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1 Introduction

In stochastic time-dependent (STD) networks (also known as random and time-varying)
travel times are modelled as random variables with time-dependent distributions. STD
networks were first addressed by Hall [3], who showed that the best route between two
nodes is not necessarily a path, but rather a time-adaptive strategy that assigns optimal
successor arcs to each node as a function of leaving times. This is referred to as time-
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adaptive route choice, and represents the standard model for routing in STD networks. A
survey on the subject and a literature review can be found in the paper by Gao and Chabini
[2], who also discuss a more general framework, where online information and stochastic
dependency are taken into account.

When the arcs in an STD network carry multiple attributes, we are faced with multi-

criterion routing problems, where the solution is no longer a single optimal strategy but
rather a set of efficient (Pareto optimal) strategies. Finding the efficient set is well-known
to be NP-hard also in deterministic networks. Nielsen [4] and Nielsen, Andersen, and Pre-
tolani [5] address the bicriterion routing problem under time-adaptive route choice; they
propose solution methods for the weighted sum scalarization of the problem (see e.g. [1])
and apply them in a two-phase method for finding (or approximating) the set of efficient
strategies. Opasanon and Miller-Hooks [6] consider an arbitrary number of criteria and a
generalization of time-adaptive route choice. More precisely, they propose a model where
routing decisions at a node are a function of time as well as of the traveller’s history, i.e.,
arrival times at previous nodes. We refer to this model as history-adaptive route choice.
For this model, Opasanon and Miller-Hooks [6] point out some properties, and propose
a label correcting method (Algorithm APS) for finding the efficient set. Moreover, they
devise two algorithms for solving a weighted sum scalarization (referred to as “disutility”).

In this paper we investigate the relationships between time-adaptive and history-adaptive
route choice in a multicriterion setting. First we describe the structure of the solutions
and propose a classification of the two models; then we point out some relevant theoret-
ical properties; finally we address computational issues, proposing possible improvements
to scalarization algorithms. Throughout the paper we adopt a standard terminology of
multiobjective programming while keeping notation and formal definitions to a minimum.
Further technical details can be found in the extended version [8]. Most of the results will
be illustrated by means of examples. For this purpose we adopt, as a graphical tool, the
representation of an STD network as a time-expanded hypergraph; the reader is referred
to [7, 4] for a theoretical treatment of the subject. We remark that the results provided
in the paper hold for an arbitrary number of criteria, even if examples are limited to the
bicriterion case.

The structure of the paper is as follows. In the next section we introduce STD net-
works with a running example, which allows us to describe the structure of the solutions.
Properties of the two models are discussed formally in Section 3. Computational issues are
addressed in Section 4. A summary of the results is given in Section 5.

2 STD networks, strategies, and labels

Let G = (N ,A) be a directed graph, referred to as the topological network. We consider
discrete STD networks, where arrival and departure times to/from nodes are integers in
the interval H = [0, I]. For each arc (i, j) ∈ A, t ∈ [0, I] the set T t

ij contains the possible
travel times when leaving node i at time t along arc (i, j). The set At

ij = {t + t′ : t′ ∈ T t
ij}

contains the corresponding possible arrival times at j. Each travel time t′ ∈ T t
ij occurs
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Figure 1: Topological network and time-expanded hypergraph

(i, j), t (o, a), 0 (a, b), 1 (a, b), 2 (b, d), 2 (b, d), 3 (b, c), 2 (b, c), 3 (c, d), 4

T t
ij {1, 2} {1, 2} {1} {2} {9} {2} {1} {4}

At
ij {1, 2} {2, 3} {3} {4} {12} {4} {4} {8}

Table 1: Travel times and arrival times

with probability pt
ij(t

′). Waiting at nodes is not permitted.
We consider a set of r ≥ 2 criteria, where the first criterion is identified with travel time.

For each arc (i, j) ∈ A, t ∈ [0, I] and 1 < k ≤ r we denote by ck
ij(t) the cost according

to criterion k of travelling along arc (i, j) leaving i at time t. Note that this definition
extends the one given in [7] for a single cost criterion. Opasanon and Miller-Hooks [6]
adopt a more detailed description of the STD network that can be shown to be equivalent
(see [8], Appendix A) to the definition adopted here.

