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Time-adaptive versus history-adaptive strategies for multiriterionrouting in stohasti time-dependent networksDaniele Pretolani∗Department of Sienes and Methods of Engineering, University of Modena and Reggio Emilia,Via Amendola 2, I-42100 Reggio Emilia, Italy, daniele.pretolani�unimore.it.Lars Relund NielsenDepartment of Genetis and Biotehnology, University of Aarhus, P.O. Box 50, DK-8830 Tjele,Denmark, lars�relund.dk.Kim Allan AndersenDepartment of Business Studies, Aarhus Shool of Business, University of Aarhus, FuglesangsAllé 4, DK-8210 Aarhus V, Denmark, kia�asb.dk.Matthias EhrgottDepartment of Engineering Siene, The University of Aukland, Private Bag 92019, Aukland1142, New Zealand, m.ehrgott�aukland.a.nz.August 26, 2008Abstrat: We ompare two di�erent models for multiriterion routing in stohasti time-dependent networks: the lassi �time-adaptive� route hoie and the more �exible �history-adaptive� route hoie. We point out some interesting properties of the sets of e�ientsolutions (�strategies�) found under the two models. We also suggest possible diretionsfor improving omputational tehniques.Keywords: Multiple objetive programming, shortest paths, stohasti time-dependentnetworks, time-adaptive strategies, history-adaptive strategies.1 IntrodutionIn stohasti time-dependent (STD) networks (also known as random and time-varying)travel times are modelled as random variables with time-dependent distributions. STDnetworks were �rst addressed by Hall [3℄, who showed that the best route between twonodes is not neessarily a path, but rather a time-adaptive strategy that assigns optimal
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suessor ars to eah node as a funtion of leaving times. This is referred to as time-adaptive route hoie, and represents the standard model for routing in STD networks. Asurvey on the subjet and a literature review an be found in the paper by Gao and Chabini[2℄, who also disuss a more general framework, where online information and stohastidependeny are taken into aount.When the ars in a STD network arry multiple attributes, we are faed with multi-riterion routing problems, where the solution is no longer a single optimal strategy butrather a set of e�ient (Pareto optimal) strategies. Finding the e�ient set is well-knownto be NP-hard also in deterministi networks. Nielsen [4℄ and Nielsen, Andersen, and Pre-tolani [5℄ address the biriterion routing problem under time-adaptive route hoie; theypropose solution methods for the weighted sum salarization of the problem (see e.g. [1℄)and apply them in a two-phase method for �nding (or approximating) the set of e�ientstrategies. Opasanon and Miller-Hooks [7℄ onsider an arbitrary number of riteria and ageneralization of time-adaptive route hoie. More preisely, they propose a model whererouting deisions at a node are a funtion of time as well as of the traveller's history, i.e.,arrival times at previous nodes. We refer to this model as history-adaptive route hoie.For this model, Opasanon and Miller-Hooks [7℄ point out some properties, and proposea label orreting method (Algorithm APS) for �nding the e�ient set. Moreover, theydevise two algorithms for solving a weighted sum salarization (referred to as �disutility�).In this paper we investigate the relationships between time-adaptive and history-adaptiveroute hoie in a multiriterion setting. First we desribe the struture of the solutionsand propose a lassi�ation of the two models; then we point out some relevant theoret-ial properties; �nally we address omputational issues, proposing possible improvementsto salarization algorithms. Throughout the paper we adopt a standard terminology ofmultiobjetive programming while keeping notation and formal de�nitions to a minimum.Most of the results will be ilustrated by means of examples. For this purpose we adopt, asa graphial tool, the representation of a STD network as a time-expanded hypergraph; thereader is referred to [4, 8℄ for a theoretial treatment of the subjet. We remark that theresults provided in the paper hold for an arbitrary number of riteria, even if examples arelimited to the biriterion ase.Some of the ontent of this paper already appeared, in a di�erent form, in a previousnote [6℄. However, that note was based on the assumption that Opasanon and Miller-Hooks[7℄ onsidered routing under time-adaptive, rather than history-adaptive route hoie. Con-sequently, the wrong onlusion is drawn that most of the results in Opasanon and Miller-Hooks [7℄ are not orret. Later we realized that Opasanon and Miller-Hooks [7℄ atuallyonsider history-adaptive route hoie. Apart from this misinterpretation, some observa-tions in [6℄ are orret, and are summarized in Theorem 1 and Corollary 1 in the presentpaper. Moreover, [6℄ ontains some algorithmi improvements that are not reported here.The struture of the paper is as follows. In the next setion we introdue STD networkswith a running example, whih allows us to desribe the struture of the solutions. Proper-ties of the two models are disussed formally in Setion 3. Computational issues, inludingsalarization algorithms, are addressed in Setion 4. A summary of the results, and somesuggestions for further researh, are given in Setion 5. Appendix A shows that the STD2



