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.nz.August 26, 2008Abstra
t: We 
ompare two di�erent models for multi
riterion routing in sto
hasti
 time-dependent networks: the 
lassi
 �time-adaptive� route 
hoi
e and the more �exible �history-adaptive� route 
hoi
e. We point out some interesting properties of the sets of e�
ientsolutions (�strategies�) found under the two models. We also suggest possible dire
tionsfor improving 
omputational te
hniques.Keywords: Multiple obje
tive programming, shortest paths, sto
hasti
 time-dependentnetworks, time-adaptive strategies, history-adaptive strategies.1 Introdu
tionIn sto
hasti
 time-dependent (STD) networks (also known as random and time-varying)travel times are modelled as random variables with time-dependent distributions. STDnetworks were �rst addressed by Hall [3℄, who showed that the best route between twonodes is not ne
essarily a path, but rather a time-adaptive strategy that assigns optimal
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su

essor ar
s to ea
h node as a fun
tion of leaving times. This is referred to as time-adaptive route 
hoi
e, and represents the standard model for routing in STD networks. Asurvey on the subje
t and a literature review 
an be found in the paper by Gao and Chabini[2℄, who also dis
uss a more general framework, where online information and sto
hasti
dependen
y are taken into a

ount.When the ar
s in a STD network 
arry multiple attributes, we are fa
ed with multi-
riterion routing problems, where the solution is no longer a single optimal strategy butrather a set of e�
ient (Pareto optimal) strategies. Finding the e�
ient set is well-knownto be NP-hard also in deterministi
 networks. Nielsen [4℄ and Nielsen, Andersen, and Pre-tolani [5℄ address the bi
riterion routing problem under time-adaptive route 
hoi
e; theypropose solution methods for the weighted sum s
alarization of the problem (see e.g. [1℄)and apply them in a two-phase method for �nding (or approximating) the set of e�
ientstrategies. Opasanon and Miller-Hooks [7℄ 
onsider an arbitrary number of 
riteria and ageneralization of time-adaptive route 
hoi
e. More pre
isely, they propose a model whererouting de
isions at a node are a fun
tion of time as well as of the traveller's history, i.e.,arrival times at previous nodes. We refer to this model as history-adaptive route 
hoi
e.For this model, Opasanon and Miller-Hooks [7℄ point out some properties, and proposea label 
orre
ting method (Algorithm APS) for �nding the e�
ient set. Moreover, theydevise two algorithms for solving a weighted sum s
alarization (referred to as �disutility�).In this paper we investigate the relationships between time-adaptive and history-adaptiveroute 
hoi
e in a multi
riterion setting. First we des
ribe the stru
ture of the solutionsand propose a 
lassi�
ation of the two models; then we point out some relevant theoret-i
al properties; �nally we address 
omputational issues, proposing possible improvementsto s
alarization algorithms. Throughout the paper we adopt a standard terminology ofmultiobje
tive programming while keeping notation and formal de�nitions to a minimum.Most of the results will be ilustrated by means of examples. For this purpose we adopt, asa graphi
al tool, the representation of a STD network as a time-expanded hypergraph; thereader is referred to [4, 8℄ for a theoreti
al treatment of the subje
t. We remark that theresults provided in the paper hold for an arbitrary number of 
riteria, even if examples arelimited to the bi
riterion 
ase.Some of the 
ontent of this paper already appeared, in a di�erent form, in a previousnote [6℄. However, that note was based on the assumption that Opasanon and Miller-Hooks[7℄ 
onsidered routing under time-adaptive, rather than history-adaptive route 
hoi
e. Con-sequently, the wrong 
on
lusion is drawn that most of the results in Opasanon and Miller-Hooks [7℄ are not 
orre
t. Later we realized that Opasanon and Miller-Hooks [7℄ a
tually
onsider history-adaptive route 
hoi
e. Apart from this misinterpretation, some observa-tions in [6℄ are 
orre
t, and are summarized in Theorem 1 and Corollary 1 in the presentpaper. Moreover, [6℄ 
ontains some algorithmi
 improvements that are not reported here.The stru
ture of the paper is as follows. In the next se
tion we introdu
e STD networkswith a running example, whi
h allows us to des
ribe the stru
ture of the solutions. Proper-ties of the two models are dis
ussed formally in Se
tion 3. Computational issues, in
ludings
alarization algorithms, are addressed in Se
tion 4. A summary of the results, and somesuggestions for further resear
h, are given in Se
tion 5. Appendix A shows that the STD2



