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Abstract

A substantial amount of research has been devoted to the shortest path problem in
networks where travel times are stochastic or (deterministic and) time-dependent. More
recently, a growing interest has been attracted by networks that are both stochastic and
time-dependent. In these networks, the best route choice is not necessarily a path, but
rather a time-adaptive strategy that assigns successors to nodes as a function of time.
In some particular cases, the shortest origin-destination path must nevertheless be cho-
sen a priori, since time-adaptive choices are not allowed. Unfortunately, finding the a
priori shortest path is NP-hard, while the best time-adaptive strategy can be found in
polynomial time.

In this paper, we propose a solution method for the a priori shortest path problem,
and we show that it can be easily adapted to the ranking of the first K shortest paths.
Moreover, we present a computational comparison of time-adaptive and a priori route
choices, pointing out the effect of travel time and cost distributions. The reported results
show that, under realistic distributions, our solution methods are effective.

Keywords: shortest paths; K shortest paths; stochastic time-dependent networks; routing;
directed hypergraphs.

1 Introduction

Travel time between an origin and a destination is often the primary objective when routing
data, commodities, vehicles etc. in a network. The problem of finding a minimal travel time
path, if travel time is deterministic and time-independent, has been the subject of extensive
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research for many years. However, a transportation network in which travel times between
locations are deterministic and time-independent is often unrealistic.

We describe a network as time-dependent if the travel times on the arcs are functions of
departure time, and as stochastic if the travel time is represented by probability distributions
rather than simple scalars. The terms time-varying and random are often used with similar
meaning.

Several papers address stochastic shortest path problems in stochastic time-independent
networks; different optimality criteria have been considered. The problem of finding a path
which maximizes the expected utility was first considered by Loui [10] and generated wide
interest, see e.g. Murthy and Sarkar [16] and Eiger, Mirchandani, and Soroush [5]. Stochastic
problems with recourse, where a traveller can switch to a different path upon arrival at an
intermediate node, have been studied, see e.g. Psaraftis and Tsitsiklis [24] and Provan [23].
See Birge and Louveaux [2] for a general overview of stochastic recourse models.

Shortest path problems on non-stochastic time-dependent networks have been studied as
early as 1966 by Cooke and Halsey [4]. Since then, various models and problems have been
addressed, taking into account different aspects such as discrete vs. continuous representation
of time, travel costs, waiting, etc. In particular, discrete time-dependent networks, where
travel times are integers, have been the subject of extensive research; quite efficient algorithms
have been designed, see e.g. Chabini [3].

It is evident that both the stochastic and the time-dependent aspects should be taken into
account in a realistic transportation network model. Therefore, stochastic time-dependent
networks (STD networks) provide a more powerful modelling tool. These networks were
first addressed by Hall [7] who considered the problem of minimizing the expected origin-
destination travel time when leaving the origin at a specific time. He pointed out two different
ways of formulating the problem.

If a route must be specified before travel begins, and no deviations are permitted, a
loopless path must be selected, i.e., each node except the destination must be assigned a
unique successor arc. This is referred to as a priori route choice and corresponds to the case
in which the traveller does not have access to, or cannot make decisions based on, information
made available during the travel.

Routes with lower expected travel time may be obtained by allowing the traveller to
make decisions based on the actual arrival times at intermediate nodes. The best time-
adaptive route is not necessarily a path but rather a time-adaptive strategy that assigns
optimal successors to a node as a function of leaving time. This is referred to as time-adaptive
route choice and can be considered as a multistage recourse problem (Birge and Louveaux
[2]) where decisions are based on realizations of arc travel times.

Note that a path may also be considered a strategy, namely a strategy assigning to each
node the same successor for all possible leaving times. In the following we use the term
strategy for routes under both time-adaptive and a priori route choices, moreover, we use the
term path-strategy to denote a strategy defining a loopless path, that is, a feasible route for
the a priori case.

Hall [7] pointed out some intrinsic complications of a priori route choice, arising from
the combination of both stochastic and time-dependent features. He presented the simple
example reproduced in Figure 1, where route A has deterministic travel time, route B has
stochastic travel time and route C has time-dependent travel time. Suppose a traveller leaves
node 1 at 2 o’clock. Although route A has the lowest expected travel time to node 2, path
BC has a lower expected travel time overall than path AC. In this example, a subpath of
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Figure 1: Hall’s example.

the optimal path is not optimal. This violates the well-known principle of optimality that
holds for the deterministic shortest path problem and also for stochastic time-independent
networks, as pointed out by Loui [10].

Based on the above observations, Hall concluded that standard shortest path methods were
inadequate for the a priori route choice problem and proposed an approach combining branch
and bound and K shortest paths techniques. The worst-case complexity of the algorithm is
non-polynomial, but no complexity results have been provided in Hall [7]. Later, Pretolani
[22] showed that the problem of finding a minimal expected travel time path under a priori
route choice is NP-hard, also for discrete, deterministic time-dependent networks.

Hall [7] also proposed a solution approach for the time-adaptive case. His method deals
with general distribution functions and was devised for networks with limited size. Discrete
STD networks were considered by Pretolani [22] who showed that the best time-adaptive
strategy can be found in linear time in the size of the network description. This result applies
to several criteria other than expected travel time. In particular, Pretolani [22] presented a
directed hypergraph model for discrete STD networks and showed that the best strategy (the
strategy minimizing the criterion) can be found by solving a shortest hyperpath problem.

Directed hypergraphs are an extension of directed graphs, successfully used in many dif-
ferent research areas; see Gallo, Longo, Pallottino, and Nguyen [6] for an introduction and
Ausiello, Franciosa, and Frigioni [1] for a recent overview. A different algorithm for finding
minimum expected time strategies was proposed by Miller-Hooks [11] by adapting a label-
correcting procedure previously used to obtain a lower bound on the a priori case (Miller-
Hooks and Mahmassani [14]).

As shown above, time-adaptive route choice is more flexible; moreover, finding the shortest
path (i.e. best path-strategy) is harder than finding the best strategy. In some practical situ-
ations, it may nevertheless be necessary to adopt a priori route choice because time-adaptive
routing decisions are not possible. This may be the case, for example, in the transportation
of highly sensitive substances, for which the travelled path must be preapproved. A priori
route choice may be more suitable also in those situations where the traveller (e.g. a daily
commuter) is not willing to react to new information during the travel. A priori route choice
has been addressed in Miller-Hooks and Mahmassani [12], where paths (possibly containing
loops) with least possible travel time were searched. Miller-Hooks and Mahmassani [14] also
considered the general problem of finding the minimum expected travel time path to a given
destination from each node and for each possible leaving time. Bicriterion problems were
addressed too, in particular, with applications to hazardous material transportation (Miller-
Hooks and Mahmassani [13]).

In many practical situations, finding the best route in a transportation network is not
sufficient, and we are interested in ranking the best K solutions, e.g. in order to provide alter-
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native optimal or nearly-optimal solutions, or to search for a sub-optimal solution satisfying
some additional constraint. To our knowledge, only limited attention has been paid to the
problem of finding the K best strategies in an STD network. This problem is an extension
of the classical K shortest paths problem, i.e. ranking loopless paths between two nodes in
non-decreasing order of length. This problem can be solved by the well-known algorithm
proposed by Yen [25], and later discussed by Lawler [9] in a more general framework. Several
heuristic improvements to Yen’s algorithm have been proposed, see for instance Hershberger,
Maxel, and Suri [8] for a recent proposal.