representation adopted by Opasanon and Miller-Hooks [7℄ an be simpli�ed, and AppendixB onsiders some omplexity issues related to the number and size of time-adaptive andhistory-adaptive strategies.2 STD networks, strategies, and labelsLet G = (N ,A) be a direted graph, referred to as the topologial network. We onsiderdisrete STD networks, where arrival and departure times to/from nodes are integers inthe interval H = [0, I]. For eah ar (i, j) ∈ A, t ∈ [0, I] the set T t
ij ontains the possibletravel times when leaving node i at time t along ar (i, j). The set At

ij = {t + t′ : t′ ∈ T t
ij}ontains the orresponding possible arrival times at j. Eah travel time t′ ∈ T t

ij ourswith probability pt
ij(t

′). Waiting at nodes is not permitted.We onsider a set of r ≥ 2 riteria, where the �rst riterion is identi�ed with travel time.For eah ar (i, j) ∈ A, t ∈ [0, I] and 1 < k ≤ r we denote by ck
ij(t) the ost aordingto riterion k of travelling along ar (i, j) leaving i at time t. Note that this de�nitionextends the one given in [8℄ for a single ost riterion. Opasanon and Miller-Hooks [7℄adopt a more detailed desription of the STD network that an be shown to be equivalentto the de�nition adopted here, see Appendix A for details.Example 1 Consider the topologial network G = (N ,A) shown in the top left ornerof Figure 1. We assume that a traveller leaves the origin node o at time zero towardsthe destination node d. Sine waiting is not allowed, we only onsider departure timesorresponding to possible arrival times at intermediate nodes. For eah ar (i, j) andrelevant time t, the set T t

ij of travel times and the set At
ij of arrival times are given inTable 1.We only have two non-deterministi travel times, namely ar (o, a) at departure time

0 and ar (a, b) at departure time 1; in both ases we assume that travel times have thesame probability 1/2, that is p0
oa(1) = p0

oa(2) = p1
ab(1) = p1

ab(2) = 1/2. Note that routingdeisions are needed (atually, possible) only at node b.We represent the STD network by means of a time-expanded hypergraph, as shown inFigure 1. For eah node i ∈ N and relevant time t we introdue a hypergraph node it; foreah ar (i, j) and departure time t we introdue a hyperar eij(t) that onnets node it tothe set {jθ : θ ∈ At
ij} of hypergraph nodes orresponding to possible arrival times at j.For example, hyperar eab(1) onnets node a1 to the node set {b2, b3}, sine A1

ab = {2, 3}.We assume r = 2, and we refer to riterion 2 as ost; the ost is zero for eah ar anddeparture time, exept for the two ases shown in Figure 1, namely: ar (c, d) at departuretime 4, with ost c2
cd(4) = 4, and ar (b, d) at departure time 2, with ost c2

bd(2) = 8(1+ ε),where 0 < ε < 1. �Aording to time-adaptive route hoie, a time-adaptive strategy (TAS ) in a disreteSTD network is de�ned by hoosing a single suessor ar for eah node i 6= d and time
t. Eah strategy determines, for eah node i, time t and k = 1 . . . r, the expeted value of3
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Figure 1: Topologial network and time-expanded hypergraph
(i, j), t (o, a), 0 (a, b), 1 (a, b), 2 (b, d), 2 (b, d), 3 (b, c), 2 (b, c), 3 (c, d), 4