representation adopted by Opasanon and Miller-Hooks [7℄ 
an be simpli�ed, and AppendixB 
onsiders some 
omplexity issues related to the number and size of time-adaptive andhistory-adaptive strategies.2 STD networks, strategies, and labelsLet G = (N ,A) be a dire
ted graph, referred to as the topologi
al network. We 
onsiderdis
rete STD networks, where arrival and departure times to/from nodes are integers inthe interval H = [0, I]. For ea
h ar
 (i, j) ∈ A, t ∈ [0, I] the set T t
ij 
ontains the possibletravel times when leaving node i at time t along ar
 (i, j). The set At

ij = {t + t′ : t′ ∈ T t
ij}
ontains the 
orresponding possible arrival times at j. Ea
h travel time t′ ∈ T t

ij o

urswith probability pt
ij(t

′). Waiting at nodes is not permitted.We 
onsider a set of r ≥ 2 
riteria, where the �rst 
riterion is identi�ed with travel time.For ea
h ar
 (i, j) ∈ A, t ∈ [0, I] and 1 < k ≤ r we denote by ck
ij(t) the 
ost a

ordingto 
riterion k of travelling along ar
 (i, j) leaving i at time t. Note that this de�nitionextends the one given in [8℄ for a single 
ost 
riterion. Opasanon and Miller-Hooks [7℄adopt a more detailed des
ription of the STD network that 
an be shown to be equivalentto the de�nition adopted here, see Appendix A for details.Example 1 Consider the topologi
al network G = (N ,A) shown in the top left 
ornerof Figure 1. We assume that a traveller leaves the origin node o at time zero towardsthe destination node d. Sin
e waiting is not allowed, we only 
onsider departure times
orresponding to possible arrival times at intermediate nodes. For ea
h ar
 (i, j) andrelevant time t, the set T t

ij of travel times and the set At
ij of arrival times are given inTable 1.We only have two non-deterministi
 travel times, namely ar
 (o, a) at departure time

0 and ar
 (a, b) at departure time 1; in both 
ases we assume that travel times have thesame probability 1/2, that is p0
oa(1) = p0

oa(2) = p1
ab(1) = p1

ab(2) = 1/2. Note that routingde
isions are needed (a
tually, possible) only at node b.We represent the STD network by means of a time-expanded hypergraph, as shown inFigure 1. For ea
h node i ∈ N and relevant time t we introdu
e a hypergraph node it; forea
h ar
 (i, j) and departure time t we introdu
e a hyperar
 eij(t) that 
onne
ts node it tothe set {jθ : θ ∈ At
ij} of hypergraph nodes 
orresponding to possible arrival times at j.For example, hyperar
 eab(1) 
onne
ts node a1 to the node set {b2, b3}, sin
e A1

ab = {2, 3}.We assume r = 2, and we refer to 
riterion 2 as 
ost; the 
ost is zero for ea
h ar
 anddeparture time, ex
ept for the two 
ases shown in Figure 1, namely: ar
 (c, d) at departuretime 4, with 
ost c2
cd(4) = 4, and ar
 (b, d) at departure time 2, with 
ost c2

bd(2) = 8(1+ ε),where 0 < ε < 1. �A

ording to time-adaptive route 
hoi
e, a time-adaptive strategy (TAS ) in a dis
reteSTD network is de�ned by 
hoosing a single su

essor ar
 for ea
h node i 6= d and time
t. Ea
h strategy determines, for ea
h node i, time t and k = 1 . . . r, the expe
ted value of3
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Figure 1: Topologi
al network and time-expanded hypergraph
(i, j), t (o, a), 0 (a, b), 1 (a, b), 2 (b, d), 2 (b, d), 3 (b, c), 2 (b, c), 3 (c, d), 4

T t
ij {1, 2} {1, 2} {1} {2} {9} {2} {1} {4}

At
ij {1, 2} {2, 3} {3} {4} {12} {4} {4} {8}Table 1: Travel times and arrival times
riterion k for travelling from i to the destination, leaving i at time t. Given a strategy,the 
orresponding expe
ted values 
an be formally de�ned by means of a set of re
ursiveequations, see e.g. Pretolani [8℄. In pra
ti
e, the 
omputation of these values 
onsists of alabelling pro
ess that we illustrate with our running example.Example 1 (
ontinued) In order to de�ne a TAS, we must 
hoose a su

essor for node

b at time 2 and at time 3; for the other nodes, only one su

essor is available. Sin
e two
hoi
es are possible at node b, namely going to the destination d or to the intermediatenode c, we 
an de�ne four possible strategies. We denote these strategies by Sdd, Scd, Sdcand Scc, where u and v in Suv denote the su

