
Finding theK best policies in finite-

horizon Markov decision processes

Lars Relund Nielsen & Anders Ringgaard Kristensen

Dina Research Report No. 110· December 2004

Finding theK best policies in finite-horizon Markov

decision processes

LARS RELUND NIELSEN1 2 ANDERSRINGGAARD KRISTENSEN

Department of Large Animal Sciences3

Royal Veterinary and Agricultural University

Grønnegårdsvej 8

DK-1870 Frederiksberg C

Denmark

December 3, 2004

1Corresponding author.
2Present address: Biometry research unit, Research Centre Foulum, P.O. Box 50, DK-

8830 Tjele.
3E-mail addresses: lars@relund.dk (L.R. Nielsen), ark@dina.kvl.dk (A.R. Kristensen).

Abstract

Directed hypergraphs represent a general modelling and algorithmic tool,which

have been successfully used in many different research areas suchas artificial in-

telligence, database systems, fuzzy systems, propositional logic and transportation

networks. However, modelling Markov decision processes using directed hyper-

graphs has not yet been considered.

In this paper we consider finite-horizon Markov decision processes (MDPs)

with finite state and action space and present an algorithm for finding theK best

policies. That is, we are interested in ranking the firstK policies in non-decreasing

order using an additive criterion of optimality. The algorithm uses a directed hy-

pergraph to model the finite-horizon MDP. It is shown that the problem of finding

the optimal policy can be formulated as a minimum weight hyperpath problem and

be solved in linear time, with respect to the input data representing the MDP, using

different additive optimality criteria.

Keywords: Finite-horizon Markov decision processes, stochastic dynamic pro-

gramming, directed hypergraphs, hyperpaths, K best policies.

2 Nielsen & Kristensen

1 Introduction

Many decision problems are dynamic in nature and must be re-evaluated over time

based on the state of some crucial underlying factors, e.g. machine state, company

finances, etc. Often these problems can be modelled using Markov decisionpro-

cesses (MDPs) which have been widely used to model stochastic environments,

due to their expressiveness and analytical tractability.

MDPs model sequential decision-making problems. At a specified point in

time, a decision maker observes the state of a system and chooses an action.The

action choice and the state produce two results: the decision maker receives an

immediate reward (or incurs an immediate cost), and the system evolves proba-

bilistically to a new state at a subsequent discrete point in time. At this subsequent

point in time, the decision maker faces a similar problem. The observation made

from the system’s state now may be different from the previous observation. The

goal is to find a policy of choosing actions (dependent on the observationof the

state) which maximizes the rewards after a certain time.

Finding an optimal policy for an MDP is a well studied topic. One of the first

books on the subject was by Howard [11]. As the title1 suggests the idea of the

book was to combine the dynamic programming technique by Bellman [5] with the

mathematically well established notation of a Markov chain. Since the publication

of this book an intensive research in MDPs has been carried out.

A recent book on the subject summarizing results from the past decades isPut-

erman [26]. Here both finite and infinite horizon MDPs are considered, having

either finite, countable or continuous state and action spaces. The optimality crite-

ria considered are the expected total reward, the expected discounted total reward

and the expected average reward.

Also constrainedMDPs have gained considerably interest, see e.g. Altman

[1], Altman and Shwartz [2]. Here the optimality criteria are maximized while

1Dynamic programming and Markov processes

Finding theK best policies in finite-horizon Markov decision processes 3

keeping other type of costs below some given bound. Often these problemsare

solved using linear programs, if the system can be described by a finite number

of states and actions. The linear program formulation of an MDP was introduced

by Derman and Klein [8] and later further developed by Derman and A.F. Veinott

[7], Hordijk and Kallenberg [10], Kallenberg [13]. For a survey on the subject see

Kallenberg [14].

Hierarchic MDPs were introduced by Kristensen [15], Kristensen and Jør-

gensen [17]. It is a contribution to the solution of the problem referred to as the

“curse of dimensionality”, since it provides us with a way to reduce the state space

of large problems. Recent, a standard software system for solving both MDPs and

hierarchic MDPs has been developed by Kristensen [16].

Another research area that has been extensively studied in recent years is di-

rected hypergraphs. Directed hypergraphs are an extension of directed graphs and

undirected hypergraphs introduced by Berge [6]. Directed hypergraphs represent a

general modelling and algorithmic tool, which has been successfully used in many

different research areas such as artificial intelligence, database systems, fuzzy sys-

tems, propositional logic, and transportation networks. For a general overview on

directed hypergraphs see Ausiello, Franciosa, and Frigioni [3].

The concepts of a hyperpath and a minimum weight hyperpath were introduced

by Nguyen and Pallottino [18] and later the definition of a hyperpath in a directed

hypergraph and a general formulation of the minimum weight hyperpath problem

were given by Gallo, Longo, Pallottino, and Nguyen [9]. In general theproblem

is NP-hard (see e.g. Ausiello, Nanni, and Italiano [4]), but for a special class of

weighting functions polynomial algorithms exist (see Gallo et al. [9]). For efficient

data structures for storing hypergraphs see Nielsen [19].

Recently, a general algorithm for finding theK minimum weight hyperpaths

has been presented in Nielsen, Andersen, and Pretolani [21] and in Nielsen, Pre-

tolani, and Andersen [22] the complexity of the algorithm is lowered. Algorithms

for ranking solutions are useful since practical problems often include constraints

4 Nielsen & Kristensen

which are hard to specify formally or hard to optimize. In that case the algorithm

may be used to enumerate suboptimal hyperpaths until a hyperpath satisfyingthe

hard constraint is found.