T t
ij {1, 2} {1, 2} {1} {2} {9} {2} {1} {4}

At
ij {1, 2} {2, 3} {3} {4} {12} {4} {4} {8}Table 1: Travel times and arrival timesriterion k for travelling from i to the destination, leaving i at time t. Given a strategy,the orresponding expeted values an be formally de�ned by means of a set of reursiveequations, see e.g. Pretolani [8℄. In pratie, the omputation of these values onsists of alabelling proess that we illustrate with our running example.Example 1 (ontinued) In order to de�ne a TAS, we must hoose a suessor for node

b at time 2 and at time 3; for the other nodes, only one suessor is available. Sine twohoies are possible at node b, namely going to the destination d or to the intermediatenode c, we an de�ne four possible strategies. We denote these strategies by Sdd, Scd, Sdcand Scc, where u and v in Suv denote the suessor of b at time 2 and 3, respetively.The four strategies are shown in Figure 2. Eah one is represented by the orrespondinghyperpath that ontains the hyperars representing the hosen suessor ars. Namely, if
(i, j) is the suessor ar of node i at departure time t, then the hyperpath ontains thehyperar eij(t).Eah strategy assigns to eah hyperpath node it a label λi(t) = [λ1

i (t), λ
2
i (t)], where

λ1
i (t) is the expeted travel time and λ2

i (t) is the expeted ost for traveling from node i atdeparture time t to the destination. For eah destination node dt the label is [0, 0]. If (i, j)is the suessor ar of node i at departure time t, then the label of node it is obtained asa weighted sum of the labels at nodes {jθ : θ ∈ At
ij}, using probabilities pt

ij as weights.4
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3 Properties of adaptive routing modelsAs a �rst step we lassify routing models aording to the taxonomy proposed by Gaoand Chabini [2℄. The lassi�ation is based on the amount of urrent information whihis available to the traveller. The information depends on two fators, namely networkstohasti dependeny and information aess. The former de�nes the link- and time-wisestohasti dependeny between travel time random variables. One extreme is that all linktravel time random variables are ompletely independent, and the other extreme is thatthey are ompletely dependent. The latter de�nes whih link time realizations are availableto the traveller at any given time and given node. It is haraterized aording to whetherperfet online information, partial online information or no online information is availableto the traveller. Models with no online information belong to a single lass, referred to asNOI. Models with perfet or partial online information are further subdivided into groups,also depending on the stohasti dependeny between random variables. If these variablesare ompletely independent, models belong to Group 1. Otherwise, they belong to Group2 if perfet online information is available and to Group 3 if only partial online informationis available.Time-adaptive route hoie orresponds to the NOI lass, sine the traveller is assumedto have no information other than urrent node and time. History-adaptive routing fallsin Group 1, and preisely in the ase with partial on-line information available. Indeed, ahistory provides no information on future link travel times, that is, stohasti independeneof random variables is assumed. Moreover, the information provided by a history is limitedto those links previously used by the traveller, and does not extend to the whole network.Gao and Chabini remark that the lass NOI and Group 1 are di�erent in priniple, althoughomputationally equivalent in a single riterion setting. Their laim is supported by thefat that these two models are no longer equivalent in a multiriterion setting.We an point out several properties of TAS and HAS observing the results of our runningexample. In Figure 4 we plot (assuming ε = 0.5) the labels λo(0) for the four time-adaptivestrategies (irles) and for the �ve e�ient history-adaptive strategies (rosses).Let us onsider time-adaptive route hoie �rst. As an be seen in Figure 4, for ε = 0.5(atually, for 0 ≤ ε < 1) the four labels turn out to be nondominated. However, if weonsider the labels assoiated to node a1 in Figure 2, we note that the label [7, 4] assignedby Scc dominates the label [7, 4(1 + ε)] assigned by Sdd. Therefore, a traveller followingstrategy Sdd has a nonzero probability (atually, probability 1/2) of arriving at a at timeone and, thereafter, of following a dominated (i.e., non e�ient) substrategy. Note alsothat no other strategy yields the same label λo(0) as Sdd. Let us say that a TAS is stronglye�ient if all its substrategies are e�ient. Thus Sdd is e�ient but not strongly e�ient.We an state the following theorem.Theorem 1 There may exist an e�ient TAS whih is not strongly e�ient, and yields alabel that annot be obtained from a strongly e�ient TAS.Note that similar results (for the biriterion ase) an be found in [4℄, where expeted as wellas maximum possible values are onsidered. Theorem 1 shows that a well-known property7
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Figure 4: Strategies and e�ient labels (ε = 1/2).of deterministi biriterion shortest paths, where subpaths of e�ient paths are e�ient,does not extend to time-adaptive route hoie. On the ontrary, the property holds forhistory-adaptive route hoie, i.e., an e�ient HAS is strongly e�ient, see Lemma 1 inOpasanon and Miller-Hooks [7℄. Sine label orreting methods (suh as Algorithm APS in[7℄) only generate strongly e�ient strategies, we have the following relevant onsequene.Corollary 1 A label orreting algorithm may not �nd all the nondominated labels or-responding to e�ient TAS, in partiular, it will miss e�ient TAS that are not stronglye�ient.In our example, eah TAS exept Sdd is strongly e�ient and is extreme, i.e., its labelde�nes an extreme point of the time-adaptive set
Y≥

