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Preface

This progress report presents the work of the first two years of my Ph.D. The main fields of
my research are hypergraphs, parametric and bicriterion analysis, but also logic has gained
some interest. My research activities for the past two years can be summarized as follows:

Fall 1999: I started to study the theory of directed hypergraphs. H ypergraphs have different
applications, one of them is that hypergraphs can be used to modelling dynamic networks.
More precisely a hypergraph model for random time-dependent shortest paths can be for-
mulated. And by finding shortest hyperpaths, we can find the minimum expected/min-max
traveltime of the dynamic network. During the semester I followed a study group “Logical
inference” concerning how the use of mathematical programming methods can be used in
logic inference.
Spring 2000: I began the project on bicriterion shortest hyperpaths (bi-SBT) together
with my supervisor Kim Allan Andersen. This is a totally new research area, and hence we
had to start from scratch by defining a bicriterion hypergraph and formulating the bi-SBT
problem. First, I began studying the bicriterion shortest path problem and the methods to
solve it. There are two main approaches, namely node labeling and path/tree. The node
labeling approach seems to be hard to transfer to hypergraphs because a hyperpath has a
more complex structure than a path, resulting in more complex node labeling procedure.
Furthermore, an efficient path satisfies that its subpaths are efficient; this is not always
the case for hyperpaths. The path/tree approach seems more adaptable to hypergraphs.
Most papers use a k’th shortest path subprocedure to solve the problem. Therefore I first
developed methods to solve the k’th shortest hyperpath problem.
During spring 2000 I also began another research project together with Kim Allan Andersen
where a parametric analysis of the shortest hyperpath problem is considered. H ere we
assume that the hyperarc weights are a function of a parameter λ and then determine for
which values of λ a hyperpath is still minimal.
Fall 2000: I had a 3 months stay in Camerino, Italy where I visited professor Daniele
Pretolani. During my stay, we developed procedures to solve the k’th shortest hyperpath
problem and the bi-SBT problem. The k’th shortest hyperpath problem is solved using a
new branching rule which divides the hypergraph into subhypergraphs. The bi-SBT problem
is solved using different methods which are tested against each other.
During my stay I also found a small error in the definition of a hyperpath which has been
used in many papers. I therefore wrote a short note with a new definition (Manuscript III).
Spring 2001: I finished the manuscripts about the bi-SBT problem and the parametric
analysis. Wrote this report. I am currently following a study group “Logic-based methods
for optimization” about how to use logic-based methods to solve mathematical programming
models.

I owe a debt of gratitude to many people who have been crucial to my success in completing
the first two years of my Ph.D. First of all, I am thankful to my supervisor Kim Allan
Andersen for his guidance, contributions and suggestions. Secondly, I would like to express
my gratitude to professor Daniele Pretolani for his contributions and our many discussions
about solution methods and implementation details. Special gratitude is also extended to
Randi Mosegaard and Ali Khatam for proof reading. Finally, my heartfelt appreciation goes
out to Dorthe for her understanding during this writing process.
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Chapter 1

Introduction

This progress report presents an overview over the past two years of my Ph.D., and points
out directions for further research. The report has tree parts. The first part, which you are
reading now, is a brief overview of the contents of the report, i.e. structure and summaries
of the manuscripts included in this progress report. The second part is a survey of the main
results stated in the three manuscripts included at the back of this report. The second part
has the following structure:

Chapter Two

H ere the basic definitions and properties of directed hypergraphs are stated. Some of the
areas are hyperpaths, hypertrees, weighted hypergraphs and the shortest hyperpath problem.

Chapter Three

In this chapter we solve the bicriterion shortest hyperpath problem. Section 3.1 presents
procedures for finding the k shortest hyperpaths. In Section 3.2 the two-phases method
are developed. Finally, Section 3.3 presents a summary of the computational results from
Manuscript I.

Chapter Four

This chapter contains the temporary results on my project about the parametric shortest
hyperpath problem in hypergraphs. We assume that the lengths of the hyperarcs depend
on some parameter and present procedures which find the shortest hyperpath from a source
node to all other nodes in a hypergraph as a function of the parameter.

Chapter Five

In the last chapter, I draw conclusions of my research and point out directions for further
research.

Finally the third part contains the original manuscripts which properly should be read
separately. Some of the sections in the manuscripts overlap.



2 Introduction

M anuscripts

Three manuscripts are included at the back of this report:

Manuscript I: Lars Relund Nielsen, Daniele Pretolani and Kim Allan Andersen, “On
bicriterion shortest hyperpaths”

Abstract

The bicriterion shortest path problem has been extensively studied in many
years. In addition recently there have been a growing focus on dynamic net-
works including the random time-dependent shortest path problem which can
be transformed to the shortest hyperpath problem [29]. But no attempts have
been made to find bicriterion dynamic paths.

This paper aims to solve the bicriterion shortest hyperpath problem (bi-SBT).
The first step implies development of procedures to solve the k’th shortest
hyperpath problem in order to pave the way for solving the bi-SBT problem.
The paper presents new methods of finding the k′th best solution by branching
on lower bounds; methods that may also be applied to digraphs. We next
develop different bi-SBT procedures which are tested against each other on
randomly generated hypergraphs. The results obtained show that bi-SBT can
be solved for large hypergraphs.

Manuscript II: Lars Relund Nielsen and Kim Allan Andersen, “Parametric shortest hy-
perpath problems”

Abstract

This paper contains the temporary results on my project about the parametric
shortest hyperpath problem in hypergraphs. We assume that the lengths of the
hyperarcs depend on some parameter and present procedures which find the
shortest hyperpath from a source node to all other nodes in a hypergraph as a
function of the parameter. The method extend results known from parametric
shortest path problems in directed graphs.

Manuscript III: Lars Relund Nielsen, Daniele Pretolani and Kim Allan Andersen, “A
remark on the definition of a B-hyperpath”

Abstract

In this note we show that a commonly used hyperpath definition for a directed
B-hypergraph is wrong. This is done by presenting a counter-example which
fulfils the hyperpath definition but which is not a hyperpath.



Chapter 2

Directed hypergraphs

This section contains the basic definitions of a directed B-hypergraph, i.e. hypergraphs where
each hyperarc only have one node in its head. More general hypergraphs are presented in
Gallo, Longo, Pallottino, and Nguyen [13]. In the following a B-hypergraph is referred to
as a hypergraph. For a more thorough study and hypergraph examples, see Manuscript I,
Section 2.
A directed hypergraph is a pair H = (V, E) where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair

e = (T (e), h(e)) T (e) ⊂ V h(e) ⊆ V\T (e)

where T (e) and h(e) denote the tail nodes and the head node, respectively. The cardinality
of hyperarc e is the sum of the tail and head nodes, i.e.

|e| = |T (e)|+ |h(e)| = |T (e)|+ 1

If |e| = 2 hyperarc e is called an arc. The size of H is the sum of the cardinalities of its
hyperarcs:

size(H) =
∑
e∈E

|e|

We denote by

FS(u) = {e ∈ E | u ∈ T (e)}
BS(u) = {e ∈ E | u ∈ h(e)}

the forward star and the backward star of node u, respectively. A path Pst in a hypergraph
H is a sequence of nodes and hyperarcs in H:

Pst = (v1 = s, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, ...q + 1, vi ∈ T (ei) and vi+1 ∈ h(ei). A node v is connected to node u if a
path Puv exists in H. A cycle is a path Pst where t ∈ T (e1). A path is cycle-free if it does
not contain any subpath which is a cycle, i.e.

vi ∈ T (ej)⇒ j ≥ i 1 ≤ i ≤ q + 1

If H contains no cycles, it is acyclic. H̃ = (Ṽ, Ẽ) is a subhypergraph of H = (V, E) if H̃
satisfies Ṽ ⊆ V and Ẽ ⊆ E . This is written H̃ ⊆ H or we say that H̃ is contained in H.
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2.1 Ordering a hypergraph

We consider a topological ordering of the nodes of a hypergraph.

Definition 1 Let H = (V, E) be a hypergraph. A valid ordering

V = (vi1 , vi2 , ..., vin)

of the nodes in H is a topological ordering of the nodes, such that, for each e ∈ E and
u ∈ T (e), node u precedes node h(e) in the ordering (see Figure 2.1).

e
h(e)

u

Figure 2.1: A valid ordering V = (..., u, ..., h(e), ...).

It is well-known that H is acyclic if and only if a valid ordering of the nodes in H is possible.

2.2 Hyperpaths

We here use a slightly different definition of a hyperpath than in Gallo et al. [13] since, in
some cases, this definition seems to be not working for B-hypergraphs, see Nielsen, Pretolani,
and Andersen [28].
Consider a hypergraph H = (V, E). A hyperpath πst of origin s and destination t, is an
acyclic minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ = ∪e∈Eπ
(T (e) ∪ h(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

Note that 3. implies that for each u ∈ Vπ \ {s} there exists a hyperarc e ∈ Eπ such that
h(e) = u, it follows from the minimality that e is unique. H yperarc e is called the predecessor
of u and denoted by eπ (u) . Note that only a subhypergraph of H has to be considered when
we want to find a hyperpath πst because the minimality also implies that the following
condition holds:

4. ∃u− t path ∀u ∈ Vπ \ {t}

Therefore all nodes which do not have a path to t can be removed from H. We say that
node t is hyperconnected to s if there exists a hyperpath πst. H yperpath πst is different from
hyperpath πuv if they do not have the same hyperarcs.

2.3 Hypertrees

A directed hypertree with root s is a hypergraph Ts = ({s}∪N , ET )1 satisfying the following
conditions:

1In some definitions it is possible to have more than one root [5].
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1. Ts is acyclic

2. {s} ∩ N = ∅

3. BS (s) = ∅

4. |BS (v)| = 1 ∀v ∈ N

A hypertree is the union of hyperpaths to all nodes in N . If FS(v) = ∅ then v is called a
leaf. Note that different hypertrees can have the same hyperpath πst.

2.4 Weighted hypergraphs

A weighted hypergraph is a hypergraph where each hyperarc e is assigned a real weight w (e).
Given a hyperpath πst a weighting function Wπ is a node function which assigns weights
Wπ (u) to all nodes in πst. The weight of hyperpath πst is Wπ (t) .We shall restrict ourselves
to additive weighting functions which are defined by the recursive equations

Wπ (u) =
{
w(eπ(u)) + F (eπ (u)) u ∈ Vπ \ {s}
0 u = s

where F (e) is a nondecreasing function of the weights of the nodes in T (e). Two particular
weighting functions, namely the distance and the value, have been studied in detail by
Gallo et al. [13], and Pretolani [29] who showed that these two functions have practical
applications. The distance is obtained by defining F (e) as follows:

F (e) = max
v∈T (e)

{Wπ (v)}

and the value is obtained as follows:

F (e) =
∑
v∈T (e)

ae (v)Wπ (v)

where ae (v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e) (see
Figure 2.2). The distance (the value) of a hyperpath πst is the weight of the hyperpath πst
with respect to the distance (the value) weighting function.

2.5 The shortest hyperpath problem

The shortest hyperpath problem (SBT)2 consists in finding the minimum weight hyperpaths
from an origin s to all nodes in H hyperconnected to s. In general the problem is hard
to solve but if the weighting function is additive, fast algorithms exist. We first define a
nondecreasing cycle which ensures that no weight can be decreased through a cycle.

2Shortest B-hypertree.

w(e)

u
v1

v2

vq

ae(v1)

ae(v2)

a e(
v q)

Figure 2.2: The weights and multipliers of the value function e = ({v1, ..., vq} , {u}).
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Precondition: Given hypergraph H with nondecreasing cycles and nonnegative hyperarc weights, let
W (vi) denote the minimal weight in node vi, F (e) the chosen additive weighting function, Q a
candidate set and let p be a predecessor function. Moreover, let the counter kj for each hyperarc
ej represent the number of nodes in T (ej) which have been removed from Q. Therefore we just
update h (ej) when the weights of all nodes in T (ej) has been calculated.

Initialization: Set W (vi) =∞ ∀i ∈ V, kj = 0 ∀e ∈ E , Q = {s} and W (s) = 0

while (Q 	= ∅) do1

select and remove u ∈ Q;2

for (ej ∈ FS(u)) do kj := kj + 13

if (kj = |T (ej)|) then v := h (ej)4

if (W (v) > w(ej) + F (ej)) then5

if (v /∈ Q) then6

Q := Q∪{v}7

if (W (v) < ∞) then8

for (eh ∈ FS (v)) do kh := kh − 19

end if10

end if11

W (v) := w(ej) + F (ej), p (v) := ej12

end if13

end if14

end for15

end while16

Procedure 1: Shortest B-tree procedure (SBT)

Definition 2 A nondecreasing cycle is a cycle C = {v1, e1, v2, e2, ..., vr, er, v1} that satisfies

w (er) + Fvr

[
w (er−1) + Fvr−1 (...Fv2 [w (e1) + Fv1 (z)])

]
≥ z ∀z ∈ R+ (2.1)

here Fvi
(W ) denotes the function where vi ∈ T (ei) has weight W and all other nodes

u ∈ T (ei) has weight equal to zero.

That is, if node v1 has temporary weight z then going through C will give no better tem-
porary weight (see Figure 2.3). Now, assume that the weighting function is additive, the
weights nonnegative and that all cycles are nondecreasing. Gallo et al. [13] showed that find-
ing the minimum weight hypertree is equivalent to finding a solution to Bellmans generalized
equations

W (v) =

{
0 v = s
min

e∈BS(v)
{w(e) + F (e)} v ∈ V\ {s}

Procedure 1 proposed in [13] finds the minimum weight hypertree containing the shortest
hyperpaths. If Dijkstra’s principle is used, i.e. select from Q a node u satisfying W (u) =

e1

e2

e3

v1

v2v3

v4

Figure 2.3: A nondecreasing cycle if condition (2.1) holds.
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Precondition: Given V, a valid ordering of H, let p denote the predecessor function and F (e) the
chosen additive weighting function.

Initialization: Set W (s) := 0, W (vi) =∞ i = 1, ..., n

for (i = 1 to n) do1

for (e ∈ BS(vi)) do2

if (W (vi) > w(e) + F (e)) then W (vi) := w(e) + F (e), p (vi) := e3

end for4

end for5

Procedure 2: Shortest B-tree procedure when H is acyclic (SBT-acyclic)

min {W (x) | x ∈ Q} at each iteration, the well-known assumption of nonnegative arc weights
in standard digraphs becomes

w (e) + F (e) ≥W (x) ∀x ∈ T (e) , e ∈ E (2.2)

that is, the weight in the head must be equal to or larger than the weights in all the nodes
in the tail. If assumption (2.2) is satisfied, then Dijkstra’s theorem can be extended to
hypergraphs.

Theorem 1 Suppose assumption (2.2) is satisfied andW (u) = min {W (x) | x ∈ Q} . Then
W (u) is the minimum weight of all hyperpaths from s to u.

As a consequence, we have that every node u ∈ V is removed from Q at most once and
hence line 9 in Procedure 1 can be dropped.

2.5.1 Acyclic case

If H is acyclic, a fast procedure exists [14]. The procedure needs a valid ordering

V = (v0 = s, v1, ..., vn)

and is stated in Procedure 2. The procedure finds the minimal weight for a node v in one
iteration, since the valid ordering assures that the minimal weights in the nodes of T (e)
have been found.





Chapter 3

The bicriterion shortest
hyperpath problem

One of the most classical problems encountered in the analysis of networks is the shortest
path problem.
Traditionally the shortest path problem was a single objective problem with the objective
being minimizing total distance or travel time. Nevertheless, due to the multiobjective
nature of many transportation and routing problems, a single objective function is not suf-
ficient to completely characterize some real-world problems. In a road network for instance,
two parameters, time and cost, can be assigned to each arc. Clearly, often the fastest path
may be too costly or the cheapest path may be too long. Therefore the decision maker
must choose a solution among the paths, where it is not possible to find a different path
such that time or cost is improved without getting a worse cost or time, respectively (ef-
ficient path). This problem is called the bicriterion shortest path problem. Climaco and
Martins [7] solved the problem by first finding an upper bound on one criteria and second
use a k′th shortest path procedure to find all efficient paths below that upper bound. In
Mote, Murthy, and Olson [26] a two-phases approach was considered. First phase found the
supported extreme nondominated points using an LP-relaxation and second phase searched
for unsupported nondominated points using a label correcting approach. More recent an
interactive approach which finds only a part of the nondominated solutions has been studied
[9, 10]. For an overview see Skriver [31].
In this chapter we solve the bicriterion shortest hyperpath problem (bi-SBT). The problem is
solved using a k′th shortest hyperpath procedure. Finding the k′th shortest path for digraphs
has been extensively studied in recent years [3, 34]. We extend the problem to hypergraphs
and present a new fast method for finding all hyperpaths with weight below an upper bound;
a method that may also be applied to digraphs. Next, a two-phases method for solving bi-
SBT are considered. H ere first step finds all supported extreme nondominated points using a
NISE like procedure, Cohen [8]. In the second phase, we find all unsupported nondominated
points, by searching each triangle defined by the supported extreme nondominated points
using a k′th shortest hyperpath procedure.
To keep the size of this chapter to a minimum, we only consider the most efficient methods
described in Manuscript I. Manuscript I also contains a section with applications to random
time-dependent shortest paths. For more thorough investigation see Manuscript I.

3.1 Finding the k’th shortest hyperpath

In this section, we describe how to find all shortest hyperpaths, from a root node s to a given
destination node t, with a weight below an upper bound ub. The procedure is an extension
of finding the k shortest loopless paths presented in Yen [34]. Lawler [23] presented similar
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Step 1 Use an SBT procedure to find a minimal hyperpath π ∈ Π.
Step 2 Divide H into subhypergraphs H1, ...,Hq which together satisfy: All possible hyperpaths

from s to t in H will be contained in the subhypergraphs except the minimal one found in
step 1.

Step 3 Use an SBT procedure to calculate a minimal hyperpath πi for every subhypergraph Hi.

Step 4 Pick a hyperpath πi with minimal weight, of the ones calculated in step 3.

Procedure 3: Finding the 2′nd shortest hyperpath (main steps)

results in a more general framework where he finds the k′th best solution to a discrete
optimization problem. In the following we let Π denote the set of hyperpaths πst from s to
t, i.e.

Π = {π ⊆ H |π has root s and destination t}

The idea of finding the 2′nd shortest hyperpath in H is now as stated in Procedure 3. The
subhypergraphsH1, ...,Hq in step 2 can be found by removing and fixing the hyperarcs of the
minimal hyperpath π, as shown in Figure 3.1. H ere Vπ = (u1, ..., uq) , and subhypergraph
Hi is obtained from H by fixing the backward star of node uj (1 ≤ j < i) to p (uj) and
removing p (ui) from the backward star of node ui. This leads to the following definition.

Definition 3 Let predecessor function p define the minimal hypertree of H =(V, E) and let
an ordering of a subset of nodes {u1, ..., ul} ⊆ V be given by

V = (u1, ..., ul)

We say that we branch on node ui meaning that we fix the backward star of node uj to p (uj)
(1 ≤ j < i) and remove p (ui) from the backward star of node ui. More precisely branching
on node ui corresponds to creating a subhypergraph H̃ =

(
Ṽ, Ẽ

)
with Ṽ = V and where the

hyperarc set Ẽ is modified in the following way

B̃S (u1) = p (u1) , ..., B̃S (ui−1) = p (ui−1) , B̃S (ui) = BS (ui) \ p (ui)

The ordering V is called the ordered branching set of H.

Therefore, if V in Definition 3 contains the nodes of the minimal hyperpath, then subhy-
pergraph Hi is obtained by branching on node ui.
The SBT procedure finds a minimal hypertree Ts defined by the predecessor function p.
H ence, it is possible to find a valid ordering of Ts:

VTs
= (v1 = s, v2, ..., vn−1, vn = t)

Note that this valid ordering can be found as the order we pick the nodes in a labelsetting
version of procedure SBT, provided that we use Dijkstra’s principle and assumption (2.2)
is fulfilled. Now if we order the levels of our branching tree in the opposite of VTs

, then by
branching on node ui, we only change the minimal weight label in each node which succeeds
node ui in the valid ordering VTs

. The label in all nodes before node ui in VTs
will not change.

Another good property of using the opposite valid ordering of the minimal hypertree is that
we do not have to branch on nodes v in the hyperpath where |BS (v)| = 1 in H. This is
due to the fact that, if the opposite valid ordering is used, we force the tail nodes of each
hyperarc we fix to be nodes in the minimal hyperpath of the subhypergraph. Therefore
by removing the hyperarc from a tail node v with |BS (v)| = 1, leaves the backward star
empty resulting in that no hyperpath πst can exist. We now can construct q subhypergraphs
H1, ...,Hq which satisfy step 2 in Procedure 3 by using the following branching rule.
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BS(u )1L1 ~ BS(u )2L2 ~ BS(u )qLq ~Level:

fix p(u 1
)

remove p(u
1 )

H1

fix p(u 2
)

remove p(u
2 )

fix p(u q)

remove p(u
q )

H2

Hq

H

Figure 3.1: The branching tree for the subhypergraphs.

Branching Rule 1 (Backward branching) Let predecessor function p define the mini-
mal hypertree Ts of H =(V, E) which contains the minimal hyperpath π = (Vπ, Eπ). More-
over, let VTs

denote a valid ordering of Ts.

VTs
= (v1 = s, v2, ..., vn−1, vn = t)

Now, scan VTs
backwards from node vn to node v1 and add node vi to the ordered branching

set Ṽ if
vi ∈ Vπ and |BS (vi)| > 1

When VTs
has been scanned, we now have an ordered branching set

V =
(
vl1 , ..., vlp

)
where the last node added from VTs

is last in V.We now create subhypergraph Hi, 1 ≤ i ≤ p
by branching on node vli .

We can now use Branching Rule 1 in step 2 in Procedure 3, and hence step 3 and 4 will find
the 2′nd shortest hyperpath.
Finding the k′th shortest hyperpath works in the same way. Now simply store all the
subhypergraphs and their corresponding minimal hyperpath in a candidate set so that it is
possible to calculate new solutions if this minimal hyperpath is used. A procedure is stated
in Manuscript I, section 3.

3.1.1 Using lower bounds to reduce computation time

In the above, we assumed that k was known and each time we pick a k’th shortest hyperpath,
the hypergraph which contains the hyperpath is divided into subhypergraphs. But when
we search for nondominated solutions in the bicriterion procedures in Section 3.2, k is
not known. We search until we reach an upper bound, which may be lowered during the
procedure, and then stop. So, if possible we want to make computations as late as possible,
i.e. when we pick a hypergraph, we do not want to calculate the minimal hyperpath for each
of its subhypergraphs. Instead, we calculate a lower bound W of the shortest hyperpath in
each subhypergraph and store this solution. It is obviously crucial that this lower bound is
as close as possible to the true value and that the computation of a lower bound is faster
than calculating the weight of the shortest hyperpath. We now pick the hypergraph H̃, from
the set we have stored, with minimal lower bound and have two cases:

1. If the lower bound is over the upper search bound, we stop because all solutions needed
have been found.
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Precondition: Let List be a candidate set, ub the upper bound, Out the outputlist and let lb denote
the lower bound for subhypergraph H̃. Moreover, let q denote the number of elements in the
ordered branching set of H̄.

Postcondition: The outputlist Out has been filled with the hyperpaths which have weight under
upper bound ub.

Initialization: Set lb = 0, List = {(H, 0)} and H̄ = H
while (lb ≤ ub) do use an SBT procedure to calculate the minimal hyperpath π of H̄1

if (W (π) ≤ ub) then Out := Out∪{π}2

for (i = 1 to q) do create subhypergraph Hi using Branching Rule 1.3

calculate lbi using Theorem 24

if (lbi ≤ ub) then set List := List∪{(Hi, lbi)}5

end for6

pick
(
H̄, lb

)
= argmin(H̃,l̃b)∈List

{
l̃b
}

7

end while8

Procedure 4: Finding all shortest hyperpaths under an upper bound

2. Otherwise we calculate the right minimal weight hyperpath π of H̃ and create subhy-
pergraphs H1, ...,Hq by using Branching Rule 1. Furthermore, if the lower bound for
subhypergraph H̃i is under the upper bound we add H̃i to the candidate set, otherwise
not.

Note that we here branch on the minimal hyperpath π which has minimal lower bound.
Therefore we do not find the k shortest hyperpaths in the right order, i.e. we may find the
1′st, 2′nd, 4′th, 3′rd, 6′th, .... but this does not matter, if you just want to find all solutions
up to a certain upper bound. We could evidently be compelled to calculate the minimal
weight hyperpath π of a subhypergraph where W (π) is over the upper bound, if the lower
bound is weak. But if the lower bound is close to the right value, this would be rare. A
lower bound can be found using the following theorem

Theorem 2 Let predecessor function p define the minimal hypertree Ts = ({s} ∪ N , ETs
)

of H =(V, E) and let W (u) denote the optimal weight in each node u ∈ N . Moreover, let
V = (u1, ..., up) denote the ordered branching set found by using Branching Rule 1 and let
Hi denote the subhypergraph of H found by branching on node ui. Then

W (ui) = min
e∈BS(ui)\p(ui)

F (e) + w (e) (3.1)

is a lower bound on the weight of the minimal hyperpath from s to ui in Hi where F (e)
denotes the chosen weighting function.

Proof Let e denote the optimal hyperarc of equation (3.1). Since the optimal weight of
node u ∈ T (e) in Hi will never be less than the optimal weight of node u ∈ T (e) in H, we
have that W (ui) using the optimal weights of H, is a lower bound on the actual minimal
weight.

We can now calculate the lower bound weight of node t by changing W (ui) to W (ui) and
calculate new weights for the nodes succeeding node ui in the valid ordering VTs

. Procedure 4
finds all hyperpaths with a weight under an upper bound ub. An illustrative example is given
in Manuscript I, Example 3.

3.1.2 The acyclic case

Assume that H = (V, E) is acyclic, and hence a valid ordering of the nodes of H exists

VH = (v0 = s, v1, ..., vq, ..., vn = t)
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We here assume wlog that t = vn, since all nodes in a valid ordering of H above t can
be removed. This valid ordering can now be used in Branching Rule 1 and because H is
acyclic, we can find the minimal hyperpath of H using an acyclic SBT procedure which
uses a backward star representation, i.e. no forward representation is needed in the acyclic
case. Moreover, in the acyclic case the lower bounds calculated using Theorem 2 become
the true minimal weights of the minimal hyperpath. So to calculate the k′th shortest hy-
perpath, we only have to calculate the shortest hyperpath of H and afterwards make trivial
computations.

3.2 Bicriterion shortest hyperpaths

Let H be a hypergraph where each hyperarc e is assigned two real weights

wi (e) i = 1, 2

and let Wi (π) denote the corresponding additive weighting function of hyperpath π using
weights wi (e) . Moreover, if the value function is considered, we define nonnegative multi-
pliers for each hyperarc e and node v ∈ T (e)

aei (v) i = 1, 2, v ∈ T (e)

In this paper we assume that ae1(v) = ae2(v), i.e. the multipliers are the same for both
weighting functions. Let Π denote the set of hyperpaths πst from s to t, i.e.

Π = {π ⊆ H |π has root s and destination t}

We now wish to solve the bicriterion shortest hyperpath problem (bi-SBT)

min
π∈Π

W (π) = (W1(π),W2(π)) (3.2)

That is to find hyperpaths from a given root s to a given node t, where the two weights are
minimal in the sense that we cannot improve one weight without worsening the other. We
consider the following cases of weighting functions: value/value and distance/distance. Let
us follow the terminology in Skriver [31]. Given a hyperpath π we say

Definition 4 A hyperpath π ∈ Π is efficient if and only if

�path π̃ ∈ Π :W1(π̃) ≤W1(π) and W2(π̃) ≤W2(π) (3.3)

with at least one strict inequality. Otherwise π is inefficient.

Efficient hyperpaths are defined in decision space and their counterpart is points in criterion
space

W =
{
W (π) ∈ R2 | π ∈ Π

}
Definition 5 A point W (π) ∈ W is a nondominated criterion point if and only if π is an
efficient hyperpath. Otherwise W (π) is a dominated criterion point.

The criterion points can be partitioned into two kinds, namely supported and unsupported.
The supported ones can be further subdivided into supported extreme and supported nonex-
treme. Let us define

ΠEff = {π ∈ Π| π is efficient}
WEff =

{
W (π) ∈ R2 | π ∈ ΠEff

}
W≥ = conv

(
WEff ⊕

{
w ∈ R2 | w ≥ 0

})



14 The bicriterion shortest hyperpath problem

Definition 6 W (π) ∈ WEff is a supported nondominated criterion point if W (π) is on the
boundary of W≥ denoted W=. Otherwise W (π) is an unsupported nondominated criterion
point.

Notice that unsupported nondominated criterion vectors are dominated by a convex combi-
nation of other nondominated criterion vectors [32].

Definition 7 A supported pointW (π) is a supported extreme nondominated criterion point
if W (π) is an extreme point of W≥. Otherwise W (π) is an supported nonextreme nondomi-
nated criterion point.

It is well-known that a set of nondominated points Φ =
{
W 1,W 2, ...,W l

}
can be ordered

in the following way.

W 1
1 < W

2
1 < ... < W

l
1 W 1

2 > W
2
2 > ... > W

l
2

We call Φ an ordered nondominated set. It is easy to check if a new point W is dominated
in Φ, see e.g. Manuscript I, Procedure 10, here referred to as procedure insert(W,Φ).

Example 1 The criterion space is illustrated in Figure 3.2. H ere W= is the border drawn
with the hard lines and W≥ is the union of W= and the area above. W 1 is the point
which has minimal weight w.r.t. weight two when weight one is fixed to its minimal weight.
We call W 1 the upper/left point and likewise W 8 the lower/right point of the criterion
space. All nondominated points will be inside the square defined by W 1 and W 8, therefore
W 9 is dominated. The points W 2,W 3 and W 6 are all supported nondominated points.
Furthermore, W 2 and W 6 are supported extreme nondominated points. All supported
extreme points define the triangles also called gaps (dashed lines) in which it is possible
to find nondominated points. Therefore all points, e.g. W 7, outside the triangles will
be dominated. If we look at the triangle defined by W 2 and W 6 we have that W 4 is a
nondominated point and W 5 is dominated.

W2

W1

W3

W1

W6

W4W2

W5

W7

W8 W9

Figure 3.2: Criterion space for different hyperpaths.
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3.2.1 Finding efficient hyperpaths using a two-phases approach

In this section we consider a two-phases approach where the search for nondominated points
are split into two phases. Phase one finds supported extreme nondominated points defining
the triangles in which nonsupported nondominated points may be found. Phase two then
searches the triangles using a k′th best procedure.