Example 1 Consider the topological network G = (N ,A) shown in the top left corner
of Figure 1. We assume that a traveller leaves the origin node o at time zero towards
the destination node d. Since waiting is not allowed, we only consider departure times
corresponding to possible arrival times at intermediate nodes. For each arc (i, j) and
relevant time t, the set T t

ij of travel times and the set At
ij of arrival times are given in

Table 1.
We only have two non-deterministic travel times, namely arc (o, a) at departure time

0 and arc (a, b) at departure time 1; in both cases we assume that travel times have the
same probability 1/2, that is p0

oa(1) = p0
oa(2) = p1

ab(1) = p1
ab(2) = 1/2. Note that routing

decisions are needed (actually, possible) only at node b.
We represent the STD network by means of a time-expanded hypergraph, as shown in

Figure 1. For each node i ∈ N and relevant time t we introduce a hypergraph node it; for
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each arc (i, j) and departure time t we introduce a hyperarc eij(t) that connects node it to
the set {jθ : θ ∈ At

ij} of hypergraph nodes corresponding to possible arrival times at j.
For example, hyperarc eab(1) connects node a1 to the node set {b2, b3}, since A1

ab = {2, 3}.
We assume r = 2, and we refer to criterion 2 as cost; the cost is zero for each arc and

departure time, except for the two cases shown in Figure 1, namely: arc (c, d) at departure
time 4, with cost c2

cd(4) = 4, and arc (b, d) at departure time 2, with cost c2
bd(2) = 8(1+ ε),

where 0 < ε < 1. �

According to time-adaptive route choice, a time-adaptive strategy (TAS ) in a discrete
STD network is defined by choosing a single successor arc for each node i 6= d and time
t. Each strategy determines, for each node i, time t and k = 1 . . . r, the expected value of
criterion k for travelling from i to the destination, leaving i at time t. Given a strategy,
the corresponding expected values can be formally defined by means of a set of recursive
equations, see e.g. Pretolani [7]. In practice, the computation of these values consists of a
labelling process that we illustrate with our running example.

Example 1 (continued) In order to define a TAS, we must choose a successor for node
b at time 2 and at time 3; for the other nodes, only one successor is available. Since two
choices are possible at node b, namely going to the destination d or to the intermediate
node c, we can define four possible strategies. We denote these strategies by Sdd, Scd, Sdc

and Scc, where u and v in Suv denote the successor of b at time 2 and 3, respectively.
The four strategies are shown in Figure 2. Each one is represented by the corresponding
hyperpath that contains the hyperarcs representing the chosen successor arcs. Namely, if
(i, j) is the successor arc of node i at departure time t, then the hyperpath contains the
hyperarc eij(t).

Each strategy assigns to each hyperpath node it a label λi(t) = [λ1
i (t), λ

2
i (t)], where

λ1
i (t) is the expected travel time and λ2

i (t) is the expected cost for traveling from node i at
departure time t to the destination. For each destination node dt the label is [0, 0]. If (i, j)
is the successor arc of node i at departure time t, then the label of node it is obtained as
a weighted sum of the labels at nodes {jθ : θ ∈ At

ij}, using probabilities pt
ij as weights.

Figure 2 reports the labels assigned to hyperpath nodes by each strategy. For instance,
consider strategy Sdc; here label [4, 4] for c4 is obtained from [0, 0] at d8, since both travel
time and cost are 4 for arc (c, d) at time 4. The label [5, (6 + 4ε)] for a1 is obtained from
labels [2, 8(1 + ε)] and [5, 4] (nodes b2 and b3); the expected travel time is (1 + 2)/2 + (2 +
5)/2 = 5, while the expected cost is 8(1+ε)/2+4/2 = (6+4ε). Note that the probabilities
p1

ab(1) = p1
ab(2) = 1/2 are used here. �

Opposite to the time-adaptive route choice, under history-adaptive route choice we have
that in a history-adaptive strategy (HAS ) the successor of a node i at time t is not neces-
sarily unique; a traveller can choose different successors, and thus different substrategies,
depending on the travel time experienced in previous arcs. As a consequence, different
labels assigned to the same hypergraph node can be combined in the labelling process.
Again, we illustrate the resulting labelling process using our running example.
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Figure 2: Time-adaptive strategies and corresponding time/cost labels.

