

 WORKING PAPER L-2004-04

Lars Relund Nielsen, Daniele Pretolani & Kim Allan Andersen

Finding the K shortest hyperpaths using
reoptimization

Finding the K shortest hyperpaths using reoptimization

Lars Relund Nielsen∗

Biometry Research Unit
Research Centre Foulum

P.O. Box 50
DK-8830 Tjele

Denmark

Kim Allan Andersen
Department of Accounting, Finance and Logistics

Aarhus School of Business
Fuglesangs Allé 4

DK-8210 Aarhus V
Denmark

Daniele Pretolani
Dipartimento di Matematica e Informatica

Università di Camerino
Via Madonna delle Carceri
I-62032 Camerino (MC)

Italy

November 15, 2004

Abstract

The shortest hyperpath problem is an extension of the classical shortest path problem
and has applications in many different areas. Recently, algorithms for finding the K
shortest hyperpaths in a directed hypergraph have been developed by Andersen, Nielsen
and Pretolani. In this paper we improve the worst-case computational complexity of an
algorithm for finding the K shortest hyperpaths in an acyclic hypergraph. This result is
obtained by applying new reoptimization techniques for shortest hyperpaths.

The algorithm turns out to be quite effective in practice and has already been suc-
cessfully applied in the context of stochastic time-dependent networks, for finding the K
best strategies and for solving bicriterion problems.

Keywords: Network programming, Directed hypergraphs, K shortest hyperpaths, K short-
est paths.

1 Introduction

Directed hypergraphs are an extension of directed graphs and undirected hypergraphs, and
represent a general modelling and algorithmic tool successfully used in many different research
areas such as artificial intelligence, database systems, propositional logic and transportation
networks. For a more general overview on directed hypergraphs see Gallo, Longo, Pallottino,
and Nguyen [2]; see Ausiello, Franciosa, and Frigioni [1] for a more recent survey.

The concept of hyperpath and shortest hyperpath was introduced by Nguyen and Pal-
lottino [6]. Some particular shortest hyperpath problems were studied by Jeroslow, Martin,

∗Corresponding author (e-mail: lars@relund.dk)

1

Rardin, and Wang [4] within the more general setting of Leontief flow problems. A general
formulation of the shortest hyperpath problem is given in Gallo et al. [2].

Shortest hyperpath problems arise from important practical applications, e.g. in produc-
tion planning (Gallo and Scutellà [3]). In partiular, they are the core of traffic assignment
methods for transit networks, see for instance Wu, Florian, and Marcotte [14] and Nguyen,
Pallottino, and Gendreau [7]. Finally, as shown by Pretolani [12], directed hypergraphs can be
used to model discrete stochastic (or random) time-dependent networks, where the problem
of finding an optimal time-adaptive routing strategy reduces to solving a shortest hyperpath
problem in a suitable acyclic time-expanded hypergraph. In a stochastic time-dependent net-
work the travel time through an arc is a random variable whose distribution depends on
the departure time. Transportation problems on stochastic time-dependent networks have
recently attracted a growing attention, see Miller-Hooks and Mahmassani [5], Nielsen, Preto-
lani, and Andersen [11].

Often in a real application hard constraints not intercepted by the model may occur. In
this case an optimal hyperpath satisfying the constraint may be found by enumerating sub-
optimal hyperpaths, until the hard constraints are satisfied. Furthermore, algorithms based
on K shortest hyperpaths procedures can be used to solve bicriterion hyperpath problems.
Several algorithms for finding the K shortest hyperpaths in a directed hypergraph were de-
veloped by Nielsen, Andersen, and Pretolani [10]. Here computational results show that the
CPU times can be reduced dramatically if reoptimization is used.