The study of directed hypergraphs has become an important aspect in finding

optimal strategies/paths in stochastic time-dependent networks, Nielsen [19], Pre-

tolani [25]. Here the travel time between two nodes is time-dependent, i.e. the

travel time depends on the leaving time from a node. Furthermore, it is assumed

that, for each leaving time, the travel time may not be fully known and hence a

probability function is used to express possible travel times. By using theK mini-

mum weight hyperpaths algorithm from Nielsen et al. [22] it is possible to findthe

K best strategies/paths in stochastic time-dependent networks, Nielsen, Pretolani,

and Andersen [23]. Furthermore, in Nielsen [19], the algorithm is used as a sub

algorithm to solve bicriterion problems in stochastic time-dependent networks.

By replacing leaving times with states and travel time with costs in the hy-

pergraph model for stochastic time-dependent networks, it is apparentthat hyper-

graphs also can be used to model MDPs. However, to the author’s knowledge no

one has considered this way of modelling MDPs. Moreover, by modelling MDPs

by hypergraphs we may find theK best policies by adapting existingK minimum

weight hyperpath algorithms.

In this paper we consider finite-horizon Markov decision processes withfinite

state and action space and present an algorithm for finding theK best policies.

That is, we are interested in ranking the firstK policies in non-decreasing order

using a certain optimality criterion. The algorithm uses a state-expended directed

hypergraph representing the finite-horizon Markov decision process. It is shown

that the problem of finding the optimal policy can be formulated as a minimum

weight hyperpath problem and be solved in linear time, with respect to the sizeof

the input data2 representing the MDP, using different optimality criterion.

Possible applications are ranking policies until a policy satisfying a hard con-

2See Section 2.1 for a formal definition of input data.

Finding theK best policies in finite-horizon Markov decision processes 5

Decision

Epoch

1

Decision

Epoch

2

Decision

Epoch

3

Decision

Epoch

N-1

Decision

Epoch

N

Stage 1 Stage 2 Stage N-1

Figure 1: Decision epochs and stages.

straint for the MDP is found and solving bicriterion problems in MDPs. Here for

instance the objective may be to minimize both the expected total cost and the

expected total risk (which may be modelled using the variance).

The paper is organized as follows. Finite-horizon MDPs are introduced in

Section 2 where also a short introduction to directed hypergraphs is given. In

Section 3 a hypergraph model for MDPs is given together with results on how

the best policy may be found. The algorithm for finding theK best policies are

presented in Section 4. Conclusions are drawn in Section 5.

2 Preliminaries

In this section preliminaries on finite-horizon Markov decision processes and di-

rected hypergraphs are given.

2.1 Finite-horizon Markov decision processes

We consider a finite-horizon Markov decision process with{1, ..., N} decisions

andN − 1 stages(see Figure 1). That is, decision numbern is made at the begin-

ning of stagen.

At stagen the system occupies astate. We denote the set of finite system

statesSn. Given the decision maker observes states ∈ Sn at stagen, he may

choose anaction a from the set of finite allowable actionsAs,n generatingcost

cn (s, a) (a reward if negative). Moreover, we letpn (· | s, a) denote theprobability

distributionor transition probabilitiesof obtaining statess′ ∈ Sn+1 at stagen+1.

6 Nielsen & Kristensen

Since no decision is made at the end of stageN − 1, the cost at this point of

time is a function of the states ∈ SN denotedcN (s, aN) which is often referred to

as thesalvage costor scrap cost. HereaN denotes a deterministic (dummy) action.

A deterministic Markovian decision ruleat stagen is a functiondn : Sn →

As,n which specify the action choice given states at stagen. It is called deter-

ministic because it chooses an action with certainty and Markovian (memoryless)

since it depends only on the current system state. We letDn denote the set of pos-

sible Markovian decision rules at stagen. Markovian decision rules are a subset of

more general rules where the action may depend on the past history of the system

and actions may not be chosen with certainty but rather according to a probability

distribution. We restrict ourselves to the set of Markovian decision rules inthis

paper.

A policy or strategyspecifies the decision rule to be used at all stages and

provides the decision maker with a plan of which action to take given stage and

state. That is, a policyδ is a sequence of decision rules,δ = (d1, ..., dN) with

dn ∈ Dn for n = 1, ..., N . We let ∆ denote the set of possible deterministic

Markovian policies.

In this paper we only consider one criterion of optimality, namely the expected

total cost criterion. However, as pointed out in Section 3.1 the results can easily be

extended to other criteria. LetXn denote the state of the system at stagen, i.e. Xn

is a random variable taking values inSn. Then the expected total cost given policy

δ and starting states at stage1 is

ETCδ (s) = E

(

N
∑

n=1

cn (Xn, dn (Xn))

)

, X1 = s (1)

In (1) we assume that the decision maker wishes to choose a policy given an

initial system states. In this paper we alternatively consider the case where he

might seek a policy prior to knowing the initial state. Letp0 (s) denote the prob-

ability of starting in states ∈ S1. In this case he seeks a policyδ ∈ ∆ which

Finding theK best policies in finite-horizon Markov decision processes 7

minimizes

ETCδ =
∑

s∈S1

p0 (s) ETCδ (s) (2)

This corresponds to defining a policy toδ = (d0, d1, ..., dN) whered0 is the de-

cision rule corresponding to a deterministic dummy actiona0. That is, we define

stage 0 withS0 = {s0} wheres0 represents the system before the state of the

system at stage 1 is known and letc0 (s0, a0) denote the cost. Moreover, we set

p0 (s′ | s0, a0) = p0 (s′).

Let |pn (· | s, a)| be the number of elements in the probability distribution and

denote by

M =
∑

n=0,...,N, s∈Sn, a∈As,n

|pn (· | s, a)| (3)

the total number of possible transitions. Note that the size of the input data repre-

senting the MDP isO (M).

