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Abstract: We compare two different models for multicriterion routing in stochastic time-
dependent networks: the classic “time-adaptive” route choice and the more flexible “history-
adaptive” route choice. We point out some interesting properties of the sets of efficient
solutions (“strategies”) found under the two models. We also suggest possible directions
for improving computational techniques.
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1 Introduction

In stochastic time-dependent (STD) networks (also known as random and time-varying)
travel times are modelled as random variables with time-dependent distributions. STD
networks were first addressed by Hall [3|, who showed that the best route between two
nodes is not necessarily a path, but rather a time-adaptive strategy that assigns optimal

*Corresponding Author. Tel.: +39 0522 522229; fax: +39 0522 522609


mailto:daniele.pretolani@unimore.it
mailto:lars@relund.dk
mailto: kia@asb.dk
mailto:m.ehrgott@auckland.ac.nz

successor arcs to each node as a function of leaving times. This is referred to as time-
adaptive route choice, and represents the standard model for routing in STD networks. A
survey on the subject and a literature review can be found in the paper by Gao and Chabini
|2], who also discuss a more general framework, where online information and stochastic
dependency are taken into account.

When the arcs in a STD network carry multiple attributes, we are faced with mult:-
criterton routing problems, where the solution is no longer a single optimal strategy but
rather a set of efficient (Pareto optimal) strategies. Finding the efficient set is well-known
to be NP-hard also in deterministic networks. Nielsen |4] and Nielsen, Andersen, and Pre-
tolani [5] address the bicriterion routing problem under time-adaptive route choice; they
propose solution methods for the weighted sum scalarization of the problem (see e.g. [1])
and apply them in a two-phase method for finding (or approximating) the set of efficient
strategies. Opasanon and Miller-Hooks [7] consider an arbitrary number of criteria and a
generalization of time-adaptive route choice. More precisely, they propose a model where
routing decisions at a node are a function of time as well as of the traveller’s history, i.e.,
arrival times at previous nodes. We refer to this model as history-adaptive route choice.
For this model, Opasanon and Miller-Hooks [7] point out some properties, and propose
a label correcting method (Algorithm APS) for finding the efficient set. Moreover, they
devise two algorithms for solving a weighted sum scalarization (referred to as “disutility”).

In this paper we investigate the relationships between time-adaptive and history-adaptive
route choice in a multicriterion setting. First we describe the structure of the solutions
and propose a classification of the two models; then we point out some relevant theoret-
ical properties; finally we address computational issues, proposing possible improvements
to scalarization algorithms. Throughout the paper we adopt a standard terminology of
multiobjective programming while keeping notation and formal definitions to a minimum.
Most of the results will be ilustrated by means of examples. For this purpose we adopt, as
a graphical tool, the representation of a STD network as a time-expanded hypergraph; the
reader is referred to |4, 8] for a theoretical treatment of the subject. We remark that the
results provided in the paper hold for an arbitrary number of criteria, even if examples are
limited to the bicriterion case.

Some of the content of this paper already appeared, in a different form, in a previous
note [6]. However, that note was based on the assumption that Opasanon and Miller-Hooks
[7] considered routing under time-adaptive, rather than history-adaptive route choice. Con-
sequently, the wrong conclusion is drawn that most of the results in Opasanon and Miller-
Hooks |7] are not correct. Later we realized that Opasanon and Miller-Hooks [7] actually
consider history-adaptive route choice. Apart from this misinterpretation, some observa-
tions in 6] are correct, and are summarized in Theorem [I] and Corollary [[l in the present
paper. Moreover, [6] contains some algorithmic improvements that are not reported here.

The structure of the paper is as follows. In the next section we introduce STD networks
with a running example, which allows us to describe the structure of the solutions. Proper-
ties of the two models are discussed formally in Section 3. Computational issues, including
scalarization algorithms, are addressed in Section 4. A summary of the results, and some
suggestions for further research, are given in Section 5. Appendix A shows that the STD



representation adopted by Opasanon and Miller-Hooks [7] can be simplified, and Appendix
B considers some complexity issues related to the number and size of time-adaptive and
history-adaptive strategies.