Phase 1: Finding supported nondominated solutions

We present a NISE like algorithm [8] for finding supported extreme nondominated points.
These can be found by parametrizing the criteria vector. Let f : (Π,R+) −→ R+ denote
the function

f (π, λ) =W1 (π)λ+W2 (π)

Since the number of hyperpaths in Π is finite, we have that f (π, λ) for fixed π defines a
line with slope W1 (π) , intersection W2 (π) , and the number of lines is finite. Using the
parametric function f (π, λ) we wish to solve

f (λ) = min
π∈Π

f (π, λ) (3.4)

i.e. we want to find a minimum weight hyperpath πλ = argminπ∈Π f (π, λ) given a fixed λ.
We illustrate this approach with the following example

Example 2 The criterion space and its corresponding parametric space is shown in Fig-
ure 3.3. H ere each point W (π) corresponds to a line with slope W1 (π) and intersection
W2 (π) . For each fixed λ we have a minimal line and the lower envelope of the lines defines
f (λ) which is a nondecreasing piecewise linear function with breakpoints λ1, λ2, λ3, λ4. Each
piece of f (λ) corresponds to a supported extreme nondominated point and each breakpoint
λi corresponds to a value where the two adjacent supported extreme nondominated points
have the same minimal parametric weight. If e.g. λ = λ2 then W 2 and W 3 have same
minimal parametric weight, i.e. fixing λ to λ2 corresponds to searching for the first point
in the direction of the normal of the line shown in Figure 3.3. Furthermore, we have that
W 1, which is a supported nonextreme nondominated point, touches f (λ) in the breakpoint
of its adjacent supported extreme points. Note that the whole set of nondominated points
is normally nonconvex, i.e. when using the parametric method, we only find points on the

W1(π)

λ

f(π,λ)

W2 (π)λ4 λ3 λ2 λ1

−λ2

f(λ)

w1

w2

w3

wε

w 8

Figure 3.3: The criterion space and its corresponding parametric space.
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frontier W= of the criterion space. This can be seen in Figure 3.3 where all nondominated
points inside the triangles correspond to dashed lines which all lie above f (λ) . The up-
per/left and lower/right point can be found by solving (3.4) with λ very high and λ close
to zero respectively. Therefore the upper/left and lower/right point are often referred to as
W∞ and W ε.

Solving Problem (3.4) for digraphs, corresponds to solving a shortest path problem with
weight w1 (e)λ + w2 (e) on each arc. Therefore a NISE like procedure for digraphs first
finds the upper/left and lower/right point. Then calculate the slope of the line between
the two points and search in that direction. If a new supported extreme nondominated
point is found, we get two new triangles which are searched like before; otherwise we stop.
Notice that it is possible to find a supported nonextreme nondominated point W̃ if the search
direction is equal to the normal of the line of two adjacent supported extreme nondominated
points W̃ 1 and W̃ 2. H ence W̃ 1, W̃ 2 and W̃ all have same minimal parametric weight, and
the point found depends on the SBT procedure.
Let the parametric weighting function for a hyperpath π denote the weighting function

Wλ (v) =
{
wλ(eπ(v)) + F (eπ(v)) v ∈ V \ {s}
0 v = s

(3.5)

where eπ(v) denotes the predecessor of node v and wλ(e) = w1 (e)λ + w2 (e). Using the
parametric weighting function does not always give the right solution to (3.4) when we
consider hypergraphs. We look at the following cases: Two value weighting functions and
two distance weighting functions.

Two value weighting functions We consider two value weighting functions, i.e. given
a hyperpath π = (Vπ, Eπ) from s to t, the weighting function Wi of π is

Wi (v) =

{
wi(eπ(v)) +

∑
u∈T (eπ(v))

aeπ(v) (u)Wi (u) v ∈ Vπ \ {s}

0 v = s

for i = 1, 2. If we want to solve SBT using the parametric weighting function, we have to
solve the following recursive equations

Wλ (v) =

 min
e∈BS(v)

{
wλ(e) +

∑
u∈T (e)

ae (u)Wλ (u)

}
v ∈ V \ {s}

0 v = s

(3.6)

Since finding the shortest hyperpath w.r.t. the value function Wi can be formulated as an
LP problem, we have that solving (3.6) corresponds to solving an LP problem with the same
constraints, but with an objective function cost for hyperarc e on w1 (e)λ+w2 (e) instead of
wi (e). Therefore the minimal hyperpath π w.r.t. the parametric weighting function satisfies
that Wλ (π) =W1 (π)λ+W2 (π) , i.e. solving (3.6) gives us the solution to (3.4).
A NISE like procedure for two value functions which finds all supported extreme nondom-
inated points, is formulated in Procedure 5. In each step we search in the direction of the
normal of the line between W+ andW−. On line 5 we find a supported nondominated point
W (π). If f (π, λ) < W+

λ then W (π) must be a supported extreme nondominated point and
we add it to Φ on line 6.

Two distance weighting functions We here consider two distance functions, i.e. given
hyperpath π

Wi (v) =

{
wi(eπ(v)) + max

u∈T (eπ(v))
{Wi (u)} v ∈ Vπ \ {s}

0 v = s



3.2 Bicriterion shortest hyperpaths 17

Precondition: Let
(
W+,W−) define a search direction, and let Φ be an ordered nondominated set.

Given W ∈ Φ let Wnext denote the point following W in Φ, if W is the last element in Φ then
Wnext := null.

Initialization: Use an SBT procedure to find the upper/right point W∞ and the lower/left point
W ε.

if (W∞ =W ε) then stop (there is only one nondominated solution)1

else set Φ = {W ε,W∞}, W+ =W∞, W− =W ε2

while (W+ 	=W ε) do set λ =
∣∣(W−

2 −W+
2 )/ (W

−
1 −W+

1 )
∣∣ , W+

λ =W+
1 λ+W+

23

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

find the minimal hyperpath π w.r.t. the parametric weighting function5

if (f (π, λ) < W+
λ ) then call procedure insert(W (π) ,Φ)6

W− =W (π)7

end if8

else set W+ =W−, W− =W+next9

end while10

Procedure 5: Finding all supported extreme nondominated points (value/value).

for i = 1, 2. If we solve SBT using the parametric weighting function we have to solve the
following recursive equations

Wλ (v) =

 min
e∈BS(v)

{
wλ(e) + max

u∈T (e)
{Wλ (u)}

}
v ∈ V \ {s}

0 v = s
(3.7)

Because no LP formulation for the distance exists, finding the shortest hyperpath w.r.t. the
parametric weighting function does not always give the same solution to (3.4), as can be
seen in the following example.

Example 3 Consider the hypergraph in Figure 3.4 which contains two hyperpaths and
assume that we want to find the shortest hyperpath using the parametric weighting function
with λ = 1. This gives shortest hyperpath π1 with predecessor hyperarc e4 in node v4. The
weights are Wλ (v4) = 14⇒Wλ (t) = 30. For the same hyperpath, we have that the weights
w.r.t. the first and second weight is W1 (t) = 12 and W2 (t) = 20 ⇒ f (π1, λ) = 32, hence,

v1

s v2

v3

v4

v5

t

e1

e2

e3

e4

e5

e6

e7

(0,0)

(0,0)

(0,0)

(12,2)

(11,5)

(10,20)

(0,0)

Figure 3.4: A hypergraph where the minimal hyperpath w.r.t. the parametric weighting
function don’t give the optimal solution of Problem (3.4).

Wλ (t) �= W1 (t)λ+ W2 (t). Furthermore, hyperpath π2, with e5 as predecessor hyperarc in
node v4, gives first and second weight W1 (t) = 11 and W2 (t) = 20⇒ f (π2, λ) = 31, i.e. π2

is the optimal hyperpath to (3.4).

Example 3 shows that solving the recursive equations in (3.7) do not always give the right
solution to (3.4). H owever, since the parametric weight of (3.7) is below the actual para-
metric weight, the parametric weighting function gives us a lower bound (see Manuscript I,
Section 4, Theorem 6 for more details).
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Precondition: Let
(
W+,W−) define a search direction and let Φ be an ordered nondominated set

of points. GivenW ∈ Φ letWnext denote the point followingW and letW back denote the point
before W, if W is the last element in Φ then Wnext := null. Let increase denote a boolean.

Initialization: Use an SBT procedure to find the upper/right point W∞ and the lower/left point
W ε.

if (W∞ =W ε) then stop (there is only one nondominated solution)1

else set Φ = {W ε,W∞}, W+ =W∞, W− =W ε2

while (W+ 	=W ε) do let λ =
∣∣(W−

2 −W+
2 )/ (W

−
1 −W+

1 )
∣∣ , increase = false3

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

find the minimal hyperpath π̌ w.r.t. the parametric weighting function5

call procedure insert(W (π̌) ,Φ)6

if (W (π̌) nondominated and W1 (π̌) ≤ W+
1 ) then W+ :=W (π̌)back

7

if (W (π̌) dominated or W1 (π̌) > W−
1 ) then increase = true8

find the minimal hyperpath π̂ w.r.t. the upper bound weighting function (3.8)9

if (π̂ 	= π̌) then call procedure insert(W (π̂) ,Φ)10

if (W (π̌) nondominated and W1 (π̌) ≤ W+
1 ) then W+ :=W (π̌)back

11

if (increase and (W (π̂) dominated or W1 (π̂) > W−
1 )) then W+ :=Wnext12

end if13

set W− :=W+next14

end while15

remove from Φ all nonextreme points16

Procedure 6: Finding an approximation of the supported extreme nondominated points (dis-
tance/distance).

Notice if π̂ denotes the shortest hyperpath w.r.t. the parametric weighting function, we
have that Wλ (π̂) is a lower bound on f (λ) but W (π̂) = (W1 (π̂) ,W2 (π̂)) is not necessarily
a supported extreme nondominated point.
Using the parametric weighting function gives Wλ (π) ≤ W1 (π)λ+ W2 (π) , nevertheless
there exists another weighting function satisfying W̃ (π) =W1 (π)λ+ W2 (π)

W̃ (v) =

{
0 v = s

max
u∈T (eπ(v))

{W1 (v)}λ+ max
u∈T (eπ(v))

{W2 (v)}+ wλ(eπ (v)) v ∈ Vπ\ {s} (3.8)

H ere we have 3 labels in each node: W1 and W2 which are used to calculate W̃ . If we solve
SBT with weighting function (3.8), we have to solve the following recursive equations

W̃ (v) =


0 v = s

min
e∈BS(v)

{
max
u∈T (e)

{W1 (v)}λ+ max
u∈T (e)

{W2 (v)}+ wλ(e)
}

v ∈ V\ {s} (3.9)

Solving the recursive equations (3.9) find a minimal hyperpath π which often corresponds
to a supported extreme nondominated point, but π is not necessarily the hyperpath which
solves (3.4). This can be seen in Figure 3.4 where hyperpath π1 is the solution of equations
(3.9). H owever, π2 is the hyperpath which solves (3.4). Therefore W̃ (π) is an upper bound
on f (λ).
Sometimes a solution found using the upper bound weighting function (3.8) cannot be found
using the parametric weighting function. Therefore, by combining the two functions, we can
find a better approximation of the frontier.
Procedure 6 finds an approximation of the supported extreme nondominated points. The
procedure is illustrated by the following example.

Example 4 Assume that the initialization finds the points W∞ and W ε in Figure 3.5(a).
First iteration now searches in the direction of the normal to the line defined by W∞ and
W ε. Suppose that W 1 is the point found on line 5. Because W 1 is nondominated and
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W2

W1

W1

W

Wε

W2

8

(a) Iteration 1and 2

W2

W1

W1

W

Wε

W2

8

W3

(b) Iteration 3 and 4

W2

W1

W1

W

Wε

W2

8

W3

W4

(c) Iteration 8 and 9

Figure 3.5: Finding supported extreme nondominated points with Procedure 6 on the
facing page.

between W+ and W− the conditions on line 7 and 8 fail. Assuming that line 9 finds the
same point, line 14 now sets W− to W 1. Second iteration now searches in the direction of
the normal to the line defined by W∞ and W 1. If we assume that line 5 finds point W 1,
line 8 sets increase to true because W 1 is not a new point inside the triangle. Moreover, if
line 9 finds point W 2, line 12 now sets W+ =W 1 because both points found in the iteration
are dominated or to the right of W−

1 .
Iteration 3 now searches the triangle defined by W 1 and W 2. If line 5 now finds point W 3 in
Figure 3.5(b), we have that line 7 set W+ =W∞ because a new search direction is defined
by the points W∞ and W 3. If we assume that line 9 does not find a new point, iteration 4
now searches in this direction. Assuming that no new points are found during iteration 4-6,
iteration 7 now searches in the direction defined by W 2 and W ε and finds for instance the
point W 4 in Figure 3.5(c). Therefore iteration 8 and 9 will search in the directions shown
in Figure 3.5(c) and if no new points are found stop. Note that we sometimes search in the
same direction more than once, but since the SBT procedure is so efficient this is now very
costly. Moreover, at the end of Procedure 6, the ordered nondominated set Φ can contain
nonextreme nondominated points. Therefore these are removed on line 16.

Procedure 6 finds a set of nondominated extreme points. This set is not necessarily equal
to the set of supported extreme nondominated points in WEff . Therefore it is possible that
some points W ∈ Φ are dominated by a point in WEff .

Phase 2: Finding unsupported nondominated solutions

Assume that the first phase has been completed, i.e. an ordered nondominated set

Φ =
{
W 1,W 2, ...,W q+1

}
of supported extreme nondominated points have been found. Let ∆ = {∆1, ...,∆q} denote
the triangles or gaps defined by Φ (see Figure 3.6(a)). Second phase searches each triangle
using a k′th best procedure until all unsupported nondominated points inside the triangle
have been found. This is done by using modified weights wλ (e) on hypergraph H and hence
the k′th best procedure will search in the direction of the normal to the line between the two
points which define the triangle (see Figure 3.6(a)). The procedure stops when an upper
bound has been reached. At start the upper bound is UB0 =W i+1

1 λ+W i
2. H owever, when

a new unsupported nondominated point is found, we calculate an new upper bound (see
Figure 3.6(b)). Furthermore, if an interactive approach is used, the decision maker can set
an upper bound where he is satisfied. Note that when we use a k′th best procedure it is
possible to find points outside the triangle (see Figure 3.6(b)). These points are not checked
for dominance, instead the next k′th solution is calculated. H ow the k′th like procedure
performs depends on the weighting functions considered and in which order the solutions
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W i

W i + 1

W2
i

W1
i

W2
i+1

W1
i+1

UB0

Search direction

(a) Triangle ∆i of ∆

W i

W i + 1

W2
i

W1
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W2
i+1

W1
i+1

UB1

UB0

(b) Upper bound of ∆i.

Figure 3.6: Triangle search.

Precondition: Let ∆ = {∆1, ...,∆q} denote the triangles of the supported extreme nondominated
points and let Φ be an ordered nondominated set.

Initialization: Set Φ = ∅
for (i = 1 to q) do consider triangle ∆i and1

set λ =
∣∣W i

2 −W i+1
2 / W i

1 −W i+1
1

∣∣, Φ := Φ∪
{
W i,W i+1

}
2

ub =W i+1
1 λ+W i

2 , lb = 0 and k = 13

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

while (lb < ub) do use a k’th procedure and the parametric weighting function5

to find the k’th best solution W k
λ =W k

1 λ+W k
2 of H6

set lb =W k
λ7

if (W k
1 < W i+1

1 and W k
2 < W i

2) then (i.e. we are in the triangle)8

call procedure insert(W k,Φ).9

if (W k nondominated) then update ub10

end if11

k := k + 112

end while13

end for14

Procedure 7: Finding nondominated points (value/value).

are found. We again consider 2 choices of weighting function: Two value weighting functions
and two distance weighting functions.

Two value weighting functions H ere Procedure 5 on page 17 finds all supported ex-
treme points of WEff and therefore, when we start the second phase, we know how the
triangles are defined. Moreover, a minimal hyperpath πλ which is the solution of (3.4) can
be found using the parametric weighting function (3.5). We can now find all unsupported
nondominated points using Procedure 7. Line 5 in Procedure 7 finds a new k’th hyperpath
while W k

λ is below the upper bound. If W k is a nondominated point inside the triangle, we
update the upper bound on line 10. Note when we use procedure insert to insert W k in Φ
on line 9, we do not have to search Φ from start because we know W k

1 > W
i
1, i.e. we always

start to search Φ from W i in procedure insert.

Two distance functions When two distance weighting functions are considered, first
phase (Procedure 6 on page 18) does not necessary find all supported extreme nondominated
points of WEff but just an approximation of WEff . This only gives us an approximation
of the triangles at the beginning of second phase. Assume that the approximation are the
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Precondition: Let Φ = {W1, ...,Wq} denote an ordered nondominated set containing the approxi-
mation of the supported extreme nondominated points found in phase one. Given W ∈ Φ, let
Wnext denote the point following W and let Wnext be equal to null if W is the last point in Φ.

Initialization: W+ =W 1

while (W+next 	= null) do W− =W+next, λ =
∣∣W−

2 −W+
2 / W−

1 −W+
1

∣∣1

ub =W+
1 λ+W−

2 , lb = 0, k = 1, Wfrontier =W+
1 λ+W+

2 , newf = false2

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)3

while (lb < ub) do use a k’th procedure and the parametric weighting function4

to find the k’th solution W k
λ of H5

set lb =W k
λ , Wnow =W k

1 λ+W k
26

if (Wnow < Wfrontier and W+
1 ≤ W k

1 ) then7

remove all nonfrontier points from W+ in Φ8

set newf = true9

break10

end if11

if (W k
1 < W−

1 and W k
2 < W+

2 ) then call procedure insert(W k,Φ).12

if (W k nondominated) then update ub13

end if14

k := k + 115

end while16

if (newf = false) then W+ =W−17

end while18

Procedure 8: Finding nondominated points (distance/distance).

black points given in Figure 3.7(a). Now, if during the search of the triangle defined by
W∞ and W 1, the point W 4 in Figure 3.7(a) is found, then W 4 is a new supported extreme
nondominated point because the parametric weight of W 4 is below the parametric weight
of W∞ . I other words W 4 is below the dashed line between the points W∞ and W 1 in
Figure 3.7(a)

W2
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W
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8
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(a) Approximated frontier solu-
tions and a new frontier solution

W2

W1

W1

W

Wε
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8

W3

W4

(b) New approximated frontier

Figure 3.7: Finding a better approximation during second phase.

Therefore a new approximation of the frontier is found and we search the new triangle defined
by W∞ and W 4 (see Figure 3.7(b)). Let Φ be an ordered nondominated set containing
all current nondominated points found by first and second phase and let W+ denote the
upper/left point of the triangle where the new supported extreme point is found. Then
by removing all nonfrontier points above W+ in Φ, we remove a point such as W 1 in
Figure 3.7(b). Moreover, the new triangle we have to search is defined by W+ and the
point following it in Φ. The second-phase procedure for two distance functions is stated in
Procedure 8. The boolean newf on line 2 in Procedure 8 is set to true if a new frontier
point is found. Wfrontier denotes the parametric weight of points on the line defined byW+
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and W−. Therefore if Wnow, the parametric weight of the current k′th solution, is below
Wfrontier (line 7), a new supported extreme nondominated point has been found. Line 8
now removes all the unsupported points above W+, newf is set to true and we exit the
while loop on line 10. Because newf = true we now search for nondominated points in the
triangle defined by W+ and the new supported extreme nondominated point found. If no
new frontier point is found during the inner while loop, we increase W+ on line 17 and start
searching the next triangle.
The bi-SBT problem is much harder to solve when considering two distance functions. This is
due to the fact that one nondominated point often corresponds to many different hyperpaths,
as a result the k′th procedure used has to search more hyperpaths. Furthermore, since we
use the parametric weighting function, only giving us a lower bound, many hyperpaths with
an actual parametric weight over the upper bound is found. By using the upper bound
function (3.8) instead of the parametric weighting function on line 4, we find hyperpaths
with parametric weight equal to the actual parametric weight. H owever, since the parametric
weight is an upper bound, we do not know whether all nondominated points are found
when the procedure stops. Therefore using upper bound function (3.8) on line 4 instead of
the parametric weighting function, give us an approximation of the nondominated points.
Nevertheless, computational testing shows that the approximation is good and much faster
to calculate.

3.3 Computational results

In Manuscript I other procedures to solve the bi-SBT problem were developed and tested
against each other. The following procedures were examined:

k’th simple We here use an extension of the simple search procedure presented in [7].
We here first, find an upper bound on weight one by finding the shortest hyperpath
w.r.t. weight two. Next, we use a k’th procedure in weight ones direction to find all
hyperpaths below this upper bound.

k’th diagonal Instead of searching each triangle, we here use only one k’th procedure to
search in the direction of the normal to the line between the upper/left and lower/right
point.

k’th diagonal (lb) Equal to k’th diagonal, but use the k’th procedure which branches on
lower bounds, that is finds all solutions below an upper bound (Procedure 4).

Two-phases We here consider the two-phases procedures in Section 3.2.1 together with a
normal k’th procedure.

Two-phases (lb) Equal to two-phases, but second phase use the k’th procedure which
branches on lower bounds (Procedure 4).

If acyclic hypergraphs are considered, we use an acyclic SBT procedure. Moreover, both
the parametric and the upper bound weighting function are used, if two distance weighting
functions are considered.
The procedures were implemented in C++ and tested on 60 randomly generated hypergraphs
with the following properties:

1. The hyperarc size is between 3 and 5.

2. The weights for each arc is between 1 and 1000, and for each true hyperarc between 1
and 100. This favor hyperpaths with true hyperarcs.

3. H ypergraphs 1-30 are dense with the number of nodes between 100 and 1000. The
average number of hyperarcs in the backward star of a node are between 63 and 105.
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4. H ypergraphs 31-60 are sparse with the number of nodes between 1000 and 10000. The
average number of hyperarcs in the backward star of a node are between 4.4 and 8.6.

The value function used for testing is the sum function, i.e. where all multipliers are equal
one. We can summarize the test results as follows:

1. Branching on lower bounds works well. More than 95% of the lower bounds found
where equal to the true minimum weight. As a result, using a lower bound k’th
procedure to calculate nondominated points improve the CPU time dramatically.

2. The two-phases procedure performs best, except for sparse hypergraphs when consid-
ering two sum functions. H owever, the two-phases procedure is more stable since the
diagonal procedures sometimes stop before all nondominated points are found (max
500 hyperpaths picked were allowed).

3. It is possible to find all nondominated solutions in relatively short time when two sum
functions are considered.

4. If we consider two distance functions the problem is harder to solve. This is due to
a much higher density of points inside the areas the two-phases procedure have to
search.

5. Because the parametric weighting function gives a week lower bound in the distance
case, using the upper bound function instead gives better results. H owever, the upper
bound function only finds an approximation.

6. First phase finds supported extreme nondominated points fast compared to the second
phase. The first phase only finds an approximation in the distance case. H owever, this
approximation is very good.

7. Using the acyclic procedures on acyclic hypergraphs give a high reduction in the CPU
time. This is mainly due to the acyclic SBT procedure. Moreover, the fact that
branching on lower bounds give us the true minimal weight also contribute to the
reduction.

For more details on the results see Manuscript I, section 6.





Chapter 4

A parametric analysis of the
shortest hyperpath problem

In this chapter we consider my temporary results on the parametric shortest hyperpath
problem (PSBT) in B-hypergraphs. It is assumed that the lengths of the hyperarcs in
the B-hypergraph depend on some parameter λ. We present procedures for determining
the shortest hyperpaths from a source node s to all other nodes u hyperconnected to s as
a function of the parameter λ. To the best of our knowledge this problem has not been
considered earlier. Each procedure are illustrated with an example.

The problem of determining the parametric shortest paths from a particular node s to all
other nodes u in directed graphs has been presented in a number of papers. Probably the
best known paper is Young, Tarjant, and Orlin [35]. H owever, the problem presented in that
paper is somewhat simpler than the one presented in this paper. One reason is, that it only
concerns digraphs, and another reason is, that there are some restrictions in the way, the
parameter λ is allowed to vary. In this chapter, λ is allowed to vary more freely. This makes
our problem more complicated, but probably also more oriented towards applications.

4.1 The parametric shortest hyperpath problem

LetH=(V, E) be a hypergraph where V = {v1, . . . , vn} is the set of nodes and E = {e1, . . . , em}
is the set of hyperarcs. Let Λ =

[
λ, λ

]
and assume that λ ∈ Λ. Assign to each hyperarc

e ∈ E a nonnegative weight function we (λ) and if the value function is considered nonnega-
tive multiplier functions ae (u, λ) for u ∈ T (e). That is, the weight and the multipliers are
functions of the parameter λ ∈ Λ. We say that the hypergraph H is parametrized by the
parameter λ and denote it with Hλ. Clearly, for a given value of λ = λ0, we have that Hλ0

is a weighted hypergraph, i.e. weights and multipliers is fixed. Given a hyperpath π we let
Wπ (λ) denote the parametric weight of π.

Assume wlog that all nodes v ∈ V is hyperconnected to node s. In this section we want to
determine a shortest hypertree from some source node s, i.e. the shortest hyperpaths from
node s to all other nodes, as a function of the parameter λ ∈ Λ. We call this problem the
parametric shortest hyperpath problem.

Before presenting the solution procedure we shall illustrate it with a minor example.

Example 5 A simple parametric hypergraph Hλ is shown in Figure 4.1(a). We consider
the value weighting function and the weights and multipliers are written like in Figure 2.2.
Now assume that Λ = [0, 4]. The minimal weight hypertree for H0 is shown in Figure 4.1(b).
We now want to find intervals of the parameter λ so that the hypertree in Figure 4.1(b) is
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Figure 4.1: A simple parametric weighted hypergraph Hλ with Λ = [0, 4] and its minimal
hypertree Ts for λ = 0.

the optimal (minimal weight) one. By definition a shortest hyperpath from node s to itself
has value 0, and is optimal for all λ ∈ Λ. Also, the subpaths to nodes v1 and v2 are optimal
for all values of λ ∈ Λ since there is only one hyperpath to nodes 1 and 2. Moreover, the
parametric weight of node v3, when e4 is used as a predecessor, is minimal if the parametric
weight of node v3, when another hyperarc is used as a predecessor is higher, i.e.

1 + 2λ ≤ 1 + (4− λ) + 2⇔ λ ≤ 2

H ence it follows, that for λ ∈ [0, 2] edge e4 is used as a predecessor in a shortest hyperpath to
node v3. Conversely if λ ∈ [2, 4] hyperarc e3 is used as a predecessor in a shortest hyperpath
to node v3. For node v4 the result are similar, however, we have to consider the intervals
λ ∈ [0, 2] and λ ∈ [2, 4] separately, since the predecessor of node v3 is not the same in the
two intervals. If λ ∈ [0, 2] we have

2 · 0 + 1 · λ+ 1 ≤ 1 · (1 + 2 · λ) + 2⇔ λ ≥ −2

i.e. that for λ ∈ [0, 2] edge e5 is used as a predecessor in a shortest hyperpath to node v4. If
λ ∈ [2, 4] we have

2 · 0 + 1 · λ+ 1 ≤ 1 · (7− λ) + 2⇔ λ ≤ 4

and hence for λ ∈ [2, 4] edge e5 is used as a predecessor in a shortest hyperpath to node v4.
We now have calculated a shortest hyperpath from node s to node vi, for i = 1, . . . , 4 and
for all λ ∈ [0, 4], as shown in Table 4.1.

Node λ Wv(λ) pv (λ)
1 [0,4] 1 e1
2 [0,4] 1 e2
3 [0,2] 1 + 2λ e4

[2,4] 7− λ e3
4 [0,4] 1 + λ e5

Table 4.1: The hyperpath for λ ∈ Λ.

In conclusion the hypertree in Figure 4.1(b) is the minimal weight hypertree for λ ∈ [0, 2].

Next let us introduce some notation. Consider a particular node u ∈ V hyperconnected to
s and let πsu be a shortest hyperpath from node s to node u. We want to determine a set
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Precondition: Let λ0 denote a fixed number in Λ. Given a hypertree Ts, let Wv(λ) denote the
weight of node v and let VTs = (v1, ..., vn) denote a valid ordering of Ts.

Initialization: Use an SBT procedure to find the minimal hypertree Ts of Hλ0 .

for (i = 1 to n) do1

Λvi =
⋂

u∈BNvi
Λu2

for (e ∈ BS (vi)) do3

if (e 	= pvi (λ0)) then4

Λ0 = {λ ∈ Λ | Wvi(λ) ≤ we(λ) + Fe (λ)}5

Λvi := Λvi ∩ Λ06

end if7

end for8

end for9

Procedure 9: Finding values of λ for which the minimal hypertree of Hλ0 is minimal.

Λu of values λ for which πsu is a shortest hyperpath to node u, i.e.

λ ∈ Λu ⇒ πsu is a shortest hyperpath for Hλ (4.1)

This problem is denoted the parametric shortest hyperpath problem (PSBT )1. By definition
Λs = Λ. Furthermore, the weight of node s is always equal to 0, that is

Ws(λ) = 0 ∀λ ∈ Λs = Λ (4.2)

As it turns out, Λu need not always has to be an interval, but Λu can be split into disjoint
intervals:

Λu = [λ1
u, λ

1

u] ∪ [λ2
u, λ

2

u] ∪ . . . ∪ [λqu, λ
q

u] = Λ1
u ∪ Λ2

u ∪ . . . ∪ Λqu
Let the backward node set BNv of node v denote the set of nodes u which are in the tail of
some arc e ∈ BS(v), i.e.

BNv = {u ∈ V |u ∈ T (e) , e ∈ BS (v)}

Below we consider two cases, namely the general case and the acyclic case.

4.1.1 The general case

Consider Hλ=(V, E) with λ ∈ Λ and let λ0 be a fixed number in Λ, we now have the
following lemma.

Lemma 1 Assume that Ts is the minimal hypertree for Hλ0 and that πsv is the correspond-
ing shortest hyperpath to node v. Let Λv denote the set

Λv = Λ0 ∩
⋂

u∈BNv

Λu

where

Λ0 =
{
λ ∈ Λ | wp(v)(λ) + Fp(v)(λ) ≤ we(λ) + Fe (λ) , ∀e ∈ BS (v) \{p (v)}

}
Then Λv satisfies condition (4.1).

Proof Follows immediately.

Procedure 9 finds the minimum weight hypertree Ts for Hλ0 , and calculate sets Λv satisfying
condition (4.1) for v ∈ V. The procedure starts by using an SBT procedure to find a minimal

1Parametric shortest B-tree.
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Figure 4.2: The minimal weight hypertree for H2 with Λ = [2, 4].

hypertree Ts forH. Moreover, if Dijkstra’s principle is used, then the order we pick the nodes
in procedure SBT define a valid ordering of Ts. Line 2 now finds the union of the intervals
of the nodes in BNv and lines 5 and 6 the set from Lemma 1. Since the number of steps in
Procedure 9 are finite, we have that Procedure 9 stops in a finite number of steps, provided
that the set Λ0 can be found in a finite number of steps.
Procedure 9 can also be used if some part of the minimal hypertree is known in advance.
For instance suppose a minimal weight hypertree for the nodes s, u1, u2, ..., uk−1 is known
together with their corresponding sets Λi, satisfying condition (4.1). Then the for-loop in
Procedure 9 can be changed from running from 1 to n, to run from k to n. and only the
rest of the minimal hypertree Ts has to be found in the initialization.
Note that Procedure 9 only finds sets Λv for which the hypertree of Hλ0 is minimal. If we
want to find a minimal hypertree for all λ ∈ Λ, we can use Procedure 9 as a subprocedure
to solve this problem. We illustrate this idea by continuing Example 5.