In this paper we improve the complexity of the algorithm finding the K shortest hyper-
paths in an acyclic hypergraph by using new reoptimization techniques for shortest hyper-
paths. These techniques extend to directed hypergraphs some well known results for the
shortest path problem; as we shall see, this extension is not trivial, and is technically rather
involved. The resulting algorithm has already been successfully applied to finding the K
best strategies in a stochastic time-dependent network (Nielsen [8]), in particular, it has been
exploited within algorithms for bicriterion best strategy problems, see Nielsen, Andersen, and
Pretolani [9].

The paper is organized as follows. In Section 2 we shortly recall some definitions related
to directed hypergraphs and present new reoptimization results. In Section 3 these results
are used to develop a new algorithm with improved complexity. Conclusions are drawn in
Section 4.

2 Directed hypergraphs

A directed hypergraph is a pair H = (V, E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node. Note that
a hyperarc has exactly one node in the head and possibly several nodes in the tail.

The cardinality of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)| + 1.
We call e an arc if |e| = 2. We denote by κ the size of H, i.e.

κ =
∑
e∈E

|e|

Without loss of generality, we assume κ > n. We denote by

FS(v) = {e ∈ E | v ∈ T (e)} , BS(v) = {e ∈ E | v = h(e)}

2

the forward star and the backward star of node v, respectively.
A hypergraph H̃ = (Ṽ, Ẽ) is a subhypergraph of H = (V, E), if Ṽ ⊆ V and Ẽ ⊆ E . This is

written H̃ ⊆ H, or we say that H̃ is contained in H. A subhypergraph is proper if at least
one of the inclusions is strict. Moreover, we denote by FSH̃ (v) and BSH̃ (v) the forward and
backward star of node v in subhypergraph H̃, respectively.

A valid ordering V = (v1, v2, . . . , vn) of H is a topological ordering of the nodes such that,
for any e ∈ E , if h(e) = vi and vj ∈ T (e) then j < i. Note that, in a valid ordering any node
vj ∈ T (e) precedes node h(e). A valid sub-ordering Ṽ of V is a subsequence of V , that is,
the topological ordering of a subset of the nodes in V induced by the ordering V . We write
Ṽ ⊆ V if Ṽ is a valid sub-ordering of V . A path Pst in H is a sequence

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u if a path
Puv exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular true if t = s.
If H contains no cycles, it is acyclic. It is well-known that H is acyclic if and only if a valid
ordering of the nodes in H is possible (see [2]).

2.1 Hyperpaths and hypertrees

Definition 1 A hyperpath πst = (Vπ, Eπ) from source s to target t is a subhypergraph of H
such that Eπ = ∅ if t = s, otherwise, the q ≥ 1 hyperarcs in Eπ can be ordered in a sequence
(e1, ..., eq) such that

1. t = h (eq).

2. T (ei) ⊆ {s} ∪ {h (e1) , ..., h (ei−1)} , ∀ei ∈ Eπ.

3. No proper subhypergraph of πst is an s-t hyperpath.

A node t is hyperconnected to s in H if there exists a hyperpath πst in H. Note that
condition 2 implies that a valid ordering of πst is (s, h (e1) , ..., h (eq)) . That is, a hyperpath
is acyclic. Furthermore, condition 3 implies that, for each u ∈ Vπ \ {s}, there exists a unique
hyperarc e ∈ Eπ, such that h(e) = u and hence for each node u ∈ Vπ there is a unique
subhyperpath πsu contained in πst. We denote hyperarc e as the predecessor of u in πst. The
definition of hyperpath can be extended to hypertrees.

Definition 2 A directed hypertree of H with root s is an acyclic subhypergraph Ts = ({s} ∪
N , ET) with s 6∈ N satisfying

BS (s) = ∅, |BS(v)| = 1, ∀v ∈ N

A directed hypertree Ts contains a unique s-u hyperpath for each node u ∈ N (see [2]).
That is, Ts is the union of hyperpaths from s to all nodes in N . Moreover, Ts can be described
by a predecessor function p : N → E ; for each u ∈ N , p(u) is the unique hyperarc in Ts which
has node u as the head. Note that any hyperpath is a hypertree, in particular, it can be
defined by a predecessor function on Vπ \ {s}.