Example 1 (continued) Observe that a traveller can reach node b at time 3 along two
different “histories”, namely, leaving node a at time 1 or 2. Moreover node b has two
possible successors. Thus there are four possible history-adaptive choices for the successor
of node b at time 3. In fact, this is the only case where history-adaptive route choice can
occur; indeed, nodes o, a and c have a unique possible successor, while node b at time 2
has a unique “history”, that is, leaving a at time 1. Since there are two possible choices at
node b and time 2 we have eight HAS overall. Four of them, where the successor of node
b at time 3 is independent of the leaving time from a, correspond to the time-adaptive
strategies shown in Figure 2. The other four are shown in Figure 3, where we “split” node
b3 to point out the history-adaptive behavior. Extending the previous notation, u and v in
Sw,uv denote the successor of b at time 3 when leaving a at time 1 and 2, respectively, while
w is the successor of b at time 2. We assume that Sw,uv denotes the TAS Swv if v = u.
Note that in each strategy of Figure 3 two different labels are assigned to hypergraph node
b3. One of these is used to obtain the label for a1, while the other is used to obtain the
label for a2. �

Terminological note Pretolani [7] proved that TAS define hyperpaths in the time-
expanded hypergraph. However, this relation does not hold for HAS that are not TAS.
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Figure 3: History-adaptive strategies and corresponding time/cost labels.

Opasanon and Miller-Hooks [6] refer to HAS as “hyperpaths”, but this term should be
intended informally as a collection of paths, rather than a formal definition of the solution
structure.

3 Properties of adaptive routing models

As a first step we classify routing models according to the taxonomy proposed by Gao
and Chabini [2]. The classification is based on the amount of current information which
is available to the traveller. The information depends on two factors, namely network

stochastic dependency and information access. The former defines the link- and time-wise
stochastic dependency between travel time random variables. One extreme is that all link
travel time random variables are completely independent, and the other extreme is that
they are completely dependent. The latter defines which link time realizations are available
to the traveller at any given time and given node. It is characterized according to whether
perfect online information, partial online information or no online information is available
to the traveller. Models with no online information belong to a single class, referred to as
NOI. Models with perfect or partial online information are further subdivided into groups,
also depending on the stochastic dependency between random variables. If these variables
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Figure 4: Strategies and efficient labels (ε = 1/2).

are completely independent, models belong to Group 1. Otherwise, they belong to Group

2 if perfect online information is available and to Group 3 if only partial online information
is available.

Time-adaptive route choice corresponds to the NOI class, since the traveller is assumed
to have no information other than current node and time. History-adaptive routing falls
in Group 1, and precisely in the case with partial on-line information available. Indeed, a
history provides no information on future link travel times, that is, stochastic independence
of random variables is assumed. Moreover, the information provided by a history is limited
to those links previously used by the traveller, and does not extend to the whole network.
Gao and Chabini remark that the class NOI and Group 1 are different in principle, although
computationally equivalent in a single criterion setting. Their claim is supported by the
fact that these two models are no longer equivalent in a multicriterion setting.

We can point out several properties of TAS and HAS observing the results of our running
example. In Figure 4 we plot (assuming ε = 0.5) the labels λo(0) for the four time-adaptive
strategies (circles) and for the five efficient history-adaptive strategies (crosses).

Let us consider time-adaptive route choice first. As can be seen in Figure 4, for ε = 0.5
(actually, for 0 ≤ ε < 1) the four labels turn out to be nondominated. However, if we
consider the labels associated to node a1 in Figure 2, we note that the label [7, 4] assigned
by Scc dominates the label [7, 4(1 + ε)] assigned by Sdd. Therefore, a traveller following
strategy Sdd has a nonzero probability (actually, probability 1/2) of arriving at a at time
one and, thereafter, of following a dominated (i.e., non efficient) substrategy. Note also
that no other strategy yields the same label λo(0) as Sdd. Let us say that a TAS is strongly

efficient if all its substrategies are efficient. Thus Sdd is efficient but not strongly efficient.
We can state the following theorem.

Theorem 1 There may exist an efficient TAS which is not strongly efficient, and yields

a label that cannot be obtained from a strongly efficient TAS.