2 STD networks, strategies, and labels

Let G = (N, A) be a directed graph, referred to as the topological network. We consider
discrete STD networks, where arrival and departure times to/from nodes are integers in
the interval H = [0, I]. For each arc (i,5) € A, t € [0,I] the set T}, contains the possible
travel times when leaving node i at time ¢ along arc (i,7). The set A}, = {t +t': t' € T};}
contains the corresponding possible arrival times at j. Each travel time t' € Tf] occurs
with probability pj;(#'). Waiting at nodes is not permitted.

We consider a set of » > 2 criteria, where the first criterion is identified with travel time.
For each arc (i,j) € A, t € [0,I] and 1 < k < r we denote by ¢};(t) the cost according
to criterion k of travelling along arc (7,j) leaving i at time ¢. Note that this definition
extends the one given in [8] for a single cost criterion. Opasanon and Miller-Hooks [7]
adopt a more detailed description of the STD network that can be shown to be equivalent

to the definition adopted here, see Appendix A for details.

Example 1 Consider the topological network G = (N, A) shown in the top left corner
of Figure [ We assume that a traveller leaves the origin node o at time zero towards
the destination node d. Since waiting is not allowed, we only consider departure times
corresponding to possible arrival times at intermediate nodes. For each arc (i,j) and
relevant time ¢, the set T}; of travel times and the set Aj; of arrival times are given in
Table 11

We only have two non-deterministic travel times, namely arc (o, a) at departure time
0 and arc (a,b) at departure time 1; in both cases we assume that travel times have the
same probability 1/2, that is p% (1) = p2,(2) = pL,(1) = p.,(2) = 1/2. Note that routing
decisions are needed (actually, possible) only at node b.

We represent the STD network by means of a time-expanded hypergraph, as shown in
Figure Il For each node i € N and relevant time ¢ we introduce a hypergraph node 4;; for
each arc (¢, j) and departure time ¢ we introduce a hyperarc e;;(t) that connects node i, to
the set {jo : 6 € Aﬁj} of hypergraph nodes corresponding to possible arrival times at j.
For example, hyperarc eq;(1) connects node a; to the node set {by, b3}, since Al, = {2, 3}.

We assume r = 2, and we refer to criterion 2 as cost; the cost is zero for each arc and
departure time, except for the two cases shown in Figure[I], namely: arc (¢, d) at departure
time 4, with cost ¢;(4) = 4, and arc (b, d) at departure time 2, with cost c,(2) = 8(1+¢),
where 0 < e < 1. U

According to time-adaptive route choice, a time-adaptive strategy (TAS) in a discrete
STD network is defined by choosing a single successor arc for each node i # d and time
t. Each strategy determines, for each node ¢, time ¢t and k = 1...r, the expected value of



Figure 1: Topological network and time-expanded hypergraph
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Table 1: Travel times and arrival times

criterion k for travelling from ¢ to the destination, leaving ¢ at time ¢. Given a strategy,
the corresponding expected values can be formally defined by means of a set of recursive
equations, see e.g. Pretolani [8]. In practice, the computation of these values consists of a
labelling process that we illustrate with our running example.

Example [] (continued) In order to define a TAS, we must choose a successor for node
b at time 2 and at time 3; for the other nodes, only one successor is available. Since two
choices are possible at node b, namely going to the destination d or to the intermediate
node ¢, we can define four possible strategies. We denote these strategies by 5%, S¢d gde
and S°, where v and v in S denote the successor of b at time 2 and 3, respectively.
The four strategies are shown in Figure Pl Each one is represented by the corresponding
hyperpath that contains the hyperarcs representing the chosen successor arcs. Namely, if
(i,7) is the successor arc of node i at departure time ¢, then the hyperpath contains the
hyperarc e;;(t).

Each strategy assigns to each hyperpath node i; a label X\;(t) = [A(¢), \2(¢)], where
AL () is the expected travel time and \?(¢) is the expected cost for traveling from node 7 at
departure time ¢ to the destination. For each destination node d; the label is [0, 0]. If (4, j)
is the successor arc of node 7 at departure time ¢, then the label of node i; is obtained as
a weighted sum of the labels at nodes {jy : 6 € Aj;}, using probabilities pj; as weights.



(a) Strategy S9°
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Figure 2: Time-adaptive strategies and corresponding time/cost labels.