3

1 procedure SHTacyclic(s, V,H)
2 W (v1) := 0; for (i = 2 to n) do W (vi) := ∞;
3 for (i = 2 to n) do
4 for (e ∈ BS(vi)) do
5 if (W (vi) > w(e) + F (e)) then
6 W (vi) := w(e) + F (e); p (vi) := e;
7 end for
8 end for
9 end procedure

Figure 1: A shortest hyperpath procedure on acyclic hypergraphs.

2.2 The shortest hyperpath problem

Assume that each hyperarc e is assigned a nonnegative real weight w(e). The weight of a
path Pst is the sum of the weights of the hyperarcs in Pst. Given an s-t hyperpath π defined
by predecessor function p, a weighting function W is a node function assigning weights W (u)
to all nodes in π. The weight of hyperpath π is W (t). We shall restrict ourselves to additive
weighting functions introduced by Gallo et al. [2], defined by the recursive equations:

W (v) =
{

0 v = s
w(p(v)) + F (p(v)) v ∈ Vπ \ {s}

(1)

Here F (e) denotes a non-decreasing function of the weights in the nodes of T (e). Note that
the weights W (v) can be found by processing the nodes in Vπ according to a valid ordering.
We shall consider two particular weighting functions, namely the distance and the value. The
distance function is obtained by defining F (e) as follows:

F (e) = maxu∈T (e) {W (u)}

and the value function is obtained as follows:

F (e) =
∑

u∈T (e)
ae (u) W (u)

where ae(v) is a nonnegative multiplier defined for each hyperarc e and node u ∈ T (e).
The shortest hyperpath problem can be viewed as a natural generalization of the shortest

path problem and consists in finding a shortest hypertree containing the shortest hyperpaths
from a source s to all nodes in H hyperconnected to s. In the following the weight of a
shortest hyperpath from s to v in H will be referred to as the weight of node v in a shortest
hypertree.

Several efficient algorithms for the shortest hyperpath problem have been proposed; if H
is acyclic a quite fast procedure can be devised (see [2]). The procedure is shown in Figure 1
and needs a valid ordering VH = (s = v1, ..., vn) of H. Since each hyperarc is examined once,
the procedure runs in O (κ) time.

2.3 End-trees and reoptimization techniques

Consider an s-t hyperpath π defined by predecessor function p.

4

Definition 3 (end-tree) Consider the subhypergraph η = (Vη, Eη) ⊆ π defined by a subset
of nodes Iη ⊆ Vπ as follows: if Iη = ∅ then η = ({t}, ∅), otherwise

Eη =
⋃

v∈Iη

p (v) , Vη =
⋃

e∈Eη

(
T (e) ∪ {h (e)}

)
;

then η is an end-tree if and only if it contains at least one v-t path for each node v ∈ Vη.

For an end-tree η we refer to Iη as the set of inner-nodes and denote by Eη the set of
leaf-nodes in η:

Eη = Vη \ Iη = {v ∈ Vη : |BSη (v)| = 0} .

Note that Eη = {t} if and only if Iη = ∅. In the following we show that the weight of
a hyperpath can be rewritten according to a given end-tree η ⊂ π. We consider the value
weighting function first.

Theorem 1 Given an end-tree η ⊆ π the weight of hyperpath π using the value weighting
function can be written as

W (t) =
∑

v∈Eη

W (v) fη (v) +
∑

v∈Iη

w (p (v)) fη (v) (2)

where fη is recursively defined as follows:

fη (u) =
{

1 u = t∑
e∈FSη(u)ae(u)fη (h (e)) u ∈ Vη \ {t}

(3)

Proof Let us consider a generic valid ordering Vη = (v1, ..., vq = t) of η. Moreover, given a
generic subset I ⊆ Vη such that t ∈ I, let us define the value f I (u) for all u ∈ Vη:

f I (u) =

{
1 u = t∑

e∈FSI
η(u) ae(u)f I(h(e)) u 6= t

where
FSI

η(u) =
{
e ∈ FSη(u) : h(e) ∈ I

}
.