Note that similar results (for the bicriterion case) can be found in [4], where expected as well
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as maximum possible values are considered. Theorem 1 shows that a well-known property
of deterministic bicriterion shortest paths, where subpaths of efficient paths are efficient,
does not extend to time-adaptive route choice. On the contrary, the property holds for
history-adaptive route choice, i.e., an efficient HAS is strongly efficient, see Lemma 1 in
Opasanon and Miller-Hooks [6]. Since label correcting methods (such as Algorithm APS in
[6]) only generate strongly efficient strategies, we have the following relevant consequence.

Corollary 1 A label correcting algorithm may not find all the nondominated labels cor-

responding to efficient TAS, in particular, it will miss efficient TAS that are not strongly

efficient.

In our example, each TAS except Sdd is strongly efficient and is extreme, i.e., its label
defines an extreme point of the time-adaptive set

Y≥

T = conv(YT ) ⊕ IRr
+ = {λ + y : λ ∈ conv(YT ), y ∈ IRr

+},

where YT is the set of TAS labels and “conv” denotes the convex hull; in this case, r = 2
and YT = {[7, 5 + 2ε], [8, 4], [10, 2(1 + ε], [11, 1]}. Thus every extreme TAS is strongly
efficient in our example: as we shall see later, this is the case in general.

Let us now consider history-adaptive route choice which, as expected, provides a more
dense solution set. Five out of the eight HAS turn out to be efficient; three of them
correspond to extreme TAS, the other two, namely Sc,cd and Sc,dc, dominate the TAS Sdd.
Note that Sc,cd and Sc,dc are supported solutions, that is, they belong to the boundary of
the history-adaptive set

Y≥

H = conv(YH) ⊕ IRr
+,

where YH is the set of HAS labels; however, they are not extreme points in Y≥

H . Moreover,
extreme points in Y≥

H correspond to TAS, in other words we have Y≥

H = Y≥

T in our example.
Theorem 3 will show that this is no coincidence.

Let us define a weighted sum scalarization (WSS ) of the problem under history-adaptive
route choice. We are given a vector of weights w ∈ W+ = {w ∈ IRk : wk > 0, 1 ≤ k ≤ r},
where wk is the weight of criterion k. We must find a HAS that minimizes the weighted
sum wT λo(0) of the expected values of the criteria. We say that one such HAS is WSS-

optimal for the weights w. Since both the scalarization and the labels are defined by means
of linear equations, the following quite intuitive result follows.

Lemma 1 A WSS-optimal HAS defines WSS-optimal substrategies, i.e., minimum values

wTλi(t), for each node i and time t.

This result corresponds to Lemma 3 in [6], where an optimal HAS for a WSS is referred
to as a “LED hyperpath”. The following lemma establishes another key property of WSS.

Lemma 2 For each weight vector w ∈ W+ there exists a WSS-optimal TAS.
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Proof Let S be a WSS-optimal HAS, and assume that S assigns two or more different
successors to node i at time t, depending on different histories. As follows from Lemma 1,
the labels obtained by these successors must be both WSS-optimal, that is, minimize the
product wTλi(t). But then, we can choose one of the optimal successors, and use it for all
histories, still obtaining a WSS-optimal strategy at node i and time t. By iterating this
process we end up with a TAS that fulfills the requirements, and the claim follows. �

We can now prove the general properties mentioned above.

Theorem 2 Extreme TAS are strongly efficient.

Proof Assume that the TAS S yields the extreme point λ̄ and is WSS-optimal for weights
w ∈ W+. Suppose that S defines a dominated substrategy Si(t) for node i and time t.
Since wi > 0 for each 1 ≤ k ≤ r, we have wTλi(t) > wT λ′

i(t), where λi(t) and λ′
i(t) denote

labels assigned by S and by another TAS S ′, respectively. Thus the substrategy Si(t) is not
WSS-optimal for w. However, it follows from Lemma 1 and Lemma 2 that a WSS-optimal
TAS must define optimal substrategies, which implies a contradiction. �

Theorem 3 Each extreme point in Y≥

H is an extreme point in Y≥

T , i.e., Y≥

H = Y≥

T .

Proof Let λ̄ be an extreme point in Y≥

H . It is well-known that some w ∈ W+ exist such
that λ̄ is the unique solution of

min
λ∈Y

≥
H

wT λ.