T = onv(YT ) ⊕ IRr
+ = {λ + y : λ ∈ onv(YT ), y ∈ IRr

+},where YT is the set of TAS labels and �onv� denotes the onvex hull; in this ase, r = 2and YT = {[7, 5 + 2ε], [8, 4], [10, 2(1 + ε], [11, 1]}. Thus every extreme TAS is stronglye�ient in our example: as we shall see later, this is the ase in general.Let us now onsider history-adaptive route hoie whih, as expeted, provides a moredense solution set. Five out of the eight HAS turn out to be e�ient; three of themorrespond to extreme TAS, the other two, namely Sc,cd and Sc,dc, dominate the TAS Sdd.Note that Sc,cd and Sc,dc are supported solutions, that is, they belong to the boundary ofthe history-adaptive set
Y≥

H = onv(YH) ⊕ IRr
+,where YH is the set of HAS labels; however, they are not extreme points in Y≥

H . Moreover,extreme points in Y≥

H orrespond to TAS, in other words we have Y≥

H = Y≥

T in our example.Theorem 3 shows that this is no oinidene.Let us de�ne a weighted sum salarization (WSS ) of the problem under history-adaptiveroute hoie. We are given a vetor of weights w ∈ W+ = {w ∈ IRk : wk > 0, 1 ≤ k ≤ r},8



where wk is the weight of riterion k. We must �nd a HAS that minimizes the weightedsum wT λo(0) of the expeted values of the riteria. We say that one suh HAS is WSS-optimal for the weights w. Sine both the salarization and the labels are de�ned by meansof linear equations, the following quite intuitive result follows.Lemma 1 A WSS-optimal HAS de�nes WSS-optimal substrategies, i.e., minimum values
wTλi(t), for eah node i and time t.This result orresponds to Lemma 3 in [7℄, where an optimal HAS for a WSS is referred toas a �LED hyperpath�. The following lemma establishes another key property of WSS.Lemma 2 For eah weight vetor w ∈ W+ a time-adaptive strategy exists that is WSS-optimal and de�nes WSS-optimal substrategies.Proof Let S be a WSS-optimal HAS, and assume that S assigns two or more di�erentsuessors to node i at time t, depending on di�erent histories. As follows from Lemma 1,the labels obtained by these suessors must be both WSS-optimal, that is, minimize theprodut wTλi(t). But then, we an hoose one of the optimal suessors, and use it for allhistories, still obtaining a WSS-optimal strategy at node i and time t. By iterating thisproess we end up with a TAS that ful�lls the requirements, and the laim follows.We an now prove the general properties mentioned above.Theorem 2 Extreme TAS are strongly e�ient.Proof Assume that the TAS S yields the extreme point λ̄ and is WSS-optimal for weights
w ∈ W+. Suppose that S de�nes a dominated substrategy Si(t) for node i and time t.Sine wi > 0 for eah 1 ≤ k ≤ r, we have wTλi(t) > wT λ′