Note f I (u) is a lower bound on fη (u) found by using only the hyperarcs in FSη (u) with
head belonging to the set I. Moreover, if I is the set of nodes following node u in Vη, then
f I (u) = fη (u).

If η = ({t} , ∅) then (2) holds trivially. Assume that Iη 6= ∅ and consider the valid ordering
Vη. We show (2) holds using induction, processing nodes in Vη in reverse order, i.e., starting
with node vq and proceeding down to node v1. Given node vi let Ii and Ei denote the set of
inner and leaf-nodes already considered, i.e.

Ii = {vj ∈ Iη : i ≤ j ≤ q} , Ei = {vj ∈ Eη : i ≤ j ≤ q} .

Moreover, let Bi denote the set of not yet considered nodes that belong to (the tails of) the
predecessors of nodes in Ii:

Bi =
{

vj ∈
⋃

u∈Ii
T (p (u)) : j < i

}
.

5

Consider node t = vq, i.e., i = q. According to equation (1) we have

W (t) = w (p (vq)) +
∑

u∈T (p(vq))
ap(vq) (u) W (u) . (4)

Since t ∈ Iη we have that Eq = ∅ and Bq = T (p(vq)); thus by letting k = q we can rewrite
(4) as follows

W (t) =
∑

v∈Ik
w (p (v)) fη (v) +

∑
v∈Ek

fη (v) W (v) (5)

+
∑

u∈Bk
f Ik

(u) W (u) .

Assume that nodes vq, ..., vi+1 have been considered and that (5) holds for k = i + 1. Note
that vi ∈ Bi+1 and f Ii+1

(vi) = fη (vi). We consider two cases. If vi ∈ Iη, we write out W (vi):

W (t) =
∑

v∈Ii+1
w (p (v)) fη (v) +

∑
v∈Ei+1

fη (v) W (v)

+
∑

u∈Bi+1\{vi}
f Ii+1

(u) W (u) (6)

+ f Ii+1
(vi)

(
w (p (vi)) +

∑
u∈T (p(vi))

ap(vi) (u) W (u)
)

.

Note that Ei+1 = Ei and, for each u ∈ T (p(vi)):

f Ii
(u) = f Ii+1

(u) + f Ii+1
(vi)ap(vi)(u)

thus (6) becomes

W (t) =
∑

v∈Ii
w (p (v)) fη (v) +

∑
v∈Ei

fη (v) W (v) +
∑

u∈Bi
f Ii

(u) W (u)

and (5) holds for k = i. If vi ∈ Eη then (5) still holds for k = i since Ii = Ii+1, Ei = Ei+1∪{vi}
and Bi = Bi+1 \ {vi}. Proceeding down to node v1, we have that (5) can be written as

W (t) =
∑

v∈Eη

fη (v) W (v) +
∑

v∈Iη

w (p (v)) fη (v)

since B1 = ∅.

Note that the values of fη can be computed by processing the nodes backwards with re-
spect to a valid ordering Vη ⊆ Vπ, i.e. in O (κ) operations. Given two different s-t hyperpaths
π and π̃ containing the same end-tree η we now have

W̃ (t)−W (t) =
∑

v∈Eη

(
W̃ (v)−W (v)

)
fη (v)

where W̃ (v) denote the weight of node v in π̃, resulting in the following theorem.

