
Finding the K shortest hyperpaths: algorithms and

applications

Lars Relund Nielsen∗ Kim Allan Andersen
Department of Operations Research

University of Aarhus

Ny Munkegade, building 530

DK-8000 Aarhus C

Denmark

Daniele Pretolani
Dipartimento di Matematica e Fisica

Università di Camerino

Via Madonna delle Carceri

I-62032 Camerino (MC) – Italy

(e-mail: daniele.pretolani@unicam.it)

Abstract

The K shortest paths problem has been extensively studied for many years. Efficient methods
have been devised, and many practical applications are known. Shortest hyperpath models
have been proposed for several problems in different areas, for example in relation with rout-
ing in dynamic networks. However, the K shortest hyperpaths problem has not yet been
investigated.
In this paper we present procedures for finding the K shortest hyperpaths in a directed
hypergraph. This is done by extending existing algorithms for K shortest loopless paths.
Computational experiments on the proposed procedures are performed, and applications in
transportation, planning and combinatorial optimization are discussed.

Keywords: Network programming, Directed hypergraphs, K shortest hyperpaths, K shortest
paths.

1 Introduction

One classical problem encountered in the analysis of networks is the ranking of paths in nonde-
creasing order of length, known as K shortest paths. As early as 1959 attention was drawn to this
problem [11]. Usually, two different situations are distinguished.
In the general (unrestricted) problem the paths are allowed to be looping, i.e. to contain cycles.
Several techniques, based e.g. on dynamic programming or sophisticated data structures, have been
applied to this problem, obtaining algorithms that are fast from a practical as well as theoretical
point of view; see for example the recent results in [4, 13].
The restricted problem where only loopless paths are accepted is considered to be harder to solve.
In practice, solution methods proposed so far are based on the branching approach by Yen [22],
later discussed by Lawler [14] in the more general framework of finding the K best solutions to a
discrete optimization problem.

∗Corresponding author (e-mail: relund@imf.au.dk)

1

The applications of the K shortest paths problem are numerous. First, practical problems often
include constraints which are hard to specify formally or hard to optimize. Here an optimal
solution can be found by enumerating suboptimal paths until a path satisfying the hard constraints
is found. Second, by computing more than one shortest path, one can to a certain extent determine
how sensitive the optimal solution is to variations of the parameters in the model. Last but not
least, the K shortest path problem often appears as a subproblem within algorithms for bicriteria
shortest path problems, see for example [10, 3]. A complete survey of the existing literature on K
shortest paths does not fall into the scope of this paper; the interested reader is referred to the
work of Eppstein [4].
Directed hypergraphs are an extension of directed graphs, and have often been used in several areas
as a modelling and algorithmic tool. A technical as well as historical introduction to directed
hypergraphs has been given by Gallo et al. [6]. Hyperpaths in hypergraphs are a nontrivial
extension of directed paths whose expressive power allows us to deal with more complex situations.
In fact, several applications of shortest hyperpath methods are known, see among others [1, 5,
8, 18, 20]. In particular, a shortest hyperpath model has been proposed for routing problems in
discrete dynamic networks, that have recently attracted a growing attention [16, 17, 20].
Similar to what is discussed above for K shortest paths, applications and solution methods based
on shortest hyperpaths would take advantage of the availability of alternate optimal or sub-optimal
solutions. However, to the authors’ knowledge, no one considered the problem of finding the K
shortest hyperpaths.
In this paper we propose and test some algorithms for the K shortest hyperpaths problem. Since
hyperpaths in our context are acyclic, we extend to directed hypergraphs Yen’s method for loopless
paths; as we shall see, this extension is not straightforward. Moreover, we discuss in detail some
relevant applications of K shortest hyperpaths algorithms.
The paper is organized as follows. Directed hypergraphs are introduced in Section 2. In Section
3 different procedures to find the K shortest hyperpaths are developed. Computational results
are reported in Section 4, while applications are considered in Section 5. Finally, we summarize
original contributions and topics for further research in Section 6.

2 Directed Hypergraphs

A directed hypergraph is a pair H = (V, E), where V = (v1, ..., vn) is the set of nodes, and E =
(e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where T (e) ⊂ V
denotes the tail nodes and h(e) ∈ V \ T (e) denotes the head node.
In this paper we only consider hypergraphs where each hyperarc has one node in its head. These
hypergraphs are referred to as B-graphs in [6], where more general classes of hypergraphs are
introduced. Note that B-graphs are in some sense equivalent to F-graphs, where hyperarcs have
one node in the tail and possibly more than one node in the head; in particular, the properties of
F-graphs stated in [6] translate into analogous B-graphs properties.
The cardinality of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)| + 1. If |e| = 2,
hyperarc e is an arc. The size of H is the sum of the cardinalities of its hyperarcs:

size(H) =
∑
e∈E

|e| .

We denote by

FS(u) = {e ∈ E | u ∈ T (e)}
BS(u) = {e ∈ E | u ∈ h(e)}

the forward star and the backward star of node u, respectively. A hypergraph H̃ = (Ṽ, Ẽ) is a
subhypergraph of H = (V, E), if Ṽ ⊆ V and Ẽ ⊆ E . This is written H̃ ⊆ H or we say that H̃ is
contained in H.

2

A path Pst in a hypergraph H is a sequence of nodes and hyperarcs in H:

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u if a path
Puv exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular true if t = s. If H
contains no cycles, it is acyclic.

Definition 1 Let H = (V, E) be a hypergraph. A valid ordering in H is a topological ordering of
the nodes

V = {u1, u2, . . . , un}
such that, for any e ∈ E : (uj ∈ T (e)) ∧ (h(e) = ui) ⇒ j < i.

Notice that, in a valid ordering any node uj ∈ T (e) precedes node h(e). The next theorem is a
generalization of a similar result for acyclic directed graphs, see [21].

Theorem 1 H acyclic ⇐⇒ A valid ordering of the nodes in H is possible.

Theorem 1 is proven (for F-graphs) in [6], where an O(size(H)) algorithm finding a valid ordering
of the nodes in an acyclic hypergraph is presented. It should be noticed that a valid ordering in
general is not unique, which is also the case for acyclic directed graphs.

2.1 Hyperpaths and hypertrees

Consider a hypergraph H = (V, E). A hyperpath πst of origin s and destination t, is an acyclic
minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ) satisfying
the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ =
⋃

e∈Eπ

(
T (e) ∪ {h(e)}

)
3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

Note that condition 3 implies that, for each u ∈ Vπ \{s}, there exists a hyperarc e ∈ Eπ, such that
h(e) = u. It follows from minimality that e is unique; hyperarc e is the predecessor of u in πst.
Conversely, condition 3 can be replaced by condition 4 below, where N = Vπ \ {s}. Minimality
also implies that, for any node u ∈ Vπ \ {t}, there is a u-t path in πst.
We say that node t is hyperconnected to s in H if there exists in H a hyperpath πst.
Let s ∈ V be a given root node and let N ⊆ V \ {s} be a set of nodes hyperconnected to s. Then
a directed hypertree is the union of hyperpaths from s to all nodes in N .

Definition 2 A directed hypertree with root node s is an acyclic hypergraph Ts = ({s} ∪ N , ET)
with s �∈ N such that:

4. BS (s) = ∅; |BS(v)| = 1 ∀v ∈ N .

A hypertree Ts = ({s}∪N , ET) in a hypergraph H is defined by a predecessor function p : V → E ;
for each u ∈ N , p(u) is the unique hyperarc in Ts which has node u as the head. A sub-hypertree
(or simply a subtree) of a hypertree Ts is a hypertree contained in Ts. Note that any hyperpath is a
hypertree, in particular it can be defined by a predecessor function. Moreover, different hypertrees
can share the same hyperpath πst as a subtree.
Procedure B-Visit, given in [6], finds a hypertree rooted at a given node s containing each node
u hyperconnected to s in a hypergraph H. Note that B-visit finds only one of potentially many
hypertrees in H. The overall complexity of B-Visit is O(size(H)).

3

s t

1

2

3 4

e2

e1

e3

e4

e5

e7

e6

e8

e9

(a) A hypergraph H with a cycle.

s t

1

2

3 4

(b) A hypertree in H.

Figure 1: The running example hypergraph.

Below we list some elementary properties of hypertrees that mirror similar properties for trees
in directed graphs. Let V = {s = u1, u2, . . . , uq} be a valid ordering for the hypertree Ts =
({s} ∪ N , ET), defined by the predecessor function p. For 1 ≤ i ≤ q, let us define the hypergraph

T i
s =

(
{u1, . . . , ui}, {p(u2), . . . , p(ui)}

)
.