Under time-adaptive route choice, the best strategy corresponds to a shortest hyperpath
(Pretolani [22]), thus finding the K best strategies corresponds to finding the K shortest hy-
perpaths. This problem was addressed in Nielsen, Andersen, and Pretolani [19], where efficient
procedures were devised by extending Yen’s algorithm for loopless paths. The computational
complexity for acyclic hypergraphs has been improved in Nielsen, Pretolani, and Andersen
[21] using reoptimization techniques. These procedures for ranking strategies have been used
by Nielsen, Andersen, and Pretolani [18] to solve bicriterion problems under time-adaptive
route choice.

In this paper we concentrate on a priori route choice. In particular, we consider the
problem of finding the a priori shortest path (i.e., the best path-strategy) between two given
nodes, and for a specific leaving time. We propose a solution algorithm and show that it can
be easily adapted to the ranking of the K best path-strategies. Two variants of the algorithm
are devised, and the extension to STD networks where waiting is allowed is discussed. The
effectiveness and robustness of our algorithms are computationally evaluated on different
classes of benchmarks. Finally, we report computational results for the K best time-adaptive
strategy problem, with the aim of analyzing and comparing the strategies obtained under
both a priori and time-adaptive route choices.

The paper is organized as follows. The definition of discrete STD networks and the
hypergraph model are given in Section 2. In Section 3 we provide our algorithms for the a
priori shortest and K shortest path problems. In Section 4 computational results for finding
the K best strategies under both time-adaptive and a priori route choices are given. Finally,
we summarize original contributions and topics for further research in Section 5.

2 Stochastic time-dependent networks

In this section we describe discrete stochastic time-dependent networks, and we introduce the
terminology to be used throughout the paper. We also present a class of directed hypergraphs
used to model STD networks. The hypergraph model is explained by means of an example,
which is later used to illustrate some technical passages.

2.1 Basic definitions

We consider discrete STD networks where departure times are integer, and travel times are
independent integer-valued discrete random variables with time-dependent density functions.
We assume that departure and arrival times belong to a finite time horizon, i.e. a set H =
{0, 1, ..., tmax} of integer values. In practice, we assume that the relevant time period is
discretized into time intervals of length δ, i.e., the time horizon H corresponds to the set of
time instances 0, δ, 2δ, ..., tmaxδ.
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Let G = (N,A) be a directed graph with node set N and arc set A. We will refer to G as
the topological network. As usual, FS(u) = {(u, v) ∈ A} denotes the forward star of node u.
Let o ∈ N and d ∈ N denote the origin and destination node in G, respectively. For each arc
(u, v) ∈ A let L (u, v) ⊂ H be the set of possible leaving times from node u along arc (u, v).
Moreover, let L (u) , u 6= d denote the set of possible leaving times from node u, i.e.,

L (u) =
⋃

(u,v)∈FS(u)

L (u, v)

and let L (d) denote the set of possible arrival times at node d. For each arc (u, v) ∈ A and
t ∈ L (u, v) , let X (u, v, t) denote the arrival time at node v when leaving node u at time t
along arc (u, v) . The arrival time X (u, v, t) is a discrete random variable with density

Pr (X (u, v, t) = ti) = θuvt (ti) , ti ∈ I (u, v, t)

where
I (u, v, t) =

{

t1, ..., tκ(u,v,t)

}

denotes the set of κ (u, v, t) possible arrival times at node v when leaving node u at time t
along arc (u, v). That is, for each ti ∈ I (u, v, t) the probability of arriving at node v at time
ti when leaving node u at time t is θuvt (ti). Denote by

κ =
∑

(u,v)∈A, t∈L(u,v)

κ (u, v, t)

the total number of possible travel times. The value κ can be considered as the size of the
STD network.

We assume that travel times are positive and that the traveller cannot get stuck at an
intermediate node v. Hence, if it is possible to arrive at node v at time ti, then it is also
possible to leave node v at time ti. Note that a traveller cannot wait at intermediate nodes;
the case where waiting is allowed will be considered in Section 3.

Definition 1 A strategy is a function S with domain

Dm (S) ⊆ {(u, t) : u ∈ N \ {d} , t ∈ L (u)}

assigning to each pair (u, t) ∈ Dm (S) a successor arc (u, v) ∈ FS (u). Furthermore, strategy
S must satisfy the following conditions:

1. If (u, t) ∈ Dm (S) and S (u, t) = (u, v) then t ∈ L (u, v).

2. If (u, t) ∈ Dm (S) and S (u, t) = (u, v), v 6= d, then (v, t′) ∈ Dm (S) ,∀t′ ∈ I (u, v, t).

Strategy S provides routing choices for travelling from all nodes and leaving times in the
domain Dm(S) towards the destination d. Therefore, a traveller leaving node u at time t
travels along arc S (u, t). Note that a strategy S must provide a routing choice for each
possible arrival time at an intermediate node, as required by Condition 2 above. Moreover,
given S, we denote by:

Dd(S) =
{

(d, t) : ∃(u, t′) ∈ Dm(S), S(u, t′) = (u, d), t ∈ I(u, d, t′)
}
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the set of pairs (d, t) where t is a possible arrival time at d when following strategy S. Note
that Definition 1 extends the definition given in [22] where a strategy had domain

D = {(u, t) : u ∈ N \ {d} , t ∈ L (u)} . (1)

Our assumption that a traveller cannot get stuck at intermediate nodes implies that any
traveller who leaves node i at time t arrives at the destination d within time tmax. This can
be formally stated requiring that a pair (i, t) belongs to D if and only if it belongs to the
domain of some strategy.

In this paper we consider strategies providing route choices when leaving a specific node i
at a specific time t towards the destination d. This leads to the definition of an (i, t) strategy.

Definition 2 An (i, t) strategy is a minimal strategy S such that (i, t) ∈ Dm(S). Here, min-
imality means that there does not exist another (i, t) strategy with domain strictly contained
in Dm(S).

In particular, we are interested in (o, 0) strategies, defining the route travelled when leaving
the origin node o at time zero. In the following, unless otherwise specified, a strategy S refers
to a (o, 0) strategy.

A strategy is a path-strategy if the successor arcs do not depend on time; in other words,
a path-strategy must satisfy

S (u, t) = S
(

u, t′
)

, ∀ (u, t) ,
(

u, t′
)

∈ Dm (S) . (2)

Clearly, a path-strategy S defines a unique, loopless o-d path in G. Indeed, S defines a unique
successor arc (u, v) for each u in G such that (u, t) ∈ Dm(S) for some t. Assume that for
each arc (o, v) in G it is possible to leave o at time zero travelling along (o, v), i.e., 0 ∈ L(o, v).
With this assumption, each loopless o-d path

P = (o = u1, u2, . . . , ul, ul+1 = d)

in G defines exactly one path-strategy S. In particular, we have

Dm(S) =
l

⋃

i=1

D(i), Dd(S) = D(l+1) (3)

where D(1) = {(o, 0)} and, for 1 < i ≤ l + 1:

D(i) =
{

(ui, t) : t ∈ I(ui−1, ui, t
′), (ui−1, t

′) ∈ D(i−1)
}

. (4)

Clearly, we have S(ui, t) = (ui, ui+1) for each (ui, t) ∈ D(i), 1 ≤ i ≤ l. Based on the above
observations, we can state the following theorem.