It is well known that there exist a deterministic Markovian policyδ which min-

imize (1), see e.g. Puterman [26, chap. 4]. Letuδ
n (s) denote the expected total

cost given policyδ at stagen, ..., N , i.e.

uδ
n (s) = Eδ

s

(

N
∑

i=n

ci (Xi, di (Xn))

)

Thenuδ
n (s) can be found using the recursive equations

uδ
n (s) =

{

cn (s, a) +
∑

s′∈Sn+1
p (s′ | s, a)uδ

n+1 (s′) n < N

cN (s, aN) n = N
(4)

That is, the optimal policy with minimal expected total cost for all stagesn and

statess ∈ Sn can be found using the followingBellman equations, Bellman [5]:

u∗
n (s) =

{

mina∈As,n

{

cn (s, a) +
∑

s′∈Sn+1
p (s′ | s, a)u∗

n+1 (s′)
}

n < N

cN (s, aN) n = N

(5)

8 Nielsen & Kristensen

1 procedure ValueIte
2 for (s ∈ SN) do u∗

N (s) := cN (s, aN);
3 for (n = N − 1 to 0) do
4 for (s ∈ Sn) do
5 find u∗

n(s) using (5) and setd∗n(s) equal
6 to the corresponding optimal action;
7 end for
8 end for
9 end procedure

Figure 2: The value iteration procedure.

indicating that the optimal policy can be found by analyzing a sequence of more

simpel inductively defined single-stage problems. This is often referred toas value

iteration or backward induction (dynamic programming). The value iteration pro-

cedure for findingu∗
n (s) for n = 0, ..., N ands ∈ Sn is shown in Figure 2.

2.2 Directed hypergraphs

A directed hypergraphis a pairH = (V, E), whereV = (v1, ..., v|V|) is the set of

nodes, andE = (e1, ..., e|E|) is the set ofhyperarcs. A hyperarce ∈ E is a paire =

(T (e), h(e)), whereT (e) ⊂ V denotes the set oftail nodes andh(e) ∈ V \ T (e)

denotes theheadnode. Note that a hyperarc has exactly one node in the head, and

possibly several nodes in the tail. A hypergraph is shown in Figure 3.

The cardinality of a hyperarce is the number of nodes it contains, i.e.|e| =

|T (e)|+1. We calle anarc if |e| = 2. Thesizeof H is the sum of the cardinalities.

Without loss of generality, we assumesize(H) > |V |. We denote by

FS(v) = {e ∈ E | v ∈ T (e)} , BS(v) = {e ∈ E | v = h(e)}

theforward starand thebackward starof nodev, respectively.

A hypergraphH̃ = (Ṽ, Ẽ) is a subhypergraphof H = (V, E), if Ṽ ⊆ V and

Ẽ ⊆ E . A subhypergraph isproper if at least one of the inclusions is strict.

An valid orderingV =
(

v1, v2, . . . , v|V|
)

of H is a topological ordering of the

Finding theK best policies in finite-horizon Markov decision processes 9

nodes such that, for anye ∈ E , if h(e) = vi andvj ∈ T (e) thenj < i. Note that,

in a valid ordering any nodevj ∈ T (e) precedes nodeh(e). A o-t path in H is a

sequence

(o = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, fori = 1, . . . , q, vi ∈ T (ei) andvi+1 = h(ei). A nodev is connectedto

nodeu if a u-v path exists inH. A cycle is ao-t path, wheret ∈ T (e1). This is

in particular true ift = o. If H contains no cycles, it isacyclic. It is well-known

thatH is acyclic if and only if a valid ordering of the nodes inH is possible (Gallo

et al. [9]).

2.2.1 Hyperpaths and hypertrees

Definition 1 A hyperpathπot = (Vπ, Eπ) from origin o to target t, is a subhyper-

graph ofH satisfying that, ift = o, thenEπ = ∅; otherwise theq ≥ 1 hyperarcs

in Eπ can be ordered in a sequence(e1, ..., eq) such that

1. t = h (eq) .

2. T (ei) ⊆ {o} ∪ {h (e1) , ..., h (ei−1)} , ∀ei ∈ Eπ.

3. No proper subhypergraph ofπot is ano-t hyperpath.

A nodet is hyperconnectedto o in H if there exists a hyperpathπot in H. Note

that condition 2 above implies that a valid ordering ofπot is (o, h (e1) , ..., h (eq)) .

That is, a hyperpath isacyclic. Furthermore, condition 3 implies that, for each

u ∈ Vπ \ {o}, there exists a unique hyperarce ∈ Eπ, such thath(e) = u and hence

for each nodeu ∈ Vπ there is a unique subhyperpathπou contained inπot. We

denote hyperarce as thepredecessorof u in πot. The definition of a hyperpath can

be extended to hypertrees.

10 Nielsen & Kristensen

1

2

34

t o
e2

e
1

e
3

e
4

e
5

e
7

e
6

e
8

Figure 3: A hypergraphH.

Definition 2 A directed hypertree ofH with root o is an acyclic subhypergraph

To = ({o} ∪ N , ET) with o 6∈ N satisfying

BST (o) = ∅, |BST (v)| = 1, ∀v ∈ N

A directed hypertreeTo contains a uniqueo-u hyperpath for each nodeu ∈ N

(see [9]). That is,To is the union of hyperpaths fromo to all nodes inN . Moreover,

To can be described by apredecessor functiong : N → E ; for eachu ∈ N , g(u)

is the unique hyperarc inTo which has nodeu as the head. Note that any hyperpath

is a hypertree, in particular, it can be defined by a predecessor function.

Example 1 A hypergraphH = (V, E) is shown in Figure3. H has a unique

valid ordering, namelyV = (o, 1, 2, 3, 4, t). Below we give two hyperpaths inH,

namely a hyperpath fromo to t and a hyperpath fromo to 4.