It is easy to see that T i
s is a hypertree, thus a subtree of Ts. Now suppose we change the predecessor

p(u) = e for a given u ∈ N , setting p(u) = ē, where ē ∈ E \ {e}. The following holds true for the
resulting function p:

Property 1 p defines a hypertree if and only if the nodes in T (ē) belong to Ts and precede u in
a valid ordering of Ts.

Note that if H is acyclic, then p defines a hypertree if and only if the nodes in T (ē) belong to Ts.

Example 1 A hypergraph H = (V, E) is shown in Figure 1(a). Below we give two hyperpaths in
H, namely a hyperpath from s to t and a hyperpath from s to 4.

πst =
(
{s, 1, 2, t}, {e1, e2, e3}

)
πs4 =

(
{s, 2, 3, 4}, {e2, e4, e5}

)
.

The hypergraph H becomes acyclic when hyperarc e9 is deleted and has a unique valid ordering,
namely V = ({s, 1, 2, 3, 4, t}.
A hypertree Ts in H is shown with solid lines in Figure 1(b). It is the union of the two hyperpaths
given above. Several valid orderings for Ts exist; one of them is V = ({s, 1, 2, t, 3, 4}. According
to V , the subtree T 4

s of Ts corresponds to hyperpath πst above.

Next we point out some relevant differences between paths in directed graphs and hyperpaths in
hypergraphs. Assume that a path Pst from node s to node t in a directed graph G = (N,A) is
known:

Pst = (s = u1, a1, u2, a2, . . . , aq, uq+1 = t).

Clearly, Pst is the concatenation of a subpath Psi from node s to node ui and a subpath Pit from
node ui to node t, where

Psi = (s = u1, a1, u2, a2, . . . , ai−1, ui)
Pit = (ui, ai, . . . , aq, uq+1 = t).

In other words, for each 1 ≤ i ≤ q + 1 we can split path Pst into the subpaths Psi and Pit.
Unfortunately, this need not be so for hyperpaths. In general a hyperpath πst is not the concate-
nation of two hyperpaths πsu and πut; consider e.g. πst in Example 1. However, we can define a
“splitting” operation on hyperpaths as follows. Let Hπ = (Vπ, Eπ) denote the hyperpath πst, and
let V = {u1 = s, u2, . . . , uq+1 = t} be a valid ordering. Recall that πst is a hypertree Ts defined
by a predecessor function p. For each 1 ≤ i ≤ q, denote by πst = (τ i, ηi) the splitting around ui of
πst, where:

4

- τ i = (Vτ , Eτ), with Vτ = {u1, . . . , ui} and Eτ = {p(u2), . . . , p(ui)};

- ηi = (Vη, Eη), with Eη = {p(ui+1), . . . , p(t)} and Vη =
⋃

e∈Eη
T (e) ∪ {h(e)};

- Hπ = (Vτ ∪ Vη, Eτ ∪ Eη)

Clearly, τ i is the subtree T i
s of Ts = πst. On the contrary, ηi is not a hypertree in general; we call

ηi an end-tree. Observe that for any node u �= t in ηi there is a u-t path in ηi. The above splitting
operation will be exploited in our algorithms for K-shortest hyperpaths.

2.2 Weighted hypergraphs and shortest hyperpaths

A weighted hypergraph is a hypergraph where each hyperarc e is assigned a real weight w(e). In
this paper we shall assume that all weights are non-negative. Given a hyperpath πst, a weighting
function Wπ is a node function assigning weights Wπ(u) to all nodes in πst. The weight of
hyperpath πst is Wπ(t). We shall restrict ourselves to additive weighting functions, defined by the
recursive equations:

Wπ (u) =
{

w(p(u)) + F (p(u)) u ∈ Vπ \ {s}
0 u = s

(1)

where F (e) is a nondecreasing function of the weights of the nodes in T (e). We shall consider
two particular weighting functions, namely the distance and the value, both of which have been
studied in detail (see e.g. [6, 12]).
The distance function is obtained by defining F (e) as follows:

F (e) = max
v∈T (e)

{Wπ (v)}

and the value function is obtained as follows:

F (e) =
∑

v∈T (e)

ae (v)Wπ (v)

where ae(v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e). With
respect to the value function there are two interesting cases which may arise:

• If ae(v) = 1, ∀ e ∈ E , ∀ v ∈ T (e), then the weighting function is called the sum function.

• If
∑

v∈T (e)

ae(v) = 1, ∀ e ∈ E , then the weighting function is called the mean function.

The distance (the value) of a hyperpath πst is the weight of πst with respect to the distance (the
value) weighting function. Trivially, for each hyperpath the distance is a lower bound on the sum.
The shortest hyperpath problem consists in finding the minimum weight hyperpaths (with respect
to a particular weighting function) from an origin s to all nodes in H hyperconnected to s. The
result is a shortest hypertree Ts containing minimum weight hyperpaths to all hyperconnected
nodes.

Example 1 (continued) Consider again the hypergraph in Figure 1(a), and suppose all edge
weights are equal to 1. In this case, Figure 1(b) shows the shortest hypertree with respect to the
sum as well as to the distance weighting functions.

Finding the shortest hypertree has been shown in [6] to be equivalent to finding a solution to
Bellman’s generalized equations

W (v) =

{
0 v = s

min
e∈BS(v)

{w(e) + F (e)} v ∈ V\ {s}

5

Initialization: Set W (u) = ∞ ∀u ∈ V, kj = 0 ∀ej ∈ E , Q = {s} and W (s) = 0

while (Q �= ∅) do1

select and remove u ∈ Q such that W (u) = min{W (x)|x ∈ Q}2

for (ej ∈ FS(u)) do3

kj := kj + 14

if (kj = |T (ej)|) then5

v := h (ej)6

if (W (v) > w(ej) + F (ej)) then7

if (v /∈ Q) then Q := Q ∪ {v}8

end if9

W (v) := w(ej) + F (ej), p (v) := ej10

end if11

end if12

end for13

end while14

Procedure 1: Shortest hypertree (SBT-Dijkstra)

provided that the weighting function is additive, the weights are nonnegative and that all cycles
are nondecreasing. Sufficient conditions ensuring that each cycle

C = {v1, e1, v2, e2, . . . , vr, er, v1}

is nondecreasing have been given in [6]:

1. In the case of a distance function, the weights must satisfy:

r∑
i=1

w(ei) ≥ 0

which is the normal nonnegativity condition from standard digraphs.

2. In the case of a value function, the multipliers must satisfy:

r∏
i=1

aei
(vi) ≥ 1

which is the gainfree condition from Jeroslow et al. [12].

In our case, the condition given in 1 is obviously true, because all weights are non-negative. The
condition given in 2 is true if all multipliers are at least 1 (the sum case) and also if the hypergraph
is acyclic. In the following we shall consider the sum and distance functions, as well as the mean
function restricted to acyclic hypergraphs.
We next give an example showing that if the condition given in (2) is not satisfied, then a solution
to Bellman’s generalized equations may not correspond to a shortest hypertree (with respect to
the value function).

Example 2 In Figure 2 the weights and the multipliers are shown next to each hyperarc. The
value W of each node is shown next to it in a small box. The solution, shown with solid lines, sat-
isfies Bellman’s generalized equations. Evidently, the solution does not correspond to a (shortest)
hypertree.

A general procedure (called SBT) for finding a shortest hypertree was proposed in [6]. Procedure 1
is a particular version of SBT, called SBT-Dijkstra in [6]. This procedure is a simple generalization
of Dijkstra’s algorithm for shortest paths. Indeed, when a node u is removed from the candidate
set Q, W (u) is the minimum weight of all hyperpaths from s to u. The condition in line 5 ensures

6

4.5

4.0

5.5

6.5

7.5

s t

3

1

2

4

0

10

10

10

1

1

1

1 1

1

1/4

1/4

1/4

1/4

Figure 2: A solution to Bellman’s generalized equations

Initialization: Set W (s) := 0, W (vi) = ∞ i = 1, ..., n

for (i = 1 to n) do1

for (e ∈ BS(vi)) do2

if (W (vi) > w(e) + F (e)) then W (vi) := w(e) + F (e), p (vi) := e3

end for4

end for5

Procedure 2: Shortest hypertree in acyclic hypergraphs (SBT-acyclic)

that each hyperarc ej is processed only once after the minimum weights for its tail nodes have
been determined. If the priority queue Q is implemented as a d-heap, the complexity becomes
O(m log n + size(H)).
It must be remarked that the order in which nodes are removed from Q in Procedure 1 gives a
valid ordering for the nodes in the shortest hypertree. We assume that this valid ordering is used
in the K shortest hyperpath algorithms described in the next section.
For the particular case where the hypergraph is acyclic, a simpler and faster procedure exists [7].
In Procedure 2, nodes are processed according to a valid ordering

V = (v1 = s, v2, ..., vn) .