essor of b at time 2 and 3, respe
tively.The four strategies are shown in Figure 2. Ea
h one is represented by the 
orrespondinghyperpath that 
ontains the hyperar
s representing the 
hosen su

essor ar
s. Namely, if
(i, j) is the su

essor ar
 of node i at departure time t, then the hyperpath 
ontains thehyperar
 eij(t).Ea
h strategy assigns to ea
h hyperpath node it a label λi(t) = [λ1

i (t), λ
2
i (t)], where

λ1
i (t) is the expe
ted travel time and λ2

i (t) is the expe
ted 
ost for traveling from node i atdeparture time t to the destination. For ea
h destination node dt the label is [0, 0]. If (i, j)is the su

essor ar
 of node i at departure time t, then the label of node it is obtained asa weighted sum of the labels at nodes {jθ : θ ∈ At
ij}, using probabilities pt

ij as weights.4
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[11, 1] (d) Strategy ScdFigure 2: Time-adaptive strategies and 
orresponding time/
ost labels.Figure 2 reports the labels assigned to hyperpath nodes by ea
h strategy. For instan
e,
onsider strategy Sdc; here label [4, 4] for c4 is obtained from [0, 0] at d8, sin
e both traveltime and 
ost are 4 for ar
 (c, d) at time 4. The label [5, (6 + 4ε)] for a1 is obtained fromlabels [2, 8(1 + ε)] and [5, 4] (nodes b2 and b3); the expe
ted travel time is (1 + 2)/2 + (2 +
5)/2 = 5, while the expe
ted 
ost is 8(1+ε)/2+4/2 = (6+4ε). Note that the probabilities
p1

ab(1) = p1
ab(2) = 1/2 are used here. �Opposite to the time-adaptive route 
hoi
e, under history-adaptive route 
hoi
e we havethat in a history-adaptive strategy (HAS ) the su

essor of a node i at time t is not ne
es-sarily unique; a traveller 
an 
hoose di�erent su

essors, and thus di�erent substrategies,depending on the travel time experien
ed in previous ar
s. As a 
onsequen
e, di�erentlabels assigned to the same hypergraph node 
an be 
ombined in the labelling pro
ess.Again, we illustrate the resulting labelling pro
ess using our running example.Example 1 (
ontinued) Observe that a traveller 
an rea
h node b at time 3 along twodi�erent �histories�, namely, leaving node a at time 1 or 2. Moreover node b has twopossible su

essors. Thus there are four possible history-adaptive 
hoi
es for the su

essorof node b at time 3. In fa
t, this is the only 
ase where history-adaptive route 
hoi
e 
ano

ur; indeed, nodes o, a and c have a unique possible su

essor, while node b at time 2has a unique �history�, that is, leaving a at time 1. Sin
e there are two possible 
hoi
es at5
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[9, 3] (d) Strategy Sc,dcFigure 3: History-adaptive strategies and 
orresponding time/
ost labels.node b and time 2 we have eight HAS overall. Four of them, where the su

essor of node
b at time 3 is independent of the leaving time from a, 
orrespond to the time-adaptivestrategies shown in Figure 2. The other four are shown in Figure 3, where we �split� node
b3 to point out the history-adaptive behavior. Extending the previous notation, u and v in
Sw,uv denote the su

essor of b at time 3 when leaving a at time 1 and 2, respe
tively, while
w is the su

essor of b at time 2. We assume that Sw,uv denotes the TAS Swv if v = u.Note that in ea
h strategy of Figure 3 two di�erent labels are assigned to hypergraph node
b3. One of these is used to obtain the label for a1, while the other is used to obtain thelabel for a2. �Terminologi
al note Pretolani [8℄ proved that time-adaptive strategies de�ne hyper-paths in the time-expanded hypergraph. This property holds be
ause, under time-adaptiveroute 
hoi
e, ea
h hypergraph node it is assigned a unique �prede
essor� hyperar
 eij(t),whi
h is not always the 
ase for history-adaptive route 
hoi
e. Opasanon and Miller-Hooks[7℄ refer to history-adaptive strategies as �hyperpaths�, but this term should be intendedinformally as a 
olle
tion of paths, rather than a formal de�nition of the solution stru
ture.
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3 Properties of adaptive routing modelsAs a �rst step we 
lassify routing models a

ording to the taxonomy proposed by Gaoand Chabini [2℄. The 
lassi�
ation is based on the amount of 
urrent information whi
his available to the traveller. The information depends on two fa
tors, namely networksto
hasti
 dependen
y and information a