Theorem 2 The weight of hyperpath π̃ ⊆ H̃ is

W̃ (t) = W (t) +
∑

v∈Eη

(
W̃ (v)−W (v)

)
fη (v) . (7)

6

Moreover, if
W̃ (v) = W (v) , ∀v ∈ Eη \ {u} (8)

then (7) reduces to

Corollary 1 The weight of hyperpath π̃ is

W̃ (t) = W (t) +
(
W̃ (u)−W (u)

)
fη (u) . (9)

Consider the distance weighting function. Given end-tree η, the maximum weight lη(u)
of an u-t path contained in η can be found by using the following recursive equations

lη(u) =
{

0 u = t
maxe∈FSη(u) {lη(h(e)) + w(e)} u ∈ Vη \ {t}

(10)

Moreover, it is easy to see that the following theorem holds (see Nielsen [8, Section 2.4.2] for
a formal proof).

Theorem 3 Given leaf-nodes Eη of η, we have that the weight of s-t hyperpath π is

W (t) = maxv∈Eη {W (v) + lη (v)} . (11)

Now consider two different s-t hyperpaths π and π̃ containing end-tree η.

Corollary 2 Assume that condition (8) holds and that W̃ (u) ≥ W (u). Then the weight of
hyperpath π̃ is

W̃ (t) = max
{

W (t) , W̃ (u) + lη (u)
}

.

Proof Using (11) we have that

W̃ (t) = maxv∈Eη

{
W̃ (v) + lη (v)

}
= max

{
maxv∈Eη {W (v) + lη (v)} , W̃ (u) + lη (u)

}
= max

{
W (t) , W̃ (u) + lη (u)

}
.

3 Finding the K shortest hyperpaths

The K shortest hyperpath problem addressed in this paper is given as follows: given an
acyclic hypergraph H, an origin node s and a destination node t generate the K shortest
s-t hyperpaths in H in nondecreasing order of weight using the value or distance weighting
function. An O (nκK) algorithm for this problem, denoted AYen, was developed in [10].

Let Π denote the set of s-t hyperpaths in H. The algorithms in [10] are based on an
implicit enumeration method, where the set Π is partitioned into smaller subsets by recursively
applying a branching operation. Assume that a shortest s-t hyperpath π in Π is known, and
defined by predecessor function p. Let

7

Vπ = (s, u1, u2, . . . , uq = t) ⊆ VH

denote the valid ordering of π. Moreover, for i = 1, ..., q − 1 let ηi = (Eη,Vη) ⊆ π be the
end-tree defined by the set of inner-nodes Ii

η = {ui+1, ..., uq}, and let ηq = ({t}, ∅). The set
Π \ {π} is partitioned into smaller subsets using the following branching operation.

Branching Operation 1 Given the shortest hyperpath π of Π and the valid ordering Vπ ⊆
VH, the set Π \ {π} is partitioned into q disjoint subsets Πi, 1 ≤ i ≤ q, by letting hyperpaths
in Πi contain ηi and not contain hyperarc p(ui).

Clearly, the second shortest hyperpath can be found by finding the shortest hyperpaths
in the sets Πi, i = 1, ..., q. Moreover, we can apply Branching Operation 1 to a subset Πi ⊂ Π
using a hyperpath πi ∈ Πi, and so on recursively. Now consider the problem of finding the
shortest hyperpath πi ∈ Πi, that is, finding a shortest s-t hyperpath containing the end-tree
ηi. As shown in [10] this reduces to solving a shortest hyperpath problem on a subhypergraph
Hi defined as follows.

Definition 4 Given π, let subhypergraph Hi, i = 1, ..., q be obtained from H as follows

1. For each node uj , i + 1 ≤ j ≤ q, remove each hyperarc in BS(uj) except p(uj).

2. Remove hyperarc p(ui) from BS(ui).

We say that Hi is obtained from H by fixing hyperarcs p (uj), i + 1 ≤ j ≤ q and deleting
hyperarc p(ui).

Let W (v), v ∈ V denote the weight of node v in the shortest hypertree Ts, defined
by the predecessor function p, and containing the shortest s-t hyperpath π. Consider the
subhypergraphs Hi, i = 1, ..., q corresponding to Branching Operation 1 on π. The following
theorem has been given in [8].