πot =
(

{o, 1, 2, t}, {e1, e2, e3}
)

πo4 =
(

{o, 2, 3, 4}, {e2, e4, e5}
)

.

A hypertreeTo in H is shown with solid lines. It is the union of the two hy-

perpaths given above. Several valid orderings forTo exist; one of them isV =

(o, 1, 2, t, 3, 4).

2.2.2 Weighting functions

Assume that each hyperarce is assigned real weight vectorw (e) = (w1(e), ..., wL(e)).

Given ano-t hyperpathπ defined by predecessor functiong, a weighting function

Finding theK best policies in finite-horizon Markov decision processes 11

W is a node function assigning real weightsW (u) to all nodes inπ. The weight of

hyperpathπ is W (t) (or W (π)). We shall restrict ourselves toadditive weighting

functionsintroduced by Gallo et al. [9], defined by the recursive equations:

W (v) =

{

0 v = o
l (w(g(v))) + f(g(v)) v ∈ Vπ \ {o}

(6)

Herel (·) denote a non-decreasing function ofw (e) andf(·) a non-decreasing func-

tion of the weights in the nodes ofT (e). Furthermore, letme(v) denote a nonnega-

tive multiplier defined for each hyperarce and nodev. A particular case of (6) is the

value functionwhich has been studied in detail (see e.g. Gallo et al. [9], Jeroslow,

Martin, Rardin, and Wang [12]) obtained by setting

W (v) =

{

0 v = o
w(g(v)) +

∑

v∈T (g(v)) mg(v) (v)W (v) v ∈ Vπ \ {o}
(7)

2.2.3 Minimum weight hyperpaths

The minimum weight hyperpath problemor shortest hyperpath problem can be

viewed as a natural generalization of the shortest path problem and consists in

finding the minimum weight hyperpaths from a sources to all nodes inH hyper-

connected too. The result is aminimum weight hypertreecontaining minimum

weight hyperpaths to all nodes hyperconnected too.

If H is acyclic and the weighting function is additive a fast polynomial algo-

rithm exist (see [9]). The procedure is shown in Figure 4 and needs a valid ordering

V =
(

o = v1, v2, . . . , v|V|
)

of H. Since each hyperarc is examined once, the pro-

cedure runs inO (size (H)) time.

Example 1 (continued) Assume that each hyperarce is assigned a scalar weight

as shown in Figure 5 and multipliersme (v) = 1/ |T (e)| , v ∈ T (e). Then the

12 Nielsen & Kristensen

1 procedure SHTacyclic(s, V,H)
2 W (v1) := 0; for (i = 2 to |V|) do W (vi) := ∞;
3 for (i = 2 to |V|) do
4 for (e ∈ BS(vi)) do
5 if (W (vi) > l(w(e)) + f (e)) then
6 W (vi) := l(w(e)) + f (e); g (vi) := e;
7 end for
8 end for
9 end procedure

Figure 4: A procedure for finding the minimum weight hypertree in an acyclic
hypergraph.

1

2

34

t o

4

2

3

1

1

6

4

8

Figure 5: A hypergraphH with scalar weigts.

weight ofπot is 5 and the weight ofπ04 is 8 when the value weighting function (7)

is used. Both hyperpaths are minimum weight hyperpaths to their corresponding

target and the union of the two hyperpaths is a minimum weight hypertree.

3 A hypergraph model for finite-horizon Markov decision
processes

Consider a finite-horizon Markov decision process with finite state and action

spaces.

Definition 3 Let thestate-expanded hypergraphH = (V, E) be obtained by defin-

ing the node and hyperarc set as follows

V = {vs,n | n = 0, ..., N, s ∈ Sn} ∪ {vN+1}

E = {ea,s,n | n = 0, ..., N − 1, s ∈ Sn, a ∈ As,n} ∪ {es,N | s ∈ SN}

Finding theK best policies in finite-horizon Markov decision processes 13

(n, s) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2)

cn (s, a) -70 -50 -70 -50 -70 -50
s′ {1, 2} {2, 3} {1, 2} {2, 3} {1, 2} {2, 3}
pn (· | s, a)

{

6
10 , 4

10

} {

6
10 , 4

10

} {

5
10 , 5

10

} {

5
10 , 5

10

} {

2
10 , 8

10

} {

2
10 , 8

10

}

Table 1: Input data for the problem Example 2 given actionnmt.

with

ea,s,n =
({

vs′,n+1 | s′ ∈ Sn+1, pn

(

s′ | s, a
)

> 0
}

, vs,n

)

, es,N = ({vN+1} , vs,N)

The following example illustrates how the state-expanded hypergraph is cre-

ated.

Example 2 We consider a simple machine replacement problem. A machine may

be in three states: good, average, and not working. Given the machine state we

may maintain the machine. In this case the machine’s state will be good at the next

decision epoch. Otherwise, the machines state will not be better at next decision

epoch. The machine is always replaced after 4 decision epochs. Furthermore, if the

machine is not working then the machine may be replaced before decision epoch

4. Finally, when the machine is bought it may be either in state good or average.

The problem of when to replace the machine can be modelled using a Markov

decision process withN = 4 decision epochs. We use system statesgood (1),

average(2), andnot working(3) together with actionsbuy, maintain (mt), no

maintenance(nmt), andreplace(rep). The system state setsSn and action sets

As,n becomes

Sn =















{s0} n = 0
{1, 2} n = 1
{1, 2, 3} n = 2
{1, 2, 3, 4} n = 3, 4

, As,n =















{buy} n = 0, s = s0

{mt, nmt} n = 1, 2, 3, s = 1, 2
{mt, rep} n = 2, 3, s = 3
{rep} n = 4, s = 1, 2, 3

The state setS0 contains a single dummy states0 representing the machine before

knowing its initial state andAs0,0 containing the deterministic actionbuy. More-

over,As,4, s ∈ S4 contains the deterministic actionrep.