Example 5 (continued) Procedure 9 calculates the intervals Λi =
[
λi, λ̄i

]
for i = 1, ..., 4

and the minimal weight hypertree for Hλ0 (see Figure 4.1(b)). Now define Φ to be the set
of all upper endpoints (λ̄i). In this particular example we have

Φ = {2, 4}

Assume we pick the minimal number, i.e. 2. We know that the hyperpaths to nodes 1 and
2 in Figure 4.1(b) are minimal for λ = 2, because 2 is contained in the intervals Λ1 and Λ2.
λ = 2 is also contained in Λ3, however, 2 is an endpoint. This means that there is another
hyperarc which gives the same weight of node v3 if λ = 2 (in this case hyperarc e3). Now if
we call Procedure 9 with λ0 = 2, k = 3 and Λ = [2, 4], we get the hypertree and intervals
shown in Figure 4.2. We see that the hyperpath πsv4 is the same as before so hyperpath
πsv4 is minimal for λ ∈ [0, 4] . We now could remove 2 from Φ, add all new upper endpoints
to Φ, pick the minimal number and repeat the step with λ0 = 4. H owever, since λ0 = 4 = λ̄
it is not necessary to repeat the step. We have now found a shortest hyperpath from node
s to node vi for i = 1, ...4 for all λ ∈ [0, 4] (see Table 4.1).
Note that we have only found one (of possible many) shortest hyperpath for each λ ∈ [0, 4] ,
e.g. if λ = 4 the hyperpath πsv4 in Figure 4.2 is minimal but the hyperpath πsv4 with
pv4 (4) = e6 instead of pv4 (4) = e5 is also minimal.

The procedure, demonstrated in the example above, is stated in Procedure 10 which finds a
shortest hyperpath from node s to node v for all λ ∈ Λ. H ere, we add the upper endpoint of
Λ1
v, for each v ∈ V, to Φ on line 2. Note only the endpoint λ̄1

v of the first interval Λ
1
v in each

node is added to Φ. Next, we pick and remove the minimal endpoint on line 3, and finally,
we calculate the new interval used in Procedure 9 on line 5. Note that, when Procedure 9 is
called on line 1, the node vk satisfies that there is more than one hyperarc which can be used
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Precondition: Assume that each call of Procedure 9 calculates a valid ordering VTs = (v1, ..., vn) of
Ts, weights Wv (λ), predecessor hyperarcs and the sets Λi which can be split into intervals

Λi = Λ
1
i ∪Λ2

i ∪ ...∪Λqi
i where Λj

i =
[
λj

i , λ
j
i

]
j = 1, ..., qi

Initialization: Set k = 1, λ0 = λ and Λ̄ = Λ.

while (λ0 	= λ) do call Procedure 9 with λ0, Λ̄ and k and set λold := λ01

Φ = Φ∪
{
λ

1
i

}
for i = k, ..., n2

select and remove λ0 = minΦ3

k := min
{
i | ∃λ1

i = λ0

}
4

Λ := Λ \ [λold, λ0[5

end while6

Procedure 10: Finding a minimal hyperpath to all nodes for each λ ∈ Λ.

as a predecessor for node vk. For instance in Example 5 we have that both hyperpaths πsv3
in Figure 4.1(b) and Figure 4.2 are minimal for λ = 2. H owever, if we use hyperarc e4 as
predecessor the interval Λ3 calculated by Procedure 9 becomes [2, 2] . As the next example
illustrates it is best to pick the predecessor hyperarc which gives the largest interval Λ1

v.

Example 6 Consider the hypergraph in Figure 4.3(a) where Λ = [−2, 2] and the value is
used as weighting function. When we call Procedure 10, we first run Procedure 9 with k = 1,
Λ = [−2, 2] and λ0 = −2. Because there is only one hyperpath to nodes 1 and 2, we have
the results stated in Table 4.2. For node 3, hyperarc e3 used as predecessor gives the lowest
weight, and we have to solve

(2 + λ) (2− λ) + 4 · 1 + 1 ≤ 4 + 4
⇒ Λ0 = [−∞,−1] ∪ [1,∞]
⇒ Λ3 = [−2,−1] ∪ [1, 2]

At node 4, we have that the weightWv4 (−2) using e5 as predecessor hyperarc is equal to the
weight using e6 as predecessor hyperarc, so which hyperarc we pick as predecessor hyperarc
depends on which rule we use to pick the predecessor hyperarc in Procedure 9. Assume that
we pick e5 first. Then we have to solve

2 (2 + λ) + 6 ≤ 9− λ2 + 1
⇒ Λ0 = [−2, 0]
⇒ Λ4 = [−2,−1]

and we get the hypertree shown in Figure 4.3(b). On the other hand, if we first pick e6 we
get the opposite

Λ4 = [−2,−2] ∪ [−1, 2]
This hypertree is shown in Figure 4.3(c). Suppose that the hypertree in Figure 4.3(c) was
picked. Then an upper endpoint λ

1

4 = −2 where added to Φ on line 2 and picked again on
line 3 making Λ on line 5 unchanged. The step is now repeated with λ0 = −2, and if we do
not have a rule saying that e6 not must be picked as predecessor again, the procedure may

Node λ ∈ Wv (λ) pv (λ)
1 [−2, 2] 2 + λ e1
2 [−2, 2] 4 e2

Table 4.2: The predecessor hyperarcs for λ ∈ [−2, 2] when node 1 and 2 are considered.
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Figure 4.3: A parametric hypergraph and its corresponding minimal hypertrees.

node λ ∈ Wv (λ) pv (λ)

3
[−2,−1]
[−1, 1]
[1, 2]

9− λ2

8
9− λ2

e3
e4
e3

4

[
−2,− 1

2

][
− 1

2 , 1
]

[1, 2]

10 + 2λ
9
10− λ2

e5
e6
e6

Table 4.3: The predecessor hyperarcs for λ ∈ [−2, 2] when node 3 and 4 are considered.

loop. Assume that hyperarc e5 is picked as predecessor, we then get the hypertree in Figure
4.3(b). Φ now becomes:

Φ = {−1, 2}

Next Procedure 10 sets λold = −2, λ0 = −1, k = 3 and Λ = [−1, 2] and call Procedure 9.
Assume that we pick e4 as predecessor hyperarc for v3 instead of e3. The hypertree for H−1

is shown in Figure 4.3(d). Now -12 is added to Φ and Procedure 9 is called with λ0 = − 1
2 ,

k = 4 and Λ =
[
− 1

2 , 2
]
. The hypertree is shown in Figure 4.3(e). Finally, Procedure 9

is called with λ0 = 1, k = 3 and Λ = [1, 2] which gives the hypertree in Figure 4.3(f).
This hypertree is actually identical to the hypertree in Figure 4.3(c) because the intervals in
Figure 4.3(f) is a part of the intervals in Figure 4.3(c). We now have a minimal hyperpath
∀λ ∈ [−2, 2] to all nodes in Hλ (see Tables 4.2 and 4.3).

Let Eq (v) be the set of possible predecessor hyperarcs which give minimal weight Wv (λ0)
when hypergraph Hλ0 is considered. The above example suggests, that a possible rule for
finding a minimal hypertree in Procedure 9 is:
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Figure 4.4: A hypergraph Hλ and its corresponding minimal hypertrees.

Given set Λ and hypergraph Hλ0 , use hyperarc e ∈ Eq (v) as predecessor for node v in
hyperpath πsv, if no other hyperarc in Eq (v) give a higher interval Λ1

v.

By using this rule we would find the hypertrees in Figure 4.3 in 4 iterations.

All procedures described so far finds one (of possible many) minimal hyperpath to a node
v, they do not find all minimal hyperpaths to a node v. This may be a problem when doing
sensitivity analysis, since it is very likely that the decision maker want to know if there are
alternative hyperpaths that gives the same minimal weight. Then a representative set of
minimal hyperpaths can be presented to the decision maker from which one can be chosen.
H owever, all minimal hyperpaths can be found, if we for each endpoint in Φ and hyperarc
e ∈ Eq (v) calculate the minimal hypertree with e as predecessor in node v. This can be
illustrated with the following example.

Example 7 Assume that if there exists more than one hyperarc in Eq (v) , then Procedure 9
calculate a minimal hypertree and sets Λv, satisfying condition (4.1) for each e ∈ Eq (v).
Now consider the parametric hypergraph in Figure 4.4(a) with Λ = [0, 2]. If we consider the
distance function and call Procedure 9 with Λ = [0, 2] and λ0 = 0, we get the hypertrees in
Figures 4.4(b) and 4.4(c). At nodes 1 and 2 there is only one predecessor hyperarc which
is minimal for λ0. At node 3 there are two possible predecessor hyperarcs which are both
minimal for λ0. H ence Procedure 9 calculate a hypertree for each predecessor which gives
the figures in 4.4(b) and 4.4(c). We now have found all minimal hyperpaths for H0 and the
intervals where they are minimal. If we now for each of the hypertrees call Procedure 9 with
k = 1, λ0 = 1 and Λ = [1, 2] , we get the hypertrees in figure 4.4(d) and 4.4(e). H ere two
trees are shown in one figure because no matter the choice of predecessor in node v3, the
predecessor hyperarc for node 4 is the same. The figures show, for instance, that there are
two minimal hyperpaths πsv3 which both are minimal for λ ∈ [0, 2] .



32 A parametric analysis of the shortest hyperpath problem

4.1.2 The acyclic case

If the hypergraph is acyclic the above procedures can be modified. Let Hλ=(V, E) be an
acyclic parametric weighted hypergraph with λ ∈ Λ. Because Hλ is acyclic a valid ordering
V of Hλ exists

V = (v0 = s, v1, ..., vn)

This valid ordering can be used in Procedure 9. Furthermore, an acyclic SBT procedure can
be called which use the valid ordering V, and hence becomes much faster since no heap is
used to sort the nodes in the candidate set.



Chapter 5

Future research topics

In this final chapter, I will outline some ideas for future research. Most of the ideas are
loosely described.

In Chapter 4 we considered the temporary results on my project about a parametric anal-
ysis of the shortest hyperpath problem. There is a number of problems which should be
considered before this project is finished. First, we need a discussion of earlier work on para-
metric shortest paths. So far we have only made a link to the paper by Young et al. [35].
Second, the complexity for the various procedures have to be analyzed in some more depth
and parts of the paper should be explained more carefully. In particular, the explanation
concerning, if some part of the hypertree is known in advance. Next, applications may be
considered. H ere the procedures could be used on the random time-dependent shortest path
problem, which can be transformed to a shortest hyperpath problem. If e.g. time and cost
on some hyperarcs were not known for certain, a parameter λ could be introduced on these
hyperarcs. Finally, if we assume that only linear weights on each hyperarc is allowed, the
weights in each node becomes linear. As a result the comparison of weights in each node
becomes simple. This may be implemented in C++ and computational results carried out.

In Section 3.1 the k’th procedure, which branched on lower bounds, found all hyperpaths with
weight below an upper bound. Moreover, computational testing reveled that it decreased
the CPU time by more than 50% compared to the normal k’th procedure. This procedure
can also be applied to digraphs. To test how the procedure performs compared to other
known k’th procedures for digraphs may be an interesting research project.

In Section 3.2, I developed procedures to find efficient hyperpaths when we consider the fol-
lowing cases of weighting function: value/value and distance/distance. H ere computational
testing showed that finding all nondominated points when two distance weighting functions
are considered are difficult because the parametric weighting function gives a week lower
bound. If another weighting function could be found with a better lower bound, it would
improve the performance of the procedures. Another possibility is to find properties which
could prune the search tree of the subhypergraphs better. This could be done by, instead
of starting a new k′th search every time a triangle is searched, keeping the search tree and
calculate new parametric weights for the new search direction. This might be costly but on
the other hand, we only pick each hyperpath once.

As shown in Manuscript I, a hypergraph model for the random time-dependent shortest
path problem can be formulated. Therefore it is possible to use the bi-SBT problem to solve
the bicriterion random time-dependent shortest hyperpath problem. An interesting research
topic might therefore be to use the bi-SBT model as a general framework for transportation
of hazardous materials. This would include the development of a bicriterion random time-
dependent network generator and tests on the hypergraphs generated with it.
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Logic is also an interesting research topic. Dawande and H ooker [11], H ooker [19] introduced
logic-based sensitivity analysis which makes it possible to do sensitivity analysis of 0-1
problems. This may be used to generate ranges, where the current solution still is optimal,
on more specific integer problems. Furthermore, I am currently a participant in a study
group, where we are reading a newly published book [20], about logic based methods for
optimization. The book presents interesting new methods where logic can be used in a
logic-based modelling framework to solve MP problems. These models can sometimes prune
the branch and bound search tree and hence solve the problem faster. This theory could be
interesting to use on some specific problems.
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Abstract

The bicriterion shortest path problem has been extensively studied for many years. In
addition there has recently been a growing focus on dynamic networks including the
random time-dependent shortest path problem which can be transformed to the short-
est hyperpath problem [24]. But no attempt has been made to find bicriterion dynamic
paths.

This paper aims at solveing the bicriterion shortest hyperpath problem (bi-SBT). The
first step implies development of procedures to solve the k′th shortest hyperpath prob-
lem in order to pave the way for solving the bi-SBT problem. The paper presents new
methods of finding the k′th hyperpath by branching on lower bounds; methods that
may also be applied to digraphs. We next develop different bi-SPT procedures which
are tested against each other on randomly generated hypergraphs. The results obtained
show that bi-SBT can be solved for large hypergraphs.

Keywords: B-hypergraphs, SBT, k′th shortest hyperpath, bi-SBT.

1 Introduction

One of the most classical problems encountered in the analysis of networks is the shortest
path problem.
Traditionally the shortest path problem was a single objective problem with the objective be-
ing minimizing total distance or travel time. Nevertheless, due to the multiobjective nature
of many transportation and routing problems, a single objective function is not sufficient
to completely characterize some real-world problems. In a road network for instance, two
parameters, time and cost, can be assigned to each arc. Clearly, often the fastest path may
be too costly or the cheapest path may be too long. Therefore the decision maker must
choose a solution among the paths, where it is not possible to find a different path such that
time or cost is improved without getting a worse cost or time, respectively (efficient path).

∗Corresponding author (e-mail: relund@imf.au.dk)
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This problem is called the bicriterion shortest path problem, and is NP-hard because there
can be exponentially many different efficient paths [11]. Climaco and Martins [5] solved
the problem by first finding an upper bound on one criteria and second use a k′th shortest
path procedure to find all efficient solutions below that upper bound. In Mote, Murthy, and
Olson [19] a two-phases approach was considered. First phase found the supported extreme
nondominated points using an LP-relaxation and second phase searched for unsupported
nondominated points using a label correcting approach. An algorithm based only on a label
correcting method was presented in Brambaugh-Smith and Shier [3]. More recent an inter-
active approach which finds only a part of the nondominated solutions has been studied [see
7, 8]. For an overview, see Skriver [25].
Several other extensions of the shortest path problem where arc lengths are stochastic,
have been considered. Some authors considered the case in which arc costs are random
variables [16–18, 23]. Another case is where arc travel time is both stochastic and time
dependent. H ere the best route is not necessarily an origin-destination path but a strategy
which says that if you leave node v at time x you must travel through arc e, H all [12].
Pretolani [24] showed that the best strategy for a random time-dependent network can be
found by defining a time expanded hypergraph H and then finding the shortest hyperpath
in H. For hypergraphs, shortest hyperpaths have been well examined and fast algorithms
exist [9, 15, 20, 21]. H owever, no one has to the authors’ knowledge tried to find efficient
strategies. In other words, because a hyperpath corresponds to a strategy, we want to find
efficient hyperpaths or using the terminology in Pretolani [24]; find the best strategy that
both minimizes expected travel time and expected cost.
In this paper we solve the bicriterion shortest hyperpath problem (bi-SBT). The problem
is solved using a k′th shortest hyperpath procedure. Finding the k′th shortest path for
digraphs has been extensively studied in recent years [2, 30]. We extend the problem to
hypergraphs and present new fast methods for finding all shortest hyperpaths below an
upper bound; methods that may also be applied to digraphs. Different methods for solving
bi-SBT are considered. First, we develop a simple k′th search procedure based on the work in
Climaco and Martins [5], i.e. we use the k′th shortest hyperpath procedure on one criteria
to find all nondominated points below an upper bound. Second, a two-phases procedure
is made. H ere first step finds all supported extreme nondominated points using a NISE
like procedure, Cohen [6]. In second step we find all unsupported nondominated points by
searching each triangle defined by the supported extreme nondominated points using a k′th
shortest hyperpath procedure. Finally, a diagonal k′th shortest hyperpath procedure is made
which, in contrast to the simple k′th search procedure, searches in a combined direction of
the first and second criteria.
The paper is organized as follows. Directed hypergraphs are introduced in Section 2. We here
consider B-hypergraphs, referred to as hypergraphs, i.e. hypergraphs where there is only one
node in the head of each hyperarc. In Section 3 different procedures to find the k′th shortest
hyperpath are developed. Furthermore, a procedure finding all shortest hyperpaths with
weight below an upper bound is constructed. The bicriterion shortest hyperpath problem is
described in Section 4 and three procedures are developed. Section 5 describes the random
hypergraph generator (B-MAKER) which is used to generate test-hypergraphs. In Section 6
computational results are reported. All procedures were implemented in C++ and tested
on a UNIX workstation. Finally, applications to random time-dependent shortest paths
are considered in Section 7. Appendix A describes the data structures used in the C++
program.
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2 Directed Hypergraphs

A directed hypergraph1 is a pair H = (V, E) where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs.
A hyperarc e ∈ E is a pair

e = (T (e), h(e)) T (e) ⊂ V h(e) ⊆ V\T (e)

where T (e) and h(e) denote the tail nodes and the head node, respectively.
The cardinality of hyperarc e is the sum of the tail and head nodes, i.e.

|e| = |T (e)|+ |h(e)| = |T (e)|+ 1

If |e| = 2 hyperarc e is called an arc. The size of H is the sum of the cardinalities of its
hyperarcs:

size(H) =
∑
e∈E

|e|

We denote by

FS(u) = {e ∈ E | u ∈ T (e)}
BS(u) = {e ∈ E | u ∈ h(e)}

the forward star and the backward star of node u, respectively. A path Pst in a hypergraph
H is a sequence of nodes and hyperarcs in H:

Pst = (v1 = s, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, ...q + 1, vi ∈ T (ei) and vi+1 ∈ h(ei). A node v is connected to node u if a
path Puv exists in H. A cycle is a path Pst where t ∈ T (e1). A path is cycle-free if it does
not contain any subpath which is a cycle, i.e.

vi ∈ T (ej)⇒ j ≥ i 1 ≤ i ≤ q + 1

If H contains no cycles, it is acyclic. H̃ = (Ṽ, Ẽ) is a subhypergraph of H = (V, E) if H̃
satisfies Ṽ ⊆ V and Ẽ ⊆ E . This is written H̃ ⊆ H or we say that H̃ is contained in H.

Example 1 A hypergraph H is shown in Figure 1 on the following page. H ere we have

|e1| = |T (e1)|+ 1 = 3
FS (v2) = {e5, e6, e7, e2}
BS (v5) = {e4, e5}
size (H) = 19

A path from v4 to v6 is
Pv4v6 = (v4, e1, v2, e2, v3, e7, v6)

and a path from v1 to v4 is

Pv1v3 = (v1, e1, v2, e2, v3, e3, v4)

path Pv1v3 is actually a cycle because

v4 ∈ T (e1) � 1 ≥ 4

A subhypergraph H̃ of H is emphasized in Figure 1.
1We here look at B-hypergraphs i.e hypergraphs where a hyperarc only have one node in its head. More

general hypergraphs is presented in Gallo et al. [9].
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Figure 1: A hypergraph H with a cycle.

2.1 Ordering a hypergraph

We here look at a topological ordering of the nodes of a hypergraph. That is an ordering

V = (vi1 , vi2 , ..., vin)

of all the nodes in hypergraph H.

Definition 1 Let H = (V, E) be a hypergraph. A valid ordering

V = (vi1 , vi2 , ..., vin)

of the nodes in H. Is a topological ordering of the nodes such that, for each e ∈ E and
u ∈ T (e), node u precedes node h(e) in the ordering (see Figure 2).

e
h(e)

u

Figure 2: A valid ordering V = (..., u, ..., h(e), ...).

The following theorem is proved in Gallo et al. [9, section 7.2] for F -hypergraphs2, but is
also true for B-hypergraphs.

Theorem 1

H acyclic ⇔ A valid ordering of the nodes in H is possible

If a valid ordering exists, can it be found with Procedure 1. An acyclic hypergraph H always
has a node s with BS(s) = ∅, i.e. line 3 first picks a source node. Line 4 adds the node to
the valid ordering. The for loop on line 5 decreases ri until ri = 0, which means that all
nodes in T (e) have been added to the valid ordering. If this is not possible, the procedure
stops before k = n. Because each hyperarc e is examined at most |T (e)| times, the overall
complexity is O (size (H)) .

2A hypergraph where |T (e)| = 1and |h (e)| ≥ 1.
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Precondition: Let ri denote the number of tailnodes (with repetitions) of the hyperarcs in BS (i)
not yet scanned, and let Q be a candidate set implemented as a queue (FIFO). Moreover, nu = k
denotes that node u is the k’th number in the valid ordering V.

Postcondition: If k = n then H is acyclic otherwise not.

Initialization: Set k = 0, Q = ∅, ri = 0 ∀i ∈ V, ri := ri + |T (e)| ∀e = (T (e), {i}) ∈ E
for (i ∈ V) do1

if (ri = 0) then Q := Q∪{i}2

while (Q 	= ∅) do select and remove u ∈ Q3

set k := k + 1, nu := k4

for (e = (T (e), {i}) ∈ FS(u)) do5

ri := ri − 16

if (ri = 0) then Q := Q∪{i}7

end for8

end while9

Procedure 1: Finding a valid ordering of H.

Example 2 Consider the hypergraph H in Figure 3. H ere a valid ordering of the nodes in
H is

V1 = (s, v1, v2, v3, v4, v5, t)

Since there is not a path from v4 to v5, another valid ordering is

V2 = (s, v1, v2, v3, v5, v4, t)

v2

v1 v4

v5

s v3 t

Figure 3: An acyclic hypergraph H.

A valid ordering is therefore not unique.

2.2 Hyperpaths

We here use a slightly different definition of a hyperpath than in Gallo et al. [9], since in
some cases this definition seems to be not working for B-hypergraphs, see Nielsen, Pretolani,
and Andersen [22].
Consider a hypergraph H = (V, E). A hyperpath πst of origin s and destination t, is an
acyclic minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ = ∪e∈Eπ
(T (e) ∪ h(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.
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Precondition: Given s, the root of the hypertree, let p : V → E be a predecessor function and Q a
candidate set. Let the counter kj for each hyperarc ej , represent the number of nodes in T (ej)
which have been removed from Q, i.e. the head h (ej) is not examined before all these nodes
have been removed.

Postcondition: The hypertree is defined by the predecessor function p and if a node u is not hyper-
connected to s, then p (u) = 0.

Initialization: Set Q := {s} , p (v) := 0 ∀v ∈ V, kj := 0 ∀ej ∈ E
while (Q 	= ∅) do select and remove u ∈ Q1

for (ej ∈ FS (u)) do kj := kj + 12

if (kj = |T (ej)| and p (h (ej)) = 0) then Q := Q∪{h (ej)} , p (v) := ej3

end for4

end while5

Procedure 2: Visit of a hypergraph H (B-visit).

Note that 3. implies that for each u ∈ Vπ \ {s} there exists a hyperarc e ∈ Eπ such
that h(e) = u, it follows from the minimality that e is unique. H yperarc e is called the
predecessor of u and denoted by eπ (u) . We say that node t is hyperconnected to s if there
exists a hyperpath πst. We trivially have

Corollary 1 Given a hyperpath πst and a hyperarc e ∈ Eπ, we have that each node v ∈ T (e)
is hyperconnected to s.

H yperpath πst is different from hyperpath πuv if they do not have the same hyperarcs.

Example 1 (continued) A hyperpath πv2v7 from v2 to v7 is shown in Figure 1 where the
hyperpath is emphasized. A hyperpath from v1 to v6 does not exist because the only path
from v1 to v4 is a cycle and v4 must be a node in Vπ, according to Corollary 1.

Note that only a subhypergraph of H has to be considered when we want to find a hyperpath
πst because the minimality also implies that the following condition holds:

4. ∃u− t path ∀u ∈ Vπ \ {t}

Therefore all nodes which do not have a path to t can be removed from H.

2.3 Hypertrees

A directed hypertree with root s is a hypergraph Ts = ({s}∪N , ET )3 satisfying the following
conditions:

1. Ts is acyclic

2. {s} ∩ N = ∅

3. BS (s) = ∅

4. |BS (v)| = 1 ∀v ∈ N

Note a hypertree is the union of hyperpaths to all nodes in N . If FS(v) = ∅ then v is called
a leaf. Two hypertrees are shown if Figure 4. Given H, a hypertree can be found with
Procedure 2, where the hypertree is defined by a predecessor function p : V → E with p (v) ∈
BS (v). Note that procedure B-visit finds only one of potentially many hypertrees in H, and
it is possible that some hypertrees in H cannot be found by procedure B-visit. Because each
hyperarc is examined at most |T (e)| times the overall complexity is O (size (H)) . Given a
hypertree, it is easy to find the hyperpath πst to a node t in N

3In some definitions it is possible to have more than one root [4].

I·6



v2

v1

v4

v5

v6s

v3

v7 v8

t

v2

v1

v4

v5

v6s

v3

v7 v8

t

Figure 4: To different hypertrees with the same hyperpath πst.

Corollary 2 A hyperpath πst in a hypertree Ts = ({s}∪N , ET ) is a hypergraphHπ= (Vπ, Eπ)
which satisfies

1. Vπ = { v ∈ N∪{s} | ∃path : v − t}

2. Eπ =
⋃
v∈Vπ

BS(v)

Proof Because there is only one hyperarc that points at a node v, there is only one unique
hyperpath to a node v which is found by backtracking the hypertree from v.

Note that different hypertrees can have the same hyperpath πst as seen in Figure 4.

2.4 Weighted hypergraphs

A weighted hypergraph is a hypergraph where each hyperarc e is assigned a real weight w (e).
Given a hyperpath πst a weighting function Wπ is a node function which assigns weights
Wπ (u) to all nodes in πst. The weight of hyperpath πst is Wπ (t) .We shall restrict ourselves
to additive weighting functions which is defined by the recursive equations

Wπ (u) =
{
w(eπ(u)) + F (eπ (u)) u ∈ Vπ \ {s}
0 u = s

where F (e) is a nondecreasing function of the weights of the nodes in T (e). Two particular
weighting functions, namely the distance and the value, have been studied in detail by Gallo
et al. [9], and Pretolani [24] who showed that these two functions have practical applications.
The distance is obtained by defining F (e) as follows:

F (e) = max
v∈T (e)

{Wπ (v)}

w(e)

u
v1

v2

vq

ae(v1)

ae(v2)

a e(
v q)

Figure 5: The weights and multipliers of the value function e = ({v1, ..., vq} , {u}).
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e1

e2

e3

v1

v2v3

v4

Figure 6: A nondecreasing cycle if condition (2.1) holds.

and the value is obtained as follows:

F (e) =
∑
v∈T (e)

ae (v)Wπ (v)

where ae (v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e) (see
Figure 5). The distance (the value) of a hyperpath πst is the weight of the hyperpath πst
with respect to the distance (the value) weighting function.

2.5 The shortest hyperpath problem

The shortest hyperpath problem (SBT) 4 consists in finding the minimum weight hyperpaths
from an origin s to all nodes in H hyperconnected to s. In general the problem is hard
to solve but if the weighting function is additive, fast algorithms exist. We first define a
nondecreasing cycle which ensures that no weight can be decreased through a cycle.

Definition 2 A nondecreasing cycle is a cycle C = {v1, e1, v2, e2, ..., vr, er, v1} that satisfies

w (er) + Fvr

[
w (er−1) + Fvr−1 (...Fv2 [w (e1) + Fv1 (z)])

]
≥ z ∀z ∈ R+ (2.1)

H ere Fvi
(W ) denotes the function where vi ∈ T (ei) has weight W and all other nodes

u ∈ T (ei) has weight equal to zero.

That is, if node v1 has temporary weight z then going through C will give no better tempo-
rary weight, see Figure 6. If we consider the distance function, then F (e) = maxv∈T (e) {Wπ (v)}
and therefore Fvi

(W ) =W, so condition (2.1) becomes

r∑
i=1

w (ei) + z ≥ z

 
r∑
i=1

w (ei) ≥ 0

which is the normal nonnegativity condition from standard digraphs.
For the value function we have that Fvi

(W ) = aei
(vi)W and condition 2.1 becomes

w (er) + aer
(vr)

[
w (er−1) + aer−1(vr−1) (...ae2(v2) [w (e1) + ae1(v1)z])

]
= w (er) +

r−1∑
i=1

w (er−i)
i−1∏
j=0

aer−j
(vr−j)

+ z
r∏
i=1

aei
(vi) ≥ z

4Shortest B-hypertree.
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Precondition: Given hypergraph H with nondecreasing cycles and nonnegative hyperarc weights, let
W (vi) denote the minimal weight in node vi, F (e) the chosen additive weighting function, Q
the candidate set and let p be a predecessor function. Moreover, let the counter kj for each
hyperarc ej represent the number of nodes in T (ej) which have been removed from Q. Therefore
we just update h (ej) when the weight in all nodes in T (ej) has been calculated.

Initialization: Set W (vi) =∞ ∀i ∈ V, kj = 0 ∀e ∈ E , Q = {s} and W (s) = 0

while (Q 	= ∅) do1

select and remove u ∈ Q;2

for (ej ∈ FS(u)) do kj := kj + 13

if (kj = |T (ej)|) then v := h (ej)4

if (W (v) > w(ej) + F (ej)) then5

if (v /∈ Q) then6

Q := Q∪{v}7

if (W (v) < ∞) then8

for (eh ∈ FS (v)) do kh := kh − 19

end if10

end if11

W (v) := w(ej) + F (ej), p (v) := ej12

end if13

end if14

end for15

end while16

Procedure 3: Shortest B-tree procedure (SBT)

Assuming that w (ej) is nonnegative, this inequality is obvious true for z ∈ R+ if
r∏
i=1

aei
(vi) ≥ 1 (2.2)

which is the gainfree condition from Jeroslow, Martin, Rardin, and Wang [13].
Now, assume that the weighting function is additive, the weights nonnegative and that all
cycles are nondecreasing. Gallo et al. [9] showed that finding the minimum weight hypertree
is equivalent to finding a solution to Bellmans generalized equations

W (v) =

{
0 v = s
min

e∈BS(v)
{w(e) + F (e)} v ∈ V\ {s}

Procedure 3 proposed in Gallo et al. [9] finds the minimum weight hypertree. The main loop
starts on line 1. H ere a node u is picked and removed from the candidate set on line 2, and
line 3 increases kj by one because node u ∈ T (ej) has been removed from Q. If all nodes
in T (ej) have been removed from Q, i.e. if all weights in T (ej) have been calculated, we
calculate a new weight in v = h (ej) and check whether the new calculated weight is lower
than the old calculated weight on line 5. If so, we have two cases: If v ∈ Q, we update the
weight and predecessor function on line 12. If v /∈ Q, we add v to Q and therefore decrease
kh by one for all eh ∈ FS (v) on line 9, provided that kh is not already zero, and then update
the weight and predecessor function on line 12.
The complexity of the procedure depends on the implementation of the candidate setQ. If we
use Dijkstra’s principle, i.e. select from Q a node u satisfying W (u) = min {W (x) | x ∈ Q}
at each iteration, then the well-known assumption of nonnegative arc weights in standard
digraphs becomes

w (e) + F (T (e)) ≥W (x) ∀x ∈ T (e) , e ∈ E (2.3)

that is, the weight in the head must be equal to or larger than the weight in all the nodes
in the tail. If assumption (2.3) is satisfied, then Dijkstra’s theorem can be extended to
hypergraphs.
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Precondition: Given V, a valid ordering of H. let p denote the predecessor function and F (e) the
chosen additive weighting function.