Clearly, when a node vi is processed, the shortest hyperpaths to all the nodes preceding vi in V
are known, thus F (e) can be computed for all the hyperarcs in BS(vi). In this case, no priority
queues are needed and the overall complexity is O(size(H)).
The K shortest hyperpaths problem addressed in this paper is as follows: given a hypergraph
H, an origin node s and a destination node t, generate the K shortest s-t hyperpaths in H in
nondecreasing order of weight; hyperpaths with the same weight can be generated in arbitrary
order. Obviously, a problem is characterized by the chosen weighting function. Here we do not
consider the problem of storing and retrieving the generated hyperpaths, which are generically
“sent to output”. Efficient data structures for representing the K shortest paths in graphs have
often been analyzed, see e.g. [4, 13].

3 Finding the K shortest hyperpaths

In this section we describe algorithms for finding the K shortest hyperpaths in a hypergraph. Our
algorithms extend the K shortest loopless paths procedure by Yen [22]; therefore we briefly recall
this procedure first. The extension to the hyperpath case is then discussed in detail and some
improvements are proposed.
In general terms, Yen’s algorithm is an implicit enumeration method, where the set of solutions is
partitioned into smaller sets by recursively applying a branching step. Given a graph G = (N,A),
and two nodes s, t ∈ N , denote by P the set of paths from s to t in G. Assume that a shortest s-t
path Pst is known, where

Pst = (s = u1, a1, u2, a2, . . . , aq, uq+1 = t).

7

In the branching step, the set P \ {Pst} is partitioned into q subsets Pi, 1 ≤ i ≤ q. Each set Pi

contains the deviations from Pst at i, that is: each s-t path in Pi is the concatenation of Psi (the
subpath of Pst from s to ui) and a path from ui to t not containing arc ai. Note that some of the
sets Pi may be empty.
The shortest s-t path in each subset Pi can be found by a standard SPT procedure. Indeed, it
suffices to find a shortest path from ui to t in a subgraph Gi, obtained from G by deleting each
node uj in Psi except ui, and deleting arc ai as well. In practice, each set Pi can be represented
by a pair (Psi, G

i). Yen’s algorithm maintains a list of such pairs (P ′, G′), where P ′ is a path
from s to a node u �= t, and a shortest s-t path P ′

st is defined by the concatenation of P ′ and the
shortest u-t path in G′. Initially, the list contains a single pair with P ′ = (s) and G′ = G; here,
(s) is a path containing the single node s. At step k, the shortest P ′

st in the list is ranked as the
kth shortest path. A branching step is then applied on P ′

st, obtaining a set of pairs that replace
(P ′, G′) in the list. The algorithm terminates when the K shortest paths are found, or when the
list is empty.
Note that, at the beginning of step k+1, the list of pairs represents a partition of P\{P 1, . . . , P k},
where {P 1, . . . , P k} are the previously found k shortest paths. When a pair (P ′, G′) is inserted
in the list, the optimal path P ′

st must be computed. Since O(n) pairs can be generated at each
branching step, Yen’s algorithms must solve O(Kn) SPT problems.
Finally, we remark that the commonly adopted “forward branching” described above can be
replaced by a “backward branching”, where path Pst is processed from t to s. In the latter case,
each path in the set Pi would be the concatenation of a path from s to ui+1, not containing
arc ai, and the subpath of Pst from ui+1 to t. From a theoretical as well as practical point of
view, the two approaches are equivalent; as we shall see, this symmetry does no longer hold when
hypergraphs are considered.

3.1 Branching on Hyperpaths

In order to extend Yen’s algorithm to hypergraphs, we need to devise a suitable branching rule,
i.e. a partition technique so that finding the best hyperpath in each subset is easy, in particular
solved by procedure SBT.
Consider a hypergraph H = (V, E), and two nodes s, t ∈ V. In the following we let Π denote the
set of hyperpaths from s to t in H. We assume that a shortest s-t hyperpath πst = (Vπ, Eπ) is
known, and is defined by a predecessor function p : Vπ \ {s} → E ; moreover, a valid ordering:

V = (s = u1, u2, . . . , uq, uq+1 = t)

for the nodes in πst is at hand.
Clearly, a direct application of Yen’s branching technique is not possible. However, we may still
follow a forward branching approach, where we split a hyperpath around each node uj , according
to the given valid ordering. More formally, we may partition the set Π \ {πst} into q subsets Πi,
1 ≤ i ≤ q; each s-t hyperpath in Πi is the concatenation of τ i (the subtree of πst spanning the
first i nodes) and an end-tree η not containing hyperarc p(ui+1).
We stress the fact that the shortest hyperpath πi in Πi must contain the whole subtree τ i; in order
to find πi, we must find the “best” end-tree η for τ i. This is not the same as finding a shortest
hypertree T containing τ i as a subtree: indeed, the s-t hyperpath in T does not necessarily contain
τ i. In fact, finding the best η is a constrained hyperpath problem, which turns out to be difficult.
Assume that we are given a weighted hypergraph H, a hypertree T rooted at s in H, and a node
t of H not in T . The Subtree Constrained Hyperpath problem (SCH) consists in finding a shortest
s-t hyperpath containing T as a subtree. We show that this problem is NP-hard, also if T only
contains arcs in FS(s). We consider the distance function here, a simpler construction can be given
for the value. We provide a reduction from the Set Covering problem (SC), which is well-known to
be strongly NP-hard. An instance of (SC) is defined by a family F = {F1, F2, . . . , Fn} of subsets
of {1, 2, . . . ,m}, where each Fi has a cost ci. The problem is to find a subset C ⊆ {1, 2, . . . , n}

8

3v

s u1 2u u3 u4

v2v1v0

Figure 3: Hypergraph HC

with minimum cost c(C) =
∑

j∈C cj and such that

{1, 2, . . . ,m} =
⋃
j∈C

Fj .

Theorem 2 Problem (SCH) for the distance function is NP-hard in the strong sense.

Proof Given an instance of (SC), define an instance of (SCH) as follows. Let HC = (VC , EC) be
a weighted hypergraph where

- VC = {s} ∪ {ui : 1 ≤ i ≤ m} ∪ {vj : 0 ≤ j ≤ n};

- EC = FS(s) ∪ {ea
j : 1 ≤ j ≤ n} ∪ {eh

j : 1 ≤ j ≤ n};

here FS(s) contains an arc from s to each node ui and an arc
(
{s}, {v0}

)
; moreover, for each

1 ≤ j ≤ n:

- ea
j =

(
{vj−1}, vj

)
;

- eh
j =

(
{ui : i ∈ Fj} ∪ {vj−1}, vj

)
.

The cost of each hyperarc eh
j is cj , arcs have zero costs. Finally, let the tree T contain the arcs in

FS(s), and choose the destination node t = vn.
Figure 3 shows the hypergraph HC for an (SC) instance where m = 4, n = 3, F1 = {1, 2},
F2 = {2, 3} and F3 = {3, 4}. The optimal hyperpath is represented by solid lines.
Observe that, in any feasible s-t hyperpath π = (Vπ, Eπ) it is Vπ = VC , and for each j > 0, the
predecessor p(vj) is either eh

j or ea
j . Therefore π is univocally defined by the set

C = {j : eh
j ∈ Eπ},

and the distance of each node vj , j > 0, is given by the distance of vj−1 plus the cost of p(vj);
the distance of π is thus c(C) =

∑
j∈C cj . Moreover, in a feasible π, each node ui must belong to

the tail of some hyperarc eh
j with j ∈ C. Therefore, hyperpath π is feasible for (SCH) if and only

if the corresponding C is a feasible solution for (SC). Since the cost of π is c(C), we conclude that
(SC) reduces to solving the above instance of (SCH), and the thesis follows.

Theorem 2 has an immediate negative impact on forward branching:

Corollary 1 Finding the shortest hyperpath πi in Πi is an NP-hard problem.

We shall therefore follow a different approach, in particular one based on backward branching.
Consider again the shortest hyperpath πst and the valid ordering V . We partition the set Π\{πst}
into q subsets Πi, 1 ≤ i ≤ q as follows:

9

- s-t hyperpaths in Πq do not contain hyperarc p(uq+1), that is p(t);

- for 1 ≤ i < q, s-t hyperpaths in Πi contain the end-tree ηi+1, and do not contain hyperarc
p(ui+1).