Figure 2l reports the labels assigned to hyperpath nodes by each strategy. For instance,
consider strategy S%; here label [4, 4] for ¢, is obtained from [0, 0] at dg, since both travel
time and cost are 4 for arc (¢, d) at time 4. The label [5, (6 + 4¢)] for a; is obtained from
labels [2,8(1 4 ¢)] and [5, 4] (nodes by and b3); the expected travel time is (14 2)/2+ (2 +
5)/2 = 5, while the expected cost is 8(1+¢)/2+4/2 = (6+4¢). Note that the probabilities
pl (1) = pl,(2) = 1/2 are used here. O

Opposite to the time-adaptive route choice, under history-adaptive route choice we have
that in a history-adaptive strategy (HAS) the successor of a node i at time ¢ is not neces-
sarily unique; a traveller can choose different successors, and thus different substrategies,
depending on the travel time experienced in previous arcs. As a consequence, different
labels assigned to the same hypergraph node can be combined in the labelling process.
Again, we illustrate the resulting labelling process using our running example.

Example [] (continued) Observe that a traveller can reach node b at time 3 along two
different “histories”, namely, leaving node a at time 1 or 2. Moreover node b has two
possible successors. Thus there are four possible history-adaptive choices for the successor
of node b at time 3. In fact, this is the only case where history-adaptive route choice can
occur; indeed, nodes o, a and ¢ have a unique possible successor, while node b at time 2
has a unique “history”, that is, leaving a at time 1. Since there are two possible choices at
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Figure 3: History-adaptive strategies and corresponding time/cost labels.

node b and time 2 we have eight HAS overall. Four of them, where the successor of node
b at time 3 is independent of the leaving time from a, correspond to the time-adaptive
strategies shown in Figure 2l The other four are shown in Figure 3] where we “split” node
bs to point out the history-adaptive behavior. Extending the previous notation, v and v in
S* denote the successor of b at time 3 when leaving a at time 1 and 2, respectively, while
w is the successor of b at time 2. We assume that S*"" denotes the TAS SV if v = w.
Note that in each strategy of Figure 3 two different labels are assigned to hypergraph node
bs. One of these is used to obtain the label for a;, while the other is used to obtain the
label for a,. OJ

Terminological note Pretolani [@] proved that time-adaptive strategies define hyper-
paths in the time-expanded hypergraph. This property holds because, under time-adaptive
route choice, each hypergraph node i, is assigned a unique “predecessor” hyperarc e;;(t),
which is not always the case for history-adaptive route choice. Opasanon and Miller-Hooks
“ﬂ] refer to history-adaptive strategies as “hyperpaths”, but this term should be intended
informally as a collection of paths, rather than a formal definition of the solution structure.



3 Properties of adaptive routing models

As a first step we classify routing models according to the taxonomy proposed by Gao
and Chabini |2|. The classification is based on the amount of current information which
is available to the traveller. The information depends on two factors, namely network
stochastic dependency and information access. The former defines the link- and time-wise
stochastic dependency between travel time random variables. One extreme is that all link
travel time random variables are completely independent, and the other extreme is that
they are completely dependent. The latter defines which link time realizations are available
to the traveller at any given time and given node. It is characterized according to whether
perfect online information, partial online information or no online information is available
to the traveller. Models with no online information belong to a single class, referred to as
NOI. Models with perfect or partial online information are further subdivided into groups,
also depending on the stochastic dependency between random variables. If these variables
are completely independent, models belong to Group 1. Otherwise, they belong to Group
2 if perfect online information is available and to Group 3 if only partial online information
is available.

Time-adaptive route choice corresponds to the NOI class, since the traveller is assumed
to have no information other than current node and time. History-adaptive routing falls
in Group 1, and precisely in the case with partial on-line information available. Indeed, a
history provides no information on future link travel times, that is, stochastic independence
of random variables is assumed. Moreover, the information provided by a history is limited
to those links previously used by the traveller, and does not extend to the whole network.
Gao and Chabini remark that the class NOI and Group 1 are different in principle, although
computationally equivalent in a single criterion setting. Their claim is supported by the
fact that these two models are no longer equivalent in a multicriterion setting.