Initialization: Set W (s) := 0, W (vi) =∞ i = 1, ..., n

for (i = 1 to n) do1

for (e ∈ BS(vi)) do2

if (W (vi) > w(e) + F (e)) then W (vi) := w(e) + F (e), p (vi) := e3

end for4

end for5

Procedure 4: Shortest B-tree procedure when H is acyclic (SBT-acyclic)

Theorem 2 Suppose assumption (2.3) is satisfied andW (u) = min {W (x) | x ∈ Q} . Then
W (u) is the minimum weight of all hyperpaths from s to u.

As a consequence we have that every node u ∈ V is removed from Q at most once and there-
fore line 9 can be dropped. The complexity of sortingQ isO

(
n2
)
and since each hyperarc e is

examined at most |T (e)| times, the overall complexity for scanning all nodes is O (size (H)) .
The complexity under Dijkstra’s principle now becomes O

(
max

{
n2, size (H)

})
. If a heap

implementation is used, the complexity becomes O (m log n) .
If we have calculated the minimal hypertree for H, and H is changed to H̃ by removing some
hyperarcs, then the minimal hypertree of H̃ does not have to be calculated from scratch.

Theorem 3 Let Ts be a minimal hypertree with root s of hypergraph H = (V, E) defined
by predecessor function p : V → E and let V be a valid ordering of Ts.

V = (vi1 = s, vi2 , ..., vin)

Let H̃ = (Ṽ, Ẽ) be the subhypergraph of H where some hyperarcs have been removed from

BS
(
viq
)
, ..., BS (vin)

then the hypertree for node vi1 , ..., viq−1 defined by

p
(
vij
)

j = 1, ..., q − 1 (2.4)

is minimal for H̃.

Proof The hypergraph defined by the predecessor function in (2.4) satisfies all conditions
in Section 2.3 and is therefore a hypertree. In addition it is a subhypergraph of H̃ and since
no hyperarcs in BS (vi) , i = 1, ...q − 1 have been changed in H̃, it is minimal.

Theorem 3 shows that if we apply changes to node viq , ..., vin then we do not have to calculate
the minimal hypertree for node vi1 , ..., viq−1 again.

2.5.1 Acyclic case

If H is acyclic, a fast procedure exists [10]. The procedure is stated in Procedure 4 and
needs a valid ordering which can be found with Procedure 1 on page 5.

V = (v0 = s, v1, ..., vn)

Procedure 4 finds the minimal weight for a node v in one iteration because the valid ordering
assures that minimal weights in the predecessor nodes have been found. Again, here each
hyperarc e is examined at most |T (e)| times and the overall complexity for scanning all
nodes becomes O (size (H)) .
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2.6 The LP formulation of the value function

As is the case for the shortest path problem, there exists an LP formulation of the shortest
hyperpath problem when the value function is considered (this is not true for the distance
function). For the value function we have the following problem

min
∑
e∈E

wexe

(P ) st.
∑

e∈BS(v)

xe −
∑

e∈FS(v)

ae (v)xe =


−1 v = s
0 v ∈ V\ {s, t}
1 v = t

(2.5)

xe ≥ 0 ∀e ∈ E

where xe is the flow through hyperarc e. The dual formulation now becomes

max qt

(D) st. we +
∑

v∈T (e)

ae (v) qv ≥ qh(e) ∀e ∈ E

qs = 0

H ere we actually assume that the primal problem has a flow variable xes
with a flow of one

into node s, i.e. equation (2.5) is∑
e∈BS(v)

xe −
∑

e∈FS(v)

ae (v)xe =
{

0 v ∈ V\ {t}
1 v = t

xes
= 1 es = (∅, s)

So, the primal problem is actually a gainfree Leontief substitution problem [see 13]. The
primal solution is not necessarily integral if the minimal hyperpath from s to t contains
hyperarcs. But all positive variables in the primal solution define a hyperpath from s to t.

Theorem 4 (Jeroslow et al. [13]) LetH be a hypergraph fulfilling the gainfree condition
(2.2) and let xe for e ∈ E be a solution of (P ) , then

E = {e ∈ E |xe > 0}

defines a minimal hyperpath from s to t.

3 Finding the k’th shortest hyperpath

In this section we describe how to find the k-shortest hyperpaths from a root node s to a
given destination node t in a hypergraph H, i.e. the shortest hyperpath, the 2′nd shortest
hyperpath,...,the k′th shortest hyperpath. The procedure is an extension of finding the k
shortest loopless paths presented in Yen [30]. Lawler [14] presented similar results in a more
general framework where he finds the k′th best solution to a discrete optimization problem.
Furthermore, we present a procedure which finds all hyperpaths with a weight below an
upper bound. Assume that H = (V, E) is given and let Ṽ be an ordering of the nodes of H.

Ṽ = (s, u1, ..., un)

Because no hyperpath from s to t can contain a hyperarc from BS (s) , we assume wlog that
BS (s) is empty. Let the hyperarcs be ordered in the following way

(e11, e
2
1, ..., e

a1
1︸ ︷︷ ︸, e12, e

2
2, ..., e

a2
2︸ ︷︷ ︸ , ..., e1n, e

2
n, ..., e

an
n )︸ ︷︷ ︸

∈ BS(u1) ∈ BS(u2) ∈ BS(un)
(3.1)
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Step 1 Use an SBT procedure to find a minimal hyperpath π ∈ Π.
Step 2 Divide H into subhypergraphs H1, ...,Hq which together satisfy: All possible hyperpaths

from s to t in H will be contained in the subhypergraphs except the minimal one found in
Step 1.

Step 3 Use and SBT procedure to calculate a minimal hyperpath πi for every subhypergraph Hi.

Step 4 Pick a hyperpath πi with minimal weight, of the ones calculated in Step 3.

Procedure 5: Finding the 2′nd shortest hyperpath (main steps)

p(u 1
)=1

p(u1 )=
2

p(u
1 )= a

1

p(u 2 )=
1

p(u2
)=2

p(u
2 )= a

2

p(u 2 )=
1

p(u2 )=
2

p(u
2 )= a

2

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

p(u i 
)=1

p(ui 
)=2

p(u
i )= a

i 

BS(u )1L1 ~ BS(u )2L2 ~ BS(u )3L3 ~ BS(u )nLn ~Level:

Figure 7: The branching tree T with n levels.

and let the predecessor function p : V → E denote the hyperarc e ∈ BS (v) used as prede-
cessor hyperarc, i.e. if hyperarc eli is used as predecessor for node ui, then

p (i) = l l ∈ {1, ..., ai}

In the following we let Π denote the set of hyperpaths πst from s to t, i.e.

Π = {π ⊆ H |π has root s and destination t}

The idea of finding the 2′nd shortest hyperpath in H is now as stated in Procedure 5. But
how do we find subhypergraphs that satisfy the condition in step 2? The number of different
predecessor functions can be viewed as a branching tree T with n levels as shown in Figure
7 where

1. Each level Li of branchingarcs corresponds to the possible choices of predecessor hy-
perarcs of node ui.

2. The root node tr corresponds to hypergraph H.

3. A leafnode tl defines a predecessor function or equivalently the subhypergraph obtained
from H by fixing the backward star of node u1, ..., un to the values defined in the path
from tr to tl.

4. Similarly, a treenode t on level Li corresponds to the subhypergraph obtained from H
by fixing the backward star of node u1, ..., ui to the values defined in the path from tr
to t.

The minimal hypertree of H with root s can now be viewed as a path Ptrtl in T where some
of the branchingarcs in Ptrtl define the minimal hyperpath π from s to t.
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BS(u )1L1 ~ BS(u )2L2 ~ BS(u )qLq ~Level:

fix p(u 1
)

remove p(u
1 )

H1

fix p(u 2
)

remove p(u
2 )

fix p(u q)

remove p(u
q )

H2

Hq

H

Figure 8: The branching tree for the subhypergraphs.

Definition 3 Let predecessor function p define the minimal hypertree of H =(V, E) and let
an ordering of a subset of nodes {u1, ..., ul} ⊆ V be given by

V = (u1, ..., ul)

We say that we branch on node ui meaning that we fix the backward star of node uj to p (uj)
(1 ≤ j < i) and remove p (ui) from the backward star of node ui. More precisely branching
on node ui corresponds to creating a subhypergraph H̃ =

(
Ṽ, Ẽ

)
with Ṽ = V and where the

hyperarc set Ẽ is modified in the following way

B̃S (u1) = p (u1) , ..., B̃S (ui−1) = p (ui−1) , B̃S (ui) = BS (ui) \ p (ui)

The ordering V is called the ordered branching set of H.

We want to find subhypergraphs that do not contain π, that is a subtree of T which does
not contain the branchingarcs that define π. A well-known property of hypergraphs is

Property 1 Let Ts be a minimal hypertree of H and v a node which is not in the minimal
hyperpath π contained in Ts. Then π is still a minimal hyperpath for every subhypergraph
obtained from H by deleting or fixing some arcs in BS (v).

Therefore, deleting or fixing some arcs on levels that correspond to nodes that are not in π,
will not change the solution of π, and hence these levels can be removed from the branching
tree. We can now construct q subhypergraphs H1, ...,Hq which satisfy step 2 in Procedure 5
by using the following branching rule

Branching Rule 1 Let predecessor function p define the minimal hypertree of H =(V, E)
and let an ordering of the nodes in the minimal hyperpath π, without root s, be given by

V = (u1, ..., uq)

We now create subhypergraphs Hi for 1 ≤ i ≤ q by branching on node ui.

The subhypergraphs H1, ...,Hq in Branching Rule 1 correspond to the branching tree T̃ in
Figure 8. We here have that all possible choices of predecessor functions, except the minimal
one, are contained in H1, ...,Hq and therefore H1, ...,Hq satisfies the conditions in step 2.
We now can use Branching Rule 1 in step 2, and hence step 3 and 4 will find the 2′nd
shortest hyperpath.
Finding the k′th shortest hyperpath works in the same way. Now simply store all the
subhypergraphs and their corresponding minimal hyperpath so that it is possible to calculate
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Precondition: Let List be a candidate set, i.e. List contains all the subhypergraphs, where the k′th
shortest hyperpath can be found from, and let Out denote an outputlist. Moreover, let q denote
the number of elements in the ordered branching set of Hi.

Postcondition: The outputlist Out has been filled with the k shortest hyperpaths.

Initialization: Use an SBT procedure to calculate a minimal hyperpath π ∈ Π and set List =
{(H, π)}

for (i = 1 to k) do pick
(
πi,Hi

)
= argmin(π̃,H̃)∈List {W (π̃)} and set Out := Out∪

{
πi
}

1

for (j = 1 to q) do create subhypergraph Hj using Branching Rule 1.2

calculate πj = minπ∈ΠHi
{W (π)} using an SBT procedure.3

set List := List∪{(πj ,Hj)}4

end for5

end for6

Procedure 6: Finding the k shortest hyperpaths.

new shortest hyperpaths if this minimal hyperpath is used. The k shortest hyperpaths can
be found with Procedure 6 which can be illustrated with the following example.

Example 3 Suppose that we want to find the 4 shortest hyperpaths of hypergraphH shown
in Figure 9. H ere its minimal hypertree is emphasized and the weight of the minimal hy-
perpath is written inside the square. The weighting function considered is the sum function,
i.e. the value function with all multipliers equal to one. An ordered branching set of the
nodes in the minimal hyperpath π is

V = (t, 6, 5, 1)

The branching tree T̃ corresponding to this branching set is shown in Figure 10 with its
corresponding subhypergraphs. H ere subhypergraph H4 is not shown because no hyperpath
from s to t exists in H4. The minimal hypertree of each subhypergraph is emphasized in
Figure 11. Now for each subhypergraph Hi we calculate a minimal hyperpath πi and add
(Hi, πi) to List if the hyperpath exists. We now have

List = {(H1, π1) , (H2, π2) , (H3, π3)}

We then select and remove an element from List where the hyperpath has minimal weight,
i.e. (H1, π1) with W (t) = 14. H ere an ordering of the levels in the branching tree is

V = (t, 8, 2)

and we have to solve 3 subproblems H11, H12 and H13. Like before here subhypergraph H13

does not have any hyperpaths from s to t. The subhypergraphs with finite weight W (t) and
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Figure 9: H ypergraph H with its minimal hypertree emphasized.
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Figure 10: The branching tree T̃ ofH and its corresponding subhypergraphs (subhypergraph
H4 is not shown). The hyperarcs defining the minimal hyperpaths have been
emphasized.
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(a) Subhypergraph H1.
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(b) Subhypergraph H2.
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(c) Subhypergraph H3.

Figure 11: The subhypergraphs H1,H2 and H3 of H with their corresponding minimal hy-
pertrees emphasized.
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(a) Subhypergraph H11.
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(b) Subhypergraph H12.

Figure 12: The subhypergraphs H11 and H12 of H1 with their corresponding minimal hy-
pertrees emphasized.

e1
1

2

e1
5

2

e2
3 2

e1
4

2

e1
2

4

e1
8

4

e1
7 3

e2
5

5

e3
6

8 e2
4

6

e1
t

2

e1
8

6

e1
3

6

v1 v5

s

v3

v4

v2 v7

v6

t

v8

18

(a) Subhypergraph H21.
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(b) Subhypergraph H22.
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(c) Subhypergraph H23.
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(d) Subhypergraph H24.

Figure 13: The subhypergraphs H21,...,H24 of H2 with their corresponding minimal hyper-
trees emphasized.

their corresponding minimal hypertree are shown in Figure 12 and if we add these solutions
to List we have

List = {(H11, π11) , (H12, π12) , (H2, π2) , (H3, π3)}

Again, pick one with lowest weight, i.e. (H2, π2) with W (t) = 16. The ordered branching
set becomes

V = (t, 6, 3, 5, 4, 1)

which corresponds to 6 subhypergraphs. Three of them have no hyperpath from s to t. By
removing p (t) , for instance, we do not have arcs in the backward star of t and therefore no

I·16



hyperpath πst. Four of the subhypergraphs of H2 are shown in Figure 13 with their minimal
hypertree. Note that for H24 we do not have a hyperpath πst, so we do not add it to List
which becomes:

List = {(H21, π21) , (H22, π22) , (H23, π23) , (H11, π11) , (H12, π12) , (H3, π3)}

Now, we just have to pick the one with lowest weight and we have found the 4′th shortest
hyperpath of H. H ypergraph H actually has 24 different hyperpaths.

Example 3 leads to the following simple observation.

Observation 1 If the forward star of a node v �= t is empty, this node will never be a node
in a hyperpath πst. Therefore all nodes v, where |FS (v)| = 0, can be removed from every
subhypergraph H̃ without removing any of the hyperpaths πst contained in H̃. This can be
done recursively, meaning that if removal of a node makes the forward star of another node
empty, this node can be removed too. The same rule is valid for the backward star of all
nodes v �= s.

Consider for instance node v8 in Figure 11 which can be removed from subhypergraph H2

and H3, since the forward star is empty.

3.1 Better branching rules

In the above we used an ordered branching set V of the nodes in the hyperpath to specify
the ordering of the levels in the branching tree T̃ . This ordering can be chosen randomly
but why not choose an ordering where we can use information already calculated.

3.1.1 Backward branching

When using a shortest hyperpath procedure, we find a minimal hypertree Ts defined by
predecessor function p where the minimal hyperpath π is a subhypergraph of Ts. Therefore,
when the procedure ends, each node v contains a label of the minimal weight to node v and
another label containing the predecessor hyperarc. We here can assume that FS (t) = ∅
because a hyperarc e ∈ FS (t) will never be used in a hyperpath πst. It is therefore possible
to find a valid ordering of Ts :

VTs
= (v1 = s, v2, ..., vn−1, vn = t)

with t as the last node in the ordering. Note that the valid ordering can be found as the
order in which we pick the nodes in a labelsetting version of procedure SBT, provided that
Dijkstra’s principle and assumption (2.3) is fulfilled. From Theorem 3 we now have that if
subhypergraph H̃ is obtained from H by removing some hyperarcs from BS (vi) , ..., BS (vn)
we still have the same minimal hypertree to the nodes v1, ..., vi−1 for H̃. Now, if we order
the levels of our branching tree T̃ in the opposite of VTs

, then for each subhypergraph H̃i
we only have to find a new minimal hyperpath to the node ui and the nodes after it in VTs

(see Figure 14). That is we can use the labels in node v1, ..., vl−1 calculated before. Another
good property of using the opposite valid ordering of the minimal hypertree is, that we do

VTs
= (v1, v2, ..., vl−1︸ ︷︷ ︸

same hp

,

ui
↓
vl , ..., vn−1, vn︸ ︷︷ ︸
recalculate

)

Figure 14: Use of information in Ts.
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not have to branch on nodes v in the hyperpath where |BS (v)| = 1. This is due to the fact
that, if the opposite valid ordering is used, we force the tail nodes of each hyperarc we fix
to be nodes in the minimal hyperpath of the subhypergraph. Therefore next removing the
hyperarc from a tail node v with |BS (v)| = 1, leaves the backward star empty and therefore
no hyperpath πst can exist. The above leads to the following branching rule.

Branching Rule 2 (Backward branching) Let predecessor function p define the mini-
mal hypertree Ts of H =(V, E) which contains the minimal hyperpath π = (Vπ, Eπ). More-
over, let VTs

denote a valid ordering of Ts.
VTs

= (v1 = s, v2, ..., vn−1, vn = t)

Now, scan VTs
backwards from node vn to node v1 and add node vi to the ordered branching

set Ṽ if
vi ∈ Vπ and |BS (vi)| > 1

When VTs
has been scanned, we now have an ordered branching set

V =
(
vl1 , ..., vlp

)
where the last node added from VTs

is last in V.We now create subhypergraph Hi, 1 ≤ i ≤ p
by branching on node vli .

Example 3 (continued) The ordering we used for the branching tree T̃ was exactly the
opposite of a valid ordering of the minimal hypertree. A valid ordering of the minimal
hypertree of H in Figure 9 could be

VTs
= (s, 2, 8, 4, 3, 1, 5, 6, 7, t)

and the ordering of the branching tree T̃ was

V = (t, 6, 5, 1)

H ere |BS (1)| = 1, so it is not necessary to branch on node 1, since fixing the backward star
of node t, 6 and 5 forces node v1 to be a node in the hyperpath and therefore removing e11
will disconnect s from t (see Figure 11). Observe that this is a consequence of the branching
rule used. If we choose an ordering

V = (t, 1, 6, 5)

we have to branch on node 1. The same is the case when we have to find subhypergraphs
of H2 in Figure 11. H ere the ordering was

V = (t, 6, 3, 5, 4, 1)

and if we remove the nodes v with |BS (v)| = 1 the ordering becomes

V = (6, 3, 5, 4)

These subhypergraphs are shown in Figure 13. Note that it is still possible to have subhy-
pergraphs where t is not hyperconnected to s.
SubhypergraphH3 was obtained fromH by fixing BS (t) and BS (6) and deleting a hyperarc
from BS (5) . Therefore all nodes before node 5 in the valid ordering VTs

will have the same
minimal hyperpath in H3 as in H (see Figure 11).
It is of course best to find a valid ordering of the minimal hypertree where the nodes in πst
is as far back in the ordering as possible. Another valid ordering of the minimal hypertree
of H could be

VTs
= (s, 1, 5, 6, t, 7, 2, 8, 4, 3)

But with this ordering we cannot use much information.

Given Branching Rule 2, we now have a faster k′th procedure shown in Procedure 7.
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Precondition: Same as in Procedure 6 on page 14.

Postcondition: Same as in Procedure 6 on page 14.

Initialization: Use an SBT procedure to calculate a minimal hyperpath π ∈ Π and set List =
{(H, π)}

for (i = 1 to k) do pick
(
πi,Hi

)
= argmin(π̃,H̃)∈List {W (π̃)} and set Out := Out∪

{
πi
}

1

for (j = 1 to q) do create subhypergraph Hj using Branching Rule 2.2

calculate πj = minπ∈ΠHj
{W (π)} using an modified SBT procedure which use information3

set List := List∪{(πj ,Hj)}4

end for5

end for6

Procedure 7: Finding the k shortest hyperpaths using backward branching.

3.2 Using lower bounds to reduce computation time

In the above we assumed that k was known and each time we picked a hypergraph from the
candidate set, we calculated a new solution for each of its subhypergraphs. But when we
search for nondominated solutions in the bicriterion procedures in Section 4, k is not known.
We search until we reach an upper bound, which may be lowered during the procedure, and
then stop. So, if possible we want to make computations as late as possible, i.e. when we pick
a hypergraph from the candidate set, we do not want to calculate a minimal hyperpath for
each of its subhypergraphs. Instead, we calculate a lower boundW of the shortest hyperpath
in each subhypergraph and add this solution to the candidate set. It is obviously crucial
that this lower bound is as close as possible to the true value and that the computation of
lower bounds is faster than calculating the weight of the shortest hyperpath. We now pick
the hypergraph H̃ from the candidate set with minimal lower bound and have two cases:

1. If the lower bound is over the upper search bound we stop because all solutions needed
have been found.

2. Otherwise we calculate the right minimal weight hyperpath π of H̃ and create subhy-
pergraphs H1, ...,Hq by using Branching Rule 2. Furthermore, if the lower bound for
subhypergraph H̃i is under the upper bound we add H̃i to the candidate set, otherwise
not.

Note that we branch on the minimal hyperpath π which has the minimal lower bound.
Therefore we do not find the k shortest hyperpaths in the right order, i.e. we could find the
1′st, 2′nd, 4′th, 3′rd, 6′th, .... but this does not matter, if you just want to find all solutions
up to a certain upper bound. We could evidently be compelled to calculate the minimal
weight hyperpath π of a subhypergraph where W (π) is over the upper bound, if the lower
bound is weak. But if the lower bound is close to the right value, this would be rare. A
lower bound can be found using the following theorem

Theorem 5 Let predecessor function p define the minimal hypertree Ts = ({s} ∪ N , ETs
)

of H =(V, E) and let W (u) denote the optimal weight in each node u ∈ N . Moreover, let
V = (u1, ..., up) denote the ordered branching set found by using Branching Rule 2 and let
Hi denote the subhypergraph of H found by branching on node ui. Then

W (ui) = min
e∈BS(ui)\p(ui)

F (e) + w (e) (3.2)

is a lower bound on the weight of the minimal hyperpath from s to ui in Hi where F (e)
denotes the chosen weighting function.

Proof Let e denote the optimal hyperarc of equation (3.2). Since the optimal weights of
node u ∈ T (e) in Hi will never be less than the optimal weights of node u ∈ T (e) in H,
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Precondition: Let List be the candidate set, ub the upper bound, Out the outputlist and let lb
denote the lower bound for subhypergraph H̃. Moreover, let q denote the number of elements in
the ordered branching set of H̄.

Postcondition: The outputlist Out has been filled with the hyperpaths which have weight under
upper bound ub.

Initialization: Set lb = 0, List = {(H, 0)} and H̄ = H
while (lb ≤ ub) do use an SBT procedure to calculate the minimal hyperpath π of H̄1

if (W (π) ≤ ub) then Out := Out∪{π}2

for (i = 1 to q) do create subhypergraph Hi using Branching Rule 2.3

calculate lbi using Theorem 5 on the preceding page4

if (lbi ≤ ub) then set List := List∪{(Hi, lbi)}5

end for6

pick
(
H̄, lb

)
= argmin(H̃,l̃b)∈List

{
l̃b
}

7

end while8

Procedure 8: Finding all shortest hyperpaths under an upper bound

we have that W (ui) using the optimal weights of H is a lower bound on the actual minimal
weight.

We can now calculate the lower bound weight of node t by changing W (ui) to W (ui) and
calculate new weights for the nodes succeeding ui in the valid ordering VTs

. Procedure 8
finds all hyperpaths with a weight under an upper bound ub.
In Procedure 8 we do not calculate the k′th hyperpaths in the right order, but if this is
necessary we can do the following. Let W (π) be the weight of the minimal hyperpath of H̄
on line 1 in Procedure 8 and let (H, lb) be the element with minimal lower bound currently
in List. We now have two cases

1. W (π) ≤ lb then π is minimal and we add it to Out.

2. W (π) > lb then just reinsert
(
H̄,W (π)

)
in List and go directly to line 7.

By doing the above, we only add a hyperpath to Out when it is minimal for all the subhyper-
graphs currently in List and otherwise we do not branch on it, but pick the subhypergraph
with a better lower bound. So we pick the hyperpaths in the right order.

3.3 The acyclic case

Assume that H = (V, E) is acyclic. Consequently, according to Theorem 1, a valid ordering
of the nodes of H exists.

VH = (v0 = s, v1, ..., vq, ..., vn = t)

This valid ordering can now be used in Branching Rule 2 and since H is acyclic, we can
find the minimal hyperpath of H using an acyclic SBT procedure which use a backward star
representation, i.e. no forward representation is needed in the acyclic case. Moreover, in the
acyclic case the lower bounds calculated in Section 3.2 are actually not lower bounds but
the true weight of a minimal hyperpath.

Theorem 6 Let predecessor function p define a minimal hypertree Ts of H =(V, E) and
let W (v) denote the optimal weight in each node v ∈ V. Moreover, let V = (u1, ..., up)
denote the ordered branching set found by using Branching Rule 2 and let Hi denote the
subhypergraph of H found by branching on node ui. Then

W̃ (ui) = min
e∈BS(ui)\p(ui)

F (e) + w (e) (3.3)
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Precondition: Same as in Procedure 6 on page 14.

Postcondition: Same as in Procedure 6 on page 14.

Initialization: Use an acyclic SBT procedure to calculate a minimal hyperpath π ∈ Π of H and set
List = {(H, π)} .

for (i = 1 to k) do pick
(
πi,Hi

)
= argmin(π̃,H̃)∈List {W (π̃)} and set Out := Out∪

{
πi
}

1

for (j = 1 to q) do create subhypergraph Hi using Branching Rule 2 with valid ordering VH2

calculate πi = minπ∈ΠHi
{W (π)} using Theorem 6 on the preceding page.3

set List := List∪{(πi,Hi)}4

end for5

end for6

Procedure 9: Finding the k shortest hyperpaths (acyclic case).

is the weight of a minimal hyperpath πsui
from s to ui of Hi where F (e) denotes the chosen

weighting function using W (v) for v ∈ T (e) . Moreover, predecessor function p̃

p̃ (vj) =
{
e vj = ui
p (vj) otherwise

where e is the predecessor hyperarc chosen in equation (3.3), defines a hypertree of Hi which
contains the minimal hyperpath πsui.

Proof Given H acyclic and VTs
= (v0, ..., vp = ui, ..., vn), we have that T (e) ∈ {v1, ..., vp−1}

and therefore the minimal weights in T (e) forHi is the same as inH according to Theorem 3.
So W̃ (ui) is the minimal weight of the hyperpath πsui

contained in the hypertree, defined
by the predecessor function p̃ where

p̃ (vj) =
{
e vj = ui
p (vj) otherwise

That is W̃ (ui) is not a lower bound but the actual minimal weight.

Using Theorem 6, the minimal weight of subhypergraph Hi can be found by calculating the
weight W (t) in the hypertree defined by p̃. So, to calculate the k′th shortest hyperpath, we
only have to calculate the shortest hyperpath ofH and afterwards make trivial computations
using Theorem 6 and Branching Rule 2. The procedure is stated in Procedure 9.

4 Bicriterion shortest hyperpaths

Let H be a hypergraph where each hyperarc e is assigned two real weights

wi (e) i = 1, 2

and let Wi (π) denote the corresponding additive weighting function of hyperpath π using
weights wi (e) . Moreover, if the value function is considered, we define nonnegative multi-
pliers for each hyperarc e and node v ∈ T (e)

aei (v) i = 1, 2, v ∈ T (e)

In this paper we assume that ae1(v) = ae2(v), i.e. the multipliers are the same for both
weighting functions. Let Π denote the set of hyperpaths πst from s to t, i.e.

Π = {π ⊆ H |π has root s and destination t}

We now wish to solve the bicriterion shortest hyperpath problem (bi-SBT)

min
π∈Π

W (π) = (W1(π),W2(π)) (4.1)
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That is to find hyperpaths from a given root s to a given node t, where the two weights are
minimal in the sense that we cannot improve one weight without worsening the other. We
consider the following cases of weighting functions: value/value and distance/distance. Let
us follow the terminology in Skriver [25]. Given a hyperpath π we say

Definition 4 A hyperpath π ∈ Π is efficient if and only if

�path π̃ ∈ Π :W1(π̃) ≤W1(π) and W2(π̃) ≤W2(π) (4.2)

with at least one strict inequality. Otherwise π is inefficient.

Efficient hyperpaths are defined in decision space and their counterpart is points in criterion
space

W =
{
W (π) ∈ R2 | π ∈ Π

}
Definition 5 A point W (π) ∈ W is a nondominated criterion point if and only if π is an
efficient hyperpath. Otherwise W (π) is a dominated criterion point.

The criterion points can be partitioned into two kinds, namely supported and unsupported.
The supported ones can be further subdivided into supported extreme and supported nonex-
treme. Let us define

ΠEff = {π ∈ Π| π is efficient}
WEff =

{
W (π) ∈ R2 | π ∈ ΠEff

}
W≥ = conv

(
WEff ⊕

{
w ∈ R2 | w ≥ 0

})
Definition 6 W (π) ∈ WEff is a supported nondominated criterion point if W (π) is on the
boundary of W≥ denoted W=. Otherwise W (π) is an unsupported nondominated criterion
point.

Notice that unsupported nondominated criterion vectors are dominated by a convex combi-
nation of other nondominated criterion vectors [27].

Definition 7 A supported pointW (π) is a supported extreme nondominated criterion point
if W (π) is an extreme point of W≥. Otherwise W (π) is an supported nonextreme nondomi-
nated criterion point.

It is well-known that a set of nondominated points Φ =
{
W 1,W 2, ...,W l

}
can be ordered

in the following way:

W 1
1 < W

2
1 < ... < W

l
1 W 1

2 > W
2
2 > ... > W

l
2

We call Φ an ordered nondominated set. It is easy to check if a new point is dominated in
Φ. Procedure 10 checks and adds W to Φ if W is dominated and deletes new dominated
points from Φ. Line 3 searches the set until W i

1 > W1 and line 4 checks if W is dominated.
If not, we have 2 options: If W i−1

1 =W1, we have that W i−1 is dominated and we insert W
instead on line 5. Otherwise we insert the point between W i−1 and W i. Next on line 7 we
remove all points dominated by W .