Note that a hyperpath in Πi, i < q, must contain hyperarcs p(uj), i + 1 < j ≤ q + 1, however, it
is not required to be the concatenation of ηi+1 with a hypertree rooted at s (see Example 3). In
this case, finding a shortest hyperpath πi ∈ Πi reduces to solving a shortest hypertree problem on
a hypergraph Hi, obtained from H as follows:

- for each node uj , i + 1 < j ≤ q + 1, remove each hyperarc in BS(uj) except p(uj);

- remove hyperarc p(ui+1) from BS(ui+1).

We say that in Hi each hyperarc p(uj), i + 1 < j ≤ q + 1, is fixed, while p(ui+1) is deleted. The
following property can be easily proved:

Property 2 Each hyperpath in Πi is also an s-t hyperpath in Hi; conversely, each s-t hyperpath
in Hi belongs to Πi.

As a consequence, each set Πi is represented by the corresponding hypergraph Hi. A (backward)
branching operation on πst returns the set of hypergraphs B(H) = {Hi : 1 ≤ i ≤ q}, representing
the partition {Πi : 1 ≤ i ≤ q} of Π \ {πst}. Recall that a branching operation is related to an
underlying valid ordering V ; a different order may result in a different set of hypergraphs.
Adopting the backward branching technique, we can extend Yen’s algorithm to hypergraphs. The
algorithm maintains a list L of subproblems. Each subproblem r is represented by the pair (Hr, πr),
where πr is a shortest s-t hyperpath in Hr. Note that we assume t hyperconnected to s in each
subproblem. Initially, L contains the pair (H, πst). In iteration k we remove from L a pair (Hr, πr),
such that πr has minimum weight among the subproblems in L; πr is the kth shortest hyperpath.
Then backward branching is applied to πr, and for each sub-hypergraph Hi

r ∈ B(Hr), the shortest
hypertree rooted at s is computed; if t is hyperconnected to s in Hi

r, the pair (Hi
r, π

i
r) is inserted

into L, where πi
r denotes the shortest s-t hyperpath in Hi

r. Otherwise, Hi
r is discarded. The

algorithm terminates when L becomes empty or at the end of iteration K.
Procedure Yen, given below, formally describes our K-shortest hyperpath algorithm. Here W (π)
denotes the weight of hyperpath π, and we assume W (πi

r) = +∞, if t is not hyperconnected to s
in Hi

r.

Procedure Yen(H, s, t,K)

Step 0 L =
{
(H, πst)

}
; k = 1;

Step 1 if L = ∅ then stop; otherwise, let L = L \ {r} where

πr = arg min
l∈L

W (πl);

Step 2 output πr; k = k + 1; if k > K then stop;

Step 3 for each Hi
r in B(Hr) do:

(a) apply procedure SBT (s,Hi
r);

(b) if W (πi
r) < +∞ then L = L ∪

{
(Hi

r, π
i
r)

}
;

go to Step 1.

As happens for graphs, at most n subproblems are generated in each branching step and Procedure
Yen must solve O(Kn) shortest hyperpath problems in the worst case. In practice, however, it is
not always necessary to process all the hypergraphs in B(Hr). Consider the case where, in order
to obtain Hi

r, hyperarc p(u) must be deleted and BS(u) = {p(u)}. This happens, in particular,
if p(u) has been fixed in a previous branching step. Due to the structure of backward branching,

10

H
3

e3

e2

e1

e1

H
2

H
1

H
21

πst2

πst1

delete

fix

Figure 4: The branching tree of H.

either u = t or u belongs to the tail of a fixed hyperarc in Hi
r. It follows that neither u nor

t is hyperconnected to s in Hi
r. In this case, we may assume that Hi

r is not generated by the
algorithm.

Example 3 Assume that we want to find the K = 3 shortest hyperpaths, with respect to the
sum function, in the hypergraph of Figure 1(a), where we assume unit weights on the hyperarcs.
The minimal hypertree has been emphasized in Figure 1(b). The shortest hyperpath from s to t,
with weight 3, is the one given in Example 1, that is πst = ({t, 1, 2, s} , {e1, e2, e3}).
A valid ordering of the nodes in πst is V = {s, 1, 2, t}. Applying backward branching, three
subhypergraphs H3, H2 and H1 are created from H, as shown in Figure 4; H3 is obtained by
deleting p(t) = e3; H2 is created by fixing e3 and deleting e2; H1 is created by fixing e3 and e2,
and by deleting e1. Subhypergraphs H3, H2 and H1 are shown in Figures 5(a)-5(c) with minimal
hypertrees emphasized; the shortest hyperpath weight appears close to t. In each figure the fixed
hyperarcs are marked with thick lines.
Observe that arc e6 = ({1}, 2) has been removed from H1, since e2 = ({s}, 2) has been fixed.
Moreover, the optimal s-t hyperpath in H1 is not the concatenation of a hypertree and the end-tree
defined by e3 and e2.
Assume that we select the shortest hyperpath π2

st in H2 next. Again, V = {s, 1, 2, t} is a valid
ordering. Since BS(t) and BS(2) have cardinality one, only hyperarc p(1) = e1 can be deleted.
This gives subhypergraph H21, shown in Figure 5(d), where no hyperpath from s to t exists. The
third shortest hyperpath thus becomes the hyperpath in H3, with weight 4.

3.2 An Improved Algorithm

The main drawback of Yen’s algorithm for K-shortest paths is that an SPT problem must be
solved for each Gi generated by branching. The number of SPT problems to solve is therefore
much larger than K, and possibly proportional to Kn. The efficiency of the branching phase can
be improved by applying reoptimization techniques (see e.g. [15]). These techniques cannot be
directly extended to hypergraphs, and are not discussed here. Instead, we propose an improved
version of procedure Yen, based on a new strategy. Our goal is to delay the computation of shortest
hypertrees. In particular, hypertrees are computed when a subproblem is selected from the list
L; the selection order is based on a tight lower bound on the shortest s-t hyperpath weight. The
selected subproblems provide a superset of the K shortest hyperpaths. Clearly, this technique is
effective if the number of selections is small (e.g. close to K) compared to the total size of L, which
is O(Kn).

11

s

1

2

3 4

t4

(a) Hypergraph H3

s

1

2

3 4

t
4

(b) Hypergraph H2

s

1

2

3 4

t
6

(c) Hypergraph H1

s

1

2

3 4

t

8

(d) Hypergraph H21

Figure 5: Subhypergraphs generated during the procedure.

In order to compute a tight lower bound on hyperpath weight, we take advantage of some properties
that are known to hold for graphs, and can be extended to hypergraphs. Let the predecessor
function p define the shortest hypertree Ts in hypergraph H = (V, E). Moreover, denote by W
the vector of minimum weights, i.e. W (u) is the minimum weight of an s-u hyperpath, and let
F (W, e) denote the value of the weighting function F on hyperarc e with respect to the weights
W . For example, for the distance function we would have:

F (W, e) = max
v∈T (e)

{W (v)}.

Given node v �= s, suppose that p(v) is removed from H, obtaining a sub-hypergraph H′; let
BS′(v) �= ∅ be the backward star of v in H′. Compute the value W (v) as follows:

W (v) = min
e∈BS′(v)

{F (W, e) + w(e)}

and let p be the predecessor function obtained from p by setting:

p(v) = arg min
e∈BS′(v)

{F (W, e) + w(e)}.

Recall that p may define a hypertree, but this is not necessarily true.

Theorem 3 The value W (v) is a lower bound on the minimum weight W ′(v) of an s-v hyperpath
in H′. Moreover, if p defines a hypertree, W (v) = W ′(v).

Proof Denote by W ′ the vector of minimum weights in H′; clearly, W ′ ≥ W , and thus F (W ′, e) ≥
F (W, e) for each e in H′. This implies the first claim:

W (v) = min
e∈BS′(v)

{F (W, e) + w(e)} ≤ min
e∈BS′(v)

{F (W ′, e) + w(e)} = W ′(v).

To prove the second claim, assume that p defines a hypertree T ′, and let

V ′ = (s = u1, u2, . . . , v = ui, . . . , t = un)

12

be a valid ordering for T ′. Since p(uj) = p(uj) for each j < i, the subtree T i−1 of T ′ is a subtree of
T ; it follows that W ′(u) = W (u) for each node u in T i−1

Step 1 if L = ∅ then stop; otherwise, let L = L \ {r} where

r = arg min
l∈L

LBl;

Step 2 if Tr �= nil go to Step 4;

Step 3 set Tr = SBT (s,Hr); if W (πr) < ∞ then set LBr = W (πr) and L = L ∪ {r}; go
to Step 1;

Step 4 output πr; k = k + 1; if k > K then stop;

Step 5 for each Hi
r in B(Hr) do:

(a) compute the lower bound W
i

r;

(b) if W
i

r < +∞ then L = L ∪
{
(Hi

r,W
i

r,nil)
}
;

go to Step 1.