Theorem 1 There is a one-to-one correspondence between o-d paths in G and path-strategies
in the STD network.
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2.2 Optimality criteria

Several definitions of the weight of a strategy can be given, in fact, several optimality criteria
have been considered in the literature. The most frequently used criterion for finding the
best strategy is the minimization of the expected travel time, introduced by Hall [7]. In this
case, the weight of a strategy corresponds to the expected arrival time at the destination
when leaving the origin at time zero. If travel costs are considered, strategies can be ranked
according to their expected cost. Moreover, instead of considering expectations, worst cases
may be of concern; i.e., our criterion becomes the minimization of maximum possible travel
time or cost. Other criteria, such as the minimum possible travel time, have been considered
in the literature [12].

The results reported in this paper apply to each of the criteria mentioned above. In our
computational experience we shall concentrate on expected costs. Costs can be introduced
in our STD model by letting c (u, v, t), t ∈ L (u, v) denote the travel cost of leaving node u at
time t along arc (u, v). Note that we assume that c is deterministic, although time-dependent.
Moreover, let gd(t) be a penalty cost of arriving at node d at time t. The expected cost of a
strategy S can be defined by means of recursive equations, associating a value to each pair
(u, t) in Dm(S). In particular, if S(u, t) = (u, v), we have:

ES(u, t) = c(u, v, t) +
∑

t′∈I(u,v,t)

θuvt(t
′)ES(v, t′)

where ES(d, t) = gd(t) for each t ∈ H. Here, ES(u, t) represents the expected cost (including
penalty costs) incurred when leaving node u at time t following strategy S towards d. The
expected cost of S is therefore ES(o, 0). The other criteria cited above can be given a formal
definition using similar recursive equations, see Pretolani [22]. Recall that for all the above
criteria, finding the best path-strategy is an NP-hard problem, whereas the best strategy
can be found in O(κ) time, see Pretolani [22]. Moreover, recall that path-strategies are a
subset of strategies and, therefore, the weight of the best strategy provides a (quite efficiently
computable) lower bound on the weight of the best path-strategy.

2.3 A directed hypergraph model for STD networks

A directed hypergraph is a pair H = (V , E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node. Note
that a hyperarc has exactly one node in the head, and one or more nodes in the tail. The
cardinality of a hyperarc e is the number of nodes it contains, i.e., |e| = |T (e)|+ 1. We call e
an arc if |e| = 2. The size of H is the sum of the cardinalities of its hyperarcs.

In particular, we here consider acyclic hypergraphs, where there exists a valid ordering
V = (v1, v2, . . . , vn) of the nodes such that, for any e ∈ E , each node vj ∈ T (e) precedes node
h(e) in V . The class of directed hypergraphs used here was denoted acyclic B-graphs in Gallo
et al. [6] which considered the general class of directed hypergraphs. However, we here use
the term “hypergraph” to denote the subclass appropriate in this context.

As shown in Pretolani [22] a time-expanded hypergraph H = (V, E) can be used to model
an STD network. We illustrate the model by means of the following example.
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Figure 2: The topological network G.

(u, v), t (a, b), 0 (b, c), 1 (b, c), 2 (b, d), 1 (b, d), 2 (c, d), 2 (c, d), 3 (c, d), 4

I(u, v, t) {1, 2} {2, 3} {3} {3} {6} {3, 4} {4, 5} {5, 6}

Table 1: Input parameters.

Example 1 Consider the topological network G = (N,A) in Figure 2, where a is the origin
node and d is the destination node. For each arc in G, the possible departure and arrival
times are listed in Table 1. Here a pair ((u, v), t) corresponds to a possible leaving time t from
node u along arc (u, v). For the sake of simplicity, we assume that X (u, v, t) has a uniform
density, i.e., for each t′ ∈ I(u, v, t), we have θuvt(t

′) = 1/|I(i, j, t)|. For example, if we leave
node c at time 2 along arc (c, d), we arrive at node d at time 3 or 4 with the same probability
1/2.

The time-expanded hypergraph H =(V, E) is shown in Figure 3; numbers and dotted lines
will be explained below. The set V contains one node ut for each pair (u, t) , t ∈ L (u) and an
origin node s. For each (u, v) ∈ A and t ∈ L (u, v), we introduce a hyperarc

euv(t) =
(

{vti : ti ∈ I (u, v, t)}, ut
)

.

Moreover, a dummy arc ed (t) =
(

{s} , dt
)

is defined for each t ∈ L(d).

It is obvious that H is an acyclic hypergraph: a valid ordering can be found by ranking
the nodes in decreasing order of time. Furthermore, the size of H is O(κ) and H can be built
in O (κ) time. Given any strategy S, let us define the sets

VS =
{

ut : (u, t) ∈ Dm(S) ∪ Dd(S)
}

∪
{

s
}

and
ES =

{

euv(t) : (u, t) ∈ Dm(S), S(u, t) = (u, v)
}

∪
{

ed(t) : (d, t) ∈ Dd(S)
}

.

Note that VS contains a node ut for each pair (u, t) corresponding to either leaving from an
intermediate node or arriving at the destination. Moreover, for each node ut ∈ VS , a single
hyperarc in VS with head ut exists, more precisely, a dummy arc ed(t) if u = d, and a hyperarc
euv(t) if u 6= d. Let us denote by r = o0 the node in H corresponding to the pair (o, 0). It
has been shown in Pretolani [22] that πS = (VS , ES) is a hyperpath from node s to node r (s-r
hyperpath) in H. More precisely, the following property holds:
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Figure 3: The time-expanded hypergraph H.

Property 1 There is a one-to-one correspondence between (o, 0) strategies and s-r hyperpaths
in H.

Pretolani [22] showed that the value of a (o, 0) strategy under each one of the optimality
criteria in Section 2.2 corresponds to the weight of the corresponding s-r hyperpath in H for
a suitable definition of hyperpath weight, given in terms of additive weighting functions, see
Gallo et al. [6]. Therefore, the best strategy can be found by finding the minimum weight
s-r hyperpath, i.e., by solving a shortest hyperpath problem in H. Quite efficient procedures
for finding shortest hyperpaths are defined in Gallo et al. [6]; for acyclic hypergraphs, the
computational complexity is linear in the size of the hypergraph. Thus, under time-adaptive
route choice, the best strategy can be found in O (κ) time. Clearly, this result does not extend
to the a priori case in which a path-strategy is required.

Example 1 (continued) Hyperarcs in solid lines in Figure 3 represent the s-r hyperpath
πS corresponding to the best (o, 0) strategy S for the expected cost criterion. Close to each
hyperarc euv(t), we report cost c(u, v, t); penalty costs are zero and reported close to dummy
arcs ed(t). The number close to each node ut is the expected travel cost ES(u, t); thus, the
minimum expected cost is 8. We have S(c, t) = (c, d) for each time t = 2, 3, thus, S defines a
unique successor for node c. However, the successor of b is (b, c) at time 2 and (b, d) at time
3, thus S is not a path-strategy.

Note that S defines the time-adaptive route to travel when leaving node a at time zero,
but it does not define a successor for all possible nodes and leaving times, e.g. for node c at
time 4. A non-(o, 0) strategy S′ defining the route to travel for all possible nodes and leaving
times (i.e., with domain Dm(S′) = D) is obtained by adding the pair (c, 4) to Dm(S) and
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1 procedure Hall(G, o, d)
2 k := 1; lb = 0; ub = ∞;
3 while (lb < ub) do

4 P := FindKPath(G, o, d, k); lb := L(P );
5 if (ET (P ) < ub) then

6 ub := ET (P ); P ∗ := P ;
7 end if

8 k := k + 1;
9 end while

10 return P ∗;
11 end procedure

Figure 4: Hall’s algorithm for finding the best a priori path.

defining S′(c, 4) = (c, d).
Note also that it is not possible to arrive at node c at time 4. Thus, the pair (c, 4) might

be eliminated from V, i.e., time 4 might be eliminated from L(c) an L(c, d). However, pair
(c, 4) shall be used later, in relation to waiting.