Example 4 The criterion space is illustrated in Figure 15. H ere W= is the border drawn
with the hard lines andW≥ the union ofW= and the area above. W 1 is the point which has
minimal weight w.r.t. weight two when weight one is fixed to its minimal weight. We call
W 1 the upper/left point and likewise W 8 the lower/right point of the criterion space. All
nondominated points will be inside the square defined byW 1 andW 8, thereforeW 9 is dom-
inated. The points W 2,W 3 and W 6 are all supported nondominated points; furthermore,

I·22



Precondition: Let Φ denote an ordered nondominated set and let W = (W1,W2) be a point.

Postcondition: W has been added to Φ if it is nondominated and dominated points in Φ have been
removed.

procedure insert(W,Φ)1

set i = 12

while (W i
1 ≤ W1 or i = l) do i := i+ 13

if (W i−1
2 ≤ W2) then stop (W is dominated)4

if (W i−1
1 =W1) then W i−1 :=W5

else insert W between W i−1 and W i6

while (W i
2 ≥ W2) do remove W i from Φ and set i := i+ 17

end procedure8

Procedure 10: Inserting a point W in an ordered nondominated set Φ.

W 2 and W 6 are supported extreme nondominated points. All supported extreme points de-
fine the triangles also called gaps (dashed lines) in which it is possible to find nondominated
points. Therefore all points, e.g. W 7, outside the triangles will be dominated. If we look at
the triangle defined by W 2 and W 6 we have that W 4 is a nondominated point and W 5 is
dominated.

4.1 Finding efficient hyperpaths using a simple k′th shortest hyper-
path method.

In this section we present a simple k′th best procedure. For digraphs a similar procedure
is presented in Climaco and Martins [5]. The idea is simple, first find the lower/right
point W̌ =

(
W̌1, W̌2

)
. This gives an upper bound on weight one. We then use a k′th

best procedure on weight one to find all nondominated points below the upper bound W̌1.
Note that the lower/right point can normally not always be found by finding the shortest
hyperpath w.r.t.5 the second criteria because there can be more than one hyperpath which

5With respect to.

W2

W1

W3

W1

W6

W4W2

W5

W7

W8 W9

Figure 15: Criterion space for different hyperpaths.
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Precondition: Let Φ denote an ordered nondominated set and letW k =
(
W k

1 ,W
k
2

)
denote the k′th

solution of a shortest hyperpath procedure calculating the k′th shortest hyperpath with respect
to the first criteria.

Postcondition: Φ contains all nondominated points.

Initialization: Use an SBT procedure to find the shortest hyperpath π̌ w.r.t. the second criteria and
set wmin

2 =W2 (π̌) . Compute W
1 and set WCand =W 1, lb =W 1

1 , Φ = ∅.
while (W k

2 	=Wmin
2 ) do set k := k + 1 and compute W k.1

if (W k
1 = lb and W k

2 < WCand
2 ) then set WCand =W k2

if (W k
1 > lb and W k

2 < WCand
2 ) then set Φ = Φ∪

{
WCand

}
, lb =W k

1 , W
Cand =W k3

end while4

Φ = Φ∪
{
WCand

}
(add the lower/right point)5

Procedure 11: A simple k’th best search procedure.

has minimal weight w.r.t. the second criteria. But it is actually not necessary to find
the right upper bound because if we store the minimal weight W̌2 instead, we know that
the first point W i =

(
W i

1,W
i
2

)
found with W i

2 = W̌2 is the lower/right point and stop.
The procedure is stated in Procedure 11. The candidate point WCand is always the lowest
currently nondominated point found w.r.t. the second weight (line 2) when the W1 is fixed.
If a new candidate is found which have a higher first weight and a lower second weight than
the current candidate, the current candidate must be a nondominated point and we add it
to the nondominated set Φ. The new point now becomes the new candidate (line 3).
For digraphs, Procedure 11 seems to be slow, since there are to many paths to search [19].
This is also the case for hypergraphs, as we will see in Section 6.

4.2 Finding efficient hyperpaths using a two-phases approach

In this section we consider a two-phases approach where the search for nondominated points
are split into two-phases. Phase one finds supported extreme nondominated points defining
the triangles in which nonsupported nondominated points may be found. Phase two then
searches the triangles using a k′th best procedure.

4.2.1 Phase 1: Finding supported nondominated solutions

We present a NISE like algorithm [6] for finding supported extreme nondominated points.
These can be found by parametrizing the criteria vector. Let f : (Π,R+) −→ R+ denote
the function

f (π, λ) =W1 (π)λ+W2 (π)

Since the number of hyperpaths in Π is finite, we have that f (π, λ) for fixed π defines a
line with slope W1 (π) , intersection W2 (π) , and the number of lines is finite. Using the
parametric function f (π, λ) we wish to solve

f (λ) = min
π∈Π

f (π, λ) (4.3)

i.e. we want to find a minimum weight hyperpath πλ = argminπ∈Π f (π, λ) given a fixed λ.
We illustrate the approach with the following example

Example 5 The criterion space and its corresponding parametric space is shown in Fig-
ure 16. H ere each point W (π) corresponds to a line with slope W1 (π) and intersection
W2 (π) . For each fixed λ we have a minimal line and the lower envelope of the lines defines
f (λ) which is a nondecreasing piecewise linear function with breakpoints λ1, λ2, λ3, λ4. Each
piece of f (λ) corresponds to a supported extreme nondominated point and each breakpoint
λi corresponds to a value where the two adjacent supported extreme nondominated points
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W1(π)

λ

f(π,λ)

W2 (π)λ4 λ3 λ2 λ1

−λ2

f(λ)

w1

w2

w3

wε

w 8

Figure 16: The criterion space and its corresponding parametric space.

have the same minimal parametric weight. If e.g. λ = λ2 then W 2 and W 3 have same
minimal parametric weight, i.e. fixing λ to λ2 corresponds to searching for the first point
in the direction of the normal of the line shown in Figure 16. Furthermore, we have that
W 1, which is a supported nonextreme nondominated point, touches f (λ) in the breakpoint
of its adjacent supported extreme points. Note that the whole set of nondominated points
is normally nonconvex, i.e. when using the parametric method, we only find points on the
frontier W= of the criterion space. This can be seen in Figure 16 where all nondominated
points inside the triangles corresponds to dashed lines which all lie above f (λ) . The up-
per/left and lower/right point can be found by solving problem (4.3) with λ very high and λ
close to zero respectively. Therefore the upper/left and lower/right point are often referred
to as W∞ and W ε.

Solving problem (4.3) for digraphs, corresponds to solving a shortest path problem with
weight w1 (e)λ + w2 (e) on each arc. Therefore a NISE like procedure for digraphs first
finds the upper/left and lower/right point. Then calculate the slope of the line between
the two points and search in that direction. If a new supported extreme nondominated
point is found, we get two new triangles which are searched like before; otherwise we stop.
Notice that it is possible to find a supported nonextreme nondominated point W̃ if the search
direction is equal to the normal of the line of two adjacent supported extreme nondominated
points W̃ 1 and W̃ 2. H ence W̃ 1, W̃ 2 and W̃ all have same minimal parametric weight, and
the point found depends on the SBT procedure.

Let the parametric weighting function for a hyperpath π denote the weighting function

Wλ (v) =
{
wλ(eπ(v)) + F (eπ(v)) v ∈ V \ {s}
0 v = s

(4.4)

where eπ(v) denotes the predecessor of node v and wλ(e) = w1 (e)λ + w2 (e). Using the
parametric weighting function does not always give the right solution to (4.3) when we
consider hypergraphs. We look at the following cases: Two value weighting functions and
two distance weighting functions.
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Precondition: Let
(
W+,W−) define a search direction, and let Φ be an ordered nondominated set.

Given W ∈ Φ let Wnext denote the point following W in Φ, if W is the last element in Φ then
Wnext := null.

Initialization: Use an SBT procedure to find the upper/right point W∞ and the lower/left point
W ε.

if (W∞ =W ε) then stop (there is only one nondominated solution)1

else set Φ = {W ε,W∞}, W+ =W∞, W− =W ε2

while (W+ 	=W ε) do set λ =
∣∣(W−

2 −W+
2 )/ (W

−
1 −W+

1 )
∣∣ , W+

λ =W+
1 λ+W+

23

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

find the minimal hyperpath π w.r.t. the parametric weighting function5

if (f (π, λ) < W+
λ ) then call procedure insert(W (π) ,Φ)6

W− =W (π)7

end if8

else set W+ =W−, W− =W+next9

end while10

Procedure 12: Finding all supported extreme nondominated points (value/value).

Two value weighting functions We consider two value weighting functions, i.e. given
a hyperpath π = (Vπ, Eπ) from s to t the weighting function Wi of π is

Wi (v) =

{
wi(eπ(v)) +

∑
u∈T (eπ(v))

aeπ(v) (u)Wi (u) v ∈ Vπ \ {s}

0 v = s

for i = 1, 2. If we want to solve SBT using the parametric weighting function, we have to
solve the following recursive equations

Wλ (v) =

 min
e∈BS(v)

{
wλ(e) +

∑
u∈T (e)

ae (u)Wλ (u)

}
v ∈ V \ {s}

0 v = s

(4.5)

Since finding the shortest hyperpath w.r.t. the value function Wi can be formulated as an
LP problem, we have that solving (4.5) corresponds to solving an LP problem with the same
constraints, but with an objective function cost for hyperarc e on w1 (e)λ+w2 (e) instead of
wi (e). Therefore the minimal hyperpath π w.r.t. the parametric weighting function satisfies
that Wλ (π) =W1 (π)λ+W2 (π) i.e. solving (4.5) gives us the solution to (4.3).
A NISE like procedure for two value functions which finds all supported extreme nondomi-
nated points, is formulated in Procedure 12. In each step we search in the direction of the
normal of the line between W+ andW−. On line 5 we find a supported nondominated point
W (π). If f (π, λ) < W+

λ then W (π) must be a supported extreme nondominated point and
we add it to Φ on line 6. Note that we can insert W (π) directly after W+ in procedure
insert on line 6, since W (π) is a new nondominated point.

Two distance weighting functions We here consider two distance functions, i.e. given
hyperpath π

Wi (v) =

{
wi(eπ(v)) + max

u∈T (eπ(v))
{Wi (u)} v ∈ Vπ \ {s}

0 v = s

for i = 1, 2. If we solve SBT using the parametric weighting function we have to solve the
following recursive equations

Wλ (v) =

 min
e∈BS(v)

{
wλ(e) + max

u∈T (e)
{Wλ (u)}

}
v ∈ V \ {s}

0 v = s
(4.6)
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Because no LP formulation for the distance exists, finding the shortest hyperpath w.r.t. the
parametric weighting function does not always give the same solution to (4.3), as can be
seen in the following example.

Example 6 Consider the hypergraph in Figure 17 which contains two hyperpaths and
assume that we want to find the shortest hyperpath using the parametric weighting function
with λ = 1. This gives shortest hyperpath π1 with predecessor hyperarc e4 in node v4. The
weights are Wλ (v4) = 14⇒Wλ (t) = 30. For the same hyperpath, we have that the weights
w.r.t. the first and second weight is W1 (t) = 12 and W2 (t) = 20 ⇒ f (π1, λ) = 32, hence
Wλ (t) �=W1 (t)λ+ W2 (t).

v1

s v2

v3

v4

v5

t

e1

e2

e3

e4

e5

e6

e7

(0,0)

(0,0)

(0,0)

(12,2)

(11,5)

(10,20)

(0,0)

Figure 17: A hypergraph where the minimal hyperpath w.r.t. the parametric weighting
function don’t give the optimal solution of problem (4.3).

Furthermore, hyperpath π2, with e5 as predecessor hyperarc in node v4, gives first and second
weight W1 (t) = 11 and W2 (t) = 20 ⇒ f (π2, λ) = 31, i.e. π2 is the optimal hyperpath to
(4.3).

Example 6 shows that solving the recursive equations in (4.6) does not always give the right
solution to problem (4.3). H owever, it gives us a lower bound.

Theorem 7 Let Wλ (π) be the weight of the shortest hyperpath using the parametric
weighting function then Wλ (π) is a lower bound on the optimal value to (4.3), that is
Wλ (π) ≤ f (λ) .

Proof Assume that ∃π ∈ Π : Wλ (π) �= f (λ) and let πsu denote the subhyperpath of π
from s to u where u is a node in π. Given a valid ordering V = (u, ..., up) of π. Let ui be the
first node satisfying Wλ (ui) �= f (πsui

, λ) ⇒ Wλ (uj) = f
(
πsuj

, λ
)
= W1 (uj)λ +W2 (uj) ,

∀j = 1, ..., i− 1. Then

Wλ (ui) = max
v∈T (eπ(ui))

{Wλ (v)}+ wλ (eπ (ui))

= max
v∈T (eπ(ui))

{W1 (v)λ+W2 (v)}+ w1 (eπ (ui))λ+ w2 (eπ (ui))

≤
(

max
v∈T (eπ(ui))

{W1 (v)}+ w1 (eπ (ui))
)
λ+

(
max

v∈T (eπ(ui))
{W2 (v)}+ w2 (eπ (ui))

)
=W1 (ui)λ+W2 (ui) = f (πsui

, λ)

and hence that Wλ (π) ≤ f (π, λ) . Now let π̂ denote the shortest hyperpath w.r.t. the
parametric weighting function and let π̃ be the hyperpath that solves problem (4.3), then

Wλ (π̂) ≤Wλ (π̃) ≤ f (π̃, λ) = f (λ)

i.e. Wλ (π̂) ≤ f (λ) .

Note that if π̂ denotes the shortest hyperpath w.r.t. the parametric weighting function, we
have that Wλ (π̂) is a lower bound on f (λ) but W (π̂) = (W1 (π̂) ,W2 (π̂)) is not necessarily
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Precondition: Let
(
W+,W−) define a search direction and let Φ be an ordered nondominated set

of points. GivenW ∈ Φ letWnext denote the point followingW and letW back denote the point
before W, if W is the last element in Φ then Wnext := null. Let increase denote a boolean.

Initialization: Use an SBT procedure to find the upper/right point W∞ and the lower/left point
W ε.

if (W∞ =W ε) then stop (there is only one nondominated solution)1

else set Φ = {W ε,W∞}, W+ =W∞, W− =W ε2

while (W+ 	=W ε) do let λ =
∣∣(W−

2 −W+
2 )/ (W

−
1 −W+

1 )
∣∣ , increase = false3

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

find the minimal hyperpath π̌ w.r.t. the parametric weighting function5

call procedure insert(W (π̌) ,Φ)6

if (W (π̌) nondominated and W1 (π̌) ≤ W+
1 ) then W+ :=W (π̌)back

7

if (W (π̌) dominated or W1 (π̌) > W−
1 ) then increase = true8

find the minimal hyperpath π̂ w.r.t. upper bound Weighting function (4.7)9

if (π̂ 	= π̌) then call procedure insert(W (π̂) ,Φ)10

if (W (π̌) nondominated and W1 (π̌) ≤ W+
1 ) then W+ :=W (π̌)back

11

if (increase and (W (π̂) dominated or W1 (π̂) > W−
1 )) then W+ :=Wnext12

end if13

set W− :=W+next14

end while15

remove from Φ all nonextreme points16

Procedure 13: Finding an approximation of the supported extreme nondominated points

a supported extreme nondominated point. In many cases, though, W (π̂) is a supported
extreme point, as we will see in Section 6.
Using the parametric weighting function gives Wλ (π) ≤ W1 (π)λ+ W2 (π) , nevertheless
there exists another weighting function satisfying W̃ (π) =W1 (π)λ+ W2 (π)

W̃ (v) =

{
0 v = s

max
u∈T (eπ(v))

{W1 (v)}λ+ max
u∈T (eπ(v))

{W2 (v)}+ wλ(eπ (v)) v ∈ Vπ\ {s}
(4.7)

H ere we have 3 labels in each node: W1 and W2 which are used to calculate W̃ . If we solve
SBT with Weighting function (4.7), we have to solve the following recursive equations

W̃ (v) =


0 v = s

min
e∈BS(v)

{
max
u∈T (e)

{W1 (v)}λ+ max
u∈T (e)

{W2 (v)}+ wλ(e)
}

v ∈ V\ {s} (4.8)

Solving the recursive equations (4.8) find a minimal hyperpath π which often corresponds
to a supported extreme nondominated point, but π is not necessarily the hyperpath which
solves (4.3). This can be seen in Figure 17 where hyperpath π1 is the solution of equations
(4.8), however, π2 is the hyperpath which solves (4.3). Therefore W̃ (π) is an upper bound
on f (λ).
Sometimes a solution found using the upper bound Weighting function (4.7) cannot be
found using the parametric weighting function. Therefore, by combining the two functions,
we can find a better approximation of the frontier. Procedure 13 finds an approximation of
the supported extreme nondominated points. The procedure is illustrated by the following
example.

Example 7 Assume that the initialization finds the points W∞ and W ε in Figure 18(a).
First iteration now searches in the direction of the normal to the line defined by W∞ and
W ε. Suppose that W 1 is the point found on line 5. Because W 1 is nondominated and
between W+ and W− the conditions on lines 7 and 8 fail. Assuming that line 9 finds the
same point, line 14 now sets W− to W 1. Second iteration now searches in the direction of
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(a) Iteration 1and 2
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Wε
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W3

(b) Iteration 3 and 4

W2

W1

W1

W

Wε

W2

8

W3

W4

(c) Iteration 8 and 9

Figure 18: Finding supported extreme nondominated points with Procedure 13.

the normal to the line defined by W∞ and W 1. If we assume that line 5 finds point W 1,
line 8 sets increase to true because W 1 is not a new point inside the triangle. Moreover, if
line 9 finds point W 2, line 12 now sets W+ =W 1 because both points found in the iteration
are dominated or to the right of W−

1 . Iteration 3 now searches the triangle defined by W 1

and W 2. If line 5 now finds point W 3 in Figure 18(b), we have that line 7 set W+ = W∞

because a new search direction is defined by the pointsW∞ andW 3. If we assume that line 9
does not find a new point, iteration 4 now searches in this direction. Assuming that no new
points are found during iteration 4-6, iteration 7 now searches in the direction defined by
W 2 and W ε and finds for instance the point W 4 in Figure 18(c). Therefore iteration 8 and
9 will search in the directions shown in Figure 18(c) and if no new points are found stop.
Note that we sometimes search in the same direction more than once, but since the SBT
procedure is so efficient this is now very costly. Moreover, at the end of Procedure 13, the
ordered nondominated set Φ can contain nonextreme nondominated points. Therefore these
are removed on line 16.

Procedure 13 finds a set of nondominated extreme points. This set is not necessarily equal
to the set of supported extreme nondominated points in WEff . Therefore it is possible that
some points W ∈ Φ are dominated by a point in WEff .

W i

W i + 1

W2
i

W1
i

W2
i+1

W1
i+1

UB0

Search direction

(a) Triangle ∆i of ∆

W i

W i + 1

W2
i

W1
i

W2
i+1

W1
i+1

UB1

UB0

(b) Upper bound of ∆i.

Figure 19: Triangle search.
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Precondition: Let ∆ = {∆1, ...,∆q} denote the triangles of the supported extreme nondominated
points and let Φ be an ordered nondominated set.

Initialization: Set Φ = ∅
for (i = 1 to q) do consider triangle ∆i and1

set λ =
∣∣W i

2 −W i+1
2 / W i

1 −W i+1
1

∣∣, Φ := Φ∪
{
W i,W i+1

}
2

ub =W i+1
1 λ+W i

2 , lb = 0 and k = 13

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)4

while (lb < ub) do use a k’th procedure and the parametric weighting function5

to find the k’th best solution W k
λ =W k

1 λ+W k
2 of H6

set lb =W k
λ7

if (W k
1 < W i+1

1 and W k
2 < W i

2) then (i.e. we are in the triangle)8

call procedure insert(W k,Φ).9

if (W k nondominated) then update ub10

end if11

k := k + 112

end while13

end for14

Procedure 14: Finding nondominated points (value/value).

4.2.2 Phase 2: Finding unsupported nondominated solutions

Assume that the first phase have been completed, i.e. an ordered nondominated set

Φ =
{
W 1,W 2, ...,W q+1

}
of supported extreme nondominated points have been found. Let ∆ = {∆1, ...,∆q} denote
the triangles or gaps defined by Φ (see Figure 19(a)). Second phase searches each triangle
using a k′th best procedure until all unsupported nondominated points inside the triangle
have been found. This is done by using modified weights wλ (e) on hypergraph H and
hence the k′th best procedure will search in the direction of the normal to the line between
the two points which define the triangle (see Figure 19(a)). The procedure stops when an
upper bound has been reached. At start the upper bound is UB0 =W i+1

1 λ+W i
2, however,

when an new unsupported nondominated point is found in the triangle, we calculate an
new upper bound (see Figure 19(b)). Furthermore, if an interactive approach is used the
decision maker can set an upper bound where he is satisfied. Note that when we use a k′th
best procedure it is possible to find points outside the triangle (see Figure 19(b)). These
points are not checked for dominance, instead the next k′th solution is calculated. H ow the
k′th best procedure performs depends on the weighting functions considered and in which
order the solutions are found. We again consider 2 choices of weighting function: Two value
weighting functions and two distance weighting functions.

Two value weighting functions H ere Procedure 12 on page 26 finds all supported
extreme points of WEff and therefore, when we start the second phase we know how the
triangles are defined. Moreover, a minimal hyperpath πλ which is a solution of (4.3) can
be found using the parametric weighting function (4.4). We can now find all unsupported
nondominated points using Procedure 14. Line 5 finds a new k’th hyperpath while W k

λ is
below the upper bound. If W k is a nondominated point inside the triangle, we update the
upper bound on line 10. Note when we use procedure insert to insert W k in Φ on line 9,
we do not have to search Φ from start because we know W k

1 > W i
1, i.e. we always start to

search Φ from W i in procedure insert. The possible choices of the k′th procedure on line 5
are: Procedure 7, i.e. we use the normal k’th procedure, Procedure 8 that is we branch on
lower bounds, and finally Procedure 9 which is used if acyclic hypergraphs are considered.

Two distance functions When two distance weighting functions are considered, first
phase (Procedure 13 on page 28) does not necessary find all supported extreme nondomi-
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Figure 20: Finding a better approximation during second phase.

nated points ofWEff but just an approximation ofWEff . This only gives us an approxima-
tion of the triangles at the beginning of second phase. Assume that the approximation are
the black points given in Figure 20(a). Now, if during the search of the triangle defined by
W∞ and W 1, the point W 4 in Figure 20(a) is found, then W 4 is a new supported extreme
nondominated point because the parametric weight of W 4 is below the parametric weight
of W∞ . I other words W 4 is below the dashed line between the points W∞ and W 1 in
Figure 20(a)
Therefore a new approximation of the frontier is found and we search the new triangle defined
by W∞ and W 4 (see Figure 20(b)). Let Φ be an ordered nondominated set containing
all current nondominated points found by first and second phase and let W+ denote the
upper/left point of the triangle where the new supported extreme point is found. Then
by removing all nonfrontier points above W+ in Φ, we remove a point such as W 1 in
Figure 20(b). Moreover, the new triangle we have to search is defined by W+ and the
point following it in Φ. The second-phase procedure for two distance functions is stated in
Procedure 15. The boolean newf on line 2 in Procedure 15 is set to true if a new frontier
point is found. Wfrontier denotes the parametric weight of points on the line defined byW+

and W−. Therefore if Wnow, the parametric weight of the current k′th solution, is below
Wfrontier (line 7), a new supported extreme nondominated point has been found. Line 8
now removes all the unsupported points above W+, newf is set to true and we exit the
while loop on line 10. Because newf = true we now search for nondominated points in the
triangle defined by W+ and the new supported extreme nondominated point found. If no
new frontier point is found during the inner while loop, we increase W+ on line 17 and start
searching the next triangle.
The bi-SBT problem is much harder to solve when considering two distance functions, as we
will see in Section 6.This is due to the fact that one nondominated point often corresponds
to many different hyperpaths. As a result the k′th procedure used has to search more
hyperpaths. Furthermore, since we use the parametric weighting function giving us a lower
bound, many hyperpaths with an actual parametric weight over the upper bound is found.
By using the upper bound function (4.7) instead of the parametric weighting function on
line 4, we find hyperpaths with parametric weight equal to the actual parametric weight.
H owever, since the parametric weight is an upper bound, we do not know whether all
nondominated points are found when the procedure stops. Therefore using upper bound
function (4.7) on line 4 instead of the parametric weighting function give us an approximation
of the nondominated points. Nevertheless, computational testing in Section 6 shows that
the approximation is good and much faster to calculate. The possible choices of the k′th
procedure on line 5 are like for two value weighting functions: Procedure 7, i.e. we use
the normal k’th procedure, Procedure 8 that is we branch on lower bounds, and finally
Procedure 9 which is used if acyclic hypergraphs are considered.
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Precondition: Let Φ = {W1, ...,Wq} denote an ordered nondominated set containing the approxi-
mation of the supported extreme nondominated points found in phase one. Given W ∈ Φ, let
Wnext denote the point following W and let Wnext be equal to null if W is the last point in Φ.

Initialization: W+ =W 1

while (W+next 	= null) do W− =W+next, λ =
∣∣W−

2 −W+
2 / W−

1 −W+
1

∣∣1

ub =W+
1 λ+W−

2 , lb = 0, k = 1, Wfrontier =W+
1 λ+W+

2 , newf = false2

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)3

while (lb < ub) do use a k’th procedure and the parametric weighting function4

to find the k’th solution W k
λ of H5

set LB =W k
λ , Wnow =W k

1 λ+W k
26

if (Wnow < Wfrontier and W+
1 ≤ W k

1 ) then7

remove all nonfrontier points from W+ in Φ8

set newf = true9

break10

end if11

if (W k
1 < W−

1 and W k
2 < W+

2 ) then call procedure insert(W k,Φ).12

if (W k nondominated) then update ub13

end if14

k := k + 115

end while16

if (newf = false) then W+ =W−17

end while18

Procedure 15: Finding nondominated points (distance/distance).

4.3 A more advanced k′th diagonal search procedure

If we use a two-phases approach, we search each triangle with a k′th best search procedure
but when we use a k’th search procedure, it is also possible to find points outside the triangle.
It is therefore possible to find the same points when different triangles are searched. This
can be seen in Figure 21(a). H ere we search each triangle, and the points in the shaded area
is found twice. If instead, we use a diagonal search for the whole area, i.e. we search in the
direction of the normal to the line between the upper/left point and the lower/right point
in Figure 21(b), we only find these points once.
This has to be compared with the fact that the k’th diagonal procedure sometimes has to
search a larger area than the two-phases method. Figure 21(c) shows such a case where
the second phase procedure in the worst case searches the dark shaded area, but the k’th
diagonal procedure in the worst case has to search the light shaded area before it stops. Note

W2

W1

(a) Overlappeing with two-
phases search

W2

W1

(b) Diagonal search

W2

W1

(c) Disadvantages of the diagonal
search

Figure 21: Two phase search and diagonal search.
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Precondition: Let Φ denote an ordered nondominated ordered set.

Initialization: Use an SBT procedure to find the upper/right point W∞ and the lower/left point
W ε. Set λ = |W∞

2 −W ε
2 / W

ε
1 −W∞

1 | , ub =W ε
1 λ+W∞

2 , Φ = ∅, k = 1
if (W∞ =W ε) then stop (there is only one nondominated solution)1

for (e ∈ E) do set wλ (e) = w1 (e)λ+ w2 (e)2

while (lb < ub) do use a k’th procedure to find the k’th solution W k
λ of H3

corresponding to point W k4

set lb =W k
λ5

call procedure insert(W k,Φ).6

if (W k nondominated) then update ub7

set k := k + 18

end while9

Procedure 16: A k’th diagonal search procedure.

that even though the second phase procedure searches an smaller area, some points in this
area will be found more than once. This cost has to be compared with the cost of a larger
area for the k’th diagonal procedure which is stated in Procedure 16. If we consider two
distance weighting functions, we can, like before, use the upper bound weighting function
or the parametric weighting function. Moreover, we have the same possible choices of k′th
procedure on line 3 as in the two-phases procedure.

5 Random Hypergraphs

To test the procedures in Section 4, a random hypergraph generator (B-MAKER) was made.
B-MAKER generates both general hypergraphs and acyclic hypergraphs. Due to the fact
that a hypergraph is a much more complex structure than a digraph, B-MAKER needs the
input parameters given in Table 1.

n ma hsizemin hsizemax

mh sizeFS(s) size
arc
BS(t) sizeharcBS(t)

ubw
FS(s)
arc lbw

FS(s)
arc lbwotherarc ubwotherarc

lbwharc ubwharc weight-type seed

Table 1: Input parameters for B-MAKER.

H ere n, ma and mh are the number of nodes, arcs and true hyperarcs, respectively. The
size of each true hyperarc e belongs to [hsizemin, hsizemax] and the weights assigned to e
belongs to [lbwharc, ubwharc] . Node number one is the source node s with BS (s) = ∅. The
number of arcs in the forward star of s are sizeFS(s) and the weights of each arc belong

to
[
lbw

FS(s)
arc , ubw

FS(s)
arc

]
. There are no hyperarcs in the forward star of s. All other arcs

generated have weights from lbwarc to ubwarc. The destination node t is node n. H ere
FS (t) = ∅ and the number of arcs and hyperarcs in BS (t) are sizearcBS(t) and sizeharcBS(t),
respectively. All random numbers were generated with an initial input number seed. Assume
a hyperarc e is considered with weights wi ∈ [lbw, ubw] , i = 1, 2. The correlation between
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Figure 22: Points generated in [1, 100]× [1, 100] for different weight-types.

the weights (w1, w2) now depends on the number weight-type specified in the input file.

weight− type = 0 : Both weights are random in [lbw, ubw] .

weight− type = 2 : w1 <
(ubw + lbw)

2
⇒ w2 ∈ [ubw − (w1 − lbw) , ubw]

w1 ≥
(ubw + lbw)

2
⇒ w2 ∈ [lbw, lb+ (ubw − w1)]

weight− type = 4 : “...if one weight is between 1 and 33 the other is between 67 and 100”
Skriver and Andersen [26].

Weights generated with option 0,2 and 4 with [lbw, ubw] = [1, 100] can be seen in Figure 22.
Weight-type 2 and 4 generate negatively correlated weights. The way B-MAKER generates
arcs and hyperarcs depends on whether general or acyclic hypergraphs are considered:

1. General case: First, randomly generate the arcs and hyperarcs in FS (s) and BS (t)
specified. The arc (s, t) is not generated. Secondly, randomly generate hyperarcs for
node 2, ..., n− 1. No repeated arcs are generated.

2. Acyclic case: First, an arc from node s to node 2, ..., sizeFS(s) + 1 is made. No
other arcs and hyperarcs enter these nodes. Second, all other hyperarcs are randomly
generated satisfying that the head node number is bigger than the tail node numbers,
i.e. a valid ordering of H is V = (1, ..., n). No repeated arcs are generated.