14 Nielsen & Kristensen

state/stage 1 2 3 4

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy1

2

3

0

s0,0

Figure 6: The state-expanded hypergraph.

The cost of buying the machine is 100 withp0 (1) = 0.7 andp0 (2) = 0.3.

The reward (scrap value) of replacing a machine is 30, 10, and 5 in state 1, 2, and

3, respectively. The reward of the machine given actionmt becomes 55, 40, and

30 given state 1, 2, and 3, respectively. Moreover, the system entersstate 1 with

probability 1 at the next stage. Finally, Table 1 shows the cost, transition states and

probabilities given actionnmt.

The state-expanded hypergraphH is shown in Figure 6 with the subscript of

nodevs,n shown in each node and actiona corresponding to the hyperarcea,s,n

shown beside it.H contains a hyperarcea,s,n for each possible actiona given stage

n ands ∈ Sn and a nodevs,n ∈ V for all stagesn and statess ∈ Sn. The head

node of a hyperarc corresponds to the state of the system before actiona is taken

at the tail nodes to the possible system states after actiona is taken. Furthermore,

H contains a dummy nodevN+1 which may be considered as the final system

state representing the system after the machine has been replaced. Note thisis

often modelled using a dummy statereplacedat each stage where the system stays

in this state if it first enters it. However, this is avoided in the state-expanded

hypergraph. Moreover,H contain arcses,N , with tail nodevN+1, corresponding

to the deterministic actionrep are used. Finally, note that the direction of the

hyperarcs are backward in time.

Finding theK best policies in finite-horizon Markov decision processes 15

It is obvious that the head node of a hyperarc in the state-expanded hypergraph

always corresponds to an earlier stage than any of its tail nodes (referto Figure 6

for an illustration). Thus, no hyperarcs exists between nodes corresponding to the

same stage. Hence the following property holds.

Property 1 The state-expanded hypergraphH is acyclic. A valid orderingV is

given by, first starting with nodevN+1 and next ordering the nodesvs,n in decreas-

ingly in n = 0, ..., N . The nodesvs,n, s ∈ Sn for givenn may be ordered arbitrary

in V .

Moreover, since the size of the input data of the MDP isO (M), the following is

easily realized.

Property 2 The state-expanded hypergraph can be built inO (M) time andsize(H) =

O (M).

Observe that there is a one to one correspondence between policies andpre-

decessor functionsg on H. Indeed, choosingg (vs,n) = ea,s,n is equivalent to

choosingdn (s) = a. Moreover,g (vs,N) = es,N is the only possible predecessor

for nodevs,N indicating that only a deterministic dummy actionaN is possible at

stageN . The same holds for nodevs0,0.

Since a predecessor functiong : V\ {vN+1} → E according to Definition 2

define a hypertree with rootvN+1 we have the following lemma.

Lemma 1 Consider a finite-horizon MDP and its corresponding state-expanded

hypergraphH. Then the following holds

1. A hypertreeTvN+1
= ({vN+1} ∪ V, ET) defined by predecessor functiong

defines a policyδ.

2. A policyδ = (d0, ..., dN) defines a unique hypertreeTvN+1
in H.

16 Nielsen & Kristensen

Assign weights to the hyperarcs ofH as follows

w1 (e) =

{

cn (s, a) e = ea,s,n

cN (s, aN) e = es,N
(8)

Moreover, for each hyperarce assign multipliers

me(v) =

{

pn (s′ | s, a) e = ea,s,n, v = vs′,n+1 ∈ T (e)
1 e = es,N , v = vN+1

(9)

Theorem 1 Consider a policyδ defined by hypertreeTvN+1
= ({o} ∪ V, ET).

Then the expected total costuδ
n (s), defined in(4), is equal to the weightW (vs,n)

found using the value weighting function with weights(8) and multipliers(9).

Proof Consider the recursive definition of the value weighting function (7), applied

to the nodes of the hypertree. For nodevs,N , s ∈ SN , we have that

W (vs,N) = cN (s, aN) = uδ
N (sN)

For nodevs,n, n = 0, ..., N − 1 with predecessor hyperarcea,s,n, we have that

W (vs,n) = w (ea,s,n) +
∑

v∈T (e)

me (v) W (v)

= cn (s, a) +
∑

s′∈Sn+1

p
(

s′ | s, a
)

uδ
n+1 (s)

Since the recursive definitions ofW anduδ
n are identical,W (vs,n) = uδ

n (s).

Theorem 1 implies that an optimal policyδ with uδ
n (s) = u∗

n (s) can be found

by finding an optimal predecessor function inH. Moreover, by using procedure

SHTacyclic, shown in Figure 4, this can be done inO (size (H)) time, i.e. linear

in the size of the input data representing the MDP.

Corollary 1 The problem of finding an optimal policyδ with uδ
n (s) = u∗

n (s) ,

for all n = 0, ..., N , s ∈ Sn can be formulated as a minimum weight hyperpath

problem onH and solved inO (M) time.

Finding theK best policies in finite-horizon Markov decision processes 17

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy

-102.2

-55 -55 -55

-40 -40 -40

-30
-30

100

-50 -50 -50

-70 -70 -70

-5

-5

-5

-10

-30
s0,0

Figure 7: The optimal policy.