It must be remarked that in actual implementations of procedure LBYen the reinsertion of r in
Step 3 is not always necessary. In fact, reinsertion is necessary only if the weight of πr is greater
than the minimum lower bound in L, i.e.:

W (πr) > min
l∈L

LBl.

In the other cases, in particular if the lower bound W (t) previously computed for subproblem
r gives the true weight of πr, we can proceed to Step 4 without reinsertion. As shown in the
computational results, the number of actual reinsertions performed by the procedure is quite low.

Example 3 (continued) Assume that procedure LBYen is used in Example 3. The lower bound
W (t) for subhypergraphs H3, H2 and H1 is equal to the actual weight. Again, assume we select
H2 next. In order to compute W (t) for subhypergraph H21, we must compute W (1) first; the
backward star of node 1 in H21 contains the single arc e9 = ({4}, 1), which gives W (1) = 5. We
thus obtain W (2) = 6 and W (t) = 12, which is a weak lower bound on infinity. Subproblem
(H21, 12,nil) is inserted in L and, if selected later, it will be discarded in Step 3.

3.3 Acyclic Hypergraphs

The K shortest path problem in acyclic graphs is computationally much easier, since algorithms for
the unrestricted problem can be used in this case. Up to a certain extent, this situation extends
to acyclic hypergraphs. Here we shall devise a specialized procedure where only one shortest
hypertree computation is needed. This resembles the approach used in Eppstein’s algorithm for
unrestricted K shortest paths. In our case, however, the computation of hyperpath and weights
involves more complex operations.
According to Theorem 4, the lower bound W (t) always computes the actual hyperpath weights
in an acyclic hypergraph. This implies that no reinsertions are performed by Procedure LBYen.
Next we show that it is not necessary to find a shortest hypertree in each subproblem in order to
compute W (t).
Consider an acyclic hypergraph H, where

V = (u1 = s, u2, . . . , un−1, un = t)

is a valid ordering of the nodes; the shortest hypertree Ts, defined by the predecessor p, contains
the shortest hyperpath πst. In the branching step we process the nodes according to the ordering
V , which of course induces a valid ordering for the nodes in πst.
For notational convenience, assume that sub-hypergraph H′ is obtained from H by deleting hy-
perarc p(ui) and possibly by fixing the hyperarcs in an end-tree ηi. In order to obtain the value

14

W (t) in H′, we must compute the value W (ui). Note that, in this phase, we only consider nodes
that precede ui in V ; for these nodes, the shortest hypertree and the shortest hyperpath weights
in H′ are the same as in H.
Since we process the nodes in πst according to V , the predecessor hyperarc is fixed in H′ for
each node uh in ηi with h > i. Moreover, a shortest s-t hyperpath π′

st in H′ contains ηi. As a
consequence, when branching on π′

st, we delete the predecessor of a node uj only if j ≤ i. As
before, in order to compute W (uj) we only need to consider nodes that precede ui in V . Clearly,
the same argument can be applied to any hypergraph obtained from H′ by recursively applying
the branching step.
In conclusion, the value W (t) and the shortest hyperpath in each subhypergraph can be computed
using the shortest hypertree and hyperpath weights for H. Therefore we can devise a specialized
version of Procedure Yen, referred to as AYen, where we do not apply procedure SBT in Step
3(a). Instead, we compute the weight W (ui) and the predecessor p(ui) as in procedure LBYen. In
this way, we easily obtain the shortest hyperpath πi

r used in Step 3(b) to create a new subproblem.

4 Computational Results

In this section we test the procedures described in Section 3. The procedures have been imple-
mented in C++ and run on a 700 MHz PIII computer with 512MB RAM using a Linux operating
system. The programs have been compiled using the GNU C++ compiler (version 2.96) with
optimize option -O.
In our implementation, we use a 2-heap for the set of candidates Q in Procedure 1. The branching
tree representing the list L (see Figure 4) is implemented as a dynamic binary tree; all the infor-
mation related to the subproblems is associated with nodes in the tree, while a heap of tree node
pointers is used for the selection phase. In fact, at the end of the procedure the branching tree
provides a representation of the K shortest hyperpaths. Anyway, we do not perform any actual
“output” operation on the generated hyperpaths.

Class 1 2 3 4 5 6 7 8 9 10

Nodes 100 300 500 800 1000 1000 3000 5000 8000 10000

Arcs 400 1200 2000 3200 4000 2000 6000 10000 16000 20000

Harcs 5000 15000 25000 40000 50000 4000 12000 20000 32000 40000

Table 1: randomly generated test problems.

Ten classes of randomly generated hypergraphs were considered, as shown in Table 1. The gen-
erated hypergraphs can be divided into two groups. Hypergraphs in class 1-5 have fewer nodes
and are dense: the number of arcs is 4n and the number of “true hyperarcs” is 50n. This gives an
average number of 54 hyperarcs in the backward star of a node. Hypergraphs in class 5-10 have
more nodes and are sparse, the number of arcs is 2n and the number of “true hyperarcs” is 4n
resulting in an average number of 6 hyperarcs in the backward star of a node.
For all classes, the size of each true hyperarc is randomly generated with a uniform distribution
in the interval [3, 5]. The weights for each arc is between 500 and 1000, and for each hyperarc it
is between 1 and 100. This choice has been made to favor hyperpaths with many true hyperarcs;
nevertheless, the percentage of arcs in the generated hyperpaths tends to be relevant, in particular
for sparse hypergraphs.
For each class in Table 1, five general and five acyclic hypergraphs were generated. Note that, in
the acyclic case, nodes were numbered according to a valid ordering. We shall consider the general
and acyclic case separately. As discussed earlier, we shall consider the sum and distance weighting
functions, and the mean function restricted to acyclic hypergraphs.

15

Sum function Distance function

C
la

ss

N
o
d
es

A
rc

s

H
a
rc

s

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

R
ei

n
se

rt

C
P

U
-

L
B

C
P

U
-

Y
en

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

R
ei

n
se

rt

C
P

U
-

L
B

C
P

U
-

Y
en

1 100 400 5000 12,0 44,4 4314 12 1,7 15,1 43,5 20,9 10009 60 2,2 31,3

2 300 1200 15000 12,9 50,4 4794 3 8,0 78,3 55,7 34,6 13147 7 9,4 220,0

3 500 2000 25000 13,1 52,4 5026 6 14,5 147,6 66,4 39,8 14010 44 17,8 427,0

4 800 3200 40000 12,4 54,2 4811 3 24,4 234,0 62,9 46,2 11668 26 29,0 606,5

5 1000 4000 50000 11,9 54,4 4557 3 31,4 284,2 86,2 45,4 16590 11 36,4 1113,4

6 1000 2000 4000 11,2 79,8 3469 4 2,4 14,6 52,9 70,4 7820 6 2,8 35,8

7 3000 6000 12000 10,1 78,7 3467 2 11,1 68,1 55,4 72,3 8974 4 12,5 189,4

8 5000 10000 20000 9,6 78,7 3408 0 20,4 121,9 47,3 71,3 7972 0 22,6 301,8

9 8000 16000 32000 9,0 77,7 3282 0 34,9 196,9 41,7 72,7 6899 0 38,7 445,3

10 10000 20000 40000 8,5 78,1 3200 1 45,0 243,7 39,1 71,2 6832 3 50,0 563,4

Table 2: Sum and distance functions, K = 500 (general hypergraphs).