6 Computational Results

In this section we test the procedures described in Section 4. The procedures have all
been implemented in C++ and tested on a H ewlett Packard 9000/720 series computer with
112MB RAM, which is a small and slow computer6.
Each general hypergraph is represented using a forward and backward star representation of
pointers and numbers. Only a backward star representation is used for acyclic hypergraphs.
The SBT procedure (Procedure 3 on page 9) is implemented using a heap to store the
candidate set and an element is picked using Dijkstra’s principle, i.e. we pick the element
with lowest weight. The subhypergraphs in the k’th procedure are represented using a
dynamic tree together with a heap of pointers. For more details on implementation, see
Appendix A.
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1 100 300 6000 10 10 50 31 1000 1400 4000 5 5 20

2 400 8000 10 10 50 32 1500 5000 5 5 20

3 500 10000 10 10 50 33 1600 7000 5 5 20

4 200 600 12000 20 20 100 34 2000 2800 8000 10 10 40

5 800 16000 20 20 100 35 3000 10000 10 10 40

6 1000 20000 20 20 100 36 3200 14000 10 10 40

7 300 900 18000 30 30 150 37 3000 4200 12000 15 15 60

8 1200 24000 30 30 150 38 4500 15000 15 15 60

9 1500 30000 30 30 150 39 4800 21000 15 15 60

10 400 1200 24000 40 40 200 40 4000 5600 16000 20 20 80

11 1600 32000 40 40 200 41 6000 20000 20 20 80

12 2000 40000 40 40 200 42 6400 28000 20 20 80

13 500 1500 30000 50 50 250 43 5000 7000 20000 25 25 100

14 2000 40000 50 50 250 44 7500 25000 25 25 100

15 2500 50000 50 50 250 45 8000 35000 25 25 100

16 600 1800 36000 60 60 300 46 6000 8400 24000 30 30 120

17 2400 48000 60 60 300 47 9000 30000 30 30 120

18 3000 60000 60 60 300 48 9600 42000 30 30 120

19 700 2100 42000 70 70 350 49 7000 9800 28000 35 35 140

20 2800 56000 70 70 350 50 10500 35000 35 35 140

21 3500 70000 70 70 350 51 11200 49000 35 35 140

22 800 2400 48000 80 80 400 52 8000 11200 32000 40 40 160

23 3200 64000 80 80 400 53 12000 40000 40 40 160

24 4000 80000 80 80 400 54 12800 56000 40 40 160

25 900 2700 54000 90 90 450 55 9000 12600 36000 45 45 180

26 3600 72000 90 90 450 56 13500 45000 45 45 180

27 4500 90000 90 90 450 57 14400 63000 45 45 180

28 1000 3000 60000 100 100 500 58 10000 14000 40000 50 50 200

29 4000 80000 100 100 500 59 15000 50000 50 50 200

30 5000 100000 100 100 500 60 16000 70000 50 50 200

Table 2: Benchmark problems generated with B-MAKER with a hyperarc size between 3
and 5.

6.1 Benchmark problems

To check the efficiency of the procedures 60 random hypergraphs where generated with B-
MAKER and tested. Specifications of the hypergraphs is shown in Table 2. The hyperarc
size in hypergraphs 1-60 are between 3 and 5. The weights for each arc is between 1 and 1000,
and for each true hyperarc between 1 and 100. This favor hyperpaths with true hyperarcs.
The generated hypergraphs are divided into two groups: H ypergraphs 1-30 are dense and
the average number of hyperarcs in the backward star of a node are between 63 and 105.
H ypergraphs 31-60 are sparse and the average number of hyperarcs in the backward star of
a node are between 4.4 and 8.6. The number of arcs in FS (s) have been set to 10% of the
number of nodes for the dense hypergraphs, and to 0.5% for the sparse hypergraphs. The
same are valid for the number of arcs in BS (t) . The number of true hyperarcs in BS (t)
have been set to 50% of the number of nodes for the dense hypergraphs, and to 2% for the

6The slowest at the department. The fastest performs approximately 10 times faster.

I·35



0

5

10

15

20

Weight-type 0

Weight-type 4

Weight-type 2

20151051

Problem

E
ff

ic
ie

nt
 h

yp
er

pa
th

s

Figure 23: The number of efficient hyperpaths for 20 selected hypergraphs with weighttype
0,2 and 4. Two sum functions are considered.

sparse hypergraphs. For each problem in Table 2 a general and an acyclic hypergraph were
generated with B-MAKER.

6.2 General hypergraphs

To compare the number of efficient hyperpaths when the hyperarc weights are correlated
differently, each hypergraph in Table 2 were generated with weight-type option 0,2 and 4.
The number of nondominated points for 20 selected hypergraphs are shown in Figure 23.
We see, that the number of nondominated points in most cases are highest when using 2
as weight-type and lowest when the weights are uncorrected (weight-type option 0). We
therefore only use weight-type option 2 to compare the procedures in the following.

6.2.1 Two sum functions

Because the sum function (all multipliers equal 1) satisfies Dijkstra’s principle, we use this
function to compare the value procedures for general hypergraphs. We compare the following
procedures:

k’th simple We here use the simple search procedure presented in Section 4.1, i.e. use a
k’th procedure in weight ones direction (Procedure 7).

k’th diagonal Use the diagonal search procedure presented in Section 4.3 together with
the k’th procedure which find the k best solutions in the right order (Procedure 7).

k’th diagonal (lb) Equal to k’th diagonal, but use the k’th lower bound procedure instead
which finds all solutions below an upper bound (Procedure 8).

Two-phases We here consider the two-phases procedures in Section 4.2. First, we use
the phase one procedure (Procedure 12) in Section 4.2.1. Next, we use the second
phase procedure (Procedure 14) in Section 4.2.2 together with the k’th procedure
(Procedure 7).

Two-phases (lb) Equal to two-phases, but second phase use the k’th lower bound proce-
dure instead (Procedure 8).

The results for hypergraphs 1-30 are shown in Table 3. The CPU time is reported in seconds,
and column ‘H paths’ contains the number of k’th best solutions picked in each procedure.
This number is the same in the lower bound procedures and therefore only reported once.
Similar ‘1. phase’ is the same for ‘Phase two’ and ‘Two (lb)’. ‘BSize’ denote the average
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1 40 12,38 5 0,74 0,45 3 0,31 2 8 0,92 2,89 1,23 0,39 0,70 3

2 5001 273,07 30013 110,54 29,10 6 1,05 5 53 17,28 4,38 18,33 4,79 5,84 13

3 5007 316,01 30016 123,21 33,79 5 1,09 4 55 22,75 4,13 23,84 5,85 6,94 17

4 5005 361,12 15 8,74 2,56 3 0,81 2 18 10,08 5,32 10,89 2,49 3,30 9

5 5001 591,24 170 192,05 35,65 6 2,42 5 31 24,49 6,07 26,91 5,57 7,99 7

6 5003 600,79 124 143,27 31,90 7 3,56 6 54 50,20 4,12 53,76 12,96 16,52 16

7 5004 798,46 30010 345,49 69,91 8 3,76 7 28 21,95 5,42 25,71 5,31 9,07 10

8 5005 1248,73 3008 390,53 97,15 6 3,82 5 30 30,96 4,51 34,78 8,48 12,30 10

9 5003 1535,85 20 23,86 8,72 5 3,81 4 19 18,99 4,03 22,80 6,20 10,01 8

10 5004 1154,76 57 77,43 19,24 5 3,14 4 32 31,77 4,90 34,91 9,55 12,69 11

11 5002 1776,55 90 157,14 39,61 5 4,17 4 28 38,62 4,26 42,79 10,71 14,88 10

12 5008 2167,48 49 85,74 27,25 6 6,34 5 33 55,53 3,97 61,87 15,48 21,82 10

13 5005 1634,35 114 173,25 47,32 5 3,96 4 30 35,99 4,15 39,95 11,01 14,97 8

14 5005 1964,82 30010 614,76 164,98 7 7,67 6 39 63,56 4,03 71,23 18,79 26,46 11

15 5007 2446,89 30013 747,64 207,16 6 8,13 5 35 78,55 4,61 86,68 21,28 29,41 15

16 5004 2102,92 15 15,95 8,58 4 3,74 3 25 22,07 2,94 25,81 11,29 15,03 8

17 5005 2626,52 71 169,33 48,58 5 6,43 4 22 31,61 4,13 38,04 12,54 18,97 7

18 5003 3147,12 59 158,70 50,55 5 8,01 4 28 59,90 3,80 67,91 20,55 28,56 10

19 5004 2200,73 258 789,56 156,46 6 7,12 5 32 50,35 5,26 57,47 16,90 24,02 9

20 5005 2885,50 26 57,98 22,63 4 6,02 3 24 36,66 3,05 42,68 17,35 23,37 8

21 5004 3763,29 17 42,21 19,13 3 5,33 2 19 41,15 2,60 46,48 17,31 22,64 6

22 5006 2275,59 26 50,12 19,23 3 3,64 2 14 18,06 5,20 21,70 8,44 12,08 9

23 5003 4173,99 25 67,75 24,69 3 4,87 2 21 49,17 4,11 54,04 17,65 22,52 5

24 5004 5045,85 269 1179,54 335,93 6 14,61 5 34 91,80 3,53 106,41 37,14 51,75 11

25 5005 3132,78 14 21,61 12,57 2 2,47 1 14 20,05 2,63 22,52 10,24 12,71 7

26 5006 3772,95 15 31,51 17,85 3 5,55 2 28 54,93 2,59 60,48 27,36 32,91 12

27 5005 5344,87 30010 1488,84 398,54 7 18,46 6 40 142,22 4,33 160,68 46,55 65,01 11

28 5006 3356,62 22 46,99 21,06 6 10,26 5 33 54,30 3,72 64,56 25,38 35,64 11

29 5004 4851,12 3008 1653,86 349,25 3 7,44 2 13 35,34 6,47 42,78 13,21 20,65 8

30 5003 5617,55 35 137,43 53,44 5 13,89 4 42 115,38 3,02 129,27 55,71 69,60 12

Table 3: Results when testing on general dense hypergraphs with two sum functions. CPU
times are reported in seconds.

number of hyperarcs we branch on, i.e. the average number of subhypergraphs created when
a k’th best solution is picked. The number of extreme supported nondominated points found
by the first phase procedure are shown in column ‘Extreme’, and the last column contains the
total number of nondominated points. The k’th simple and k’th diagonal procedures were
set to automatically terminate when 500 and 300 hyperpaths had been picked, respectively.
If this were the case the number of nondominated points found is shown as a small number
raised in the ‘H paths’ column.
It is clear from the results in Table 3 that the k’th simple procedure is very slow compared to
the other procedures. The procedure terminates in all hypergraphs when it has picked 500
hyperpaths, except for hypergraph one. The k’th diagonal search procedure also terminates,
before all nondominated points are found in some cases. H owever, in hypergraphs where
both the k’th simple and the k’th diagonal procedure terminates before all nondominated

I·37



k′th simple k′th diag. (lb) 1. phase Phase two Two (lb)

H
g
ra

p
h

H
p
a
th

s

C
P
U

H
p
a
th

s

C
P
U

C
P
U

E
x
tr
em

e

C
P
U

T
ri
a
n
g
le
s

H
p
a
th

s

C
P
U

B
si
ze

C
P
U
to
ta
l

C
P
U

C
P
U
to
ta
l

N
o
n
d
o
m
.

31 382 264,35 10 4,83 0,86 4 0,48 3 11 4,26 19,27 4,74 0,63 1,11 5

32 53 51,26 9 6,37 0,91 2 0,25 1 9 6,12 17,39 6,37 0,71 0,96 4

33 2 1,00 4 2,55 0,68 2 0,34 1 4 2,36 14,16 2,70 0,36 0,70 2

34 1 0,33 1 0,34 0,33 1 0,34 0 0 0,00 0,00 0,34 0,00 0,34 1

35 66 104,42 18 23,79 3,97 4 1,42 3 10 11,60 14,61 13,02 1,53 2,95 4

36 14 29,27 4 4,74 1,60 2 0,82 1 4 4,23 11,88 5,05 0,84 1,66 3

37 1 0,54 1 0,56 0,56 1 0,56 0 0 0,00 0,00 0,56 0,00 0,56 1

38 17 33,61 9 17,54 3,57 3 1,68 2 12 20,77 15,92 22,45 3,35 5,03 5

39 13 35,08 4 6,82 2,63 3 2,24 2 8 11,95 12,67 14,19 2,74 4,98 3

40 1 0,77 1 0,79 0,78 1 0,78 0 0 0,00 0,00 0,78 0,00 0,78 1

41 4 10,96 4 9,54 2,81 2 1,41 1 4 8,68 18,96 10,09 1,46 2,87 2

42 5004 3042,86 13 54,04 9,00 5 5,55 4 24 84,25 14,81 89,80 12,30 17,85 5

43 10 17,31 4 6,40 3,08 2 1,58 1 4 5,42 16,65 7,00 1,61 3,19 3

44 1 1,18 1 1,21 1,23 1 1,22 0 0 0,00 0,00 1,22 0,00 1,22 1

45 76 520,65 12 60,18 10,96 4 5,65 3 14 52,86 12,82 58,51 8,93 14,58 5

46 1 1,24 1 1,29 1,27 1 1,27 0 0 0,00 0,00 1,27 0,00 1,27 1

47 1 1,51 1 1,50 1,51 1 1,50 0 0 0,00 0,00 1,50 0,00 1,50 1

48 10 46,65 4 13,04 5,78 3 4,91 2 6 15,30 12,94 20,21 4,10 9,01 3

49 2 3,97 3 6,53 3,80 2 2,29 1 3 5,08 16,70 7,37 1,63 3,92 2

50 18 96,49 8 26,33 8,77 3 4,46 2 10 26,02 14,52 30,48 7,21 11,67 5

51 1 2,29 1 2,35 2,35 1 2,35 0 0 0,00 0,00 2,35 0,00 2,35 1

52 14 76,87 6 22,55 6,97 3 4,40 2 10 37,11 22,91 41,51 7,17 11,57 5

53 230 1703,87 7 26,56 9,30 3 5,25 2 8 21,97 13,75 27,22 6,47 11,72 3

54 5002 5638,32 7 38,38 11,86 3 6,72 2 7 29,80 12,45 36,52 6,94 13,66 3

55 2 3,78 3 6,12 5,06 2 3,04 1 3 4,18 8,14 7,22 2,16 5,20 2

56 103 874,60 4 19,18 7,00 3 5,92 2 7 29,61 14,92 35,53 6,13 12,05 3

57 33 319,98 12 79,01 21,56 3 8,07 2 10 53,30 11,00 61,37 12,44 20,51 4

58 29 188,18 8 33,30 11,91 4 7,91 3 10 27,50 21,03 35,41 8,61 16,52 4

59 2 7,10 3 12,78 6,77 2 4,06 1 3 10,20 14,91 14,26 2,87 6,93 2

60 30 261,60 4 18,17 10,30 3 8,73 2 6 19,21 8,40 27,94 7,29 16,02 3

Table 4: Results when testing on general sparse hypergraphs with two sum functions. CPU
times are reported in seconds.

points are found, the k’th diagonal procedure finds considerable more nondominated points.
For instance, the k’th simple procedure finds only one nondominated point in hypergraph
two, but the k’th diagonal procedure finds thirteen.
If we compare the lower bound procedures with the normal ones, we see that branching on
lower bounds gives a faster computation time, than if we branch in the right order. This is
due to the fact that when branching on lower bounds, we only calculate a shortest hyperpath
when a subhypergraph with minimal lower bound is picked. Moreover, this lower bound is
virtually always equal the true minimal weight of the shortest hyperpath (in more than 95%
of the cases). If we consider the two-phases (lb) procedure in hypergraph 30, for instance,
we calculated 42 hyperpaths and all other computations are made using the simple lower
bound. On the other hand, if we branch in the right order, we have to calculate the shortest
hyperpath for each subhypergraph generated when we pick a shortest hyperpath, i.e. we
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Figure 24: CPU times for general hypergraphs using the sum function.

approximately calculate 42 times 3,02 hyperpaths in hypergraph 30 before the second phase
terminate. Therefore branching on lower bounds are much faster.
If we consider the two-phases procedures and compare the CPU time for the first phase
with the second phase, we see that it is relatively fast to compute the extreme supported
nondominated points, the triangle search is more time consuming.
The CPU times for procedure k’th diagonal (lb), two-phases and two-phases (lb) are shown
in Figure 24(a). It is easy to see that the two-phases (lb) procedure outperform the other
procedures. In a few cases the k’th diagonal (lb) procedure is actually better than the
two-phases (lb) procedure, but the procedure is not very stable. Often it stops before all
nondominated points are found, and even the two-phases procedure outperforms the k’th
diagonal (lb) procedure in most cases.
If we consider the sparse hypergraphs (31-60) instead the conclusion is not so clear. The
results for hypergraphs 31-60 are shown in Table 4. H ere the number of nondominated
points are low; some hypergraphs in fact only have one efficient hyperpath. If the CPU
times in Figure 24(b) are considered, we see that the k’th diagonal (lb) procedure performs
best in most cases. This is due to the fact, that when the hypergraph is sparse the number of
nondominated points inside the area, the k’th diagonal (lb) procedure in the worst case has
to search, is very low (see Figure 21(c)). The two-phases (lb) procedure on the other hand,
first has to find extreme supported nondominated points, and second search the triangles
which imply finding some points twice. Therefore often the two-phases (lb) procedure has to
calculate more hyperpaths in total than the k’th diagonal (lb) procedure resulting in longer
computation times.

6.2.2 Two distance functions

We consider two distance functions and since branching on lower bounds are fastest we
compare the following procedures:

k’th diagonal (lb) Use the diagonal search procedure presented in Section 4.3 together
with the k’th lower bound procedure which finds all solutions below an upper bound
(Procedure 8).

Two-phases (lb) The two-phases procedures in Section 4.2. First, we use the phase one
procedure (Procedure 12) in Section 4.2.1. Next, we use the second phase procedure
(Procedure 14) in Section 4.2.2, together with the k’th lower bound procedure.

Two-phases (ub) Instead of using the parametric weighting function in second phase, we
use the upper bound weighting function (4.7). This only gives us an approximation of
the set of nondominated points.
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1 5006 36,1 11 5 5,5 11 550026 406,2 411,7 11 1 167942 126,6 132,0 3 ?

2 5006 52,1 11 9 13,2 11 550030 611,2 624,4 11 2 362243 398,9 412,1 7 ?

3 50012 65,5 15 5 15,0 14 700033 1002,9 1017,9 14 2 234039 323,2 338,2 3 ?

4 5005 82,8 12 2 13,8 10 500018 823,7 837,6 10 1 168028 278,1 291,9 3 ?

5 5006 113,9 6 2 9,6 5 250013 569,7 579,3 5 0 117324 273,0 282,6 2 ?

6 5007 138,0 9 6 20,2 8 400026 1131,4 1151,6 8 0 91437 262,8 283,0 0 ?

7 5006 137,5 8 6 22,0 7 281718 774,9 796,8 5 0 152326 427,2 449,2 3 ?

8 5008 174,8 8 2 19,2 7 350016 1236,6 1255,8 7 0 240031 881,6 900,8 4 ?

9 5005 228,9 5 2 13,2 4 15099 693,1 706,2 3 0 5678 265,4 278,6 1 ?

10 5007 181,3 7 4 19,9 7 350018 1291,7 1311,6 7 1 179328 671,7 691,6 3 ?

11 50010 237,1 13 4 47,7 12 600025 2847,8 2895,5 12 0 200144 983,7 1031,4 3 ?

12 5009 302,5 9 5 41,4 9 400325 2589,4 2630,7 8 1 211437 1331,8 1373,2 4 ?

13 5006 227,4 8 1 27,8 7 300710 1355,8 1383,6 6 0 110425 511,8 539,7 2 ?

14 5006 307,8 9 6 59,3 8 400020 2468,5 2527,8 8 0 95528 610,0 669,3 0 ?

15 5005 380,9 9 1 42,0 8 308918 2325,4 2367,5 6 0 70328 546,2 588,2 1 ?

16 5007 282,7 6 0 18,6 5 200216 1127,3 1146,0 4 0 109321 642,5 661,1 2 ?

17 50011 387,5 6 1 15,7 5 200416 1545,2 1561,0 4 0 103717 819,1 834,9 2 ?

18 5009 465,4 5 3 55,2 4 200020 1886,5 1941,7 4 2 150721 1415,8 1471,0 3 ?

19 5005 327,3 7 2 36,2 6 250217 1634,3 1670,5 5 0 105825 708,8 745,0 2 ?

20 5004 440,6 8 4 76,0 7 268716 2361,5 2437,5 5 0 109917 989,7 1065,6 2 ?

21 5007 548,9 7 2 72,7 6 300019 3304,4 3377,0 6 0 168230 1873,0 1945,7 2 ?

22 5008 372,9 7 3 49,3 6 205418 1553,9 1603,2 4 0 53319 409,1 458,4 1 ?

23 5007 497,3 4 1 16,5 3 15008 1495,3 1511,7 3 0 55017 560,7 577,2 1 ?

24 5009 651,8 15 6 193,1 14 700038 9129,9 9323,0 14 0 240650 3238,4 3431,5 4 ?

25 5006 471,0 4 0 15,6 3 10047 945,3 960,8 2 0 50811 488,7 504,3 1 ?

26 5006 565,3 5 1 28,1 4 200013 2255,5 2283,6 4 0 102815 1194,5 1222,5 2 ?

27 5004 739,6 12 5 135,4 11 550026 8032,2 8167,6 11 0 165734 2446,9 2582,3 3 ?

28 5004 476,5 5 0 21,7 4 200013 1905,8 1927,5 4 0 61818 605,6 627,2 1 ?

29 5008 657,6 7 5 67,6 6 280224 3685,9 3753,5 5 0 95841 1288,8 1356,4 1 ?

30 5007 824,5 5 1 46,5 4 100813 1627,8 1674,3 2 0 59017 974,0 1020,6 1 ?

Table 5: Results when testing on general dense hypergraphs with two distance functions.
CPU times are reported in seconds.

The results in the dense case (hypergraphs 1-30) are given in Table 5. Column ‘Nonextreme’
contains the number of nonextreme points removed from the ordered nondominated set Φ
when first phase stops. In column ‘Unfinished’ the number of triangles when the second
phase stops before it reaches the upper bound are shown (a maximum of 500 k’th best
solutions picked in each triangle are allowed). Column ‘New extreme’ contains the number
of new supported extreme points found during the second phase. Note that these points
do not necessarily have to be extreme points of the nondominated set when the procedure
stops, as can be seen in Figure 25(b) where the frontier points of hypergraph two are plotted.
The filled points are the points found by first phase, and the two other points are the two
new extreme points found during the two-phases lower bound procedure. When the triangle
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31 5003 49,2 6 2 3,4 5 25008 241,8 245,1 5 0 158014 146,9 150,3 3 ?

32 5004 56,5 6 2 3,4 5 25009 303,7 307,1 5 0 155315 172,1 175,5 1 ?

33 5004 71,5 5 5 7,7 5 20028 318,7 326,4 4 1 100717 156,0 163,7 2 ?

34 1 0,4 1 0 0,4 0 0 0,0 0,4 0 0 01 0,0 0,4 0 1

35 5003 117,0 3 0 3,0 2 294 66,1 69,0 0 0 206 4,5 7,4 0 6

36 5005 171,7 7 4 16,4 6 300010 1006,4 1022,8 6 0 200515 658,5 674,9 4 ?

37 5004 175,7 4 0 3,5 3 10104 355,8 359,3 2 0 3935 121,0 124,5 0 ?

38 5004 198,3 5 0 11,8 5 10287 454,3 466,1 2 1 658 23,7 35,5 0 ?

39 5004 264,0 2 0 1,8 1 5004 257,1 259,0 1 0 84 3,8 5,6 0 ?

40 3 2,1 2 0 1,6 1 2 0,9 2,5 0 0 22 0,9 2,5 0 2

41 5005 255,9 2 1 5,9 1 5005 255,1 261,0 1 0 686 34,0 39,9 0 ?

42 5004 350,0 3 0 6,4 2 5064 364,7 371,1 1 0 84 5,4 11,7 0 ?

43 4 3,5 2 0 2,3 1 3 1,8 4,1 0 0 33 1,8 4,1 0 3

44 1 1,3 1 0 1,3 0 0 0,0 1,3 0 0 01 0,0 1,3 0 1

45 5003 425,1 4 1 14,9 3 10046 874,9 889,8 2 0 1489 127,6 142,5 0 ?

46 1 1,3 1 0 1,3 0 0 0,0 1,3 0 0 01 0,0 1,3 0 1

47 1 1,6 1 0 1,6 0 0 0,0 1,6 0 0 01 0,0 1,6 0 1

48 5004 615,9 4 0 21,0 3 9 9,8 30,8 0 0 94 10,0 31,0 0 4

49 3 3,9 2 0 3,1 1 2 1,7 4,8 0 0 22 1,7 4,8 0 2

50 5008 503,9 3 1 11,1 2 51 47,6 58,6 0 0 118 10,6 21,6 0 8

51 1 2,4 1 0 2,4 0 0 0,0 2,4 0 0 01 0,0 2,4 0 1

52 10 10,8 2 0 3,6 1 9 8,2 11,8 0 0 64 5,6 9,2 0 4

53 5003 602,3 3 0 13,5 2 7 8,2 21,7 0 0 73 8,3 21,8 0 3

54 5004 807,0 3 0 11,2 2 5044 808,7 820,0 1 0 214 30,0 41,2 0 ?

55 3 5,2 2 0 4,1 1 2 2,2 6,3 0 0 22 2,2 6,4 0 2

56 4 7,4 3 0 19,5 2 5 6,4 25,9 0 0 53 6,5 26,0 0 3

57 5004 821,2 3 0 12,7 2 5024 825,8 838,5 1 0 395 63,4 76,1 0 ?

58 14 20,1 4 0 18,6 3 7 8,8 27,4 0 0 74 9,0 27,6 0 4

59 3 6,9 2 0 5,5 1 2 2,9 8,4 0 0 22 3,0 8,5 0 2

60 7 16,4 4 0 29,1 3 7 13,5 42,5 0 0 74 13,6 42,7 0 4

Table 6: Results when testing on general sparse hypergraphs with two distance functions.
CPU times are reported in seconds.

defined by W 1 and W 4 is searched point W 2 is below the line between the two points a
hence a new extreme point. H owever, when later the new lower/right point W 3 is found,
W 2 is no longer a supported extreme because it is above the line between W 1 and W 3.

Finally, column ‘Triangles’ contains the total number of triangles searched during second
phase. If the procedure stops before all nondominated points are found then the number of
nondominated points are shown as a small number raised in the ‘H paths’ column.
As can be seen, it is much harder to solve the bi-SBT problem, when we consider two distance
functions. None of the procedures found all nondominated points when hypergraphs 1− 30
were considered. This is due to the distribution of the points, as can be seen in Figure 25
when hypergraph 2 is considered. H ere 5000 hyperpaths have been calculated in the direction
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Figure 25: 5000 points plotted for hypergraph 2.

of the normal to the line between the upper/left and lower/right point. Figure 25(a) shows
that if we consider two sum functions then all nondominated points are among the 5000
points. On the other hand, if we consider two distance functions and calculate 5000 points
then they are all inside the square shown in Figure 25(b). Therefore two distance functions
gives a much higher density of points inside the triangles.
Consider the two-phases procedure, here first phase is very fast compared to the second
phase and the approximation found is good; only in 7 out of 30 hypergraphs, new extreme
points were found. As can be seen from a comparison of procedure ‘Two-phases (lb)’ and
‘Two-phases (ub)’ the lower bound procedure does not perform well. This is due to the fact
that the parametric lower bound calculated is very weak compared to the actual parametric
weight. Actually, more than 80% of the hyperpaths found when we search a triangle have an
actual parametric weight above the upper bound. On the contrary, if we use the upper bound
function instead the CPU time is significant lower and considerably more nondominated
points are found. The upper bound procedure on hypergraph one, for instance, found 42
nondominated points, and if the lower bound function is used, we only find 21 and have to use
considerably more time. Because of the long CPU times, we could as a possible alternative
to the methods described above use an interactive approach which assist the decision maker.
For instance, first an approximation of the supported extreme points could be found with
the first phase. The decision maker then could choose a triangle which is searched using the
parametric weighting function, if all nondominated points must be found, or alternatively
the upper bound weighting function resulting in a lower computation time.
Table 6 presents the same results for sparse hypergraphs (hypergraphs 31-60). H ere all
nondominated points were found in approximately half of the cases. The upper bound
procedure still performs best and it finds more nondominated points. Moreover, when all
nondominated points are found the upper bound procedure finds these points too.

6.3 Acyclic hypergraphs

We consider acyclic hypergraphs and hence can use the acyclic SBT procedure (Procedure 4).
This procedure use a valid ordering which is obtained from B-MAKER as the numbering of
the nodes. Since no heap is used, this procedure is faster than the general SBT procedure
(Procedure 3). Moreover, branching on lower bounds now finds the true minimal weight
which also will improve the CPU time.
We test the k’th diagonal (lb) and Two-phases (lb) procedure against the following acyclic
procedures

k’th diagonal (acyclic) The same as in k’th diagonal (lb), but use the k’th acyclic proce-
dure instead (Procedure 9).
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1 44 2,63 44 0,48 4 0,42 0,36 3 14 0,29 0,65 1,10 7

2 30012 25,44 1358 16,45 6 1,02 0,78 5 50 1,00 1,78 5,01 12

3 80 8,44 78 1,48 5 1,01 0,79 4 38 0,98 1,77 4,66 8

4 16 2,40 16 0,60 4 1,01 0,75 3 19 0,70 1,45 3,27 6

5 31 6,33 29 1,12 4 1,45 1,02 3 17 0,88 1,90 4,28 4

6 20 5,37 20 1,09 3 1,31 0,90 2 15 0,82 1,72 4,58 6

7 4 1,37 4 0,56 3 1,18 0,80 2 7 0,53 1,33 2,39 3

8 203 57,51 203 7,96 5 2,75 1,90 4 36 2,18 4,08 12,03 9

9 19 8,35 19 1,59 4 2,96 1,92 3 20 1,71 3,63 9,88 5

10 19 6,58 19 1,32 4 2,35 1,49 3 17 1,30 2,79 6,93 6

11 30012 140,38 1000012 488,67 6 5,50 3,23 5 35 3,26 6,49 19,97 12

12 11 6,93 11 1,66 4 3,97 2,53 3 15 1,98 4,51 10,61 8

13 56 20,58 56 3,31 4 2,71 1,82 3 35 2,42 4,24 14,34 7

14 12 7,31 12 1,72 3 2,76 1,82 2 15 1,67 3,49 9,88 6

15 30010 203,40 1046 78,45 6 8,04 5,00 5 27 4,27 9,27 23,62 10

16 25 13,95 25 2,32 4 3,84 2,29 3 29 2,63 4,92 17,50 10

17 17 12,77 17 2,46 5 6,42 3,94 4 31 4,02 7,96 24,84 9

18 30013 242,28 3729 326,50 6 9,55 5,97 5 70 8,91 14,88 62,67 14

19 18 10,85 18 2,21 5 5,21 3,35 4 24 3,07 6,42 16,44 7

20 13 11,49 13 2,52 4 5,69 3,55 3 15 2,80 6,35 15,22 8

21 25 26,02 25 4,31 4 7,19 4,41 3 25 4,45 8,86 28,80 7

22 15 10,85 15 2,31 3 3,39 2,13 2 29 3,01 5,14 20,72 8

23 41 37,57 41 5,59 6 10,31 6,37 5 30 5,83 12,20 33,00 9

24 16 21,81 16 3,91 6 14,14 7,99 5 35 7,76 15,75 51,21 10

25 26 20,73 26 3,53 4 5,52 3,42 3 23 3,40 6,82 20,72 6

26 127 134,82 127 15,67 4 7,82 4,83 3 29 5,33 10,16 35,87 7

27 30010 420,20 541 76,06 7 17,62 10,60 6 43 10,55 21,15 65,65 10

28 35 29,33 35 4,71 5 7,67 4,80 4 42 6,05 10,85 38,38 9

29 30012 340,02 705 86,53 7 15,85 9,59 6 48 10,25 19,84 64,42 13

30 175 246,64 175 27,92 5 13,52 8,15 4 21 6,69 14,84 38,37 8

Table 7: Results when testing on acyclic dense hypergraphs with two sum functions. CPU
times are reported in seconds.

