been removed from the backward stawofGiven subhypergraphi’ the

following are equivalent fof = 1, ..., q.

1. 7 e II.

2. 7 is ano-t hyperpath irf{".

As a consequence, each $Etcan be represented by its corresponding subhyper-

graph?‘. Hence in order to find thi& minimum weight hyperpaths, we implicitly
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have to maintain a candidate set of paﬁ‘sfﬂ), wherer is a minimum weight hy-

perpath irfH. Assuming that the firgt minimum weight hyperpaths , ..., 7, have
been found, the candidate set represents a partitioh\of 1, ..., 7. }. Hyperpath
mr+1 1S then found by picking and removing the branching tree node repregentin
the hyperpath with minimum weight in the branching tree. Then the branching
operation is applied using hyperpath,;, possibly obtaining new pairs that are

added to the candidate set.
A compact version of the algorithm for finding tt€ minimum weight hyper-

paths in a acyclic hypergraph, i.e. finding tRebest policies is shown in Figure 8.

The following subprocedures are used.
SHTacycli¢s, H): Find the minimum weight hypertree &f (see Figure 4).

delMin(): Select, remove and return the péir, ) with minimum hyper-

path weight.
insert((#, H)): Insert the paif#, ) into the candidate set.
findV(7): Return a valid orderindz C Vi, of the nodes irr.
findH(H, u;): Create and return the subhypergrégh

findPi(H*): Find and return the minimum weight hyperpatt¢f.

The minimum weight hyperpathof  is found and inserted into the branching
tree on line 2-4. If no hyperpath exists, i.e. the weight(t) of the hyperpath is
infinity, then no optimal policy exists. Line/5-15 contains the main loop. Irkite

iteration the minimum weight paifr, 7%) is picked and we output thiéth policy.
The branching operation is performed on line 10-14.

Different implementations of the procudurf@sdH andfindPihave been given
in the literature. The algorithm from Nielsen et al. [21] fifidusing procedure

SHTacycliceach time a pair is selected form the candidate set. Moreover, in the
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1 procedure K-BP(H,o0,t, K)
2 SHTacyclido, H);
3 if (W (t) < oo)then inser(m, H));
4 else sToP(there is noo-t hyperpath);
5 for (k:=1to K)do
6 (7, H) = delMin();
7 if (7, H) = null) then sToP(there are no more-t hyperpaths);
8 ouTpPUTthe k’'th hyperpathr;
9 (0,u1,...,uq) := findV(7);
10 for (i := qto 1)do
11 H = findH(H, u;);
12 7t = findPi{H?);
13 insert(7', H"));
14 end for
15 end for

16 end procedure

Figure 8: Finding thes best policies.

branching operation, each hyperpathis found using procedur8HTacyclicon

subhypergrapit‘. The main drawback of this algorithm is that a minimum weight
hyperpath problem must be solved for each subhypergraph gemelatieg the
branching operation. The number of minimum weight hyperpath problemé so
is therefore much larger tha.

In Nielsen et al. [22], the complexity of the algorithm is improved by us-
ing reoptimization techniques to avoid solving minimum weight hyperpath prob-
lems. Here procedui@HTacyclids called only once, namely when then minimum
weight hyperpath o< is found. Afterwards, hypergrapi and hyperpath is
created implicitly by reusing information. Finally, the minimum weight hyperpath
7' in subhypergrapli’ is found using simple calculations on the hyperarcs in
the backward star of the nodg. By using reoptimization the complexity can be

improved toO (size (H) K). Hence we have the following theorem.

Theorem 2 Procedure K-BP finds th& best policies in worst time complexity

O (MK).
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Figure 9: Subhypergraph® andH>.

Example 2 (continued) Due to outside regulations assume that the probability of
a machine being maintained more than once during its lifetime must be zero. This
constraint corresponds to the hyperpath with origia vy and target = v, o
may only contairp-t paths with at most a single arc corresponding to actiagn
This is not the case for the optimal policy, i.e. the hyperpatim Figure 7.

We use procedurk-BP to rank the policies until a policy satisfying the con-

straint is found. A valid ordering af; (defined by predecessor functighis

Vi, = (0,u1, ..., ug) = (0,014, V2,4, V1,3,V2,3, V1,2, V2,2, V1,1, V2,1, Vsy,0 = 1)

Hence using the branching operation @ncorresponds to creating 9 subhyper-
graphsH?, ..., H!. Subhypergraph(® is created by removing (ug). Sinceg (ug)

is the only hyperarc in the backward star of nade we have that ne-t hyper-
path exists ir£? and it can be ignored. Subhypergrahf, shown in Figuré 9(a),
is obtained by fixingg (ug) (shown in bold) and removing (ug). The minimum

weight hyperpath of® are shown with solid lines. The expected total reward is
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Figure 10: The optimal policy under the constrgiht= 10).

96.65.

Similar we findH”, ..., H' and their corresponding minimum weight hyper-
path. Comparing the hyperpath weights?ef, ..., /', the second best policy is
the policy corresponding to the minimum weight hyperpathdf shown in Fig-
ure 9(b), with expected total reward 101.56.

Note that this policy does not satisfy the constraint and the branchingtoper
is used on the second best policy. Repeating the branching operatiastpelicy
which fulfill the constraint is th&s = 10’th policy with reward 96.5, shown in
Figure 10. [ |

5 Conclusions

In this paper we considered the problem of finding iidest policies in a finite-
horizon Markov decision processes with finite state and action spaceisTirank-

ing the firstK policies in non-decreasing order using a certain optimality criterion.
Finite-horizon MDPs have been considered for many years. Howtaegproblem

of finding the K best policies has not yet been solved. The results in this paper
was motivated by recent results on stochastic time-dependent netwddtshvalve
similarities to finite-horizon MDPs. The main contributions of this paper can be

summarized as follows.

A finite-horizon MDP can be modelled using a state-expended directed-hype
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graph. Even though several hyperpath models have been propdkeditarature,
no one have modelled finite-horizon MDPs using hypergraphs.

Hyperpaths in the state-expanded hypergraph are equivalent to g inolie
MDP. As a result the problem of finding the optimal policy can be formulated as
minimum weight hyperpath problem and be solved in linear time, with respect to
the size of the input data of the MDP. Moreover, different optimality critecan
easily be modelled using different weights and weighting functions on the state
expanded hypergraph.

Since a policy corresponds to a hypertfEand the expected total cost prior,
to knowing the initial state, is equal the weight of the, ;-v,, o hyperpathr C 7
we have that finding thé& best policies using criterion [(2) corresponds to finding
the K’ minimum weightvx 4 1-v4,,0 hyperpaths using the value weighting function
with weights (8) and multipliers (9). Hence using recent efficient algorithons f
finding the K’ shortest hyperpaths, Nielsen et al. [21, 22], we have thaktlest
policies can be found IO (size (H) K) time.

Possible applications are ranking policies until a policy satisfying a hard con
straint for the MDP is found and solving bicriterion problems in MDPs. Here f
instance, the objective may be to minimize both the expected total cost and the total
risk (which may be modelled using the variance).

Directions for further research include finding thebest deterministic policies
in a infinite-horizon MDP and hypergraph models for influence diagranee, s

Nilsson [24].
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