4.1 General hypergraphs

Our goal here is to evaluate and compare the behaviour of procedures Yen and LBYen. Results
are reported in Table 2, where we set K = 500. Note that each row in Table 2 contains the
average results over the five hypergraphs generated for each class. Column “Cardinality” contains
the average size of the generated hyperpaths, i.e. the number of arcs plus the number of true
hyperarcs, while column “Arc %” contains the average percentage of arcs. Column “Btsize” gives
the total number of subhypergraphs in the branching tree for procedure LBYen. The branching
tree for procedure Yen is approximately the same. In column “Reinsert” we give the number
of subproblems reinserted in the list L by procedure LBYen. Finally, columns “CPU - LB”
and “CPU - Yen” contain the CPU time, reported in seconds, for procedures LBYen and Yen,
respectively.
Table 2 shows that the average hyperpath cardinality increases, while the arc percentage decreases,
when the distance function is compared with the sum function. This behaviour is to be expected
since the sum function is quite sensitive to changes in cardinality and hyperarc percentage. This is
not true for the distance which is equal the maximum length of a path contained in the hyperpath.
Furthermore, the lower cost assigned to hyperarcs makes hyperpaths with many hyperarcs prefer-
able for the distance. Indeed, for the distance function on dense hypergraphs, the cardinality tends
to increase (though slowly) with the number of nodes n. On the contrary for the sum function,
and for both functions on sparse hypergraphs, the cardinality does not increase with n.
The above observations also explain the behaviour of the branching tree size, which is expected
to be proportional to hyperpath cardinality, more precisely, roughly equal to K(Cardinality− f),
where f is the average number of fixed hyperarcs in the generated hyperpaths.
If we compare the CPU times, we see that procedure LBYen outperforms procedure Yen. The
results confirm that CPU time is roughly proportional to the number of times the SBT procedure
is used. Procedure Yen solves a shortest hyperpath problem for each subproblem, while LBYen
does so only for selected subproblems, i.e. K times plus the number of reinsertions. It must be
remarked that the actual number of reinsertions in Procedure LBYen is quite low (12% of K in
the worst case) implying that the lower bound is mostly tight. This number tends to be higher
for the distance function on dense hypergraphs, according to the fact that the branching tree size
is higher.
Even though the branching tree size is roughly constant, CPU times increase with n, due to
the fact that the SBT procedures are applied to larger hypergraphs. In order to investigate this

16

0 800 1000
0

50

150

250

350

100 300 500

Se
co

nd
s

n

LB

Yen

(a) Sum function

0 100 300 500 800 1000
0

500

1000

1500

0 1000
0

1500

Se
co

nd
s

n

LB

Yen

(b) Distance function

Figure 6: CPU times for dense hypergraphs of increasing size.

behaviour more deeply, we plotted the CPU time against the number of nodes n for each generated
hypergraph. The results for dense hypergraphs are reported in Figure 6(a) and 6(b) for the sum
and the distance weighting functions, respectively. Both figures show a linear dependence in n,
however, for higher n the behaviour of procedure Yen tends to be less stable, and this is particularly
true for the distance function. On the contrary, procedure LBYen is not only faster but seemingly
more stable than Yen. We omit the plots for the sparse hypergraphs that show a similar linear
dependence and an even more stable behaviour.
Finally, we tried to evaluate the computational effort required by each generated hyperpath. To
this aim, we recorded the elapsed CPU time every ten generated hyperpaths, for a particular
hypergraph and weighting function. Figure 7(a) refers to a large sparse hypergraph (class 10) and
to the sum function. Figure 7(b) refers to a large dense hypergraph (class 5) and to the distance.
A linear dependence is obvious in both cases, meaning that the computational effort required to
generate one single hyperpath is approximatively constant for the first K hyperpaths. Again, the
sum function seems to be more stable. As before, the results obtained for other combinations of
hypergraph and weighting function show a similar dependence and a more stable behaviour.

17

0 100 200 300 400 500
0

50

100

150

200

250

Se
co

nd
s

k

LB

Yen

(a) Sparse hypergraph (sum)

0 100 200 300 400 500
0

200

400

600

800

Se
co

nd
s

k

LB

Yen

(b) Dense hypergraphs (distance)

Figure 7: CPU time per hyperpath.

Sum function Distance function

C
la

ss

N
o
d
es

A
rc

s

H
a
rc

s

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

C
P

U
-

L
B

C
P

U
-

A
Y

en

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

C
P

U
-

L
B

C
P

U
-

A
Y

en

1 100 400 5000 10,6 47,9 1530 1,7 0,2 24,7 35,0 2436 1,8 0,2

2 300 1200 15000 10,7 53,3 1478 8,1 1,3 35,8 43,7 3179 8,6 1,4

3 500 2000 25000 10,7 54,6 1524 14,9 2,4 37,1 49,5 3702 15,7 2,4

4 800 3200 40000 10,5 55,2 1547 25,2 3,9 39,2 52,0 3376 27,7 3,9

5 1000 4000 50000 9,8 56,1 1396 32,2 4,5 36,7 53,6 3380 36,0 4,9

6 1000 2000 4000 11,0 78,7 1567 1,4 0,4 32,0 73,5 2529 1,5 0,4

7 3000 6000 12000 9,6 77,4 1592 7,1 2,0 28,0 74,3 2113 6,8 2,1

8 5000 10000 20000 8,5 77,0 1453 12,7 3,6 23,9 73,4 2082 12,2 3,8

9 8000 16000 32000 7,9 76,8 1434 21,6 6,6 18,1 74,1 2070 21,0 6,2

10 10000 20000 40000 7,7 75,8 1453 27,3 7,9 21,0 71,6 1947 27,2 7,9

Table 3: Sum and distance functions, k = 500 (acyclic hypergraphs).

18

0 100 200 300 400 500
0

25

50

Se
co

nd
s

k

LB

Yen

LBA

Figure 8: Cost per hyperpath, class 10 (distance).

C
la

ss

N
o
d
es

A
rc

s

H
a
rc

s

C
a
rd

in
a
li
ty

A
rc

%

B
T

si
ze

C
P

U
-

A
Y

en

1 100 400 5000 32,79 31,87 2189 0,16

2 300 1200 15000 40,68 46,97 1399 1,25

3 500 2000 25000 58,50 50,27 2487 2,34

4 800 3200 40000 76,59 50,68 2253 4,35

5 1000 4000 50000 72,55 53,22 1956 5,42

6 1000 2000 4000 56,97 73,21 3372 0,47

7 3000 6000 12000 52,79 75,81 3111 2,57

8 5000 10000 20000 47,13 76,73 2472 4,19

9 8000 16000 32000 49,43 75,68 2566 7,16

10 10000 20000 40000 50,65 74,04 2231 8,78

Table 4: Mean function, k = 500 (acyclic hypergraphs)

4.2 Acyclic hypergraphs

The results for the sum and distance functions are reported in Table 3. Since procedure Yen is
slower, here we only compare the CPU times for procedures LBYen and AYen. Recall that no
reinsertions are performed by LBYen in this case.
Most of the observations made for general hypergraphs apply to acyclic hypergraphs too. In this
case, however, the difference between sum and distance is reduced. In general, both the hyperpath
cardinality and branching tree size are not influenced by the hypergraph size.
Comparing the CPU times for LBYen and AYen shows that the latter performs best as expected.
It must be remarked that the CPU time for AYen increases almost linearly with n. Since AYen
finds a minimal hypertree only once, this behaviour does not depend on the SBT procedure. In
fact, it is due to the representation of sub-problems in the branching tree. Indeed, in the current
implementation, each generated sub-hypergraph involves an O(m) computational cost. Using a
more sophisticated implementation, this cost may be made proportional to the cardinality of the
hyperpath. Clearly, this might dramatically reduce the CPU times for AYen which (according to
the results in Table 3) would be almost independent of the hypergraph size.
Like for general hypergraphs, we made plots similar to the ones in Figure 6 and 7. They actually
reveal quite a similar behaviour. Here, we only report one of them in Figure 8.

19

0 100
0

500

20 40 60 80

100

200

300

400

W
ei

gh
t

k

distance

sum

mean

(a) Dense hypergraph (class 5)

0 100
0

2500

20 40 60 80

500

1000

1500

2000

W
ei

gh
t

k

sum

mean

distance

(b) Sparse hypergraph (class 10)

Figure 9: The shortest 100 weights for different weighting functions.

In Table 4 we report the results of procedure AYen for the mean function. As expected, the
average hyperpath cardinality grows considerably compared to the sum function, which results
in a larger branching tree size. However, the hyperpath cardinality increases at least by a factor
three, while the branching tree size is at most doubled. This difference can be explained since
many of the sub-hypergraphs generated in the branching phase are infeasible, that is they do not
contain an s-t hyperpath. This situation is detected in procedure AYen which does not actually
generate the subproblem. Besides the above observations, the behaviour of AYen for the mean
and sum functions is similar.

4.3 The weight of suboptimal hyperpaths

In order to give a better intuition of the behaviour of our K shortest hyperpath procedures, we
turn our attention to the weights of the generated hyperpaths. In Figure 9 we plot the weights
of the 100 shortest hyperpaths found in a couple of hypergraphs, for the sum, distance and mean
weighting functions. Again, a dense hyperpath and a sparse one are considered. It is apparent
that the increase in the weight is highest for the sum function and lowest for the mean. As
expected, in all cases the increase is higher in the sparse case. In particular, the increase in the
mean function for the dense hypergraph is negligible, implying that many alternate shortest or
nearly shortest hyperpaths exist. For both the sum and the distance functions, the rate of increase

20

is quite impressive at the beginning. However, it decreases rapidly afterwards.