Example 2 (continued) Assume that weights (8) and multipliers (9) are assigned

to the hyperarcs of the state-expanded hypergraph. Then the optimal policy can be

found using procedureSHTacyclicshown in Figure 4. The hyperpath correspond-

ing to the optimal policy is shown in bold in Figure 7. The expected total reward is

102.2. Note each time the machine reaches theaveragestate it is maintained.

3.1 Other criteria of optimality

Besides the minimization of the expected total cost several other criteria for select-

ing an optimal policy can be taken into account. For example, we may assign a

discounting rateλn (s, a) of taking actiona in states at stagen. Let the weight of

hyperarce be defined as follows

w (e) = (w1 (e) , w2 (e)) =

{

(cn (s, a) , λn (s, a)) e = ea,s,n

(cN (s, aN) , 0) e = es,N
(10)

Then the expected total discounted reward can be found using weights (10) and

multipliers (9) and the weighting function (6) with

l (w (e)) = cn (s, a) , f (e) = λn (s, a)
∑

v∈T (e)

me (v)W (v)

The proof is similar to the one for Theorem 1. Other criteria such as the expected

total reward per unit time may be modelled similarly.

18 Nielsen & Kristensen

Another possibility is to consider worst cases (maximum possible cost), rather

than the average behavior. This situation can be modelled, with a proper choice of

hyperarc weights and weighting function. For instance, the policy minimizing the

maximum possible total cost can be found using weighting function (6) with

l (w (e)) = w1 (e) = cn (s, a) , f (e) = max
v∈T (e)

{W (v)}

This weighting function is also known as thedistancein the literature (see e.g.

Gallo et al. [9], Nielsen, Andersen, and Pretolani [20]).

4 Finding the K best policies

Consider the state-expanded hypergraphH of a finite-horizon MDP. We consider

the problem of finding theK best policies. That is, ranking the firstK policies

in non-decreasing order using criterion (2). According to Theorem 1 apolicy δ

corresponds to a hypertreeT with root vN+1. Moreover, the expected total cost

prior to knowing the initial state is equal the weight of the hyperpathπ ⊆ T with

origin vN+1 and targetvs0,0. Hence finding theK best policies using criterion

(2) corresponds to finding theK minimum weight hyperpaths from originvN+1 to

targetvs0,0 using the value weighting function with weights (8) and multipliers (9).

Efficient algorithms for finding theK minimum weight hyperpaths were devel-

oped by Nielsen et al. [22]. These algorithms are based on an implicit enumeration

method, where the set of hyperpaths is partitioned into smaller subsets by recur-

sively applying abranching operation. In the following we give a short description

of the algorithm.

Let Π denote the set of hyperpaths inH with origin o = vN+1 and target

t = vs0,0. Consider the minimum weight hyperpathπ defined by predecessor

functiong and with valid ordering

Vπ = (o, u1, ...uq = t)

Finding theK best policies in finite-horizon Markov decision processes 19

Given the minimum weight hyperpathπ of Π and valid orderingVπ, the setΠ\{π}

can now be partitioned intoq disjoint subsetsΠi, 1 ≤ i ≤ q using the following

branching operation (for a formal proof see Nielsen [19]).

1. Hyperpaths inΠq do not contain hyperarcg(uq), that isg(t).

2. For1 ≤ i < q, hyperpaths inΠi contain hyperarcsg (uj) , i + 1 ≤ j ≤ q,

and do not contain hyperarcg(ui).

It is evident that by taking the minimum weight hyperpath in∪i=1,...,qΠ
i we

find the second minimum weight hyperpath. Furthermore, the branching operation

can be applied to the second minimum weight hyperpath recursively.

The branching operation partitions the setΠ in a way that simplifies finding the

minimum weight hyperpath in each subset. Indeed, finding the minimum weight

hyperpathπi ∈ Πi, i = 1, ..., q, reduces to solving a minimum weight hyperpath

problem on the subhypergraphHi obtained fromH as follows:

1. For each nodeuj , i + 1 ≤ j ≤ q, remove each hyperarc inBS(uj) except

g(uj).

2. Remove hyperarcg(ui) from BS(ui).

We say that hyperarcg(uj), i + 1 ≤ j ≤ q is fixed, since all other hyperarcs

have been removed from the backward star ofuj . Given subhypergraphHi the

following are equivalent fori = 1, ..., q.

1. π ∈ Πi.

2. π is ano-t hyperpath inHi.

As a consequence, each setΠi can be represented by its corresponding subhyper-

graphHi. Hence in order to find theK minimum weight hyperpaths, we implicitly

20 Nielsen & Kristensen

have to maintain a candidate set of pairs(π̃, H̃), whereπ̃ is a minimum weight hy-

perpath inH̃. Assuming that the firstk minimum weight hyperpathsπ1, ..., πk have

been found, the candidate set represents a partition ofΠ \ {π1, ..., πk}. Hyperpath

πk+1 is then found by picking and removing the branching tree node representing

the hyperpath with minimum weight in the branching tree. Then the branching

operation is applied using hyperpathπk+1, possibly obtaining new pairs that are

added to the candidate set.

A compact version of the algorithm for finding theK minimum weight hyper-

paths in a acyclic hypergraph, i.e. finding theK best policies is shown in Figure 8.

The following subprocedures are used.

SHTacyclic(s,H): Find the minimum weight hypertree ofH (see Figure 4).

delMin(): Select, remove and return the pair(π̃, H̃) with minimum hyper-

path weight.

insert((π̂, Ĥ)): Insert the pair(π̂, Ĥ) into the candidate set.

findV(π̃): Return a valid orderingVπ̃ ⊆ VH of the nodes iñπ.

findH(H, ui): Create and return the subhypergraphHi.

findPi
(

Hi
)

: Find and return the minimum weight hyperpath ofHi.

The minimum weight hyperpathπ ofH is found and inserted into the branching

tree on line 2-4. If no hyperpath exists, i.e. the weightW (t) of the hyperpath is

infinity, then no optimal policy exists. Line 5-15 contains the main loop. In thek’th

iteration the minimum weight pair(π̂, Ĥ) is picked and we output thek’th policy.

The branching operation is performed on line 10-14.