ess. The former de�nes the link- and time-wisesto
hasti
 dependen
y between travel time random variables. One extreme is that all linktravel time random variables are 
ompletely independent, and the other extreme is thatthey are 
ompletely dependent. The latter de�nes whi
h link time realizations are availableto the traveller at any given time and given node. It is 
hara
terized a

ording to whetherperfe
t online information, partial online information or no online information is availableto the traveller. Models with no online information belong to a single 
lass, referred to asNOI. Models with perfe
t or partial online information are further subdivided into groups,also depending on the sto
hasti
 dependen
y between random variables. If these variablesare 
ompletely independent, models belong to Group 1. Otherwise, they belong to Group2 if perfe
t online information is available and to Group 3 if only partial online informationis available.Time-adaptive route 
hoi
e 
orresponds to the NOI 
lass, sin
e the traveller is assumedto have no information other than 
urrent node and time. History-adaptive routing fallsin Group 1, and pre
isely in the 
ase with partial on-line information available. Indeed, ahistory provides no information on future link travel times, that is, sto
hasti
 independen
eof random variables is assumed. Moreover, the information provided by a history is limitedto those links previously used by the traveller, and does not extend to the whole network.Gao and Chabini remark that the 
lass NOI and Group 1 are di�erent in prin
iple, although
omputationally equivalent in a single 
riterion setting. Their 
laim is supported by thefa
t that these two models are no longer equivalent in a multi
riterion setting.We 
an point out several properties of TAS and HAS observing the results of our runningexample. In Figure 4 we plot (assuming ε = 0.5) the labels λo(0) for the four time-adaptivestrategies (
ir
les) and for the �ve e�
ient history-adaptive strategies (
rosses).Let us 
onsider time-adaptive route 
hoi
e �rst. As 
an be seen in Figure 4, for ε = 0.5(a
tually, for 0 ≤ ε < 1) the four labels turn out to be nondominated. However, if we
onsider the labels asso
iated to node a1 in Figure 2, we note that the label [7, 4] assignedby Scc dominates the label [7, 4(1 + ε)] assigned by Sdd. Therefore, a traveller followingstrategy Sdd has a nonzero probability (a
tually, probability 1/2) of arriving at a at timeone and, thereafter, of following a dominated (i.e., non e�
ient) substrategy. Note alsothat no other strategy yields the same label λo(0) as Sdd. Let us say that a TAS is stronglye�
ient if all its substrategies are e�
ient. Thus Sdd is e�
ient but not strongly e�
ient.We 
an state the following theorem.Theorem 1 There may exist an e�
ient TAS whi
h is not strongly e�
ient, and yields alabel that 
annot be obtained from a strongly e�
ient TAS.Note that similar results (for the bi
riterion 
ase) 
an be found in [4℄, where expe
ted as wellas maximum possible values are 
onsidered. Theorem 1 shows that a well-known property7
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ient labels (ε = 1/2).of deterministi
 bi
riterion shortest paths, where subpaths of e�
ient paths are e�
ient,does not extend to time-adaptive route 
hoi
e. On the 
ontrary, the property holds forhistory-adaptive route 
hoi
e, i.e., an e�
ient HAS is strongly e�
ient, see Lemma 1 inOpasanon and Miller-Hooks [7℄. Sin
e label 
orre
ting methods (su
h as Algorithm APS in[7℄) only generate strongly e�
ient strategies, we have the following relevant 
onsequen
e.Corollary 1 A label 
orre
ting algorithm may not �nd all the nondominated labels 
or-responding to e�
ient TAS, in parti
ular, it will miss e�
ient TAS that are not stronglye�
ient.In our example, ea
h TAS ex
ept Sdd is strongly e�
ient and is extreme, i.e., its labelde�nes an extreme point of the time-adaptive set
Y≥

T = 
onv(YT ) ⊕ IRr
+ = {λ + y : λ ∈ 
onv(YT ), y ∈ IRr

+},where YT is the set of TAS labels and �
onv� denotes the 
onvex hull; in this 
ase, r = 2and YT = {[7, 5 + 2ε], [8, 4], [10, 2(1 + ε], [11, 1]}. Thus every extreme TAS is stronglye�
ient in our example: as we shall see later, this is the 
ase in general.Let us now 
onsider history-adaptive route 
hoi
e whi
h, as expe
ted, provides a moredense solution set. Five out of the eight HAS turn out to be e�
ient; three of them
orrespond to extreme TAS, the other two, namely Sc,cd and Sc,dc, dominate the TAS Sdd.Note that Sc,cd and Sc,dc are supported solutions, that is, they belong to the boundary ofthe history-adaptive set
Y≥

H = 
onv(YH) ⊕ IRr
+,where YH is the set of HAS labels; however, they are not extreme points in Y≥