5 Applications

Shortest hyperpath models have been proposed for several problems in different areas. For exam-
ple, applications to some classical problems in Computer Science are cited by Ausiello et al. [1].
Relevant applications are known in transportation and in combinatorial optimization. In this
section we shall consider in detail two of them, namely, optimal routing problems in dynamic
networks, and a separation problem arising in a branch-and-cut method for maximum Horn sat-
isfiability. Bicriteria shortest hyperpath algorithms will be discussed too.
Two other applications deserve to be mentioned. The first is related to the hypergraph model for
transit networks proposed by Nguyen and Pallottino [18, 6]. Transit networks consist of a set of
bus lines connected to stop nodes where passengers board or unboard buses. In the hypergraph
model, a hyperarc represents the set of attractive bus lines for a passenger waiting at a stop node; a
shortest hyperpath represents a set of attractive origin-destination routes. The hypergraph model
is embedded within a traffic assignment model, based on Wardrop’s equilibrium, where passengers
are assumed to travel along their shortest available hyperpaths. In the context of iterative methods
for traffic assignment, it could be computationally useful to identify alternate optimal hyperpaths.
More general, the possibility of exploiting ε-suboptimal hyperpaths might be taken into account.
The second application is related to minimum makespan assembly problems. As shown in [8],
an assembly line can be represented by a suitable hypergraph, where each hyperarc represents
a machine operation linking two or more subassemblies together. A hyperpath thus represents a
particular assembly plan. Assuming that each operation has a cost as well as an execution time,
shortest hyperpaths with respect to the sum and distance weighting functions give assembly plans
with minimum total cost or minimum execution time (with an unlimited number of machines),
respectively. Observe that a “good” assembly plan should represent a trade-off between execution
time and cost; clearly, this is related to the aforementioned bicriteria shortest hyperpath problems.
In general, scheduling a given assembly plan on a fixed number of machines in order to minimize
its makespan is a hard problem; approximated methods are discussed in [8]. A possible approach
for refining these methods would be to generate several candidate assembly plans; an “optimal”
plan would then be chosen according to its approximated minimum makespan scheduling, possibly
taking into account other objectives.

5.1 Random time dependent shortest paths

We consider random time dependent dynamic networks, where the travel time through an arc
is a random variable whose distribution depends on the departure time. In particular, we con-
centrate on discrete dynamic networks (RTDN), where departure times are integers in a finite
interval. These networks have recently attracted a growing attention, related to applications such
as hazardous material transportation or packet routing in congested communication networks (see
e.g. [16, 17]). In these contexts, it is relevant to provide alternate solutions to allow for real-
time routing decisions. Moreover, bicriteria shortest hyperpaths (discussed later) can provide an
efficient trade-off between different objectives, such as cost/exposure or time/reliability.
Hall [9] introduced the problem of finding the minimum expected travel time (MET) through a
dynamic network. He pointed out that the best route in a dynamic network does not necessarily
correspond to an origin-destination path. Instead, a strategy must be found that assigns optimal
successors to a node as a function of time. As shown in [20], directed hypergraphs can be used
to model discrete dynamic networks, and the MET problem can be reduced to solving a suitable
shortest hyperpath problem. A deep computational analysis of hypergraph algorithms for the
MET problem can be found in [16].
In addition, the hypergraph model shows a high degree of flexibility. Optimal strategies under
different objectives, such as min-max travel time, min expected cost and min-max cost, can be
found by using suitable weights and weighting functions (see [20]). Additional features, like (hard

21

a

b

d

c

Figure 10: The topological network G.

b1

s

b2

c3

d4 d5 d6

a0

c2

d3

3 4 5 6

0

0

0

0 0

0

0

1/41/4
3/4

1/3 2/3

3/4

Figure 11: The time expanded hypergraph H.

or weak) time windows, can be easily introduced. We illustrate the model by means of the following
example.
Consider the topological network G = (N,A) in Figure 10 with destination node d. Let the travel
time distribution be given in Table 5. Here a pair ((i, j) , t) corresponds to a possible leaving
time t from node i along arc (i, j) ; I ((i, j) , t) are possible arrival times at node j and pijt the
corresponding probabilities. If we e.g. leave node c at time 2 along arc (c, d) , we will arrive at
node d at time 3 with probability 1

4 or at time 4 with probability 3
4 .

Given G and Table 5, a time expanded hypergraph H = (V, E) can be created as follows. Create
a node it for each possible arrival time t at node i. For each pair ((i, j) , t) create a hyperarc
e =

(
{jh : h ∈ I((i, j), t)}, it

)
. Finally, a dummy node s and dummy arcs

(
{s}, dt

)
are created.

(i, j), t (a, b) , 0 (b, c) , 1 (b, c) , 2 (b, d) , 1 (b, d) , 2 (c, d) , 2 (c, d) , 3
I ((i, j), t) {1, 2} {2} {3} {3} {5} {3, 4} {4, 6}
pijt

{
1
3 , 2

3

}
{1} {1} {1} {1}

{
1
4 , 3

4

} {
3
4 , 1

4

}

Table 5: Input parameters for the RTDN.

22

The time expanded hypergraph H is shown in Figure 11. Note that the time expanded hypergraph
is acyclic and the orientation of the hyperarcs is opposite to the orientation of arcs in G. In addition
the size of H is proportional to the size of the input data.
As shown in [20], each strategy is represented uniquely by a hypertree Hs, that is by a predecessor
function p. The best strategy for the MET problem, for a traveller leaving a at time zero, is shown
in Figure 11 emphasized. Here we have p(b1) = ({d3} , b1) and p(b2) = ({c3} , b2), meaning that,
when leaving from b at time 1, we go directly to d; while at time 2, we go to c first.
Now assign weight t to each dummy arc

(
{s}, dt

)
and zero weight to all other hyperarcs; assign

multiplier pijh to tail node jh in each hyperarc e = ({jh : h ∈ I((i, j), t)}, it). In this case, for a
given strategy, the mean of a hyperpath π from s to a node it gives the expected arrival time at
d when leaving i at time t. Moreover, the distance of π gives the maximum possible arrival time
at d.
Therefore, a strategy minimizing the expected travel time (the maximum possible travel time)
can be found by solving a shortest hypertree problem with respect to the mean (the distance)
function. Clearly, the K best strategies can be found by finding the K shortest hyperpaths on the
time expanded hypergraph.
Suppose we want to find the three best strategies to the MET problem in the hypergraph of Figure
11. The best hyperpath has a mean W (a0) = 4. The second best strategy gives W (a0) = 4.25
with p (b1) = ({c2} , b1) and p (b2) = ({c3} , b2); the third best strategy gives W (a0) = 4.3 with
p (b1) = ({d3} , b1) and p (b2) = ({d5} , b2). Observe that the third hyperpath has a distance equal
to five, while the first two have distance six.

5.2 The separation problem for Max Horn SAT

Propositional satisfiability problems represent a most relevant research area in Combinatorial
Optimization and Computational Logic. Directed hypergraphs proved to be a quite effective tool
in this area, both from a theoretical and a practical point of view, see e.g. [6, 5]. For example, the
maximum satisfiability problem for Horn formulas (Max Horn SAT) turns out to be equivalent [5]
to the problem of finding a minimum cut in a hypergraph (MCH). Since Max Horn SAT is NP-hard,
also MCH is, opposed to the well-known minimum cut problem in graphs.
Several formulations of MCH have been investigated in [5]; in particular, one formulation is as
follows. Define the cost of hyperpath π as the sum of the weights of its hyperarcs. Problem MCH
asks to assign 0-1 weights to the hyperarcs so that the cost of each s-t hyperpath is at least one,
and the sum of the assigned weights is minimum. This leads to the following ILP problem:

P (Π) =

min
∑

e∈E x(e)
cT
π x ≥ 1, ∀π ∈ Π;

x ∈ {0, 1}m

where cπ ∈ {0, 1}m is the characteristic vector of hyperpath π, i.e. cT
π x gives the cost of π.