Theorem 4 Let W i (v), v ∈ V, denote the weight of node v in a shortest hypertree in sub-
hypergraph Hi. Then W i (v) = W (v) for all nodes v preceding node ui in the valid ordering
VH. Moreover,

W i (ui) = mine∈BSHi (ui) w (e) + F (W, e) (12)

where F (W, e) denotes the function F (e) (as defined in Section 2.1) using weights W (u).

Proof The first claim follows from acyclicity, since none of the hyperarcs removed from H
to obtain Hi can appear in an s-v hyperpath in H if v precedes ui in VH. The second claim
then follows trivially.

According to Branching Operation 1 the shortest hyperpath in Hi contains the end-tree
ηi ⊂ π. Moreover, it is obvious that ui is a leaf node in ηi. Hence using Theorem 4, Corollary 1
for the value weighting function, and Corollary 2 for the distance weighting function we have
the following result.

Theorem 5 The weight W i (t) of the shortest hyperpath πi in Hi is equal to

W i (t) = W (t) +
(
W i (ui)−W (ui)

)
fη (ui)

8

if the value weighting function is considered, where fη is defined as in (3) for η = ηi. Simi-
larly, the weight of the minimal hyperpath πi in Hi is equal to

W i (t) = max
{
W (t) ,W i (ui) + lη (ui)

}
if the distance weighting function is considered. Here lη is defined as in (10) for η = ηi.

Theorems 4 and 5 also imply that, by storing the predecessor function p defining the
shortest hypertree in H, we can find the shortest hyperpath πi in Hi without computing the
shortest hypertree. More precisely, we have the following result:

Corollary 3 The predecessor function defining the shortest hyperpath πi = (Vπi , Eπi) in Hi

is equal to

1. Predecessor p (v) for v ∈ Iηi.

2. The predecessor defined by equation (12) for node ui.

3. Predecessor p (v) for v ∈ Vπi \ (Iηi ∪ {ui}).

A K shortest hyperpaths algorithm using reoptimization can now be formulated. First
recall that using Definition 4 each set Πi can be represented by its corresponding subhyper-
graph Hi. The algorithm implicitly maintains a candidate set of pairs (π̃, H̃), where π̃ is
a shortest hyperpath in subhypergraph H̃. Assuming that the first k shortest hyperpaths
π1, ..., πk have been found, the current candidate set represents a partition of Π \ {π1, ..., πk}.
Hyperpath πk+1 is then found by selecting and removing the pair (π̃, H̃) containing the hy-
perpath with minimum weight in the candidate set. Then Branching Operation 1 is applied
using hyperpath π̃, possibly obtaining new pairs that are added to the candidate set.

Procedure K-SHPreopt, shown in Figure 2, describes our algorithm for the value weighting
function; the distance function requires minor changes, discussed later. With each node u in
H we associate the labels W (u) and p (u), denoting the weight and the predecessor of u in the
shortest hypertree in H. At each iteration of the procedure, the labels p̃ store the predecessor
function defining the current hyperpath π̃, while the labels f̃ are used to compute the values
fη in the branching operation. The following subprocedures are used.

SHTacyclic(s,H): Find the shortest hypertree of H, i.e. node labels W (u) and p (u),
∀u ∈ V (see Figure 1). If t is hyperconnected to s, π denotes the shortest s-t
hyperpath. Procedure SHTacyclic takes O (κ) time.

delMin(): Select and remove from the candidate set and return the pair (π̃, H̃) with
minimum hyperpath weight.

rebuild(π̃, H̃): Rebuild the subhypergraph H̃ and the corresponding shortest hyperpath
π̃ in the pair (π̃, H̃). This is necessary since each pair is represented implicitly as
discussed below. In particular, sets the predecessor p̃(u) and the weight W̃ (u) for
each node u in π̃.

findV (π̃): Return a valid ordering Vπ̃ ⊆ VH of the nodes in π̃. Requires O(n) time.

insert(π̂, Ĥ): Insert pair (π̂, Ĥ) into the candidate set.