i(t), where λi(t) and λ′
i(t) denotelabels assigned by S and by another TAS S ′, respetively. Thus the substrategy Si(t) is notWSS-optimal for w. However, it follows from Lemma 1 and Lemma 2 that a WSS-optimalTAS must de�ne optimal substrategies, whih implies a ontradition.Theorem 3 Eah extreme point in Y≥

H is an extreme point in Y≥

T , i.e., Y≥

H = Y≥

T .Proof Let λ̄ be an extreme point in Y≥

H . It is well-known that some w ∈ W+ exist suhthat λ̄ is the unique solution of
min
λ∈Y≥

H

wT λ.Therefore, any optimal solution to the WSS with weights w yields the label λ̄. By Lemma 2,at least one suh optimal TAS exists, thus λ̄ ∈ Y≥

T and the laim follows.In Appendix B it is shown that the number of HAS may be exponential in the numberof TAS. Despite this fat, Theorem 3 shows that the extreme points in Y≥

H and Y≥

T arethe same. This means that if a deision maker is primarily interested in one of the riteria,it is su�ient to onsider TAS. On the other hand, non-extreme HAS give a muh better9



representation of the entire solution spae inside the set Y≥

T . This might also be interestingto a deision-maker.Theorem 3 states that history-adaptive route hoie does not allow to �jump out� ofthe time-adaptive set Y≥

T . This may be related to the taxonomy of Gao and Chabini [2℄,observing that both models assume stohasti independene, even if they assume di�erentonline information. An extensive interpretation of Theorem 3 would suggest that stohastidependeny (groups 2 and 3 in [2℄) should be taken into aount in order to �nd solutionsoutside Y≥

T . In our ontext, stohasti dependeny means that a history may provideinformation on travel time distributions at future times.4 Computational issuesWe address some omputational and algorithmi issues in this setion; laims on the num-ber and size of adaptive strategies are proved in Appendix B. As pointed out in [4, 5℄ themultiriterion problems for time-adaptive route hoie are omputationally intratable, alsofor r = 2 and for instanes of reasonable size. Indeed, the solution spae is extremely dense,and thus very hard to explore with urrent state-of-the-art tehniques. Similar onlusionsare drawn by Opasanon and Miller-Hooks [7℄ for history-adaptive route hoie. In fat, thelatter ase is likely to be even more di�ult, for at least two reasons (see Appendix B):
• the number of HAS may be muh larger (in some ases, exponentially larger) thanthe number of TAS;
• while the size of a TAS is linear in the size of the STD network, a single HAS anrequire exponential spae.For the above reasons, solution methods for weighted sum salarizations beome ruial.Existing methods an solve a WSS e�iently, atually in polynomial time in the inputsize [5, 7℄; however, these methods only return one single WSS-optimal TAS. Aordingto Theorem 3, a single TAS su�es as long as extreme solutions are searhed. However,non-extreme supported solutions may be relevant as well, as shown by our example.Example 1 (ontinued) The two supported HAS Sc,cd and Sc,dc, as well as the extremeTAS Scd and Scc, are optimal solutions to a WSS with weight w = [1, 1]. Only the extremeTAS an be found by existing methods, even though Sc,cd and Sc,dc may be more attrative,sine they o�er a better time/ost trade-o�. Note that the two suessors of node b at time