Different implementations of the procuduresfindH andfindPihave been given

in the literature. The algorithm from Nielsen et al. [21] findπ̃ using procedure

SHTacycliceach time a pair is selected form the candidate set. Moreover, in the

Finding theK best policies in finite-horizon Markov decision processes 21

1 procedure K-BP(H, o, t,K)
2 SHTacyclic(o,H);
3 if (W (t) < ∞) then insert((π,H));
4 else STOP(there is noo-t hyperpath);
5 for (k := 1 to K) do
6 (π̃, H̃) := delMin();
7 if ((π̃, H̃) = null) then STOP(there are no moreo-t hyperpaths);
8 OUTPUT thek’th hyperpath̃π;
9 (o, u1, ..., uq) := findV(π̃);

10 for (i := q to 1)do
11 H̃i := findH(H̃, ui);
12 π̃i := findPi(H̃i);
13 insert((π̃i, H̃i));
14 end for
15 end for
16 end procedure

Figure 8: Finding theK best policies.

branching operation, each hyperpathπ̃i is found using procedureSHTacyclicon

subhypergraph̃Hi. The main drawback of this algorithm is that a minimum weight

hyperpath problem must be solved for each subhypergraph generated during the

branching operation. The number of minimum weight hyperpath problems to solve

is therefore much larger thanK.

In Nielsen et al. [22], the complexity of the algorithm is improved by us-

ing reoptimization techniques to avoid solving minimum weight hyperpath prob-

lems. Here procedureSHTacyclicis called only once, namely when then minimum

weight hyperpath ofH is found. Afterwards, hypergraph̃H and hyperpath̃π is

created implicitly by reusing information. Finally, the minimum weight hyperpath

π̃i in subhypergraphH̃i is found using simple calculations on the hyperarcs in

the backward star of the nodeui. By using reoptimization the complexity can be

improved toO (size (H)K). Hence we have the following theorem.

Theorem 2 Procedure K-BP finds theK best policies in worst time complexity

O (MK).

22 Nielsen & Kristensen

-96.65

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

(a) subhypergraphH8

-101.56

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1

mt

nmt

mt

mt

nmt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

(b) subhypergraphH3

Figure 9: SubhypergraphH8 andH3.

Example 2(continued) Due to outside regulations assume that the probability of

a machine being maintained more than once during its lifetime must be zero. This

constraint corresponds to the hyperpath with origino = vN+1 and targett = vs0,0

may only containo-t paths with at most a single arc corresponding to actionmt.

This is not the case for the optimal policy, i.e. the hyperpathπ1 in Figure 7.

We use procedureK-BP to rank the policies until a policy satisfying the con-

straint is found. A valid ordering ofπ1 (defined by predecessor functiong) is

Vπ1
= (o, u1, ..., u9) = (o, v1,4, v2,4, v1,3, v2,3, v1,2, v2,2, v1,1, v2,1, vs0,0 = t)

Hence using the branching operation onπ1 corresponds to creating 9 subhyper-

graphsH9, ...,H1. SubhypergraphH9 is created by removingg (u9). Sinceg (u9)

is the only hyperarc in the backward star of nodeu9, we have that noo-t hyper-

path exists inH9 and it can be ignored. SubhypergraphH8, shown in Figure 9(a),

is obtained by fixingg (u9) (shown in bold) and removingg (u8). The minimum

weight hyperpath ofH8 are shown with solid lines. The expected total reward is

Finding theK best policies in finite-horizon Markov decision processes 23

-96.5

5

3,4

2,4

1,4

3,3

2,3

1,3

3,2

2,2

1,2

2,1

1,1
mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

mt

mt

mt

nmt

nmt

rep rep

rep

rep

repbuy
s0,0

Figure 10: The optimal policy under the constraint(k = 10).

96.65.

Similar we findH7, ...,H1 and their corresponding minimum weight hyper-

path. Comparing the hyperpath weights ofH9, ...,H1, the second best policy is

the policy corresponding to the minimum weight hyperpath ofH3, shown in Fig-

ure 9(b), with expected total reward 101.56.

Note that this policy does not satisfy the constraint and the branching operation

is used on the second best policy. Repeating the branching operation the first policy

which fulfill the constraint is thek = 10’th policy with reward 96.5, shown in

Figure 10.

5 Conclusions

In this paper we considered the problem of finding theK best policies in a finite-

horizon Markov decision processes with finite state and action space. That is, rank-

ing the firstK policies in non-decreasing order using a certain optimality criterion.

Finite-horizon MDPs have been considered for many years. However,the problem

of finding theK best policies has not yet been solved. The results in this paper

was motivated by recent results on stochastic time-dependent networks which have

similarities to finite-horizon MDPs. The main contributions of this paper can be

summarized as follows.

A finite-horizon MDP can be modelled using a state-expended directed hyper-

24 Nielsen & Kristensen

graph. Even though several hyperpath models have been proposed inthe literature,

no one have modelled finite-horizon MDPs using hypergraphs.

Hyperpaths in the state-expanded hypergraph are equivalent to a policy in the

MDP. As a result the problem of finding the optimal policy can be formulated asa

minimum weight hyperpath problem and be solved in linear time, with respect to

the size of the input data of the MDP. Moreover, different optimality criterioncan

easily be modelled using different weights and weighting functions on the state-

expanded hypergraph.

Since a policy corresponds to a hypertreeT and the expected total cost prior,

to knowing the initial state, is equal the weight of thevN+1-vs0,0 hyperpathπ ⊆ T

we have that finding theK best policies using criterion (2) corresponds to finding

theK minimum weightvN+1-vs0,0 hyperpaths using the value weighting function

with weights (8) and multipliers (9). Hence using recent efficient algorithms for

finding theK shortest hyperpaths, Nielsen et al. [21, 22], we have that theK best

policies can be found inO (size (H)K) time.