H . Moreover,extreme points in Y≥

H 
orrespond to TAS, in other words we have Y≥

H = Y≥

T in our example.Theorem 3 shows that this is no 
oin
iden
e.Let us de�ne a weighted sum s
alarization (WSS ) of the problem under history-adaptiveroute 
hoi
e. We are given a ve
tor of weights w ∈ W+ = {w ∈ IRk : wk > 0, 1 ≤ k ≤ r},8



where wk is the weight of 
riterion k. We must �nd a HAS that minimizes the weightedsum wT λo(0) of the expe
ted values of the 
riteria. We say that one su
h HAS is WSS-optimal for the weights w. Sin
e both the s
alarization and the labels are de�ned by meansof linear equations, the following quite intuitive result follows.Lemma 1 A WSS-optimal HAS de�nes WSS-optimal substrategies, i.e., minimum values
wTλi(t), for ea
h node i and time t.This result 
orresponds to Lemma 3 in [7℄, where an optimal HAS for a WSS is referred toas a �LED hyperpath�. The following lemma establishes another key property of WSS.Lemma 2 For ea
h weight ve
tor w ∈ W+ a time-adaptive strategy exists that is WSS-optimal and de�nes WSS-optimal substrategies.Proof Let S be a WSS-optimal HAS, and assume that S assigns two or more di�erentsu

essors to node i at time t, depending on di�erent histories. As follows from Lemma 1,the labels obtained by these su

essors must be both WSS-optimal, that is, minimize theprodu
t wTλi(t). But then, we 
an 
hoose one of the optimal su

essors, and use it for allhistories, still obtaining a WSS-optimal strategy at node i and time t. By iterating thispro
ess we end up with a TAS that ful�lls the requirements, and the 
laim follows.We 
an now prove the general properties mentioned above.Theorem 2 Extreme TAS are strongly e�
ient.Proof Assume that the TAS S yields the extreme point λ̄ and is WSS-optimal for weights
w ∈ W+. Suppose that S de�nes a dominated substrategy Si(t) for node i and time t.Sin
e wi > 0 for ea
h 1 ≤ k ≤ r, we have wTλi(t) > wT λ′

i(t), where λi(t) and λ′
i(t) denotelabels assigned by S and by another TAS S ′, respe
tively. Thus the substrategy Si(t) is notWSS-optimal for w. However, it follows from Lemma 1 and Lemma 2 that a WSS-optimalTAS must de�ne optimal substrategies, whi
h implies a 
ontradi
tion.Theorem 3 Ea
h extreme point in Y≥

H is an extreme point in Y≥

T , i.e., Y≥

H = Y≥

T .Proof Let λ̄ be an extreme point in Y≥

H . It is well-known that some w ∈ W+ exist su
hthat λ̄ is the unique solution of
min
λ∈Y≥

H

wT λ.Therefore, any optimal solution to the WSS with weights w yields the label λ̄. By Lemma 2,at least one su
h optimal TAS exists, thus λ̄ ∈ Y≥

T and the 
laim follows.In Appendix B it is shown that the number of HAS may be exponential in the numberof TAS. Despite this fa
t, Theorem 3 shows that the extreme points in Y≥

H and Y≥

T arethe same. This means that if a de
ision maker is primarily interested in one of the 
riteria,it is su�
ient to 
onsider TAS. On the other hand, non-extreme HAS give a mu
h better9



representation of the entire solution spa
e inside the set Y≥

T . This might also be interestingto a de
ision-maker.Theorem 3 states that history-adaptive route 
hoi
e does not allow to �jump out� ofthe time-adaptive set Y≥

T . This may be related to the taxonomy of Gao and Chabini [2℄,observing that both models assume sto
hasti
 independen
e, even if they assume di�erentonline information. An extensive interpretation of Theorem 3 would suggest that sto
hasti
dependen
y (groups 2 and 3 in [2℄) should be taken into a

ount in order to �nd solutionsoutside Y≥

T . In our 
ontext, sto
hasti
 dependen
y means that a history may provideinformation on travel time distributions at future times.4 Computational issuesWe address some 
omputational and algorithmi
 issues in this se
tion; 
laims on the num-ber and size of adaptive strategies are proved in Appendix B. As pointed out in [4, 5℄ themulti
riterion problems for time-adaptive route 
hoi
e are 
omputationally intra
table, alsofor r = 2 and for instan
es of reasonable size. Indeed, the solution spa
e is extremely dense,and thus very hard to explore with 
urrent state-of-the-art te
hniques. Similar 
on
lusionsare drawn by Opasanon and Miller-Hooks [7℄ for history-adaptive route 
hoi
e. In fa
t, thelatter 
ase is likely to be even more di�
ult, for at least two reasons (see Appendix B):
• the number of HAS may be mu
h larger (in some 
ases, exponentially larger) thanthe number of TAS;
• while the size of a TAS is linear in the size of the STD network, a single HAS 
anrequire exponential spa
e.For the above reasons, solution methods for weighted sum s
alarizations be
ome 
ru
ial.Existing methods 
an solve a WSS e�
iently, a
tually in polynomial time in the inputsize [5, 7℄; however, these methods only return one single WSS-optimal TAS. A