3 Finding the best and K best path-strategies

In this section we consider the problem of finding the shortest simple o-d path in G, which in
light of Theorem 1 is equivalent to finding the best path-strategy. Since our solution approach
is based on ranking strategies in nondecreasing order of weight, it is rather straightforward
to adapt our method to the ranking of the K best path-strategies. In fact, we shall directly
provide a description of the procedure for the K best path-strategies case. Specialized versions
and extensions are discussed later. We start the section by discussing some technical issues
related to previous work on the subject that provided some guidelines for our approach.

Hall [7] proposed an enumerative method for finding the minimum expected travel time
path. His method consists in generating o-d paths in nondecreasing order of length, where
the length of a path is the sum of the minimum possible travel times on its arcs; clearly, the
length provides a lower bound on the expected travel time. For each generated path, the
actual expected travel time is computed, and the best solution found so far is kept, providing
an upper bound on the optimal solution. Enumeration stops as soon as the current best
solution is found to be optimal, i.e., when the length of the next generated path is greater
than or equal to the upper bound. Hall’s algorithm is described in Figure 4; here, function
FindKPath(G, o, d, k) provides the k’th shortest o-d path, while L(P ) and ET (P ) are the
length and the expected travel time of path P , respectively.

The enumeration of paths in Hall’s algorithm can be performed by means of K shortest
paths procedures. However, the path length defined by Hall may provide a quite poor lower
bound on the expected travel time. Therefore, the algorithm may generate a huge number of
paths, and possibly, may generate all of them without meeting the stopping criterion. This is
clearly a major drawback of Hall’s approach. A better bound can perhaps be obtained by gen-
erating paths according to their least possible travel time, see [12]. No actual implementation
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of Hall’s method has been reported in the literature so far.
Later, a different enumeration approach was suggested in Pretolani [22]. This consists in

enumerating strategies in nondecreasing order of weight until the first (and thus best) path-
strategy is generated. However, this approach also has a clear drawback, due to the fact that
path-strategies are likely to be a small subset of strategies. Thus, a huge number of non-path
strategies may be generated before finding a path-strategy. In the next section we report and
discuss computational results that support this hypothesis.

The method we propose in this paper aims at combining the most promising aspects of
the previous approaches. On te one hand, our method generates paths according to a lower
bound, as proposed by Hall. On the other hand, it uses strategies as a lower bound on path-
strategies, which is likely to provide a much tighter lower bound. In fact, our method takes
advantage of the techniques devised for the K shortest hyperpaths problem, and adapts them
to the enumeration of paths by introducing a specialized branching rule.

3.1 A new enumeration schema

Consider an STD network with topological network G, and let S be the best (o, 0) strategy. In
principle, S might be a path-strategy and thus the best solution to our problem. This situation
can be verified quite easily. Indeed, if S corresponds to a path P = (u1, u2, . . . , ul+1 = d) in
G, we can generate iteratively the subsets D(i) defined in (4): given D(1) = {(o, 0)}, at each
iteration we obtain D(i+1) by processing the pairs in D(i). Clearly, all the generated subsets
must satisfy equation (2), more precisely, each D(i) must contain pairs (u, t) with u = ui.

In principle, the above iterative method can also be applied to a non path-strategy. In
this way, we will eventually generate a set D(q+1) that does not contain pairs corresponding
to the same node in G. As a result S defines a subpath PS from o to node uq in G. We
provide a formal definition of PS .

Definition 3 A non path-strategy S defines a o-uq subpath PS = (o = u1, u2, , ..., uq), uq 6= d,
satisfying

D(i) ⊆ {(ui, t) : t ∈ H}, 1 ≤ i ≤ q

where the sets D(1), . . . ,D(q) are defined as in (4). Furthermore, D(q) contains at least two
pairs (uq, t) and (uq, t

′) such that S(uq, t) 6= S(uq, t
′).

Note that we always have q ≥ 2 in Definition 3, as D(1) contains the single pair (o, 0). A
procedure that finds the subpath PS , denoted as findSubP, has been described in [17].

Let S and SP ⊆ S denote the sets of strategies and path-strategies, respectively; moreover,
let P denote the set of loopless o-d paths in G. Our method for finding the best path-strategy
follows the classical approach adopted for ranking the K shortest loopless path in a directed
graph. We thus recursively partition the set SP , or equivalently the set P, into smaller
subsets. In our case, however, we adopt a particular partition technique, which is based on
subpaths rather than paths. The idea is to partition P by using the subpath PS , defined by
the best strategy S (see Definition 3). To this aim, we apply to PS the branching operation
defined by Yen [25], with a special treatment of node uq.

Definition 4 Given non path-strategy S defining subpath PS let

PB = PS ∪ a = (o = u1, ..., uq , uq+1)

11



denote the branching path obtained from PS by adding an arc a = (uq, uq+1) used by S; i.e.,
S(uq, t) = a for some (uq, t) ∈ D(q).

As follows from Definition 3, several arcs may be used to obtain PB in Definition 4; here,
we do not make any assumptions about the way a is chosen.

Branching Operation 1 Given subpath PB = (o = u1, ..., uq+1), the set P can be parti-
tioned into disjoint subsets Pi, 1 ≤ i ≤ q + 1 as follows:

1. For 1 ≤ i ≤ q, paths in Pi contain path P i
B = (u1, ..., ui) but do not contain arc

(ui, ui+1);

2. Paths in Pq+1 contain path PB.

It is quite obvious that the sets Pi in Branching Operation 1 are disjoint and define a
partition of P. Note, if uq+1 = d, then Pq+1 contains a single path, namely PB . Clearly,
Branching Operation 1 only considers the partition of P. However, it can be recursively
applied to the subsets Pi. The partition of P induces an obvious partition of SP into subsets
S1

P ,. . . ,Sq+1
P ; moreover, it implicitly defines a family of subgraphs of G.

Definition 5 Given PB , let subgraph Gi, i = 1, ..., q + 1 be obtained from G as follows

1. For each node uj , j = 1, ..., i − 1, remove each arc in FS(uj) except (uj , uj+1), i.e., fix
arc (uj , uj+1);

2. If i 6= q + 1, remove arc (ui, ui+1).

Finally, for each subgraph Gi, we can build a corresponding time-expanded hypergraph Hi.

Theorem 2 Given the sets Pi, 1 ≤ i ≤ q + 1, the following statements are equivalent:

1. P ∈ Pi.

2. P is an o-d path in Gi.

3. There is a unique path-strategy Si ∈ Si
P corresponding to path P in Gi.

4. There is a unique s-r hyperpath π in Hi, corresponding to path-strategy Si ∈ Si
P .

Proof The fact that 1. and 2. are equivalent is obvious; a formal proof may be given
by adapting the proof of correctness for Yen’s algorithm. The equivalence of the other two
statements follows from the one-to-one correspondence between paths and path-strategies (see
Theorem 1) and between strategies and hyperpaths (see Proposition 1).

Using Theorem 2, each subset Pi, or equivalently Si
P , can be represented by its corre-

sponding subgraph Gi. In other words, each subgraph Gi defines an STD network where the
set of strategies is Si and the set of path-strategies is given by the subset Si

P ⊆ Si. We, thus,
obtain the following useful result.

Corollary 1 The weight of the best strategy in Si is a lower bound on the weight of the best
path-strategy in Si

P .
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Recall that the best strategy in Si can be found in O(κ) time by solving a shortest hyperpath
problem in Hi.