3 are both optimal, sine wT [9, 0] = wT [5, 4]. This is not the ase for node b at time 2,where (b, c) is the only optimal suessor. If we forbid the non-optimal suessor (b, d) attime 2 (i.e., we remove hyperar ebd(2) from the time-expanded hypergraph) the remaininge�ient solutions are exatly Sc,cd, Sc,dc, Scd and Scc. �In pratie, we may be interested in �nding all the non-dominated labels orrespondingto optimal solutions to a WSS, inluding labels orresponding to WSS-optimal HAS thatare not TAS. In general, this is a di�ult task, sine the number of optimal labels for a10



single WSS an be exponential in the input size, see Appendix B. Up to our knowledge, nomethods have been proposed for this task, exept of ourse �nding all the e�ient HAS.The above observations on our example suggest a possible approah. Given a weight vetor
w we proeed as follows.1. �nd a WSS-optimal TAS, keeping trak of all the optimal suessor ars for eahintermediate node and time;2. apply a labelling algorithm where, for eah intermediate node and time, only theoptimal suessor ars traked in the previous step are used.It follows from Lemma 2 (we omit details here) that the above method �nds all the non-dominated labels in YH orresponding to WSS-optimal HAS for w. Both steps requireminor hanges in existing algorithms.Note that the above approah de�nes a sort of �hybrid� between labelling and two-phase methods, whih seems to be quite suitable for the biriterion ase. For r = 2 eahfae of Y≥

T is a segment, de�ned by a unique weight w that an be found in polynomialtime, see [5℄. By applying the method above to eah w de�ning a fae we an �nd all thesupported solutions under history-adaptive route hoie. Clearly, this proess is intratablein general, however, the overall omputational e�ort may be reasonably a�ordable as longas, for eah w, the seond step works on a small fration of the whole STD network.5 Final remarksIn this paper we investigated relations and di�erenes between two known models formultiriterion routing in STD networks. Our results an be summarized as follows.
• we desribed the struture of the solutions for the two models;
• we lassi�ed the two models aording to the taxonomy given by Gao and Chabini[2℄;
• we showed that, opposed to HAS, an e�ient TAS is not neessarily strongly e�ient;however, extreme e�ient TAS are strongly e�ient;
• we showed that a WSS always admits an optimal TAS, whih implies that the twomodels de�ne the same extreme nondominated points;
• we showed that the number and size of the solutions grow exponentially when movingfrom time-adaptive to history-adaptive route hoie; this remains true even if onlysupported solutions are onsidered;
• we proposed a hybrid two-phase/labeling method �nding supported HAS that arenot TAS. 11



Due to the inherent intratability of multiriterion routing problems for both models,further researh should onentrate on heuristi methods, e.g., salarization tehniques or
ε-approximations. To this aim, the theoretial results provided in this paper may providea useful guidane. In partiular, the hybrid approah proposed here may be an interestingsubjet for further researh.Referenes[1℄ M. Ehrgott. Multiriteria optimization. Springer-Verlag, Berlin, 2nd edition, 2005.[2℄ S. Gao and I. Chabini. Optimal routing poliy problems in stohastitime-dependent networks. Transportation Researh Part B, 40:93�122, 2006.doi:10.1016/j.trb.2005.02.001.[3℄ R.W. Hall. The fastest path through a network with random time-dependent traveltimes. Transportation Siene, 20(3):182�188, 1986.[4℄ L.R. Nielsen. Route Choie in Stohasti Time-Dependent Networks. PhD the-sis, Department of Operations Researh, University of Aarhus, 2004. URLhttp://www.imf.au.dk/publs?id=499.[5℄ L.R. Nielsen, K.A. Andersen, and D. Pretolani. Biriterion shortest hyperpaths inrandom time-dependent networks. IMA Journal of Management Mathematis, 14(3):271�303, 2003. doi:10.1093/imaman/14.3.271.[6℄ L.R. Nielsen, D. Pretolani, and K.A. Andersen. A note on "multiriteria adaptive pathsin stohasti, time-varying networks". Tehnial Report WP-L-2006-11, Departmentof Aounting, Finane and Logistis, Aarhus Shool of Business, 2006.[7℄ S. Opasanon and E. Miller-Hooks. Multiriteria adaptive paths in stohasti, time-varying networks. European Journal of Operational Researh, 173:72�91, 2006.doi:10.1016/j.ejor.2004.12.003.[8℄ D. Pretolani. A direted hypergraph model for random time-dependent short-est paths. European Journal of Operational Researh, 123(2):315�324, 2000.doi:10.1016/S0377-2217(99)00259-3.Appendix A: representation of STD networksThe STD network model adopted by Opasanon and Miller-Hooks [7℄ spei�es a distribu-tion of possible values for eah riterion, ar (i, j) and departure time t. In partiular,
Ck = {ckzk