ordingto Theorem 3, a single TAS su�
es as long as extreme solutions are sear
hed. However,non-extreme supported solutions may be relevant as well, as shown by our example.Example 1 (
ontinued) The two supported HAS Sc,cd and Sc,dc, as well as the extremeTAS Scd and Scc, are optimal solutions to a WSS with weight w = [1, 1]. Only the extremeTAS 
an be found by existing methods, even though Sc,cd and Sc,dc may be more attra
tive,sin
e they o�er a better time/
ost trade-o�. Note that the two su

essors of node b at time

3 are both optimal, sin
e wT [9, 0] = wT [5, 4]. This is not the 
ase for node b at time 2,where (b, c) is the only optimal su

essor. If we forbid the non-optimal su

essor (b, d) attime 2 (i.e., we remove hyperar
 ebd(2) from the time-expanded hypergraph) the remaininge�
ient solutions are exa
tly Sc,cd, Sc,dc, Scd and Scc. �In pra
ti
e, we may be interested in �nding all the non-dominated labels 
orrespondingto optimal solutions to a WSS, in
luding labels 
orresponding to WSS-optimal HAS thatare not TAS. In general, this is a di�
ult task, sin
e the number of optimal labels for a10



single WSS 
an be exponential in the input size, see Appendix B. Up to our knowledge, nomethods have been proposed for this task, ex
ept of 
ourse �nding all the e�
ient HAS.The above observations on our example suggest a possible approa
h. Given a weight ve
tor
w we pro
eed as follows.1. �nd a WSS-optimal TAS, keeping tra
k of all the optimal su

essor ar
s for ea
hintermediate node and time;2. apply a labelling algorithm where, for ea
h intermediate node and time, only theoptimal su

essor ar
s tra
ked in the previous step are used.It follows from Lemma 2 (we omit details here) that the above method �nds all the non-dominated labels in YH 
orresponding to WSS-optimal HAS for w. Both steps requireminor 
hanges in existing algorithms.Note that the above approa
h de�nes a sort of �hybrid� between labelling and two-phase methods, whi
h seems to be quite suitable for the bi
riterion 
ase. For r = 2 ea
hfa
e of Y≥

T is a segment, de�ned by a unique weight w that 
an be found in polynomialtime, see [5℄. By applying the method above to ea
h w de�ning a fa
e we 
an �nd all thesupported solutions under history-adaptive route 
hoi
e. Clearly, this pro
ess is intra
tablein general, however, the overall 
omputational e�ort may be reasonably a�ordable as longas, for ea
h w, the se
ond step works on a small fra
tion of the whole STD network.5 Final remarksIn this paper we investigated relations and di�eren
es between two known models formulti
riterion routing in STD networks. Our results 
an be summarized as follows.
• we des
ribed the stru
ture of the solutions for the two models;
• we 
lassi�ed the two models a

ording to the taxonomy given by Gao and Chabini[2℄;
• we showed that, opposed to HAS, an e�
ient TAS is not ne
essarily strongly e�
ient;however, extreme e�
ient TAS are strongly e�
ient;
• we showed that a WSS always admits an optimal TAS, whi
h implies that the twomodels de�ne the same extreme nondominated points;
• we showed that the number and size of the solutions grow exponentially when movingfrom time-adaptive to history-adaptive route 
hoi
e; this remains true even if onlysupported solutions are 
onsidered;
• we proposed a hybrid two-phase/labeling method �nding supported HAS that arenot TAS. 11