Consider again the best strategy S in the STD defined by G, and suppose we branch on S,
applying Branching Operation 1. It is easy to see that none of the graphs Gi, 1 ≤ i ≤ q + 1,
contains all the arcs that are used as successors by S. Thus, S 6∈ Si for any 1 ≤ i ≤ q + 1. As
a consequence, if we apply the branching rule recursively, we shall never branch on S again.

We can now describe our method more formally. The algorithm maintains a set of pairs
(l̃b, G̃), representing the current partition of P. Graph G̃ represents a subset S̃P ⊆ SP , or
equivalently, a subset P̃ ⊆ P; l̃b is the weight of the best strategy S̃ in the STD network
defined by G̃. At each iteration, the pair (l̃b, G̃) with minimum l̃b is removed from the
candidate set, and the best strategy S̃ is considered. If S̃ is a path-strategy, then it is the
best one among the remaining path-strategies. If the K shortest path-strategy has been
found, the algorithm terminates; otherwise it continues with the next iteration. If S̃ is not a
path-strategy, Branching Operation 1 is applied to subpath PB of S̃ (see Definition 4), and
the resulting pairs are added to the candidate set.

Our algorithm is described by procedure K-BPS in Figure 5. Clearly, the best path-
strategy is obtained by setting K = 1. Procedure K-BPS uses the following subprocedures:

BSW (G): Returns the weight of the best strategy in the STD network defined by sub-
graph G.

BestStrategy(G): Returns the best strategy in the STD network defined by subgraph G.

BranchingSet(G,S): Returns the set of subgraphs of G obtained by applying Branching
Operation 1 to subpath PB of S (see Definition 4 and Definition 5).

delMin(): Removes from the candidate set and returns the pair (lb,G) with minimum
value lb.

insert(lb,G): Adds to the candidate set the pair (lb,G).

In fact, in order to obtain a version of K-BPS that ranks the K best path-strategies, a
further detail must be taken into account. Consider a pair (l̃b, G̃) and suppose that the best
strategy S̃ is a path-strategy, thus defining the shortest path P = (o = u1, . . . , uq+1) in the
subset P̃ . It is clear that we cannot apply Branching Operation 1 here, since the branching
path PB is not defined for a path-strategy. However, we can still apply Branching Operation 1
on path P . In this case, set Pq+1 contains the single path P , and we obtain a partition of
P̃ \ {P} by skipping Pq+1.

In the following we assume that procedure BranchingSet(G,S) returns the set of subgraphs
of G obtained by applying Branching Operation 1 to subpath PB if S is not a path-strategy.
If S is a path-strategy, BranchingSet(G,S) returns the subgraphs G1 . . . Gq of G, obtained
by applying Branching Operation 1 to the optimal path P .

As discussed above, by applying Branching Operation 1 we never branch on the same
strategy twice. Clearly this is also true if we branch on P instead of PB . This suffices to
prove the following result:

Theorem 3 Procedure K-BPS finds the K best path-strategies in a finite number of iterations.
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1 procedure K-BPS(H, G, s, t, K)
2 w :=BSW (G);
3 if (w = ∞) then stop (there is no path-strategy);
4 insert(w, G); k := 0
5 while (k < K) do

6 (l̃b, G̃) := delMin();
7 if ((l̃b, G̃) = null) then stop (there are no more path-strategies);
8 S̃ := BestStrategy(G̃);
9 if (S̃ ∈ SP ) then k := k + 1, output the k’th path-strategy S̃;

10 if (k < K) then

11 Γ := BranchingSet(G̃, S̃);
12 for (G′ ∈ Γ) do

13 lb′ := BSW(G′);
14 if (lb′ < +∞) then insert(lb′, G′);
15 end for

16 end if

17 end while

18 end procedure

Figure 5: Finding the K best path-strategies.

The worst case complexity of K-BPS is exponential, as it may be necessary to enumerate
an exponential number of strategies. The same holds true for K = 1. Note, however, that the
procedure takes time O(κ) for each subproblem inserted into the candidate set. Concerning
the space complexity, it is possible to show that a (small) constant amount of information
needs to be stored for each subproblem inserted into the candidate set. [17] may be consulted
for a description of the data structures and the implementation details.

Example 1 (continued) Consider the best (o, 0) strategy S shown in Figure 3; S is not a
path-strategy and defines the subpath PS = (u1 = a, u2 = b). Assume that arc (b, d) is chosen
in path PB = (u1 = a, u2 = b, u3 = d); Branching Operation 1 defines three subgraphs G1,
G2 and G3. Here, G1 does not contain arc (a, b) and, thus, does not contain any a-d paths;
G2 does not contain arc (b, d) and consists of a single a-d path (a, b, c, d); G3 does not contain
arc (b, c) and contains a single a-d path (a, b, d). Graphs G2 and G3 and the corresponding
expanded hypergraphs H2 and H3 are shown in Figure 6(a) and Figure 6(b), respectively.
Fixed arcs and corresponding hyperarcs are shown in bold lines; solid lines represent the best
a-d strategy, which in both cases is a path-strategy with expected cost 9.

3.2 Improved procedures

We consider two possible enhancements of procedure K-BPS. The first is based on reopti-
mization techniques for shortest hyperpaths. The second is based on a different branching
technique.
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Figure 6: Subproblems defined by Branching Operation 1

3.2.1 A lower bound based on reoptimization

In procedure K-BPS each pair (l̃b, G̃) is ranked according to a lower bound on the weight
of the best path-strategy, namely, the weight w̃ of the best strategy. In order to find w̃,
a minimum weight hyperpath problem must be solved for each subgraph generated during
the branching operation, which is quite expensive in terms of computation time. A possible
alternative is to compute a fast lower bound on w̃. In this case, the computation of the
minimum weight hyperpath will be performed only when (and if) the pair (l̃b, G̃) is selected
from the candidate set.

Since pairs are selected according to a lower bound on the weight of the best strategy,
strategies are not necessarily generated in non-decreasing order of weight. As a consequence,
a slightly more complex treatment of the candidate set is necessary. Suppose we select a pair
(l̃b, G̃), and let w̃ be the weight of the best strategy S̃. Two cases may arise:

1. w̃ is lower than or equal to the current minimum lb in the candidate set;

2. w̃ is greater than the current minimum lb in the candidate set.

In the first case, S̃ is indeed the best strategy not yet generated, thus we proceed as in
procedure K-BPS. In the second case, this is not necessarily true, and we reinsert the pair
(l̃b, G̃) into the candidate set with the lower bound l̃b updated to w̃. Thus, we do not perform
any branching nor “output” operation, but start a new iteration instead.

A lower bound on the minimum strategy weight w̃ can be found by exploiting reopti-
mization techniques for shortest hyperpaths. Such techniques have been proposed in Nielsen
et al. [19], and further developed in Nielsen et al. [21], in the context of K shortest hyperpath
procedures. The results in [19, 21] are technically rather involved, and are not reported here.
In practice, these results have the following impact in our context: when Branching Opera-
tion 1 is applied, we can obtain a lower bound for each generated subproblem with an overall
O(κ) computational cost. A procedure based on reoptimization can be derived from K-BPS,
and will be denoted as K-BPSreopt. Here we assume that procedure BSW computes a lower
bound using reoptimization. Since K-BPSreopt only differs slightly from K-BPS, we omit a
pseudo-code description here.
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3.2.2 Multiple Branching

Another variant of procedure K-BPS can be obtained by adopting a different branching
operation. In Branching Operation 1, o-d paths in subset Pi contain subpath P i

B and do
not contain arc (ui, ui+1), which is removed from Gi. We may further partition subset Pi

by creating |FS (ui)| − 1 subsets where we fix an arc e ∈ FS (ui), with e 6= (ui, ui+1). This
gives rise to the following multiple branching operation defined in terms of the subpath PS

(see Definition 3).