Therefore, any optimal solution to the WSS with weights w yields the label λ̄. By Lemma 2,
at least one such optimal TAS exists, thus λ̄ ∈ Y≥

T and the claim follows. �

Theorem 3 implies that every HAS yields a label that belongs to the time-adaptive set
Y≥

T . This fact can be related to the taxonomy of Gao and Chabini [2] observing that, in
both models, no information on future link travel times is available. Theorem 3 suggests
that both online information and stochastic dependency (i.e., models in groups 2 and 3)
are necessary in order to find solutions outside Y≥

T . In our context, this means that a
history should provide information on travel time distributions at future times.

4 Computational issues

As pointed out in [4, 5] the multicriterion problem for time-adaptive route choice is compu-
tationally intractable, also for r = 2 and for instances of reasonable size. Similar conclusions
are drawn by Opasanon and Miller-Hooks [6] for history-adaptive route choice. In fact, the
latter case is likely to be even more difficult, for at least two reasons (see [8], Appendix B):

• the number of HAS can be exponentially larger than the number of TAS;
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• while the size of a TAS is linear in the size of the STD network, a single HAS can
require exponential space.

Therefore, for practical purposes, efficient methods for solving WSS become crucial. Ex-
isting methods can solve a WSS quite efficiently, actually in polynomial time in the input
size [5, 6]. However, these methods only return a single WSS-optimal TAS. If a decision
maker is primarily interested in extreme solutions a single TAS may be sufficient. However,
non-extreme supported solutions may provide a much better representation of the entire
solution set, and this can also be interesting to a decision maker. Thus we should be able to
find all the optimal labels for a WSS, including labels corresponding to WSS-optimal HAS
that are not TAS. In general, this is a difficult task, since the number of optimal labels for a
single WSS can be exponential in the input size, see Pretolani et al. [8]. To the best of our
knowledge, no methods have been proposed for this task, except of course finding all the
efficient HAS. Here we propose a solution method that exploits the theoretical properties
given in the previous section. We illustrate our approach on the running example.

Example 1 (continued) The two supported HAS Sc,cd and Sc,dc, as well as the extreme
TAS Scd and Scc, are optimal solutions to the WSS with weight w = [1, 1]. Only Scd and
Scc can be found by existing methods, even though Sc,cd and Sc,dc may be more attractive,
since they offer a better time/cost trade-off.

Note that the two successors of node b at time 3 are both optimal for the WSS with
weight w = [1, 1], since wT [9, 0] = wT [5, 4]. This is not the case for node b at time 2, where
(b, c) is the only optimal successor, since wT [6, 4] < wT [2, 8(1 + ε)]. If we forbid the non-
optimal successor (b, d) at time 2 (i.e., we remove hyperarc ebd(2) from the time-expanded
hypergraph) the remaining efficient solutions are exactly Sc,cd, Sc,dc, Scd and Scc. �

Given a weight vector w our method performs the following two steps.

1. find a WSS-optimal TAS, keeping track of all the optimal successor arcs for each
intermediate node and time;

2. apply a labelling algorithm where, for each intermediate node and time, only the
optimal successor arcs tracked in the previous step are used.

Both steps require minor changes in existing algorithms. It is rather easy to show (we omit
details here) that the above method finds all the nondominated labels in YH corresponding
to WSS-optimal HAS for w.

Note that for the bicriterion case the above approach suggests a “hybrid” between
labelling and two-phase methods. For r = 2 each face of Y≥

T is a segment, defined by a
unique weight w that can be found in polynomial time, see [5]. By applying the method
above to each w defining a face we can find all the supported solutions under history-
adaptive route choice. Clearly, this process is intractable in general, however, the overall
computational effort may be affordable as long as, for each w, the second step works on a
small fraction of the whole STD network.

10



5 Final remarks

In this paper we investigated relations and differences between two known models for
multicriterion routing in STD networks. Our results can be summarized as follows.

• we described the structure of the solutions for the two models;

• we classified the two models according to the taxonomy given by Gao and Chabini
[2];

• we showed that, in contrast to HAS, an efficient TAS is not necessarily strongly
efficient; however, extreme efficient TAS are strongly efficient;

• we showed that a WSS always admits an optimal TAS, which implies that the two
models define the same extreme nondominated points;

• we investigated the computational aspects related to the number and size of (sup-
ported) efficient solutions under the two models.

Finally, by exploiting the above theoretical results, we proposed a method finding supported
HAS that are not TAS, which may be an interesting subject for further research.
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