ij (t) : zk = 1, . . . , D} denotes the set of possible values for riterion k whentravelling along ar (i, j) at departure time t. Note that C1 = {c1z1

ij (t) : z1 = 1, . . . , D}12
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is the set of possible travel times. Eah value ckzk

ij (t) ours with probability ρkzk

ij (t), thus
∑

zk=1,...,D ρkzk

ij (t) = 1. This model is unneessarily detailed, sine for eah riterion k > 1,it su�es to know the expetation
ck
ij(t) =

D
∑

zk=1

ckzk

ij (t) · ρkzk

ij (t).In order to prove that the simpli�ed model is orret, it su�es to show that the formulaused to ompute new labels for riteria other than travel time (see Step 3 of AlgorithmAPS, Setion 4 in [7℄) an be simpli�ed as follows:
ηk

i (t) =
∑

(z1,x)∈Q

∑D
zk=1

[

ckzk

ij (t) + λk
jx

(

t + c1z1

ij (t)
) ]

· ρ1z1

ij (t) · ρkzk

ij (t)

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

∑D
zk=1 ckzk

ij (t) · ρkzk

ij (t) +
∑D

zk=1 λk
jx

(

t + c1z1

ij (t)
)

· ρkzk

ij (t)
]

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

ck
ij(t) + λk

jx

(

t + c1z1

ij (t)
)]

= ck
ij(t) +

∑

(z1,x)∈Q ρ1z1

ij (t)λk
jx

(

t + c1z1

ij (t)
)Note that this simpli�ation is purely algebrai, and does not depend on the hoie of thelabels to ombine, i.e. on the value of x. Sine the new label is obtained as a funtionof the expetation ck

ij(t) (and of the travel time distribution) the model assigning a singleexpeted value an be adopted without loss of generality.Clearly, in both models the distribution is neessary for travel times; indeed, for k = 1the two models are equivalent: given t′ = t + c1z1