Branching Operation 2 Given path PS = (o = u1, ..., uq) the set P can be partitioned into
disjoint subsets as follows:

1. For 1 ≤ i < q and e ∈ FS (ui) \ {(ui, ui+1)}, paths in Pi,e contain path P i
S and arc e.

2. For e ∈ FS (uq), paths in Pq,e contain path PS and arc e.

Note that Branching Operation 2 applies also if strategy S defines an optimal path PS =
(o = u1, ..., uq = d), provided that FS(d) is empty. Similarly to Definition 5, the subset Pi,e

corresponds to a subgraph Gi,e in G, which in turn defines an expanded hypergraph contained
in H. A theorem similar to Theorem 2 can also be proven (see Nielsen [17]).

Observe that Branching Operation 2 usually creates more pairs than Branching Oper-
ation 1 and is, thus, not suitable if a shortest hyperpath problem is solved for each pair.
However, Branching Operation 2 is likely to provide a tighter reoptimization lower bound,
since smaller subsets of strategies are considered. If the size of the forward star of a node in
G is small (as is often the case e.g. in a road network) and if the lower bound is fast, we may
obtain a faster procedure. We denote as K-BPS MB the variant of procedure K-BPSreopt
where multiple branching is adopted.

3.3 Waiting allowed

In this section we will briefly discuss the case in which waiting at the nodes is allowed. The
subject will not be discussed in great detail here, but a thorough treatment of the subject is
available in [17].

The possibility of waiting at intermediate nodes has been often considered in transporta-
tion models. If waiting is allowed, a traveller arriving at node u 6= d at time t < tmax can
either proceed towards the destination, i.e., leave node u at time t, or wait at u until time
t′ > t, i.e., leave node u at time t′. In the underlying topological network, waiting at u can
be represented by a self-loop arc (u, u), where travel times are deterministically equal to one.
In terms of strategies, the successor of the pair (u, t) is the arc (u, u). Waiting can be easily
included in the hypergraph model of the STD network, too. Here, waiting at node u from
time t to time t + 1 is represented by the hyperarc euu(t) = ({u(t+1)}, ut).

From a theoretical point of view, waiting at intermediate nodes should not be considered
within an a priori route choice model, as it is an inherently time-adaptive behavior. Indeed,
while travelling along a path, a traveller has to choose, at any given time, whether to wait
or proceed to the next node in the path. Clearly, the decision cannot be “waiting” at each
time, since a traveller cannot wait indefinitely at intermediate nodes. However, it may be
interesting to consider waiting as a limited form of time-adaptive behavior, thus defining an
intermediate model between a priori and time-adaptive route choices.
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A key observation here is that an o-d path P in G defines several strategies, actually, an
exponential number in the length of P . In one sense, all of these should be considered as
path-strategies, distinguished from each other only by the use of waiting. Thus, the definition
of path-strategy should be slightly modified: in a (o, 0) path-strategy S, the successor of each
pair (u, t) ∈ Dm(S) is either a fixed arc (u, v) or the waiting arc (u, u).

As long as the shortest path problem is considered, the new definition can be adopted
safely. Indeed, we are here interested in a single best path-strategy, and clearly this path-
strategy is the one that exploits waiting best, among those corresponding to the same path.
As a consequence, our solution method remains valid.

However, in the K shortest path problem (K > 1) we need to distinguish between two
cases, namely whether the K path-strategies should correspond to different paths in G or not.
In the former case, our algorithm is still valid, as it enumerates path-strategies corresponding
to different paths. In the latter case, we may instead need to enumerate different path-
strategies corresponding to the same path. In fact, in this case we deal with a time-adaptive
K shortest path problem, and we need to use a different enumeration method. To this aim,
the techniques developed within K shortest hyperpaths procedures can be adapted.

Both types of a priori K shortest path problems with waiting have been considered in [17],
where solution methods and computational results are reported. Computational experience
shows that as long as path-strategies must correspond to different paths, the introduction of
waiting does not affect the behavior of the algorithms significantly. On the other hand, if
strategies can correspond to the same path, the results are quite close to the ones obtained
under time-adaptive route choice. For these reasons, we do not report computational results
for the waiting case in the next section.

Example 1 (continued) Consider graph G2 and hypergraph H2, shown in Figure 6(a), and
suppose that waiting is allowed at node c. Two arcs ecc(c, 3) = ({c4}, c3) and ecc(c, 2) =
({c3}, c2) must be added to H2 in order to represent waiting. In this situation, both node
c2 and node c3 appear in the head of two hyperarcs. Indeed, two choices are possible for
the pairs (c, 2) and (c, 3), namely, waiting at c or proceeding towards d. Note that this gives
four different path-strategies corresponding to the path (a, b, c, d), according to the above
definition. If the cost of waiting is zero, we obtain ES(c, t) = 1 for t = 2, 3, 4, and the weight
of the best (o, 0) strategy becomes 6.5.

4 Computational results

In this section we report on the computational experience for finding the K best strategies
under both time-adaptive and a priori route choices. The algorithm for finding the K best
strategies under time-adaptive route choice is given in Nielsen et al. [21]. The procedures
have been implemented in C++ and tested on a 1 GHz PIII computer with 1GB RAM using
a Linux Red Hat operating system. The programs have been compiled with the GNU C++
compiler with optimize option -O.

4.1 The TEGP generator

All tests are performed on time-expanded hypergraphs generated with the TEGP generator
used in Nielsen et al. [18] and Nielsen [17]. The generator includes several features inspired
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Figure 7: Peak effect and random perturbation.

by typical aspects of road networks (congestion effects, waiting, random perturbations etc.).
An underlying topological grid network G of base b and height h is assumed, and we search

for optimal strategies from the bottom-right corner node (origin o) to the upper-left corner
node (destination d). This choice is motivated by the fact that each origin-destination path
has at least b + h − 2 arcs, and there is an exponential number of such paths in G.

The generator considers cyclic time periods (e.g. a day) and in each cyclic period there
are some peak periods (e.g. rush hours). Each peak consists of three parts; a transient part
where the mean travel time (traffic) increases, a pure peak part where it stays the same and
a transient part where it decreases again. This feature gives travel time distribution with
higher mean and higher standard deviation in peaks. The peak effect can be eliminated
e.g. by setting the peak length to zero. The pattern of the mean travel time for a grid arc,
when two peaks are considered, is shown in Figure 7 (dotted line).

Costs can be generated in two ways, namely using peak dependent costs or random costs.
The generation of peak-dependent costs takes three components into account: the off-peak
cost, the peak effect and a random perturbation. Hence, the cost has a component following
the same pattern as the mean travel time, and a random perturbation introduces small varia-
tions, modelling factors not intercepted by the peak implementation, e.g. special information
about the cost at exactly that leaving time. The pattern of the cost c(u, v, t) for a grid arc
(u, v) is shown in Figure 7 (solid line).

If the cost are random no off-peak component nor peak effect is considered, and the costs
are generated randomly in a given interval. Note that with this setting, the travel costs of an
arc at time t and t + 1 are not related. Clearly, in a road network, this model is not realistic.