9

1 procedure K-SHPreopt(H, s, t,K)
2 SHTacyclic(s,H);
3 if (W (t) < ∞) then insert(π,H);
4 else stop (there is no s-t hyperpath);
5 for (k := 1 to K) do
6 (π̃, H̃) := delMin();
7 if ((π̃, H̃) = null) then stop (there are no more s-t hyperpaths);
8 rebuild(π̃, H̃) and output the k’th hyperpath π̃;
9 (s, u1, ..., uq = t) := findV(π̃);

10 f̃(t) := 1; for (i := 1 to q − 1) do f̃(ui) := 0;
11 for (i := q to 1) do
12 W̃ i(t) := calcW(ui, f̃(ui));
13 if (W̃ i(t) < ∞) then insert(π̃i, H̃i);
14 for (v ∈ T (p̃(ui))) do f̃(v) := f̃(v) + ap̃(ui)(v)f̃(ui);
15 end for
16 end for
17 end procedure

Figure 2: Finding the K shortest hyperpaths using reoptimization.

calcW (ui, f̃(ui)): First, compute the minimum weight W̃ i (ui) in H̃i using Theorem 4.
Then, compute and return the weight W̃ i(t) of the shortest hyperpath π̃i in H̃i

using Theorem 5.

Note that Branching Operation 1 is performed on line 11-15. On line 14, we update labels
f̃ so that, at each iteration, we have f̃(ui) = fη (ui) for the current end-tree η = η̃i. If an s-t
hyperpath exists in H̃i we insert the pair (π̃i, H̃i) into the candidate set (line 13). We assume
that calcW returns +∞ if no s-t hyperpath exists in H̃i.

In order to evaluate the computational complexity of procedure K-SHPreopt, we need
to describe the implicit representation of the pairs in the candidate set. According to Def-
inition 4, each pair (π̃, H̃) can be represented by an end-tree η̃ and a hyperarc ã. The
subhypergraph H̃ can be easily built in O(κ) time by fixing the hyperarcs in η̃ and deleting ã.
Moreover, the shortest hyperpath π̃ can be obtained by taking advantage of Corollary 3. To
this aim, it suffices to scan the nodes backward, according to the valid order VH, computing
the predecessor p̃ for each node in π̃ according to Corollary 3. Clearly, this can be done in
O(κ) time, obtaining an O(κ) time complexity for procedure rebuild(π̃, H̃).

Note that when using Branching Operation 1 hypergraph Hi+1 only differs slightly from
hypergraph Hi. Both contain end-tree ηi+1; in Hi+1 we remove p (ui+1) while in Hi we fix
p (ui+1) and remove p(ui). As a consequence, we can store in a compact and natural way the
representations of the pairs (πi,Hi), 1 ≤ i ≤ q, by means of a binary branching tree, where
each node is labelled by a hyperarc p(ui), and a left (respectively right) branch correspond to
deleting (respectively fixing) the corresponding hyperarc. In this way, we can insert into the
candidate set the q pairs generated by Branching Operation 1 with an overall O(q) time and
space requirement. The representation of a pair can be recovered in O(n) time by traversing
the unique path from the corresponding node to the root in the branching tree.

In addition to the branching tree, a d-heap (see e.g. [13]) is used to select the pair with
minimum hyperpath weight in the candidate set. Since we insert at most Kn pairs in the heap

10

the worst case time complexity of procedures delMin and insert is O (log Kn). For further
details on data structures representing H and the branching tree, see [8].

It is easy to see that, each time Branching Operation 1 is used, at most O (κ) time is
required by procedure calcW and by the computation of the labels f̃ . Our main result then
follows.

Theorem 6 Procedure K-SHPreopt finds the K best strategies in O(κK) time.

Finally, let us consider how procedure K-SHPreopt changes, when the distance weighting
function is considered. In this case we use labels l̃, instead of labels f̃ , in order to compute
the path lengths lη defined in (10). Labels l̃ are initialized to zero in line 10. Then in line 14
we update each l̃(v) by setting l̃(v) := max{l̃(ui) + w(p(ui)), l̃(v)}.