In practice, since P (Π) may have an exponential number of constraints, a relaxation P (Π) is
considered, where only a subset Π ⊂ Π of hyperpaths are included. A suitable set Π can be built
by means of a row generation procedure. For a given Π ⊂ Π, let P (Π) be the linear relaxation of
P (Π), and let x be the optimal solution of P (Π). The separation problem finds an s-t hyperpath
π ∈ Π \ Π whit cost less than one (if any), where the hyperarcs are assigned the weights w = x.
The violated constraint cT

π x ≥ 1 is then added to Π. Based on the row generation procedure, a
branch and cut algorithm for MCH has been devised in [5].
Observe that the cost of a hyperpath is not an additive weighting function. Indeed, it has been
proved in [2] that the problem of finding a minimum cost s-t hyperpath is strongly NP-hard.
As proved in [5], the separation problem for P (Π) is equivalent to the minimum cost hyperpath
problem (in decisional version), and is NP-complete. A quite simple approximate separation
heuristic is adopted in [5]. Even though this approximation performs well for some classes of
instances, more sophisticated techniques seem to be necessary to improve the effectiveness of the

23

algorithm. In particular, it is crucial to separate several violated constraints in the same cut
generation step. To this aim, K-shortest hyperpaths procedures can be used.
Let us consider the sum weighting function first. It is easy to see that, for each hyperpath, the
sum gives an upper bound on the cost. Therefore a hyperpath with a sum less than one provides
a violated constraint; informally this defines a (possibly empty) set of cuts that can be generated
“easily”. In addition, it may be sensible to consider some of the hyperpaths with sum equal to or
slightly larger than one, since some of them may have a cost less than one. Indeed, a hyperpath
with a low cost is likely (though not required!) to have a low sum too.
Consider now the distance weighting function. Clearly, for each hyperpath, the distance gives a
lower bound on the cost. Therefore only hyperpaths with a distance less than one need to be
considered, i.e. they define a superset of the violated constraints. Clearly, hyperpaths with a low
distance are likely (though not required!) to have a cost less than one.
In conclusion, the sum and the distance functions show different properties that can be exploited
to devise an exact as well as an approximate cut generation procedure. These functions may
also be combined, e.g. enumerating hyperpaths by sum, but dropping subhypergraphs where the
minimum distance is not less than one.

5.2.1 Approximating hard shortest hyperpath problems

Besides the specific application to cut generation discussed above, it is apparent that a K shortest
hyperpaths procedure can be used to find a minimum cost s-t hyperpath. More precisely, we rank
hyperpaths by distance, keeping track of the minimum cost hyperpath generated in the process.
The procedure terminates as soon as the distance of the next ranked hyperpath is greater than
or equal to the minimum cost found so far. Here we exploit the fact that the distance is a lower
bound on the cost.
The same approach can be used to solve the shortest hyperpath problem for any “difficult” weight-
ing function, besides cost. To this aim, procedure LBYen can be modified as follows:

• in Steps 2 and 3, find hyperpath πr by means of a heuristic procedure, and proceed to
branching;

• in Step 5(a), replace the lower bound W (t) with an available lower bound.

It must be remarked that in Step 5(a) we need a lower bound on the optimal hyperpath weight
which is not necessarily provided by or related to a tractable weighting function. Clearly, the
effectiveness of the approach depends on the tightness of the available lower bound.

5.3 Bicriteria shortest hyperpaths

Algorithms based on K shortest paths procedures have been proposed for bicriteria shortest path
problems. Assume that two criteria, e.g. time and cost, are associated with each arc of a graph.
In general, there does not exist a path that is optimal for both criteria. Instead, a decision maker
would be interested in finding efficient paths, that is solutions where the cost (respectively, time)
criterion cannot be improved without getting a worse time (respectively, cost).
A possible approach to these problems is based on a two–phases method. Here first phase finds a
subset of the efficient paths which are relatively easy to find (“supported” paths). In the second
phase, a K shortest path procedure is used to find (some of) the remaining efficient paths. This
approach has been proposed by Handler and Zang [10] for the constrained shortest path problem,
i.e. finding a minimum cost path whose total time does not exceed a given limit. Later, it has
been extended to the more general problem of listing all the efficient paths, or a particular subset
of them (see e.g. [3]).
Clearly, bicriteria problems can be extended to hypergraphs, and solved by a two-phases approach.
In this case, K shortest hyperpath procedures would be used in the second phase. As discussed
earlier, bicriteria shortest hyperpaths may be quite relevant in relation with dynamic networks.
These problems have recently been investigated in [19], and will be the subject of a forthcoming
paper.

24

6 Conclusions

In this paper, we introduced and investigated the K shortest hyperpath problem in directed
hypergraphs. Even though several hyperpath models have been proposed in the literature, this
problem has not yet been considered. The main contributions of this paper can be summarized
as follows.
First, we pointed out the lack of symmetry between the graph and hypergraph case, which prevents
the “forward branching” approach from being used.
Second, we extended to hypergraphs the method of Yen, and we proposed an algorithmic improve-
ment that turned out to be quite effective in computational experiments. We also pointed out
that acyclic hypergraphs are an easier case, as happens for graphs, and we devised a quite fast
specialized procedure.
Finally, we showed that K shortest hyperpaths algorithms have several potential applications in
different relevant areas.
We believe that the results in this paper provide a stimulating starting point for further research,
in particular for the analysis of bicriteria shortest hyperpath problems.
The specialized method developed in procedure LBYen deserves some further comments. Our
approach was inspired by some techniques for K shortest paths that cannot be directly extended
to hypergraphs. This motivated us to introduce the innovative strategy used in LBYen. To the
best of our knowledge, a variant of Yen’s algorithm based on a similar strategy for digraphs has
not yet been proposed in the literature, and may turn out to be effective also for K shortest paths
algorithms. In this case, research in the more complex setting of shortest hyperpaths would have
a positive feedback on the more “classical” area of shortest paths.

References

[1] G. Ausiello, P. G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algorithmic
results, and a novel decremental approach. In Lecture Notes in Computer Science 2202, pages
312–328. Springer Verlag, 2001.

[2] G. Ausiello, G. F. Italiano, and U. Nanni. Optimal traversal of directed hypergraphs. Techni-
cal Report TR–92–073, International Computer Science Institute, Berkeley, CA, September
1992.

[3] J. M. Coutinho-Rodrigues, J. C. N. Climaco, and J. R. Current. An interactive bi-objective
shortest path approach: Searching for unsupported nondominated solutions. Computers and
Operations Research, 26:789–798, 1999.

[4] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):653–674
(electronic), 1999.

[5] G. Gallo, C. Gentile, D. Pretolani, and G. Rago. Max Horn SAT and the minimum cut
problem in directed hypergraphs. Mathematical Programming, 80:213–237, 1998.

[6] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42:177–201, 1993.

[7] G. Gallo and S. Pallottino. Hypergraph models and algorithms for the assembly problem.
Technical Report 6, Dipartimento di Informatica, Università di Pisa, March 1992.

[8] G. Gallo and M. G. Scutellà. Minimum makespan assembly plans. Technical Report 10,
Dipartimento di Informatica, Università di Pisa, September 1998.

[9] R. W. Hall. The fastest path through a network with random time-dependent travel times.
Transportation Science, 20(3):182–188, 1986.

25

[10] G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem.
Networks, 10:293–310, 1980.

[11] W. Hoffman and R. Pavley. A method for the solution of the N’th best path problem. Journal
of the Association for Computing Machinery, 6:506 – 514, 1959.

[12] R. G. Jeroslow, K. Martin, R. L. Rardin, and J. Wang. Gainfree Leontief substitution flow
problems. Mathematical Programming, 57:375–414, 1992.

[13] V. M. Jiménez and A. Marzal. Computing the k shortest paths: A new algorithm and an
experimental comparison. Lecture Notes in Computer Science, 1668:15 – 29, 1999.

[14] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization problems
and its application to the shortest path. Management Science, 18(7):401–405, March 1972.

[15] E. Q. V Martins and M. M. B. Pascoal. A new implementation of Yen’s ranking loopless
paths algorithm. Technical report, Centro de Informatica e Sistemas, 2000. Available at
http://www.mat.uc.pt/∼eqvm/.

[16] E. D. Miller-Hooks. Adaptive least-expected time paths in stochastic, time-varying trans-
portation and data networks. Networks, 37(1):35–52, 2000.

[17] E. D. Miller-Hooks and H. S. Mahmassani. Optimal routing of hazardous materials in stochas-
tic, time-varying transportation networks. Transportation Research Record, 1645:143–151,
1998.

[18] S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large scale transit networks.
European Journal of Operational Research, 37:176–186, 1988.

[19] L. R. Nielsen, K. A. Andersen, and D. Pretolani. Bicriteria shortest hyperpaths (bi-SBT).
Available at http://www.imf.au.dk/∼relund/.

[20] D. Pretolani. A directed hypergraph model for random time dependent shortest paths. Eu-
ropean Journal of Operational Research, 123:315–324, June 2000.

[21] K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley - Interscience,
1992.

[22] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

26