Two-phases (acyclic) We here again consider the two-phases procedures in Section 4.2.
First, we use the phase one procedure (Procedure 12) in Section 4.2.1, together with
an acyclic SBT procedure (Procedure 4). Next, we use the second phase procedure
(Procedure 14) in Section 4.2.2, together with the k’th acyclic procedure (Procedure 9).

We do not consider the sparse case since the acyclic hypergraphs generated are so sparse
that the procedures find all nondominated points in less than a second. This is the case for
both two sum functions and two distance functions.
If we consider the dense case with two sum functions, the results of hypergraph 1-30 are
shown in Table 7. As can be seen, the k′th diagonal (acyclic) procedure performs best if it
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1 5 2 2,0 1,7 128,8 200011 23,2 24,9 4 4 0 103616 13,6 15,27 1 ?

2 4 2 1,9 1,6 104,3 115215 16,5 18,1 3 2 0 55814 8,7 10,28 1 ?

3 2 1 1,0 0,8 59,2 5007 8,3 9,1 1 1 0 50012 8,8 9,56 1 ?

4 6 1 4,4 3,0 225,8 150310 34,7 37,7 4 3 2 56210 12,7 15,63 1 ?

5 5 1 6,4 4,8 133,9 6009 19,4 24,1 4 1 0 51410 15,5 20,21 1 ?

6 9 2 15,6 11,5 1086,2 400013 150,9 162,3 8 8 0 31826 12,9 24,31 0 ?

7 3 1 3,5 2,5 241,2 10009 33,4 35,9 2 2 0 5918 20,4 22,93 1 ?

8 8 3 17,0 12,3 925,7 302417 127,4 139,7 8 6 2 86019 37,3 49,52 1 ?

9 6 4 17,8 12,5 868,9 210025 108,4 120,8 5 4 0 60429 30,9 43,40 1 ?

10 5 1 11,1 7,8 490,1 153011 68,2 76,0 6 3 2 53612 23,0 30,85 1 ?

11 8 4 28,2 19,0 933,9 201620 109,6 128,6 7 4 0 10822 8,0 27,03 0 ?

12 9 6 49,0 24,2 1797,0 305422 208,3 232,6 8 6 3 99523 68,2 92,41 1 ?

13 7 5 22,2 15,5 1147,4 300017 150,6 166,0 6 6 0 60023 31,4 46,86 1 ?

14 6 0 20,5 13,5 747,1 119414 80,9 94,4 5 2 0 52017 34,9 48,45 1 ?

15 13 2 70,1 46,3 3836,7 518521 441,8 488,1 12 10 0 102323 89,1 135,42 1 ?

16 5 0 12,7 8,5 468,4 9028 55,3 63,8 4 1 0 51314 31,2 39,73 1 ?

17 6 3 30,2 19,9 775,8 108312 88,3 108,2 5 2 0 53515 42,2 62,10 1 ?

18 8 1 40,0 25,3 2189,9 239921 246,5 271,8 7 4 0 66026 65,5 90,86 1 ?

19 4 0 9,8 6,4 593,3 10038 71,5 77,9 3 2 0 5197 38,1 44,55 1 ?

20 8 1 50,2 33,0 1600,2 191619 179,1 212,1 7 3 0 55120 55,1 88,05 1 ?

21 4 1 17,3 11,4 1076,0 101714 116,6 128,1 3 2 0 64223 72,7 84,14 1 ?

22 4 0 8,4 5,6 980,1 14627 118,4 123,9 4 2 1 5247 42,3 47,90 1 ?

23 5 2 28,8 18,6 1044,4 110911 121,3 139,9 4 2 0 51411 56,5 75,07 1 ?

24 5 1 35,0 22,6 1284,8 104512 134,6 157,2 4 2 0 63418 81,9 104,49 1 ?

25 4 2 19,3 12,7 1171,3 150010 135,6 148,3 3 3 0 98312 87,4 100,14 1 ?

26 6 0 45,7 28,4 1341,3 121411 141,7 170,1 5 2 0 58013 68,7 97,11 1 ?

27 9 1 59,0 38,0 3527,0 258017 376,5 414,5 8 5 0 64521 98,3 136,29 1 ?

28 5 1 24,5 16,0 897,4 104312 104,5 120,5 4 2 0 52413 55,9 71,89 1 ?

29 6 2 56,6 34,9 1867,0 153718 206,7 241,6 6 3 1 52720 70,1 105,07 1 ?

30 8 3 80,0 48,3 4292,7 276922 441,7 490,0 7 5 0 75126 123,4 171,71 1 ?

Table 8: Results when testing on acyclic dense hypergraphs with two distance functions.
CPU times are reported in seconds.

has to pick less than 100 hyperpaths, even though that the second phase of the two-phases
procedure picks less hyperpaths. This is due to the fact that the initialization phases of the
two-phases procedures are more time consuming than searching more paths. Moreover, we
have to run the first phase too. H owever, as could be expected the two-phases procedure
is stable and outperforms the diagonal procedure in most cases. Comparing the two-phases
(lb) procedure with the two-phases (acyclic) procedure shows that the CPU time is reduced
by more than 50%.

The results for two distance functions are presented in Table 8. Like general hypergraphs,
the upper bound function performs best, and the first phase finds a good approximation of
the extreme nondominated points. Furthermore, comparing the two-phases (lb) procedure
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with the two-phases (acyclic) procedure show that the CPU time is reduced by more than
80%.
The reduction in CPU time, when the acyclic procedures are used, is mainly due to the
acyclic SBT procedure since no heap is needed. Moreover, the fact that branching on lower
bounds gives us the true minimal weight also contribute to a reduction in the CPU time.

6.4 Results summary

In this section, we presented test results for 60 hypergraphs when two sum or two distance
functions are considered. We can summarize the above results as follows:

1. Branching on lower bounds works well. More than 95% of the lower bounds found
where equal to the true minimum weight. As a result using a lower bound k’th proce-
dure to calculate nondominated points improve the CPU time dramatically.

2. The two-phases procedure performs best, except for sparse hypergraphs when consid-
ering two sum functions. H owever, the two-phases procedure is more stable.

3. It is possible to find all nondominated solutions in relatively short time when two sum
functions are considered.

4. If we consider two distance functions the problem is harder to solve. This is due to
a much higher density of points inside the areas the two-phases procedure have to
search.

5. Because the parametric weighting function gives a week lower bound in the distance
case, using the upper bound function instead gives better results. H owever, the upper
bound function only finds an approximation.

6. First phase finds supported extreme nondominated points fast compared to the second
phase. The first phase only finds an approximation in the distance case. H owever, this
approximation is very good.

7. Using the acyclic procedures on acyclic hypergraphs give a high reduction in the CPU
time. This is mainly due to the acyclic SBT procedure. Moreover, the fact that
branching on lower bounds give us the true minimal weight also contribute to the
reduction.

7 Applications

7.1 Random time dependent shortest paths

We consider random time dependent networks [24], i.e. the travel time through an arc is
random and depend on the departure time. We assume that departure times are integer
and travel times are integer-valued discrete random variables. Departure and arrival times
belong to a finite time horizon, that is an interval H = [0, ..., tmax] of integer values. In
practice we assume that the relevant time period is discretized into time intervals of length
δ, i.e. the time horizon H corresponds to the set of time instants {0, δ, ..., tmaxδ} .
Let G = (N,A) be the underlying digraph called the topological network and let d ∈ N be
the destination node. Assume that there are no arcs leaving node d. Let the following be
defined for G
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L(i, j) Possible departure times
from node i along arc
(i, j) (L(i, j) ⊂ H).

L(i) =
⋃

(i,j)∈A
L(i, j), i �= d Possible departure times

from node i along some
arc (L(d) = H).

K(i, j, t) The number of possible
arrival times at node j
when leaving node i at
time t.

I(i, j, t) =
{
t1, ..., tK(i,j,t)

}
The K(i, j, t) possible
arrival times at j when
leaving node i at time t.

pijt(th) The probability of arriv-
ing at node j at time
th when leaving node i
at time t.

K =
∑

(i,j)∈A,t∈L(i,j)

K(i, j, t) Total number of possible
travel times (inputsize).

Moreover, assume that G satisfies the following assumptions:

1. For each (i, j) ∈ A and t ∈ L(i, j) we have I(i, j, t) ⊆ L(j).

2. Travel times are positive, i.e. th > t for each th ∈ I(i, j, t).

Assumption 1 ensures that the traveller cannot get stuck at a node, and since travel times
are positive (assumption 2) and tmax is finite, a traveller arrives at node d within time tmax,
travelling through at most tmax arcs.
A strategy is a function

S : (N \ {d} ×H)→ A

assigning to each pair (i, t) with t ∈ L (i) a successor arc (i, j) with t ∈ L (i, j) . Formally
speaking given a strategy S, the strategy tells that if we are leaving node i at time t, we
leave along arc S (i, t) .
Given a strategy S, the corresponding expected arrival time EST is defined by the following
recursive equations:

EST (i, t) =

{ ∑
th∈I(i,j,t)

pijt(th)EST (j, th) S(i, t) = (i, j) i �= d

t i = d

The minimum expected travel time problem (MET) consists now in finding a strategy S
yielding a minimum EST (i, t) for each pair (i, t) with t ∈ L(i). Note that minimizing ex-
pected arrival time is the same as minimizing travel time because the travel time is given
by EST (i, t)− t.

Example 8 Consider the topological network G in Figure 26. The time horizon H is

H = [0, ..., 6]

a

b

d

c

Figure 26: The topological network G.
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and the departure times along the arcs are given by:

L (a, b) = {0} L (b, c) = {1, 2}
L (b, d) = {1, 2} L (c, d) = {2, 3}

The sets I and the corresponding probabilities are given by:

(i, j), t (a, b) , 0 (b, c) , 1 (b, c) , 2 (b, d) , 1 (b, d) , 2 (c, d) , 2 (c, d) , 3
I (i, j, t) {1, 2} {2} {3} {3} {5} {3, 4} {4, 6}
pijt

{
1
3 ,

2
3

}
{1} {1} {1} {1}

{
1
4 ,

3
4

} {
3
4 ,

1
4

}
If we e.g. leave node c at time 2 along arc (c, d) we will arrive at node d at time 3 with a
probability of 1

4 or at time 4 with a probability of 3
4 .

A possible strategy S1 is

(v, t) (a, 0) (b, 1) (b, 2) (c, 2) (c, 3)
arc (a, b) (b, d) (b, c) (c, d) (c, d)

If we leave node a at time 0, the expected arrival time at node d is

EST (a, 0) =
∑

th∈I(a,b,0)
pabt(th)EST (b, th) =

1
3
EST (b, 1) +

2
3
EST (b, 2) =

1
3
EST (d, 3) +

2
3
EST (c, 3)

=
1
3
· 3 + 2

3

(
3
4
· 4 + 1

4
· 6
)
= 4

7.1.1 The hypergraph model

In order to formulate MET in terms of shortest hyperpaths, we define the time expanded
hypergraph H =(V, E) as follows

V = {(i, t) | i ∈ N, t ∈ L(i)} ∪ {s}
h(i, j, t) = {{(j, th) : th ∈ I(i, j, t)} , (i, t)} ∀(i, j) ∈ A, t ∈ I(i, j)
h(d, t) = ({s} , (d, t)) ∀t ∈ H

E = {h(i, j, t) | (i, j) ∈ A, t ∈ L(i, j)} ∪ {h(d, t) | t ∈ H}

H satisfies the following properties:

1. V contains one node for each pair (i, t) , t ∈ L(i), plus an origin node s.

2. The orientation of h(i, j, t) is opposite to the orientation of arc (i, j) , indeed the tail
of h(i, j, t) contains a pair (j, th) for each possible arrival time at j when leaving i at
time t, while the head contains the pair (i, t) . In addition for each t ∈ H, we have
defined an arc h(d, t) from the origin s to node (d, t).

3. Size (H) = O (K) , and H can be built in O (K) time.

4. H is an acyclic hypergraph with origin s as a consequence of the assumptions of G.

5. There is a one to one correspondence between a strategy and a predecessor function
f on H, that is

f(i, t) = h(i, j, t)
 

S(i, t) = (i, j)
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Figure 27: The time expanded hypergraph H.

Given a strategy S, denote by fS the corresponding predecessor function on H. Moreover,
denote by πS(i,t) the hyperpath from s to (i, t) defined by fS . Note that hyperpath πS(i,t)
represents the route of a traveller leaving from i at time t and following strategy S. Let the
weights of H be given by

w(e) =
{
t if e = h(d, t)
0 otherwise (7.1)

and for each hyperarc e ∈ E assign multipliers

ae(v) =
{
pijt(th) ∀e = h(i, j, t) ∀v = (j, th) ∈ T (e)
1 ∀e = h(d, t) v = {s} ∈ T (e) (7.2)

It is now possible to solve MET as a shortest hyperpath problem.

Theorem 8 (Pretolani [24]) For each i ∈ N and t ∈ L(i) the expected arrival time

EST (i, t) is equal to the value of hyperpath π
S
(i,t), with respect to weights (7.1) and multipliers

(7.2). Moreover, MET can be formulated as a minimum value problem on H and be solved
in O (K) time.

Example 8 (continued) The time expanded hypergraph is illustrated in Figure 27. H ere
H has 4 different hyperpaths from s to a0.

Strategy S1 defines the hyperpath πS1
(a,0) with weight W

(
πS1

(a,0)

)
= 4 emphasized in Fig-

ure 27.

The hypergraph model presented shows a high degree of flexibility. Other route selection
criteria can be modeled by defining suitable weights and multipliers for the hypergraph
model.
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Max possible arrival time Given a strategy S, the maximum possible arrival time MS
T

is defined by the recursive equations:

MS
T (i, t) =

{
max

th∈I(i,j,t)
MS
T (j, th) S(i, t) = (i, j), i �= d

t i = d

The min-max travel time problem (MMT) now consists in finding a strategy minimizing
MS
T (i, t) for each i and t ∈ L (i) . By comparing the definitions of MS

T and distance we have

Theorem 9 (Pretolani [24]) For each i ∈ N and t ∈ L(i) the maximum possible arrival
time MS

T (i, t) is equal to the distance of hyperpath π
S
(i,t), with respect to the weights (7.1).

Moreover, MMT can be formulated as a minimum distance problem on H and be solved in
O (K) time.

Expected cost Given a strategy S, the expected costs ESC is defined by the recursive
equations:

ESC(i, t) =

{
c(i, j, t) +

∑
th∈I(i,j,t)

pijt(th)ESC(j, th) S(i, t) = (i, j), i �= d

gd(t) i = d

where gd (t) is a penalty function for early or late arrivals. The minimum expected cost
problem (MEC) consists in finding a strategy S yielding a minimum ESC(i, t) for each pair
(i, t) with t ∈ L(i). If we define the following weights

w(e) =
{
gd(t) e = h(d, t)
c(i, j, t) e = h(i, j, t) (7.3)

we have

Theorem 10 (Pretolani [24]) For each i ∈ N and t ∈ L(i) the expected cost ESC is equal
to the value of hyperpath πS(i,t), with respect to the weights (7.3) and multipliers (7.2).
Moreover, MEC can be formulated as a minimum value problem on H and be solved in
O (K) time.

Max possible cost Given a strategy S the maximum possible cost MS
C is defined by the

recursive equations:

MS
C(i, t) =

{
max

th∈I(i,j,t)
MS
C(j, th) S(i, t) = (i, j), i �= d

gd (t) i = d

The min-max travel time problem (MMT) consists in finding a strategy minimizingMS
C (i, t)

for each i and t ∈ L (i) . Comparing the definition of MS
C and distance we have

Theorem 11 (Pretolani [24]) For each i ∈ N and t ∈ L(i) the maximum possible cost
MS
C(i, t) is equal to the distance of hyperpath πS(i,t), with respect to the weights (7.3).

Moreover, MMC can be formulated as a minimum distance problem on H and be solved in
O (K) time.

Example 8 (continued) Let the costs of hyperarc h (i, j, t) be given by:

(i, j), t (a, b) , 0 (b, c) , 1 (b, c) , 2 (b, d) , 1 (b, d) , 2 (c, d) , 2 (c, d) , 3
c (i, j, t) 1 1 2 2 3 1 0
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Figure 28: The first efficient hyperpath from s to a0 for MET and MEC.

and assume that the penalty cost is

t 3 4 5 6
gd (t) 4 1 2 4

For πS1
(a,0) we now have

ES1
C (a, 0) = 5.5 MS1

T (a, 0) = 6 MS1
C (a, 0) = 7

7.1.2 Finding an efficient strategy

Suppose now that we want to find a strategy that solves both MET and MEC or solves both
MMT and MMC. Normally a solution that minimizes both objectives does not exist, instead
we have to find an efficient strategy. From the connection between strategy and hyperpath
we have

Theorem 12 Given a random time dependent network, an efficient strategy with respect
to two criteria (e.g. expected cost and travel time) can be found by solving the bicriterion
shortest hyperpath problem on the time expanded hypergraph H.

Example 8 (continued) Suppose we want to minimize both expected arrival time and
cost, i.e. we have to solve the bi-SBT problem when two value functions are considered
with weights and multipliers as in Figure 28. Since H is acyclic, the acyclic procedures in
Section 4 can be used to find the two efficient hyperpaths shown in Figure 28 and Figure 29.
H ere the first and second weight w.r.t. the value function are shown beside each node in
the curved parenthesis. If we want to minimize both maximum arrival time and cost we
have to solve the bi-SBT problem with two distance functions. This gives only one efficient
hyperpath which is shown in Figure 30. H ere the first and second weight w.r.t. the distance
function are shown beside each node in the square parenthesis.
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Figure 29: Second efficient hyperpath from s to a0 for MET and MEC.
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Figure 30: Efficient hyperpath from s to a0 for MMT and MMC.

8 Conclusions

In this paper we have defined the bi-SBT problem and presented different methods for
solving the problem. We considered two cases of weighting functions: Two value weighting
functions and two distance weighting functions.
All the methods use a k’th best procedure to search for efficient hyperpaths. This problem
was extended from digraphs to hypergraphs. Moreover, we presented a method to find all
hyperpaths with weight below an upper bound, by branching on lower bounds.
Computational testing revealed that, by branching on lower bounds and using a two-phases
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approach, we could solve the bi-SBT problem fast, if two sum weighting functions were
considered. If two distance functions are considered the problem is harder to solve. H owever,
by using an upper bound weighting function a good approximation of the nondominated
points could be found. Furthermore, it is possible to improve the CPU time dramatically, if
acyclic hypergraphs are considered.
We have not developed procedures for solving the problem when a value and a distance
weighting function are considered. H ere it seems harder to find a lower bound of the minimal
parametric weight of a subhypergraph. An upper bound approximation is properly needed.
Moreover, it may be possible to find better ways to prune the search tree, or to improve
the lower bound weighting function when two distance weighting functions are considered.
These areas could be interesting directions for further research.

Appendix A: Data structures

In this section we describe how the procedures in Section 2-4 were implemented in C++.
It is assumed that the reader is familiar with pointers and structures/classes. Examples of
program code is written in C++.

A.1 Heap representation

We use a heap to sort the candidate sets, that is, the set is sorted using a binary tree. The
heap is implemented using an array. The heap implementation is well-known and not stated
here. The interested reader should refer to Tarjan [28].

A.2 Hypergraph representation

Consider a hypergraph H = (V, E) where V = (v1, ..., vn) is the set of nodes, and E =
(e1, ..., em) is the set of hyperarcs. The hyperarcs E are divided into arcs e and true hyperarcs
eh that is E = (e1, ..., ema)∪ (eh1, ..., ehmh) . Let htailsize denote the total size of the tails
of true hyperarcs. A hypergraph class/structure representing a forward and/or a backward
representation now consists of arrays containing arc, hyperarc and node structures. What
the arc, hyperarc and node structures contain depends on the use. For instance a Node class
for calculating a shortest hyperpath could contain

Node
weight(s) pred
pAFirst pHFirst

H ere weight(s) is the optimal weight(s) for the shortest hyperpath and pred denote the
predecessor hyperarc. Furthermore, pAFirst and pHFirst denote pointers to the first arc
and hyperarc in the backward star of the node, respectively. The prefix p before a type
denote that it is a pointer and pp denotes a pointer to a pointer. We now consider the
backward and forward representation of a hypergraph.

A.2.1 Backward Representation

Given a node v, the backward representation needs to know the hyperarcs belonging to
BS (v) . H ere an arc, hyperarc and node is defined by

Arc
length(s)
pHead
pTail

HArc
length(s)
pHead
ppTail

Node
weight(s)
pAFirst
pHFirst
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The backward representation of a hypergraph can now be obtained by storing the arcs,
hyperarcs and nodes in arrays which fulfill: The node array is an array of size n+ 2, where
each entry contains a Node.

0 1 n n+ 1
D v1 . . . vn D

H ere node vi is stored in entry i. The zero entry is not used and entry n + 1 is used as a
dummy node (D stands for Dummy) so it is possible to use for statements.
The arc array is an array of size ma + 2, where each entry contains an Arc. The array is
sorted in a backward star order, i.e. like (3.1). Again a dummy node is used.

0 1 ma ma+ 1
D e1 . . . ema D

If pNode is a pointer to a node then the BS of arcs now can be scanned by using the following
for statement

for(pArcNow = pNode->pAFirst, pLastArc = (pNode+1)->pAFirst;

pArcNow!=pLastArc;

pArcNow++)

{
statements;

}

Similarly the hyperarc array have mh+ 1 HArc entries sorted in a backward star order.

0 1 mh mh+ 1
D eh1 . . . ehmh D

Again if pNode is a pointer to a node, then the BS of hyperarcs can be scanned by using
the following for statement

for(pHArcNow = pNode->pHFirst, pLastHArc = (pNode+1)->pHFirst;

pHArcNow!=pLastHArc;

pHArcNow++)

{
statements;

}

To store the tails of the hyperarcs we use a tail array with htailsize + 1 entries, each
containing a pointer to a Node.

0 1 htailsize htailsize+ 1
D p1 . . . phtailsize D

The array is sorted in the same way as the hyperarc array. H ere the tail nodes of a hyperarc
pointed to by pHArc can be scanned using

for(ppNodeNow = pHArc->ppTail, ppLastNode = (pHArc+1)->ppTail;

ppNodeNow!=ppLastNode;

pNodeNow++)

{
pNode = *ppNodeNow;

statements;

}

I·53



A.2.2 Backward and Forward Representation

If a forward representation is needed together with a backward representation two more
arrays are needed. A forward star arc and forward star hyperarc array. The node must also
be modified to contain two more pointers.

Node
weight(s) pAFirst
ppAFirst pHFirst

ppHFirst

The forward star arc array is of size ma+ 2 and contain Arc pointers.

0 1 ma ma+ 1
D p1 . . . pma D

H ere the forward star of arcs to a node pointed by pNode can be scanned by

for(ppArcNow = pNode->ppAFirst, ppLastArc = (pNode+1)->ppAFirst;

ppArcNow!=ppLastArc;

ppArcNow++)

{
pArc = *ppArcNow;

statements;

}

The forward star hyperarc array is of size htailsize+ 2 and contains HArc pointers.

0 1 tailsize tailsize+ 1
D p1 . . . pmh D

and if pNode is a pointer to a node, then the forward star of hyperarcs can be scanned by
using the following for statement

for(ppHArcNow = pNode->ppHFirst, ppLastHArc = (pNode+1)->ppHFirst;

ppHArcNow!=ppLastHArc;

ppHArcNow++)

{
pHArc = *ppHArcNow;

statements;

}

A.2.3 Forward Representation

If only a forward representation is needed, the forward star arc array can be deleted and
the arc array sorted in a forward star order instead. Moreover, the hyperarc array does not
have to be sorted in a backward star order.

A.3 Branchingtree representation

The branching tree defining the subhypergraphs used in the k’th procedures were imple-
mented with a dynamic branching tree. This is illustrated in Figure 31 where the branching
tree, when we pick the 4′th shortest hyperpath in Example 3 on page 14, is shown. H ere
each branch node (BNodei) corresponds to a subhypergraph Hi (BNode0 corresponds to hy-
pergraph H). We assume that we use Branching Rule 2 on page 18. From H we generated
3 subhypergraphs H1,H2 and H3 and from H1 two more subhypergraphs H11 and H12 etc.
In each subhypergraph we removed the last branching hyperarc and fixed the backward star
for the other branching hyperarcs. Now if we for each branch node BNodei in the branching
tree store the hyperarc we remove, then by traversing the path from BNodei to BNode0, we
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BNode0

BNode1 BNode3BNode2

BNode11 BNode12 BNode21 BNode23BNode22 BNode24

nullLevel

0

1

2

Heap

Figure 31: The branching tree corresponding to all subhypergraphs generated.

can construct subhypergraph Hi. For instance subhypergraph H22 corresponds to the path
BNode22 - BNode0 in Figure 31 because if the following is stored in the branch nodes

BNode1 BNode2 BNode21 BNode22
e1t e16 e26 e23

then we obtain H22 from H by removing e23, set BS
(
h
(
e26
))

= e26, remove e
1
6 and set

BS
(
h
(
e1t
))

= e1t . More generally consider path

BNodei − BNodei−1 − ...− BNode0

and let ei denote the hyperarc stored in BNodei. Let firstChild i be true if node BNodei is
on level j and node BNodei−1 is on level j − 1 and otherwise false (see Figure 31). Then
the path corresponds to the subhypergraph of Hi obtained from H by

1. Removing ei

2. Setting BS (h (eq)) = eq if firstChildq+1 = false (q �= i)

3. Removing eq if firstChildq+1 = true (q �= i)

Each BNodei is a structure containing

BNode
weight harc
firstChild branchlist

pPrev

where weight is the optimal weight for the shortest hyperpath in Hi (or a lower bound) and
harc is the hyperarc we remove. The list branchlist contains the branching hyperarcs of the
shortest hyperpath of Hi, note if we branch on lower bounds, this list is not needed. Last
pPrev is a pointer to the previous BNode.
The subhypergraph containing the minimal weight is found by storing all candidates in a
heap of pointers (see Figure 31).
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Abstract

In this paper we consider the parametric shortest hyperpath problem in B-hypergraphs.
We assume that the lengths of the hyperarcs depend on some parameter. We present
procedures which find the shortest hyperpath from a source node to all other nodes
in a B-hypergraph as a function of the parameter. The method extend results known
from parametric shortest path problems in directed graphs.

Keywords: B-hypergraphs, Shortest hyperpaths, parametric shortest hyperpaths.

1 Introduction

In this paper we consider the parametric shortest hyperpath problem in B-hypergraphs. It
is assumed that the lengths of the hyperarcs in the B-hypergraph depend on some parameter
λ. We present procedures for determining the shortest hyperpaths from a source node s to
all other nodes u hyperconnected to s as a function of the parameter λ. To the best of our
knowledge this problem has not been considered earlier.

The problem of determining the parametric shortest paths from a particular node s to all
other nodes u in directed graphs has been presented in a number of papers. Probably the
best known paper is Young, Tarjant, and Orlin [6]. H owever, the problem presented in that
paper is somewhat simpler than the one presented in this paper. One reason is, that it only
concerns digraphs, and another reason is, that there are some restrictions in the way, the
parameter λ is allowed to vary. In this paper, λ is allowed to vary freely. This makes our
problem more complicated, but probably also more oriented towards applications.

The paper is organized as follows. Section 2 contains preliminaries and Section 3 presents
the problem along with a solution procedure. The section contains illustrating examples to
make the presentation more clear. Section 4 list some items missing from the present version
of this paper, which should be considered before the paper is published.

2 Preliminaries

This section contains the basic definitions of a directed B-hypergraph, i.e. hypergraphs where
each hyperarc only have one node in its head. More general hypergraphs are presented in
Gallo, Longo, Pallottino, and Nguyen [2]. In the following a B-hypergraph is referred to as
a hypergraph.

∗Corresponding author (e-mail: relund@imf.au.dk)
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A directed hypergraph is a pair H = (V, E) where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair

e = (T (e), h(e)) T (e) ⊂ V h(e) ⊆ V\T (e)

where T (e) and h(e) denote the tail nodes and the head node, respectively. The cardinality
of hyperarc e is the sum of the tail and head nodes, i.e.

|e| = |T (e)|+ |h(e)| = |T (e)|+ 1

If |e| = 2 hyperarc e is called an arc. The size of H is the sum of the cardinalities of its
hyperarcs:

size(H) =
∑
e∈E

|e|

We denote by

FS(u) = {e ∈ E | u ∈ T (e)}
BS(u) = {e ∈ E | u ∈ h(e)}

the forward star and the backward star of node u, respectively. A path Pst in a hypergraph
H is a sequence of nodes and hyperarcs in H:

Pst = (v1 = s, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, ...q + 1, vi ∈ T (ei) and vi+1 ∈ h(ei). A node v is connected to node u if a
path Puv exists in H. A cycle is a path Pst where t ∈ T (e1). A path is cycle-free if it does
not contain any subpath which is a cycle, i.e.

vi ∈ T (ej)⇒ j ≥ i 1 ≤ i ≤ q + 1

If H contains no cycles, it is acyclic.

2.1 Ordering a hypergraph

We consider a topological ordering of the nodes of a hypergraph.

Definition 1 Let H = (V, E) be a hypergraph. A valid ordering

V = (vi1 , vi2 , ..., vin)

of the nodes in H is a topological ordering of the nodes, such that, for each e ∈ E and
u ∈ T (e), node u precedes node h(e) in the ordering (see Figure 1).

It is well-known that H is acyclic if and only if a valid ordering of the nodes in H is possible,
see e.g. Gallo et al. [2] where a procedure also is presented.

e
h(e)

u

Figure 1: A valid ordering V = (..., u, ..., h(e), ...).
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2.2 Hyperpaths

We here use a slightly different definition of a hyperpath than in Gallo et al. [2] since, in some
cases, this definition seems to be not working for B-hypergraphs, see Nielsen, Pretolani, and
Andersen [4].
Consider a hypergraph H = (V, E). A hyperpath πst of origin s and destination t, is an
acyclic minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ = ∪e∈Eπ
(T (e) ∪ h(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

Note that 3. implies that for each u ∈ Vπ \ {s} there exists a hyperarc e ∈ Eπ such that
h(e) = u, it follows from the minimality that e is unique. H yperarc e is called the predecessor
of u and denoted by eπ (u) . Note that only a subhypergraph of H has to be considered when
we want to find a hyperpath πst because the minimality also implies that the following
condition holds:

4. ∃u− t path ∀u ∈ Vπ \ {t}

Therefore all nodes which do not have a path to t can be removed from H. We say that
node t is hyperconnected to s if there exists a hyperpath πst. H yperpath πst is different from
hyperpath πuv if they do not have the same hyperarcs.