Due to the inherent intra
tability of multi
riterion routing problems for both models,further resear
h should 
on
entrate on heuristi
 methods, e.g., s
alarization te
hniques or
ε-approximations. To this aim, the theoreti
al results provided in this paper may providea useful guidan
e. In parti
ular, the hybrid approa
h proposed here may be an interestingsubje
t for further resear
h.Referen
es[1℄ M. Ehrgott. Multi
riteria optimization. Springer-Verlag, Berlin, 2nd edition, 2005.[2℄ S. Gao and I. Chabini. Optimal routing poli
y problems in sto
hasti
time-dependent networks. Transportation Resear
h Part B, 40:93�122, 2006.doi:10.1016/j.trb.2005.02.001.[3℄ R.W. Hall. The fastest path through a network with random time-dependent traveltimes. Transportation S
ien
e, 20(3):182�188, 1986.[4℄ L.R. Nielsen. Route Choi
e in Sto
hasti
 Time-Dependent Networks. PhD the-sis, Department of Operations Resear
h, University of Aarhus, 2004. URLhttp://www.imf.au.dk/publs?id=499.[5℄ L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bi
riterion shortest hyperpaths inrandom time-dependent networks. IMA Journal of Management Mathemati
s, 14(3):271�303, 2003. doi:10.1093/imaman/14.3.271.[6℄ L.R. Nielsen, D. Pretolani, and K.A. Andersen. A note on "multi
riteria adaptive pathsin sto
hasti
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hni
al Report WP-L-2006-11, Departmentof A
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s, Aarhus S
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h, 123(2):315�324, 2000.doi:10.1016/S0377-2217(99)00259-3.Appendix A: representation of STD networksThe STD network model adopted by Opasanon and Miller-Hooks [7℄ spe
i�es a distribu-tion of possible values for ea
h 
riterion, ar
 (i, j) and departure time t. In parti
ular,
Ck = {ckzk

ij (t) : zk = 1, . . . , D} denotes the set of possible values for 
riterion k whentravelling along ar
 (i, j) at departure time t. Note that C1 = {c1z1

ij (t) : z1 = 1, . . . , D}12
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is the set of possible travel times. Ea
h value ckzk

ij (t) o

urs with probability ρkzk

ij (t), thus
∑

zk=1,...,D ρkzk

ij (t) = 1. This model is unne
essarily detailed, sin
e for ea
h 
riterion k > 1,it su�
es to know the expe
tation
ck
ij(t) =

D
∑

zk=1

ckzk

ij (t) · ρkzk

ij (t).In order to prove that the simpli�ed model is 
orre
t, it su�
es to show that the formulaused to 
ompute new labels for 
riteria other than travel time (see Step 3 of AlgorithmAPS, Se
tion 4 in [7℄) 
an be simpli�ed as follows:
ηk

i (t) =
∑

(z1,x)∈Q

∑D
zk=1

[

ckzk

ij (t) + λk
jx

(

t + c1z1

ij (t)
) ]

· ρ1z1

ij (t) · ρkzk

ij (t)

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

∑D
zk=1 ckzk

ij (t) · ρkzk

ij (t) +
∑D

zk=1 λk
jx

(

t + c1z1

ij (t)
)

· ρkzk

ij (t)
]

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

ck
ij(t) + λk

jx

(

t + c1z1

ij (t)
)]

= ck
ij(t) +

∑

(z1,x)∈Q ρ1z1

ij (t)λk
jx

(

t + c1z1

ij (t)
)Note that this simpli�
ation is purely algebrai
, and does not depend on the 
hoi
e of thelabels to 
ombine, i.e. on the value of x. Sin
e the new label is obtained as a fun
tionof the expe
tation ck

ij(t) (and of the travel time distribution) the model assigning a singleexpe
ted value 
an be adopted without loss of generality.Clearly, in both models the distribution is ne
essary for travel times; indeed, for k = 1the two models are equivalent: given t′ = t + c1z1

ij we have t′ ∈ At
ij and pt

ij(t
′) = ρ1z1

ij .Appendix B: number and size of strategiesWe de�ne a (somehow pathologi
al) STD network that may help to �gure out the inherentdi�
ulty of history-adaptive route 
hoi
e.Given K ≥ 1 
onsider the topologi
al network G = (N ,A) satisfying:
N = {ui : 0 ≤ i ≤ K + 1} ∪ {vi : 0 ≤ i ≤ K};
A = {(ui, vi), (vi, ui+1) : 0 ≤ i ≤ K} ∪ {(uK, uK+1)}.We identify the origin o = u0 and the destination d = uK+1. Note that G is an o-d pathplus the single ar
 (uK , d). We de�ne the STD network as follows.
• Ea
h ar
 (ui, vi) with i < K is sto
hasti
 but time independent: possible travel timesare 1 and 2, with equal probability 1/2.
• Ea
h ar
 (vi, ui+1) with i < K is time-dependent but deterministi
: when leaving viat time t the travel time is 2 if t modulo 3 = 1 and 1 otherwise.
• Ar
s (uK , vK), (uK , d) and (vK , d) have stati
 travel time 1.13
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d d
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vivi