If waiting is allowed, waiting costs are generated using an off-peak component and a
random perturbation. For more details on the TEGP generator, see Nielsen [17, Section 3.5].

4.2 Hypergraph classes

In the following, we use the term hypergraph class to define a particular setting of the TEGP
input parameters; for each class, different hypergraphs (i.e. different instances of the problem)
can be generated by choosing different seeds. We considered six hypergraph classes, using
three different grid sizes, (namely 5×10, 10×10 and 20×10) and two different cost structures.
Five instances were generated for each class: Table 2 reports the average number of nodes n,
the average number of hyperarcs m and the length of the time horizon H.

Classes 1-3 use peak dependent costs as an attempt to model “realistic” STD networks
and show that our algorithms are expected to work well in practice. The mean travel times
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peak dependent costs random costs

Class 1 2 3 4 5 6

Grid size 5 × 10 10 × 10 20 × 10 5 × 10 10 × 10 20 × 10

n 2320 7573 21454 1497 3961 11856

m 7809 27278 79570 5056 14295 43991

H 118 156 237 75 101 155

Table 2: Hypergraph classes

and costs increase 100% in peaks, and the range of the random perturbation is set to 10% of
the costs obtained including peak effects. These values of the parameters have been justified
in Nielsen et al. [18]. Off-peak costs are generated in the interval [1, 1000]; due to the random
perturbation, travel costs range in an interval [0, 2200] during peaks.

Class 4-6 use random costs in the interval [1, 2000] and no peak effect for the travel times.
These classes aim at pointing out the impact of the random cost component, showing how
the procedures work on difficult (unrealistic) instances.

In all classes, a cycle consists of 144 time instances. A cycle has two peaks, each one with
a total length of 60 (each transient or pure peak period has a length of 20); the first peak
starts at t = 6 and the second at time t = 78. For each arc in the underlying grid, the off-peak
mean travel time µ ranges in the interval [lbt, ubt] = [2, 6]. Given µ, the possible travel times
are the integers in the interval [0.75µ, 1.25µ]. For each grid size, the length of the time horizon
H is an upper bound on the time required to travel along all o-d paths containing (b + h)
arcs. Note that H is much smaller for classes 4-6, where the peak effect on travel times is not
present. As a consequence, the resulting hypergraph size is smaller.

4.3 Aims and statistics

The aim of our computational experience is twofold. On the one hand, we try to evaluate
the behavior of our algorithms on different classes of instances. On the other hand, we try
to investigate the structure of the strategies and path-strategies obtained for those instances.
This will allow us to compare time-adaptive and a priori route choice on the basis of both
computing time requirements and expected structure of the resulting routes. The reported
statistics can be divided into two groups. The first group considers the performance of
the procedures, and is described below. The abbreviation´s used in the tables are given in
parentheses.

CPU time (CPU K): CPU time for finding the K best strategies (time-adaptive route
choice) or path-strategies (a priori route choice). Does not include input/output
time.

First CPU time (CPU 1): CPU time for finding the best strategy (time-adaptive route
choice) or path-strategy (a priori route choice).

Number of iterations (iteK): The number of strategies generated before finding the K
best path-strategies under a priori route choice, i.e. the number of times the while

loop in e.g. procedure K-BPS is executed.
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Figure 8: A “path-like” and a not very “path-like” strategy.

Number of iterations (ite1): The number of strategies generated before finding the best
path-strategy under a priori route choice.

The second group of statistics is related to the structure and quality of the strategies
used by the branching operation. Consider a strategy S with domain Dm(S) on which the
branching operation is applied. Denote by

AS = {a ∈ G : a = S(u, t), (u, t) ∈ Dm(s)}

the codomain of a strategy S, i.e., the set of arcs in G that is used by S. The second group
includes the following values.

Average domain size (|Dm|): The average cardinality of the domain of the strategies
used by the branching operation.

Average codomain size (|AS |): The average number of arcs used by the strategies.

Relative increase in weight (inc): The weight increase between the first and the Kth
strategy (time-adaptive route choice) or path-strategy (a priori route choice). Re-
ported in percent.

Relative increase strategy to path-strategy (incS−PS): The weight increase between the
first strategy and the first path-strategy. Reported in percent.

Here we also examine how “path-like” the strategies are by considering how many paths
the set of arcs AS define. Recall that AS defines an o-d path if and only if S is a path-strategy;
otherwise, AS defines a set of o-d paths, and can contain cycles. A path-like and a not very
path-like strategy are shown in Figure 8 when considering a 3 × 3 grid network G.

In order to evaluate how path-like a strategy S is, we may consider the number of different
successors of u in S, i.e., the number δ(u) = |{(u, v) ∈ AS}|. Since we consider an underlying
grid graph G, δ(u) ranges between one and four. Given a strategy S, we compute the percent-
age of nodes with j successors, for 1 ≤ j ≤ 4. Here we report these percentages, averaged on
all the strategies used by the branching operation; note that this includes non-path strategies
for the a priori case. We, thus, have the following statistics:

Average percentage of nodes with j successors (δ(u) = j): the average percentage of nodes
with j successors, j = 1, 2, 3 and 4.
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Class CPUK CPU1 |Dm| |AS| δ(u) = 1 δ(u) = 2 δ(u) = 3 δ(u) = 4 inc

1 9.46 0.01 340 26 65 24 9 2 0.00

2 24.79 0.03 895 54 60 29 10 1 0.00

3 70.17 0.07 1688 76 65 31 4 0 0.00

4 7.26 0.01 854 123 10 32 40 18 0.00

5 25.87 0.02 2162 253 6 24 41 29 0.00

6 75.79 0.05 7063 614 3 14 36 46 0.00

Table 3: Results for finding the K = 1000 best strategies.

4.4 Time-adaptive route choice

The results reported here have been obtained using the procedure in Nielsen et al. [21] that
finds the K shortest hyperpaths in acyclic hypergraphs using reoptimization techniques in
O(κK) time. Reoptimization techniques for K shortest hyperpaths have been shown to be
quite effective (Nielsen et al. [19], Nielsen [17]), leading to procedures that can be order of
magnitudes faster on the set of instances considered here.

Our main goal is to examine how the structure of the costs and travel times may effect the
structure of the strategies. We only consider the minimum expected cost criterion, with no
waiting allowed. Other criteria, as well as the introduction of waiting, lead to similar results,
see Nielsen [17, Section 4.3] for details.

The results for finding the K = 1000 best strategies are reported in Table 3. Recall that
for each hypergraph class, the measures are averaged over five runs using different seeds.

The most evident effect that can be pointed out is the impact of cost structure on strate-
gies. In fact, peak-dependent classes generate strategies that are much more path-like than
the ones generated by random classes. For example, the average number of successors in-
creases from 1.39 in class 3 to 3.23 in class 6. As a consequence, strategies in random classes
tend to have a much larger domain and codomain. Note also that the impact of random
costs is more evident for larger classes. Using random costs, this situation can be explained
recalling that the travelling costs for the same arc at different leaving times are uncorrelated.
As a consequence, all the successor arcs are equally likely to provide the best solution, for a
given node and leaving time.