ij we have t′ ∈ At
ij and pt

ij(t
′) = ρ1z1

ij .Appendix B: number and size of strategiesWe de�ne a (somehow pathologial) STD network that may help to �gure out the inherentdi�ulty of history-adaptive route hoie.Given K ≥ 1 onsider the topologial network G = (N ,A) satisfying:
N = {ui : 0 ≤ i ≤ K + 1} ∪ {vi : 0 ≤ i ≤ K};
A = {(ui, vi), (vi, ui+1) : 0 ≤ i ≤ K} ∪ {(uK, uK+1)}.We identify the origin o = u0 and the destination d = uK+1. Note that G is an o-d pathplus the single ar (uK , d). We de�ne the STD network as follows.
• Eah ar (ui, vi) with i < K is stohasti but time independent: possible travel timesare 1 and 2, with equal probability 1/2.
• Eah ar (vi, ui+1) with i < K is time-dependent but deterministi: when leaving viat time t the travel time is 2 if t modulo 3 = 1 and 1 otherwise.
• Ars (uK , vK), (uK , d) and (vK , d) have stati travel time 1.13
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3i 3i + 1 3i + 2 3i + 3 T + 1T − 1 TFigure 5: Fragments of the time-expanded hypergraph
• Eah ar has a stati and deterministi zero ost, exept ar (uK , d) that has ostone.Figure 5 may help to understand the struture of the time-expanded hypergraph. Theleft part shows the fragment orresponding to ars (ui, vi) and (vi, ui+1), with leaving timefrom node ui at time 3i; the right part involves ars (uK , vK), (uK , uK+1) and (vK , uK+1).Note that the time subsript index of eah node in the hypergraph is not shown. The STDnetwork satis�es:1. If leaving node o at time 0, then the only possible arrival/departure time at eahnode ui with i ≤ K is 3i.2. Sine the leaving time from node uK is 3K = T − 1 the possible arrival times at dare T = 3K + 1 and T + 1 = 3K + 2.3. Routing deisions are possible only at node uK and time T −1. Hene there are onlytwo time-adaptive strategies, orresponding to suessor ars (uK , d) and (uK , vK),denoted by Sd and Sv, respetively.4. Setting the time horizon H = [0, T + 1], a omplete desription of the STD networkor its input size is O(K2).Theorem 4 The number of history-adaptive strategies an be exponential in the numberof time-adaptive strategies.Proof There are 2K possible histories leading to node uK . For eah of these histories eithernode d or vK may be the suessor node of uK leading to 22K history-adaptive strategiesompared to only two time-adaptive strategies.Theorem 5 The number of non-dominated labels orresponding to supported HAS thatare optimal for a single WSS an be exponential in the input size and also in the numberof supported TAS. 14



Proof Time-adaptive strategies Sd and Sv yield labels [T, 1] and [T + 1, 0], and are sup-ported extreme solutions. Under history-adaptive route hoie we have a set of 2K + 1nondominated labels
YH = {λ(j) = [T + δj, 1 − δj] : 0 ≤ j ≤ 2K}where δ = 2−K , and eah λ(j) is obtained by hoosing ar (uK, vK) for j out of the 2Kpossible histories at node uK . Note that λ(0) and λ(2K) orrespond to Sd and Sv, respe-tively. Labels in YH identify points in the segment joining [T, 1] and [T + 1, 0], thus theyorrespond to supported solutions, in partiular, optimal solutions to a WSS with weights

w = [1, 1].Note all HAS are supported HAS.Corollary 2 The number of (supported) e�ient HAS an be exponential in the numberof (supported) e�ient TAS.Moreover, sine the number of HAS is 22K orresponding to 2K + 1 di�erent labels wehave.Corollary 3 The number of supported HAS orresponding to the same non-dominatedlabel an be exponential in the input size.Let us now onsider e�ient labels at intermediate nodes, as they are generated bythe labelling algorithm APS proposed by Opasanon and Miller-Hooks [7℄. For the sake ofsimpliity, we assoiate these labels to nodes u0, . . . , uK in G, sine for eah ui there is aunique arrival/departure time 3i. For node uK we have two e�ient labels [1, 1] and [2, 0].Now suppose that we have two labels [a, b] and [a′, b′] at node ui+1. It is easy to verify thatat node ui we an obtain three e�ient labels [3+a, b], [3+a′, b′] and [3+(a+a′)/2, (b+b′)/2];note that the last label is the mid-point of the segment joining the �rst two ones. In thisway we obtain three e�ient labels at node uK−1, �ve e�ient labels at node uK−2, . . . ,
2K−i + 1 e�ient labels at node ui. Clearly, this gives |YH| = 2K + 1 e�ient labels atnode u0.Theorem 6 The size of a single supported history-adaptive strategy, by means of the datastruture devised by Opasanon and Miller-Hooks [7℄, an be exponential in the input size,i.e. exponential in the size of a TAS, whih is linear in the input size.Proof Assume that K is even. We know we have at least 2K/2 e�ient labels at node
uK/2; we an use these labels to obtain 2K/2−1 labels at node uK/2−1, 2K/2−2 labels at node
uK/2−2,. . . , 20 = 1 label at node u0. In this way we de�ne a single history-adaptive strategythat requires at least 2K di�erent labels to be represented, i.e., O(2K) spae. By ontrast,a TAS requires at most linear spae in the input size.
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