2.3 Hypertrees

A directed hypertree with root s is a hypergraph Ts = ({s}∪N , ET )1 satisfying the following
conditions:

1. Ts is acyclic

2. {s} ∩ N = ∅

3. BS (s) = ∅

4. |BS (v)| = 1 ∀v ∈ N

A hypertree is the union of hyperpaths to all nodes in N . If FS(v) = ∅ then v is called a
leaf. Note that different hypertrees can have the same hyperpath πst.

2.4 Weighted hypergraphs

A weighted hypergraph is a hypergraph where each hyperarc e is assigned a real weight w (e).
Given a hyperpath πst a weighting function Wπ is a node function which assigns weights
Wπ (u) to all nodes in πst. The weight of hyperpath πst is Wπ (t) .We shall restrict ourselves
to additive weighting functions which are defined by the recursive equations

Wπ (u) =
{
w(eπ(u)) + F (eπ (u)) u ∈ Vπ \ {s}
0 u = s

where F (e) is a nondecreasing function of the weights of the nodes in T (e). Two particular
weighting functions, namely the distance and the value, have been studied in detail by Gallo
et al. [2], and Pretolani [5] who showed that these two functions have practical applications.
The distance is obtained by defining F (e) as follows:

1In some definitions it is possible to have more than one root [1].
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Precondition: Given hypergraph H with nondecreasing cycles and nonnegative hyperarc weights, let
W (vi) denote the minimal weight in node vi, F (e) the chosen additive weighting function, Q a
candidate set and let p be a predecessor function. Moreover, let the counter kj for each hyperarc
ej represent the number of nodes in T (ej) which have been removed from Q. Therefore we just
update h (ej) when the weights of all nodes in T (ej) has been calculated.

Initialization: Set W (vi) =∞ ∀i ∈ V, kj = 0 ∀e ∈ E , Q = {s} and W (s) = 0

while (Q 	= ∅) do1

select and remove u ∈ Q;2

for (ej ∈ FS(u)) do kj := kj + 13

if (kj = |T (ej)|) then v := h (ej)4

if (W (v) > w(ej) + F (ej)) then5

if (v /∈ Q) then6

Q := Q∪{v}7

if (W (v) < ∞) then8

for (eh ∈ FS (v)) do kh := kh − 19

end if10

end if11

W (v) := w(ej) + F (ej), p (v) := ej12

end if13

end if14

end for15

end while16

Procedure 1: Shortest B-tree procedure (SBT)

F (e) = max
v∈T (e)

{Wπ (v)}

and the value is obtained as follows:

F (e) =
∑
v∈T (e)

ae (v)Wπ (v)

where ae (v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e) (see
Figure 2). The distance (the value) of a hyperpath πst is the weight of the hyperpath πst
with respect to the distance (the value) weighting function.

2.5 The shortest hyperpath problem

The shortest hyperpath problem (SBT)2 consists in finding the minimum weight hyperpaths
from an origin s to all nodes in H hyperconnected to s. In general the problem is hard
to solve but if the weighting function is additive, fast algorithms exist. We first define a
nondecreasing cycle which ensures that no weight can be decreased through a cycle.

2Shortest B-hypertree.

w(e)

u
v1

v2

vq

ae(v1)

ae(v2)

a e(
v q)

Figure 2: The weights and multipliers of the value function e = ({v1, ..., vq} , {u}).
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Precondition: Given V, a valid ordering of H, let p denote the predecessor function and F (e) the
chosen additive weighting function.

Initialization: Set W (s) := 0, W (vi) =∞ i = 1, ..., n

for (i = 1 to n) do1

for (e ∈ BS(vi)) do2

if (W (vi) > w(e) + F (e)) then W (vi) := w(e) + F (e), p (vi) := e3

end for4

end for5

Procedure 2: Shortest B-tree procedure when H is acyclic (SBT-acyclic)

Definition 2 A nondecreasing cycle is a cycle C = {v1, e1, v2, e2, ..., vr, er, v1} that satisfies

w (er) + Fvr

[
w (er−1) + Fvr−1 (...Fv2 [w (e1) + Fv1 (z)])

]
≥ z ∀z ∈ R+ (2.1)

here Fvi
(W ) denotes the function where vi ∈ T (ei) has weight W and all other nodes

u ∈ T (ei) has weight equal to zero.

That is, if node v1 has temporary weight z then going through C will give no better tempo-
rary weight. Now, assume that the weighting function is additive, the weights nonnegative
and that all cycles are nondecreasing. Gallo et al. [2] showed that finding the minimum
weight hypertree is equivalent to finding a solution to Bellmans generalized equations

W (v) =

{
0 v = s
min

e∈BS(v)
{w(e) + F (e)} v ∈ V\ {s}

Procedure 1 proposed in [2] finds the minimum weight hypertree containing the shortest
hyperpaths. If Dijkstra’s principle is used, i.e. select from the candidate set Q a node u
satisfying W (u) = min {W (x) | x ∈ Q} at each iteration, the well-known assumption of
nonnegative arc weights in standard digraphs becomes

w (e) + F (e) ≥W (x) ∀x ∈ T (e) , e ∈ E (2.2)

that is, the weight in the head must be equal to or larger than the weights in all the nodes
in the tail. If assumption (2.2) is satisfied, then Dijkstra’s theorem can be extended to
hypergraphs.

Theorem 1 Suppose assumption (2.2) is satisfied andW (u) = min {W (x) | x ∈ Q} . Then
W (u) is the minimum weight of all hyperpaths from s to u.

As a consequence, we have that every node u ∈ V is removed from Q at most once and
hence line 9 in Procedure 1 can be dropped. Note if Dijkstra’s theorem is used, then the
order we pick the nodes from Q define a valid ordering of the minimal hypertree.

2.5.1 Acyclic case

If H is acyclic, a fast procedure exists [3]. The procedure needs a valid ordering

V = (v0 = s, v1, ..., vn)

and is stated in Procedure 2. The procedure finds the minimal weight for a node v in one
iteration, since the valid ordering assures that the minimal weights in the predecessor nodes
have been found.
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3 The parametric shortest hyperpath problem

LetH=(V, E) be a hypergraph where V = {v1, . . . , vn} is the set of nodes and E = {e1, . . . , em}
is the set of hyperarcs. Let Λ =

[
λ, λ

]
and assume that λ ∈ Λ. Assign to each hyperarc

e ∈ E a nonnegative weight function we (λ) and if the value function is considered nonnega-
tive multiplier functions ae (u, λ) for u ∈ T (e). That is, the weight and the multipliers are
functions of the parameter λ ∈ Λ. We say that the hypergraph H is parametrized by the
parameter λ and denote it with Hλ. Clearly, for a given value of λ = λ0, we have that Hλ0

is a weighted hypergraph, i.e. weights and multipliers are fixed. Given a hyperpath π we
let Wπ (λ) denote the parametric weight of π.

Assume wlog that all nodes v ∈ V is hyperconnected to node s. In this section we want to
determine a shortest hypertree from some source node s, i.e. the shortest hyperpaths from
node s to all other nodes, as a function of the parameter λ ∈ Λ. We call this problem the
parametric shortest hyperpath problem.

Before presenting the solution procedure we shall illustrate it with a minor example.

Example 1 A simple parametric hypergraph Hλ is shown in Figure 3(a). We consider the
value weighting function where the weights and multipliers are written like in Figure 2.

e1 e2

e5 e3

e6

v1 v2

v3v4

s

2 λ

1

1 0

1 4−λ

2

2

e42λ

(a) Hypergraph Hλ

e1 e2

e5

v1 v2

v3v4

s

2

1

1 0

[0,4]
(0) (1) (1)

(1+λ) (1+2λ)

[0,4] [0,4]

[0,2] [0,2]

e4

λ

2λ

(b) Ts for H0

Figure 3: A simple parametric weighted hypergraph Hλ with Λ = [0, 4] and its minimal
hypertree Ts for λ = 0.

Now assume that Λ = [0, 4]. The minimal weight hypertree for H0 is shown in Figure 3(b).
We now want to find intervals of the parameter λ so that the hypertree in Figure 3(b) is
the optimal (minimal weight) one. By definition a shortest hyperpath from node s to itself
has value 0, and is optimal for all λ ∈ Λ. Also, the subpaths to nodes v1 and v2 are optimal
for all values of λ ∈ Λ since there is only one hyperpath to nodes 1 and 2. Moreover, the
parametric weight of node v3, when e4 is used as a predecessor, is minimal if the parametric
weight of node v3, when another hyperarc is used as a predecessor is higher, i.e.

1 + 2λ ≤ 1 + (4− λ) + 2⇔ λ ≤ 2

H ence it follows, that for λ ∈ [0, 2] edge e4 is used as a predecessor in a shortest hyperpath to
node v3. Conversely if λ ∈ [2, 4] hyperarc e3 is used as a predecessor in a shortest hyperpath
to node v3. For node v4 the result are similar, however, we have to consider the intervals
λ ∈ [0, 2] and λ ∈ [2, 4] separately, since one hyperarc in BS (v4) has and tail node in node
v3 and the predecessor of node v3 is not the same in the two intervals. If λ ∈ [0, 2] we have

2 · 0 + 1 · λ+ 1 ≤ 1 · (1 + 2 · λ) + 2⇔ λ ≥ −2

II·6



i.e. that for λ ∈ [0, 2] edge e5 is used as a predecessor in a shortest hyperpath to node v4. If
λ ∈ [2, 4] we have

2 · 0 + 1 · λ+ 1 ≤ 1 · (7− λ) + 2⇔ λ ≤ 4

and hence for λ ∈ [2, 4] edge e5 is used as a predecessor in a shortest hyperpath to node v4.
We now have calculated a shortest hyperpath from node s to node vi, for i = 1, . . . , 4 and
for all λ ∈ [0, 4], as shown in Table 1.

Node λ Wv(λ) pv (λ)
1 [0,4] 1 e1
2 [0,4] 1 e2
3 [0,2] 1 + 2λ e4

[2,4] 7− λ e3
4 [0,4] 1 + λ e5

Table 1: The hyperpath for λ ∈ Λ.

In conclusion the hypertree in Figure 3(b) is the minimal weight hypertree for λ ∈ [0, 2].

Next let us introduce some notation. Consider a particular node u ∈ V hyperconnected to
s and let πsu be a shortest hyperpath from node s to node u. We want to determine a set
Λu of values λ for which πsu is a shortest hyperpath to node u, i.e.

λ ∈ Λu ⇒ πsu is a shortest hyperpath for Hλ (3.1)

This problem is denoted the parametric shortest hyperpath problem (PSBT )3. By definition
Λs = Λ. Furthermore, the weight of node s is always equal to 0, that is

Ws(λ) = 0 ∀λ ∈ Λs = Λ (3.2)

As it turns out, Λu need not always has to be an interval, but Λu can be split into disjoint
intervals:

Λu = [λ1
u, λ

1

u] ∪ [λ2
u, λ

2

u] ∪ . . . ∪ [λqu, λ
q

u] = Λ1
u ∪ Λ2

u ∪ . . . ∪ Λqu
Let the backward node set BNv of node v denote the set of nodes u which are in the tail of
some arc e ∈ BS(v), i.e.

BNv = {u ∈ V |u ∈ T (e) , e ∈ BS (v)}

Below we consider two cases, namely the general case and the acyclic case.

3.1 The general case

Consider Hλ=(V, E) with λ ∈ Λ and let λ0 be a fixed number in Λ, we now have the
following lemma.

Lemma 1 Assume that Ts is the minimal hypertree for Hλ0 and that πsv is the correspond-
ing shortest hyperpath to node v. Let Λv denote the set

Λv = Λ0 ∩
⋂

u∈BNv

Λu

where

Λ0 =
{
λ ∈ Λ | wp(v)(λ) + Fp(v)(λ) ≤ we(λ) + Fe (λ) , ∀e ∈ BS (v) \{p (v)}

}
Then Λv satisfies condition (3.1).

3Parametric shortest B-tree.
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Precondition: Let λ0 denote a fixed number in Λ. Given a hypertree Ts, let Wv(λ) denote the
weight of node v and let VTs = (v1, ..., vn) denote a valid ordering of Ts.

Initialization: Use an SBT procedure to find the minimal hypertree Ts of Hλ0 .

for (i = 1 to n) do1

Λvi =
⋂

u∈BNvi
Λu2

for (e ∈ BS (vi)) do3

if (e 	= pvi (λ0)) then4

Λ0 = {λ ∈ Λ | Wvi(λ) ≤ we(λ) + Fe (λ)}5

Λvi := Λvi ∩ Λ06

end if7

end for8

end for9

Procedure 3: Finding values of λ for which the minimal hypertree of Hλ0 is minimal.

Proof Follows immediately.

Procedure 3 finds the minimum weight hypertree Ts for Hλ0 , and calculate sets Λv satisfying
condition (3.1) for v ∈ V. The procedure starts by using an SBT procedure to find a minimal
hypertree Ts of Hλ0 . Moreover, if Dijkstra’s principle is used, then the order we pick the
nodes in procedure SBT define a valid ordering of Ts. Line 2 now finds the union of the
intervals of the nodes in BNv and lines 5 and 6 the set from Lemma 1. Since the number of
steps in Procedure 3 are finite, we have that Procedure 3 stops in a finite number of steps,
provided that the set Λ0 can be found in a finite number of steps.
Procedure 3 can also be used if some part of the minimal hypertree is known in advance.
For instance suppose a minimal weight hypertree for the nodes s, u1, u2, ..., uk−1 is known
together with their corresponding sets Λi, satisfying condition (3.1). Then the for-loop in
Procedure 3 can be changed from running from 1 to n, to run from k to n and only the rest
of the minimal hypertree Ts has to be found in the initialization.
Note that Procedure 3 only finds sets Λv for which the hypertree of Hλ0 is minimal. If we
want to find a minimal hypertree for all λ ∈ Λ, we can use Procedure 3 as a subprocedure
to solve this problem. We illustrate this idea by continuing Example 1.

Example 1 (continued) Procedure 3 calculates the intervals Λi =
[
λi, λ̄i

]
for i = 1, ..., 4

and the minimal weight hypertree for Hλ0 (see Figure 3(b)). Now define Φ to be the set of
all upper endpoints (λ̄i). In this particular example we have

Φ = {2, 4}

Assume we pick the minimal number, i.e. 2. We know that the hyperpaths to nodes 1 and

e1 e2

e5

v1 v2

v3v4

s

2

1

1 0

[2,4]
(0) (1) (1)

(1+λ) (7−λ)

[2,4] [2,4]

[2,4] [2,4]

λ

e3

1 4−λ

2

Figure 4: The minimal weight hypertree for H2 with Λ = [2, 4].
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Precondition: Assume that each call of Procedure 3 calculates a valid ordering VTs = (v1, ..., vn) of
Ts, weights Wv (λ), predecessor hyperarcs and the sets Λi which can be split into intervals

Λi = Λ
1
i ∪Λ2

i ∪ ...∪Λqi
i where Λj

i =
[
λj

i , λ
j
i

]
j = 1, ..., qi

Initialization: Set k = 1, λ0 = λ and Λ̄ = Λ.

while (λ0 	= λ) do call Procedure 3 with λ0, Λ̄ and k and set λold := λ01

Φ = Φ∪
{
λ

j
i

}
for i = k, ..., n2

select and remove λ0 = minΦ3

k := min
{
i | ∃λj

i = λ0

}
4

Λ := Λ \ [λold, λ0[5

end while6

Procedure 4: Finding a minimal hyperpath to all nodes for each λ ∈ Λ.

2 in Figure 3(b) are minimal for λ = 2, because 2 is contained in the intervals Λ1 and Λ2.
λ = 2 is also contained in Λ3, however, λ = 2 is an endpoint. This means that there is
another hyperarc which give the same weight of node v3 if λ = 2 (in this case hyperarc
e3). Now if we call Procedure 3 with λ0 = 2, k = 3 and Λ = [2, 4], we get the hypertree
and intervals shown in Figure 4. We see that the hyperpath πsv4 is the same as before so
hyperpath πsv4 is minimal for λ ∈ [0, 4] .We now could remove 2 from Φ, add all new upper
endpoints to Φ, pick the minimal number and repeat the step with λ0 = 4. H owever, since
λ0 = 4 = λ̄ it is not necessary to repeat the step. We have now found a shortest hyperpath
from node s to node vi for i = 1, ...4 for all λ ∈ [0, 4] (see Table 1).
Note that we have only found one (of possible many) shortest hyperpath for each λ ∈ [0, 4] ,
e.g. if λ = 4 the hyperpath πsv4 in Figure 4 is minimal but the hyperpath πsv4 with
pv4 (4) = e6 instead of pv4 (4) = e5 is also minimal.

The procedure, demonstrated in the example above, is stated in Procedure 4 which finds a
shortest hyperpath from node s to node v for all λ ∈ Λ. H ere, we add the upper endpoint of
Λ1
v, for each v ∈ V, to Φ on line 2. Note only the endpoint λ̄1

v of the first interval Λ
1
v in each

node is added to Φ. Next, we pick and remove the minimal endpoint on line 3, and finally,
we calculate the new interval used in Procedure 3 on line 5. Note that, when Procedure 3
is called on line 1, the node vk satisfies that there is more than one hyperarc which can be
used as a predecessor for node vk. For instance in Example 1 we have that both hyperpaths
πsv3 in Figure 3(b) and Figure 4 are minimal for λ = 2. H owever, if we use hyperarc e4 as
predecessor the interval Λ3 calculated by Procedure 3 becomes [2, 2] . As the next example
illustrates it is best to pick the predecessor hyperarc which gives the largest interval Λ1

v.

Example 2 Consider the hypergraph in Figure 5(a) where Λ = [−2, 2] and the value is
used as weighting function. When we call Procedure 4, we first run Procedure 3 with k = 1,
Λ = [−2, 2] and λ0 = −2. Because there is only one hyperpath to nodes 1 and 2, we have
the results stated in Table 2. For node 3, hyperarc e3 used as predecessor gives the lowest
weight, and we have to solve

Node λ ∈ Wv (λ) pv (λ)
1 [−2, 2] 2 + λ e1
2 [−2, 2] 4 e2

Table 2: The predecessor hyperarcs for λ ∈ [−2, 2] when node 1 and 2 are considered.
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(a) A parametric hypergraph.
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e1 e2

e3

v1 v2

v3v4

s
2+λ 2−λ

2−λ 1

1

(2+λ)
[−2,2]

(9−λ )
[−2,−1]∪[1,2]

(4)
[−2,2]

2

(0)
[−2,2]

e6

1

(10−λ )
[−2,−2]∪[1,2]

2
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(f) The hypertree for
H1.

Figure 5: A parametric hypergraph and its corresponding minimal hypertrees.

(2 + λ) (2− λ) + 4 · 1 + 1 ≤ 4 + 4
⇒ Λ0 = [−∞,−1] ∪ [1,∞]
⇒ Λ3 = [−2,−1] ∪ [1, 2]

At node 4, we have that the weightWv4 (−2) using e5 as predecessor hyperarc is equal to the
weight using e6 as predecessor hyperarc, so which hyperarc we pick as predecessor hyperarc
depends on which rule we use to pick the predecessor hyperarc in Procedure 3. Assume that
we pick e5 first. Then we have to solve

2 (2 + λ) + 6 ≤ 9− λ2 + 1
⇒ Λ0 = [−2, 0]
⇒ Λ4 = [−2,−1]

and we get the hypertree shown in Figure 5(b). On the other hand, if we first pick e6 we
get the opposite

Λ4 = [−2,−2] ∪ [−1, 2]
This hypertree is shown in Figure 5(c). Suppose that the hypertree in Figure 5(c) was
picked. Then an upper endpoint λ

1

4 = −2 where added to Φ on line 2 and picked again on
line 3 making Λ on line 5 unchanged. The step is now repeated with λ0 = −2, and if we do
not have a rule saying that e6 not must be picked as predecessor again, the procedure may
loop. Assume that hyperarc e5 is picked as predecessor, we then get the hypertree in Figure
5(b). Φ now becomes:

Φ = {−1, 2}
Next Procedure 4 sets λold = −2, λ0 = −1, k = 3 and Λ = [−1, 2] and call Procedure 3.
Assume that we pick e4 as predecessor hyperarc for v3 instead of e3. The hypertree for H−1

is shown in Figure 5(d). Now -12 is added to Φ and Procedure 3 is called with λ0 = − 1
2 ,

k = 4 and Λ =
[
− 1

2 , 2
]
. The hypertree is shown in Figure 5(e). Finally, Procedure 3 is called
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node λ ∈ Wv (λ) pv (λ)

3
[−2,−1]
[−1, 1]
[1, 2]

9− λ2

8
9− λ2

e3
e4
e3

4

[
−2,− 1

2

][
− 1

2 , 1
]

[1, 2]

10 + 2λ
9
10− λ2

e5
e6
e6

Table 3: The predecessor hyperarcs for λ ∈ [−2, 2] when node 3 and 4 are considered.

with λ0 = 1, k = 3 and Λ = [1, 2] which gives the hypertree in Figure 5(f). This hypertree
is actually identical to the hypertree in Figure 5(c) because the intervals in Figure 5(f) is a
part of the intervals in Figure 5(c). We now have a minimal hyperpath ∀λ ∈ [−2, 2] to all
nodes in Hλ (see Tables 2 and 3).

Let Eq (v) be the set of possible predecessor hyperarcs which give minimal weight Wv (λ0)
when hypergraph Hλ0 is considered. The above example suggests, that a possible rule for
finding a minimal hypertree in Procedure 3 is:

Given set Λ and hypergraph Hλ0 , use hyperarc e ∈ Eq (v) as predecessor for node v in
hyperpath πsv, if no other hyperarc in Eq (v) give a higher interval Λ1

v.

By using this rule we would find the hypertrees in Figure 5 in 4 iterations.

All procedures described so far finds one (of possible many) minimal hyperpath to a node
v, they do not find all minimal hyperpaths to a node v. This may be a problem when doing
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Figure 6: A hypergraph Hλ and its corresponding minimal hypertrees.
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sensitivity analysis, since it is very likely that the decision maker want to know if there are
alternative hyperpaths that gives the same minimal weight. Then a representative set of
minimal hyperpaths can be presented to the decision maker from which one can be chosen.
H owever, all minimal hyperpaths can be found, if we for each endpoint in Φ and hyperarc
e ∈ Eq (v) calculate the minimal hypertree with e as predecessor in node v. This can be
illustrated with the following example.

Example 3 Assume that if there exists more than one hyperarc in Eq (v) , then Procedure 3
calculate a minimal hypertree and sets Λv, satisfying condition (3.1) for each e ∈ Eq (v).
Now consider the parametric hypergraph in Figure 6(a) with Λ = [0, 2]. If we consider the
distance function and call Procedure 3 with Λ = [0, 2] and λ0 = 0, we get the hypertrees
in Figures 6(b) and 6(c). At nodes 1 and 2 there is only one predecessor hyperarc which
is minimal for λ0. At node 3 there are two possible predecessor hyperarcs which are both
minimal for λ0. H ence Procedure 3 calculate a hypertree for each predecessor which gives
the figures in 6(b) and 6(c). We now have found all minimal hyperpaths for H0 and the
intervals where they are minimal. If we now for each of the hypertrees call Procedure 3 with
k = 1, λ0 = 1 and Λ = [1, 2] , we get the hypertrees in Figures 6(d) and 6(e). H ere two
trees are shown in one figure because no matter the choice of predecessor in node v3, the
predecessor hyperarc for node 4 is the same. The figures show, for instance, that there are
two minimal hyperpaths πsv3 which both are minimal for λ ∈ [0, 2] .

3.2 The acyclic case

If the hypergraph is acyclic the above procedures can be modified. Let Hλ=(V, E) be an
acyclic parametric weighted hypergraph with λ ∈ Λ. Because Hλ is acyclic a valid ordering
V of Hλ exists

V = (v0 = s, v1, ..., vn)

This valid ordering can be used in Procedure 3. Furthermore, an acyclic SBT procedure can
be called which use the valid ordering V, and hence becomes much faster since no heap is
used to sort the nodes in the candidate set.

4 Future research

There is a number of problems which should be considered before this paper is finished.
Below we list a few (of possibly many) missing items.

• In the introduction, we need a discussion of earlier work on parametric shortest paths.
So far we have only made a link to the paper by Young et al. [6].

• We should discuss complexity issues in some more depth for the various procedures.

• Parts of the paper should be explained more carefully. In particular, the explanation
concerning, if some part of the hypertree is known in advance, should be developed
more carefully.

• A section on applications may be written. H ere the procedures could be used on
the random time-dependent shortest path problem, which can be transformed to a
shortest hyperpath problem. If e.g. time and cost on some hyperarcs were not known
for certain, a parameter λ could be introduced on these hyperarcs.

• If we assume that only linear weights on each hyperarc is allowed, the weights in each
node becomes linear. As a result the comparison of weights in each node becomes
simple. This may be implemented in C++ and computational results carried out.
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Abstract

In this note we show that a commonly used hyperpath definition for a directed B-
hypergraph is wrong. This is done by presenting a counter-example which fulfils the
hyperpath definition but which is not a hyperpath.

Keywords: Directed hypergraphs, B-hypergraphs, B-hyperpaths, Shortest hyperpaths,
Weighted hypergraphs.

1 Introduction

Definitions of hyperpaths for directed hypergraphs have been used in many articles in recent
years. Gallo, Longo, Pallottino, and Nguyen [2] introduced the widely used definition of a
hyperpath called a Backward-hyperpath or a B-hyperpath. It was based on the topological
properties of the B-hypertree found by a minimum weighting procedure. But the definition
seems to fail in some cases. We here present a counter-example where the B-hypergraph
satisfies the definition but can never be found by the minimum weighting procedure and
hence it is not a B-hyperpath. A new definition of a B-hyperpath is suggested. In this
paper, we only consider the definition of a B-hyperpath in Gallo et al. [2], and restrict
ourselves to B-hypergraphs. For more general hypergraphs and hyperpath definitions see
Gallo et al. [2]. Note that even though a wrong definition of a B-hyperpath has been used
in many papers this has not contributed to wrong conclusions. All authors have used the
minimum weighting procedure to calculate shortest B-hyperpaths, and the definition of a
B-hyperpath has primarily been used to indicate what the minimum weighting procedure
found.

2 A hyperpath counter-example

A directed B-hypergraph is a pair H = (V, E) where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of B-hyperarcs. A B-hyperarc e ∈ E is a pair e = (T (e), h(e))

∗Corresponding author. Email: relund@imf.au.dk
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Precondition: Given B-hypergraph H with nondecreasing cycles and nonnegative hyperarc weights, let
W (vi) denote the minimal weight in node vi, F (e) the chosen additive weighting function and let
p : V → E , with p (v) ∈ BS (v) , be a predecessor function.

Initialization: Set W (vi) =∞ ∀i ∈ V, kj = 0 ∀e ∈ E , Q = {s} and W (s) = 0

while (Q 	= ∅) do
Select and remove u ∈ Q;
for (ej ∈ FS(u)) do kj := kj + 1

if (kj = |T (ej)|) then v := h (ej)
if (W (v) > w(ej) + F (ej)) then

if (v /∈ Q) then
Q := Q∪{v}
if (W (v) < ∞) then

for (eh ∈ FS (v)) do kh := kh − 1
end if

end if
W (v) := w(ej) + F (ej), p (v) := ej

end if
end if

end for

end while

Procedure 1: Shortest B-tree procedure

with T (e) ⊂ V and h(e) ⊆ V\T (e), where T (e) and h(e) denote the tail nodes and the head
node, respectively.
We denote by FS(u) = {e ∈ E | u ∈ T (e)} and BS(u) = {e ∈ E | u ∈ h(e)} the forward star
and the backward star of node u, respectively. A path Pst in a B-hypergraph H is a sequence
of nodes and B-hyperarcs in H:

Pst = (v1 = s, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, ...q + 1, vi ∈ T (ei) and vi+1 ∈ h(ei). A node v is connected to node u if a
path Puv exists in H.
A cycle is a path Pst where t ∈ T (e1). A path is cycle-free if it does not contain any subpath
which is a cycle, i.e. vi ∈ T (ej)⇒ j ≥ i 1 ≤ i ≤ q+1. If H contains no cycles, it is acyclic.
H is called a weighted hypergraph if each B-hyperarc e ∈ E is assigned a real weight w (e).
For a hypergraph Gallo et al. [2] presented a definition of a B-hyperpath which has been
used in many papers, see e.g. Gallo and Pallottino [3], Nguyen and Pretolani [6], Pretolani
[8]. If in particular a B-hypergraph is considered the definition becomes:

Definition 1 (Gallo et al. [2]) Given a B-hypergraph H = (V, E), a B-hyperpath πst of
origin s and destination t, is a minimal B-hypergraph Hπ = (Vπ, Eπ) (with respect to
deletion of nodes and hyperarcs) satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ = ∪e∈Eπ
(T (e) ∪ h(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ by means of a cycle-free path Psu.

Procedure 1 was suggested by Gallo et al. [2] to find a minimal B-hyperpath from s to t. The
procedure solves the shortest hyperpath problem (SBT) of a weighted B-hypergraph which
consists in finding the minimum weight hyperpaths from an origin s to all other nodes in H.
Procedure 1 finds a subhypergraph T of H, defined by the predecessor function p. T is
called the minimum weight B-hypertree. It is well-known that the minimal B-hypertree
is the union of all minimal B-hyperpaths from s to all other nodes v in H for which a
B-hyperpath exists (W (vi) <∞).
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Figure 1: A hypergraph satisfying the definition of a hyperpath given in Gallo et al. (1993),
which is not a hyperpath.

The B-hypergraph H in Figure 1 fulfils Definition 1. There is a cycle-free path from node
s to all other nodes v, e.g. Psv4 = (s, e1, v1, e2, v3, e4, v4) is cycle-free. But H is not a
B-hyperpath. This can be seen if we set the weight of each hyperarc e in Figure 1 to
one and use the sum weighting function1. Procedure 1 will now examine node s and v1
and then stop. So H is not contained in the B-hypertree and hence not a B-hyperpath.
Definition 1 fails because |h (e)| = 1 ∀e ∈ E implies that only one hyperarc will enter a node
v in a B-hyperpath (minimality for B-hypergraphs). This implies that a B-hyperpath of
a B-hypergraph is acyclic because otherwise the weight is improved through a cycle (only
nondecreasing cycles). Condition 3 in Definition 1 fails to assure this for H in Figure 1 and is
therefore not strong enough. A slightly changed definition of a hyperpath in a B-hypergraph
is

Definition 2 Let H = (V, E) denote the B-hypergraph considered. A B-hyperpath πst of
origin s and destination t, is an acyclic minimal B-hypergraph Hπ = (Vπ, Eπ) (with respect
to deletion of nodes and hyperarcs) satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ = ∪e∈Eπ
(T (e) ∪ h(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

H ere the minimality assures that only one hyperarc enters each node v ∈ Vπ \ {s} , and
condition 3 that it is connected to s. Note that condition 3 in Definition 2 is less restrictive
than condition 3 in Definition 1, however, the fact that the B-hyperpath has to be acyclic
together with condition 3 in Definition 2 is more restrictive.
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