4 Conclusion

In this paper we presented a new algorithm for finding the K shortest hyperpaths in an acyclic
hypergraph. We achieve an O(κK) complexity by exploiting new reoptimization results for
shortest hyperpaths in directed hypergraphs. This improves, by a factor n, the O(κnK)
complexity of the algorithms presented in [10].

The new algorithm has already been successfully applied to finding the K best strategies in
a stochastic time-dependent network (see [8]). Here computational results show that the CPU
time can be reduced dramatically if reoptimization is used. The algorithm has also been used
successfully as a subalgorithm for solving bicriterion problems in stochastic time-dependent
networks (see [9]).

References

[1] G. Ausiello, P.G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algo-
rithmic results, and a novel decremental approach. Lecture Notes in Computer Science,
2202:312–328, 2001.

[2] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42:177–201, 1993.

[3] G. Gallo and M.G. Scutellà. A note on minimum makespan assembly plans. European
Journal of Operational Research, 142(2):309–320, 2002.

[4] R.G. Jeroslow, K. Martin, R.L. Rardin, and J. Wang. Gainfree Leontief substitution flow
problems. Mathematical Programming, 57:375–414, 1992.

[5] E.D. Miller-Hooks and H.S. Mahmassani. Least expected time paths in stochastic, time-
varying transportation networks. Transportation Science, 34(2):198–215, 2000.

[6] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In Combinatorial opti-
mization (Como, 1986), volume 1403 of Lecture Notes in Math, pages 258–271. Springer,
1989.

[7] S. Nguyen, S. Pallottino, and M. Gendreau. Implicit enumeration of hyperpaths in a
logit model for transit networks. Transportation Science, 32(1):54–64, 1998.

11

[8] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD the-
sis, Department of Operations Research, University of Aarhus, 2004. URL
http://www.imf.au.dk/.

[9] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bicriterion shortest hyperpaths in ran-
dom time-dependent networks. IMA Journal of Management Mathematics, 14(3):271–
303, 2003.

[10] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the K shortest hy-
perpaths. To appear in Computers & Operations Research, 2004. URL
http://dx.doi.org/10.1016/j.cor.2003.11.014.

[11] L.R. Nielsen, D. Pretolani, and K.A. Andersen. K shortest paths in stochastic time-
dependent networks. URL http://www.research.relund.dk/. Submitted, August
2004.

[12] D. Pretolani. A directed hypergraph model for random time-dependent shortest paths.
European Journal of Operational Research, 123:315–324, 2000.

[13] R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF Con-
ference Series. SIAM, 1983.

[14] J.H. Wu, M. Florian, and P. Marcotte. Transit equilibrium assignment: A model and
solution algorithms. Transportation Science, 28(3):193–203, 1994.

12

Working Papers from Logistics/SCM Research Group

L-2004-04 Lars Relund Nielsen, Daniele Pretolani & Kim Allan Andersen: Finding the

K shortest hyperpaths using reoptimization.

L-2004-03 Søren Glud Johansen & Anders Thorstenson: The (r,q) policy for the lost-

sales inventory system when more than one order may be outstanding.

L-2004-02 Erland Hejn Nielsen: Streams of events and performance of queuing sys-

tems: The basic anatomy of arrival/departure processes, when focus is set on
autocorrelation.

L-2004-01 Jens Lysgaard: Reachability cuts for the vehicle routing problem with time

windows.

http://www.asb.dk/departments/afl/research/lrg/workingpapers/default.htm

ISBN 87-7882-005-7

Department of Accounting, Finance and Logistics
Faculty of Business Administration

Aarhus School of Business
Fuglesangs Allé 4
DK-8210 Aarhus V - Denmark

Tel. +45 89 48 66 88
Fax +45 86 15 01 88

www.asb.dk

http://www.asb.dk/