Possible applications are ranking policies until a policy satisfying a hard con-

straint for the MDP is found and solving bicriterion problems in MDPs. Here for

instance, the objective may be to minimize both the expected total cost and the total

risk (which may be modelled using the variance).

Directions for further research include finding theK best deterministic policies

in a infinite-horizon MDP and hypergraph models for influence diagrams , see

Nilsson [24].

Acknowledgements

The main part of this research was supported by a grant from SNS - the Nordic

Forest Research Cooperation Committee. Initial work was done at the Danish In-

stitute of Agricultural Sciences in the projectFarrowing and nursing sows, loose

housing and improved animal welfarefunded by The Danish Directorate for Food,

Finding theK best policies in finite-horizon Markov decision processes 25

Fisheries and Agri Business.

We are grateful to scientist Erik Jørgensen for useful comments and suggestions

for improving this paper.

References

[1] E. Altman. Constrained Markov Decision Processes. Chapman and

HALL/CRC, 1999.

[2] E. Altman and A. Shwartz. Adaptive control of constrained Markov chains:

Criteria and policies.Annals of Operations Research, 28:101–134, 1991.

[3] G. Ausiello, P.G. Franciosa, and D. Frigioni. Directed hypergraphs: Prob-

lems, algorithmic results, and a novel decremental approach.Lecture Notes

in Computer Science, 2202:312–328, 2001.

[4] G. Ausiello, U. Nanni, and G.F. Italiano. Dynamic maintenance of directed

hypergraphs.Theoretical Computer Science, 72(2–3):97–117, 1990.

[5] R. Bellman.Dynamic Programming. Princeton University Press, 1957.

[6] C. Berge.Graphs and hypergraphs. North-Holland, 1973.

[7] C. Derman and Jr. A.F. Veinott. Constrained Markov decision chains.Man-

agement Science, 19:389–390, 1972.

[8] C. Derman and M. Klein. Some remarks on finite horizon Markovian decision

models.Operations Research, 13:272–278, 1965.

[9] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and

applications.Discrete Applied Mathematics, 42:177–201, 1993.

[10] A. Hordijk and L.C.M. Kallenberg. Constrained undiscounted stochastic dy-

namic programming.Mathematics of Operations Research, 9:276–289, 1984.

26 Nielsen & Kristensen

[11] R.A. Howard. Dynamic Programming and Markov processes. Cambridge,

Massachusetts: The M.I.T. Press, 1960.

[12] R.G. Jeroslow, K. Martin, R.L. Rardin, and J. Wang. Gainfree Leontief sub-

stitution flow problems.Matematical Programming, 57:375–414, 1992.

[13] L.C.M. Kallenberg. Linear programming and finite Markovian control prob-

lems.Mathematical Centre Tracts, 148, 1983. Amsterdam.

[14] L.C.M. Kallenberg. Survey of linear programming for standard and nonstan-

dard Markovian control problems, part I: Theory.ZOR - Methods and models

in Operations Research, 40:1–42, 1994.

[15] A.R. Kristensen. Hierarchic Markov processes and their applications in re-

placement models.European Journal of Operational Research, 35:207–215,

1988.

[16] A.R. Kristensen. A general software system for Markov decisionprocesses

in herd management applications.Computers and Electronics in Agriculture,

38(3):199–215, 2003.

[17] A.R. Kristensen and E. Jørgensen. Multi-level hierarchic Markovprocesses

as a framework for herd management support.Annals of Operations Re-

search, 94(1):69–90, 2000.

[18] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In Combi-

natorial optimization (Como, 1986), volume 1403 ofLecture Notes in Math,

pages 258–271. Springer, 1989.

[19] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD

thesis, Department of Operations Research, University of Aarhus, 2004.

[20] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bicriterion shortesthyper-

paths in random time-dependent networks.IMA Journal of Management

Mathematics, 14(3):271–303, 2003.

Finding theK best policies in finite-horizon Markov decision processes 27

[21] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding theK shortest hy-

perpaths.Computers & Operations Research, 32(6):1477–1497, 2005. doi:

10.1016/j.cor.2003.11.014.

[22] L.R. Nielsen, D. Pretolani, and K.A. Andersen. Finding theK shortest hyper-

paths using reoptimization. Technical Report WP-L-2004-04, Department of

Accounting, Finance and Logistics, Aarhus School of Business, 2004. Sub-

mitted.

[23] L.R. Nielsen, D. Pretolani, and K.A. Andersen.K shortest paths in stochastic

time-dependent networks. Technical Report WP-L-2004-05, Department of

Accounting, Finance and Logistics, Aarhus School of Business, 2004. Sub-

mitted.

[24] D. Nilsson. Finding Sets of Most Probable Configurations in Bayesian Net-

works and Best Strategies in Infludence Diagrams. PhD thesis, Department

of Mathematics, Aalborg University, 1998.

[25] D. Pretolani. A directed hypergraph model for random time-dependent short-

est paths.European Journal of Operational Research, 123:315–324, 2000.

[26] M.L. Puterman.Markov Decision Processes. Wiley Series in Probability and

Mathematical Statistics. Wiley-Interscience, 1994.

Dina Research Report No. 110· December 2004

Danish Informatics Network in the Agriculture Sciences
The Royal Veterinary and Agricultural University
Thorvaldsensvej 40
1871 Frederiksberg C
Denmark

http://www.dina.dk

	Introduction
	Preliminaries
	Finite-horizon Markov decision processes
	Directed hypergraphs
	Hyperpaths and hypertrees
	Weighting functions
	Minimum weight hyperpaths

	A hypergraph model for finite-horizon Markov decision processes
	Other criteria of optimality

	Finding the K best policies
	Conclusions

