A remark on the definition of B-hyperpath

Lars Relund Nielsen *
Department of Operations Research University of Aarhus
Ny Munkegade, building 530
DK-8000 Aarhus C
Denmark

Daniele Pretolani ${ }^{\dagger}$
Dipartimento di Matematica e Fisica
Università di Camerino
Via Madonna delle Carceri
I-62032 Camerino (MC)
Italy

Abstract

In this note we show that a commonly used definition of a hyperpath in a directed hypergraph is not correct. This is done by presenting a counter-example which fulfils the definition but is not a hyperpath.

Keywords: Directed hypergraphs, hyperpaths, B-paths.

1 Introduction

In the last two decades, several problems arising from different application areas were modelled in terms of hyperpaths in directed hypergraphs. A general theory of directed hypergraphs was developed for the first time by Gallo et al. [2]. Their paper proposed a definition of hyperpath (called B-path) based on an intuitive concept of hyperconnection (B-connection). The definition aimed at characterizing the topological structure of a minimal sub-hypergraph B-connecting a pair of nodes. However, the characterization seems to fail in some cases. Here we present a counterexample that satisfies the definition but is not a B-path, i.e. it does not B-connect two nodes as supposed.
Note that the theoretical results in [2] are not affected, since they are based on the sound concept of B-connection, and do not rely on the topological characterization of B-paths. The same holds true for other papers (e.g. [3] and [4]) that adopted the definition in [2]. Several correct definitions of hyperpath have been given in the literature; however, a discussion of these definitions is not addressed here.

2 Hypergraphs, hyperconnection, hyperpaths

A directed hypergraph is a pair $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is the set of nodes, and \mathcal{E} is the set of (directed) hyperarcs. A hyperarc $e \in \mathcal{E}$ is a pair $e=(T(e), H(e))$ where $T(e) \subset \mathcal{V}$ and $H(e) \subseteq \mathcal{V} \backslash T(e) ; T(e)$ and $H(e)$ denote the tail nodes and the head nodes, respectively. A B-arc is a hyperarc e such that $|H(e)|=1$. A B-graph is a hypergraph of which the hyperarcs are B-arcs. A path $P_{s t}$ in a hypergraph \mathcal{H} is a sequence of nodes and hyperarcs in \mathcal{H} :

$$
P_{s t}=\left(v_{1}=s, e_{1}, v_{2}, e_{2}, \ldots, e_{q}, v_{q+1}=t\right)
$$

where $v_{1} \in T\left(e_{1}\right), v_{q+1} \in H\left(e_{q}\right)$ and $v_{i} \in H\left(e_{i-1}\right) \cap T\left(e_{i}\right)$ for $i=2, \ldots q$. A node v is connected to node u if a path $P_{u v}$ exists in \mathcal{H}. A cycle is a path $P_{s t}$ where $t \in T\left(e_{1}\right)$. A path is cycle-free

[^0]if it does not contain any subpath which is a cycle, i.e. $v_{i} \in T\left(e_{j}\right) \Rightarrow j \geq i, 1 \leq i \leq q+1$. If \mathcal{H} contains no cycles, it is acyclic.
The concept of B-connection in hypergraphs is captured by the following intuitive definition; compare Proposition 3.1 in [2].

Definition 1 B-connection to node s in a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

1. Node s is B-connected to itself;
2. If for some $e \in \mathcal{E}$ all the nodes in $T(e)$ are B-connected to s then each node $u \in H(e)$ is B-connected to s.
The concept of B-hyperpath, or simply B-path, generalizes the notion of simple path in a directed graph. A B-path from node s to node t in a hypergraph \mathcal{H} is a minimal sub-hypergraph of \mathcal{H} where t is B-connected to s according to Definition 1. Here, minimality is intended with respect to the deletion of nodes and hyperarcs.
A B-path can be defined as a sequence of hyperarcs used to prove that t is B-connected to s : see e.g. [1]. The following topological characterization of B-paths, not directly related to Definition 1, has been proposed in [2].

Definition 2 A B-path $\pi_{s t}$ from s to t in $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ is a minimal sub-hypergraph $\mathcal{H}_{\pi}=\left(\mathcal{V}_{\pi}, \mathcal{E}_{\pi}\right)$ satisfying the following conditions:

1. $\mathcal{E}_{\pi} \subseteq \mathcal{E}$
2. $s, t \in \mathcal{V}_{\pi}=\bigcup_{e \in \mathcal{E}_{\pi}}(T(e) \cup H(e))$
3. $u \in \mathcal{V}_{\pi} \backslash\{s\} \Rightarrow u$ is connected to s in \mathcal{H}_{π} by means of a cycle-free simple path.

Unfortunately, Definition 2 is too weak, also if B-graphs are considered; a counterexample is provided by B-graph $\mathcal{H}_{s t}$ in Figure 1. It can be shown that $\mathcal{H}_{s t}$ fulfils Definition 2; for example, it contains a cycle-free path from node s to node v_{4}, namely $\left(s, e_{1}, v_{1}, e_{2}, v_{3}, e_{4}, v_{4}\right)$. However, node t is not B-connected to s in $\mathcal{H}_{s t}$, according to Definition 1 ; the reader can easily check that only node v_{1} is B-connected to s.

Figure 1: A counterexample: B-graph $\mathcal{H}_{s t}$
Note that $\mathcal{H}_{s t}$ contains a cycle. As long as B-graphs are considered, Definition 2 can be made correct by further imposing that $\pi_{s t}$ must be acyclic; equivalently, Definition 2 is correct for acyclic B-graphs: see Property 2.1 in [4]. Remark that a B-path in a general hypergraph is not required to be acyclic, as shown in [2], Figure 5(a).

3 Conclusion

We have shown that a topological characterization of B-paths proposed in the literature is not correct, unless acyclicity is imposed. It remains an open question to find a concise and elegant characterization of B-paths, valid for B-graphs as well as general hypergraphs.

References

[1] G. Ausiello, P. G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algorithmic results, and a novel decremental approach. In $L N C S$ 2202, pages 312-328. Springer Verlag, 2001.
[2] G. Gallo, G. Longo, S. Pallottino, and Sang Nguyen. Directed hypergraphs and applications. Discrete applied Mathematics, 42:177-201, 1993.
[3] S. Nguyen, D. Pretolani, and L. Markenzon. On some path problems on oriented hypergraphs. Theoretical Informatics and Applications, 32:1-20, 1998.
[4] D. Pretolani. A directed hypergraph model for random time dependent shortest paths. EJOR, 123:315-324, sep 2000.

[^0]: *e-mail: relund@imf.au.dk
 ${ }^{\dagger}$ e-mail: pretola@campus.unicam.it