A further evident observation concerns the relative increase in costs, which is negligible,
namely, always less than one percent. In the context of K shortest hypergraph procedures,
this situation has already been pointed out and discussed in Nielsen et al. [18]; a detailed
formal treatment can be found in Nielsen et al. [21]. In terms of strategies, the following
informal explanation can be given. Consider a strategy S and a pair (u, t) ∈ Dm(S); it can
be shown that an increase ∆ in the expected cost ES(u, t) at (u, t) results in an increase ∆fut

in the expected cost ES(o, 0), where the multiplier fut is likely to be quite small for many
pairs (u, t). Roughly speaking, changing the successor S(u, t) will not affect the weight of
S significantly. As a consequence, it is likely that a large number of strategies has almost
similar expected costs. Similar observations apply to min/max criteria too (see Section 2.2).
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12 356 8 13 0.3 233 22 82 14 4 1 49 5

13 454 37 11 1.0 411 31 82 14 4 0 17 7

14 2359 875 133 53.5 892 46 85 13 2 0 10 5

15 1427 25 133 2.5 203 46 50 25 20 5 18 43

16 9942 564 2722 157.9 475 90 39 21 27 12 8 54

17 203479 34227 89519 15127.5 1748 244 25 16 27 31 3 59

Table 4: Results for finding the K = 100 best path-strategies.

4.5 A priori route choice

Our main goal is to evaluate the behavior of our algorithms on different classes of instances
and to compare the performance of procedure K-BPS to those of the two enhanced versions
K-BPSreopt and K-BPS MB. However, we start by pointing out the impact of cost structures
on the generated strategies. Since the a priori case is expected to be much more difficult,
we only generate 100 path-strategies here. The results of procedure K-BPS are reported in
Table 4.

Observe that the generated strategies are much more path-like than in the time-adaptive
case. The average number of successors increases from 1.17 for class 3 to 2.62 for class 6. As
a consequence, the size of the domain and codomain is smaller too. Clearly, this is explained
by the fact that our branching technique fixes subpaths, so that many nodes will have exactly
one successor.

Again, random costs have a clear impact on how path-like the strategies are, although
the effect is less than in the time-adaptive case. Furthermore, since strategies under random
costs are in general not path-like, branching paths become short. As a result, the number
of non-path strategies generated before the first path-strategy is found is high (ite1 column),
yielding high CPU times.

Interesting observations arise from the results of relative weight increase. Contrary to
the time-adaptive case, there is a significant difference between the first and the Kth path-
strategy. This is to be expected as path-strategies are less flexible than strategies. Note
that the relative increase (inc column) is smaller for random costs and for larger grids. The
effect of larger grid size is expected since the number of o-d paths is exponential in the grid
dimensions, which for larger grids yields more paths with weight close to the optimum. The
difference between peak-dependent and random costs can be explained as follows. In the
peak-dependent case, the costs c(u, v, t) are roughly proportional to the off-peak cost of arc
(u, v); since off-peak costs on grid arcs can differ substantially , we can expect some o-d paths
to be much cheaper than others. On the contrary, in the random case the costs c(u, v, t) vary
randomly in the whole cost interval; as a result, all the paths with the same number of arcs
may be expected to be equivalent, i.e. to have expected cost close to each other.

As expected, the weight of the best path-strategy is greater (incS−PS column) than the
weight of the best strategy. To some extent this confirms that path-strategies are a “small”
subset of strategies. Note that the increase is much smaller for peak-dependent classes, where
strategies are much more path like: actually, this is a consequence of the cost distribution of
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K-BPSreopt K-BPS MB

1 542 32 6 20 0.2 484 34 5 19 0.2

2 664 30 23 14 0.5 589 35 20 12 0.4

3 3732 36 375 194 20.1 3379 42 500 183 27.3

4 2297 38 24 205 2.2 1995 47 20 178 1.8

5 16336 39 529 4430 146.1 13896 50 424 3752 115.8

6 334272 39 27333 145971 11927.6 280451 51 27529 123048 12107.4

Table 5: Results for procedures K-BPSreopt and K-BPS MB (100 path-strategies).

o-d paths, as discussed above. Indeed, for peak-dependent costs, the best strategy is likely
to deviate only little from the shortest o-d path, and thus to be quite similar to the a priori
shortest path.

Note that the increase is much smaller for peak-dependent classes, due to the fact that
for peak-dependent costs, we find a path-strategy faster as the strategies are more path-like.

As discussed above, the random classes considered here do not seem to be a reasonable
model for a realistic STD network. Instead, they are likely to provide very difficult instances
for our algorithm. In fact, random classes are up to two order of magnitude more demanding,
both in terms of computation time and number of iterations. Nevertheless, this behavior
seems to provide some evidence of the robustness of our algorithms.

Procedures K-BPSreopt and K-BPS MB were also tested on the same classes of instances.
The results are reported in Table 5. The statistics related to the structure of the generated
strategies are not reported here, since the results are similar to the ones discussed above.
However, we report one further item of statistics, related to the behavior of procedures K-
BPSreopt and K-BPS MB.

Number of reinsertions (reins): The number of pairs reinserted into the candidate set
after computing the actual best strategy (see Section 3.2.1). Reported in percent
of the number of iterations iteK .

Both procedures K-BPSreopt and K-BPS MB turn out to be faster than K-BPS, about
20% on the hardest instances. Note that this is at the expense of the number of iterations,
that increases up to 60% on the hardest instances. The number of reinsertions is relatively
high, which may suggest that the reoptimization lower bound is not sufficiently tight, although
tight enough to reduce the overall CPU time.

A comparison between K-BPSreopt and K-BPS MB is not very significant, since the two
procedures show similar results, the latter requiring less iterations and more reinsertions than
the former. Note, however, that procedure K-BPS MB has larger memory requirements due
to its branching rule.

5 Conclusions

In this paper we devised a solution method for the a priori shortest path problem in stochastic
time-dependent network and extended this method to include the finding of the a priori K
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shortest paths. Two variants of the method were devised, introducing reoptimization based
on lower bounding techniques and a different branching operation. The effectiveness and
robustness of our algorithm were evaluated against a set of hard instances. Based on the
algorithms proposed here and on an existing K shortest hyperpath algorithm, we compared
the results obtained under time-adaptive and a priori route choices. Finally, we pointed out
the impact of the problem data on the structure of strategies and path-strategies. The new
contributions can be summarized as follows.

To our knowledge, this is the first attempt to solve the a priori shortest path, originally
addressed by Hall who considered loopless paths between a single origin-destination pair and
for a single leaving time. The method proposed by Miller-Hooks and Mahmassani [14] may
possibly be adapted to the problem considered here. However, their approach is conceived for
a much more general problem (multiple origin, multiple leaving time and looping paths) and,
therefore, may not be suitable for finding the specific set of solutions that we are interested in.
In addition, we here provide the first solution method for the a priori K shortest path problem.
Finally, the computational analysis carried out here is original in at least two aspects:

1. The analysis of the structure of the best K routes generated under time-adaptive and
a priori route choices;

2. The analysis of the impact of both travel times and costs on the structure of the gen-
erated strategies and path-strategies.

Previous work in this direction concentrated on travel times and best routes (Miller-Hooks
[11]) and on theoretical aspects (Miller-Hooks and Mahmassani [15]).

From a computational point of view, the results reported in this paper are quite encour-
aging. Our algorithms may be expected to be effective for instances arising from (reasonable
approximations of) real networks, and relatively robust when faced with hard instances. These
results suggest a possible direction for further research, related to the bicriterion version of
the a priori shortest path problem. In this context, it is possible to devise solution methods
that take advantage of fast procedures for ranking shortest paths. Actually, these methods
have been widely investigated in the literature in the case of deterministic networks. Along
this line, the time-adaptive case in STD networks was treated in Nielsen et al. [18], and
the a priori case is the subject of current research (Nielsen, Pretolani, and Andersen [20]).
Note that the a priori problem has interesting applications already addressed in the literature
(Miller-Hooks and Mahmassani [13]).
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