3i 3i + 1 3i + 2 3i + 3 T + 1T − 1 TFigure 5: Fragments of the time-expanded hypergraph
• Ea
h ar
 has a stati
 and deterministi
 zero 
ost, ex
ept ar
 (uK , d) that has 
ostone.Figure 5 may help to understand the stru
ture of the time-expanded hypergraph. Theleft part shows the fragment 
orresponding to ar
s (ui, vi) and (vi, ui+1), with leaving timefrom node ui at time 3i; the right part involves ar
s (uK , vK), (uK , uK+1) and (vK , uK+1).Note that the time subs
ript index of ea
h node in the hypergraph is not shown. The STDnetwork satis�es:1. If leaving node o at time 0, then the only possible arrival/departure time at ea
hnode ui with i ≤ K is 3i.2. Sin
e the leaving time from node uK is 3K = T − 1 the possible arrival times at dare T = 3K + 1 and T + 1 = 3K + 2.3. Routing de
isions are possible only at node uK and time T −1. Hen
e there are onlytwo time-adaptive strategies, 
orresponding to su

essor ar
s (uK , d) and (uK , vK),denoted by Sd and Sv, respe
tively.4. Setting the time horizon H = [0, T + 1], a 
omplete des
ription of the STD networkor its input size is O(K2).Theorem 4 The number of history-adaptive strategies 
an be exponential in the numberof time-adaptive strategies.Proof There are 2K possible histories leading to node uK . For ea
h of these histories eithernode d or vK may be the su

essor node of uK leading to 22K history-adaptive strategies
ompared to only two time-adaptive strategies.Theorem 5 The number of non-dominated labels 
orresponding to supported HAS thatare optimal for a single WSS 
an be exponential in the input size and also in the numberof supported TAS. 14



Proof Time-adaptive strategies Sd and Sv yield labels [T, 1] and [T + 1, 0], and are sup-ported extreme solutions. Under history-adaptive route 
hoi
e we have a set of 2K + 1nondominated labels
YH = {λ(j) = [T + δj, 1 − δj] : 0 ≤ j ≤ 2K}where δ = 2−K , and ea
h λ(j) is obtained by 
hoosing ar
 (uK, vK) for j out of the 2Kpossible histories at node uK . Note that λ(0) and λ(2K) 
orrespond to Sd and Sv, respe
-tively. Labels in YH identify points in the segment joining [T, 1] and [T + 1, 0], thus they
orrespond to supported solutions, in parti
ular, optimal solutions to a WSS with weights

w = [1, 1].Note all HAS are supported HAS.Corollary 2 The number of (supported) e�
ient HAS 
an be exponential in the numberof (supported) e�
ient TAS.Moreover, sin
e the number of HAS is 22K 
orresponding to 2K + 1 di�erent labels wehave.Corollary 3 The number of supported HAS 
orresponding to the same non-dominatedlabel 
an be exponential in the input size.Let us now 
onsider e�
ient labels at intermediate nodes, as they are generated bythe labelling algorithm APS proposed by Opasanon and Miller-Hooks [7℄. For the sake ofsimpli
ity, we asso
iate these labels to nodes u0, . . . , uK in G, sin
e for ea
h ui there is aunique arrival/departure time 3i. For node uK we have two e�
ient labels [1, 1] and [2, 0].Now suppose that we have two labels [a, b] and [a′, b′] at node ui+1. It is easy to verify thatat node ui we 
an obtain three e�
ient labels [3+a, b], [3+a′, b′] and [3+(a+a′)/2, (b+b′)/2];note that the last label is the mid-point of the segment joining the �rst two ones. In thisway we obtain three e�
ient labels at node uK−1, �ve e�
ient labels at node uK−2, . . . ,
2K−i + 1 e�
ient labels at node ui. Clearly, this gives |YH| = 2K + 1 e�
ient labels atnode u0.Theorem 6 The size of a single supported history-adaptive strategy, by means of the datastru
ture devised by Opasanon and Miller-Hooks [7℄, 
an be exponential in the input size,i.e. exponential in the size of a TAS, whi
h is linear in the input size.Proof Assume that K is even. We know we have at least 2K/2 e�
ient labels at node
uK/2; we 
an use these labels to obtain 2K/2−1 labels at node uK/2−1, 2K/2−2 labels at node
uK/2−2,. . . , 20 = 1 label at node u0. In this way we de�ne a single history-adaptive strategythat requires at least 2K di�erent labels to be represented, i.e., O(2K) spa
e. By 
ontrast,a TAS requires at most linear spa
e in the input size.
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