We can point out several properties of TAS and HAS observing the results of our running
example. In Figured we plot (assuming ¢ = 0.5) the labels A,(0) for the four time-adaptive
strategies (circles) and for the five efficient history-adaptive strategies (crosses).

Let us consider time-adaptive route choice first. As can be seen in Figure[d for e = 0.5
(actually, for 0 < ¢ < 1) the four labels turn out to be nondominated. However, if we
consider the labels associated to node a; in Figure 2] we note that the label [7,4] assigned
by S dominates the label [7,4(1 + ¢)] assigned by S9. Therefore, a traveller following
strategy S has a nonzero probability (actually, probability 1/2) of arriving at a at time
one and, thereafter, of following a dominated (i.e., non efficient) substrategy. Note also
that no other strategy yields the same label \,(0) as S%. Let us say that a TAS is strongly
efficient if all its substrategies are efficient. Thus S% is efficient but not strongly efficient.
We can state the following theorem.

Theorem 1 There may exist an efficient TAS which is not strongly efficient, and yields a
label that cannot be obtained from a strongly efficient TAS.

Note that similar results (for the bicriterion case) can be found in |4], where expected as well
as maximum possible values are considered. Theorem [Il shows that a well-known property
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Figure 4: Strategies and efficient labels (¢ = 1/2).

of deterministic bicriterion shortest paths, where subpaths of efficient paths are efficient,
does not extend to time-adaptive route choice. On the contrary, the property holds for
history-adaptive route choice, i.e., an efficient HAS is strongly efficient, see Lemma 1 in
Opasanon and Miller-Hooks [7]. Since label correcting methods (such as Algorithm APS in
I7]) only generate strongly efficient strategies, we have the following relevant consequence.

Corollary 1 A label correcting algorithm may not find all the nondominated labels cor-
responding to efficient TAS, in particular, it will miss efficient TAS that are not strongly
efficient.

In our example, each TAS except S% is strongly efficient and is extreme, i.e., its label
defines an extreme point of the time-adaptive set

V7 = conv(Yr) @R, = {A+y: X €conv(Yr), y € RY Y,

where )r is the set of TAS labels and “conv” denotes the convex hull; in this case, r = 2
and Yr = {[7,5 + 2¢|, [8,4], [10,2(1 + €], [11,1]}. Thus every extreme TAS is strongly
efficient in our example: as we shall see later, this is the case in general.

Let us now consider history-adaptive route choice which, as expected, provides a more
dense solution set. Five out of the eight HAS turn out to be efficient; three of them
correspond to extreme TAS, the other two, namely S“°¢ and S“%, dominate the TAS S%.
Note that S and S“% are supported solutions, that is, they belong to the boundary of
the history-adaptive set

y% = conv(Yy) @ R,

where Yy is the set of HAS labels; however, they are not extreme points in y%. Moreover,
extreme points in y; correspond to TAS, in other words we have y; = y% in our example.
Theorem [3] shows that this is no coincidence.

Let us define a weighted sum scalarization (WSS) of the problem under history-adaptive
route choice. We are given a vector of weights w € W+ = {w € R” wg >0, 1 <k<r},
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where wy, is the weight of criterion k. We must find a HAS that minimizes the weighted
sum w?\,(0) of the expected values of the criteria. We say that one such HAS is WSS-
optimal for the weights w. Since both the scalarization and the labels are defined by means
of linear equations, the following quite intuitive result follows.

Lemma 1 A WSS-optimal HAS defines WSS-optimal substrategies, i.e., minimum values
wr\i(t), for each node i and time t.

This result corresponds to Lemma 3 in |7], where an optimal HAS for a WSS is referred to
as a “LED hyperpath”. The following lemma establishes another key property of WSS.

Lemma 2 For each weight vector w € W a time-adaptive strategy exists that is WSS-
optimal and defines WSS-optimal substrategies.

Proof Let S be a WSS-optimal HAS, and assume that S assigns two or more different
successors to node ¢ at time ¢, depending on different histories. As follows from Lemma [I1
the labels obtained by these successors must be both WSS-optimal, that is, minimize the
product w’ \;(¢). But then, we can choose one of the optimal successors, and use it for all
histories, still obtaining a WSS-optimal strategy at node ¢ and time ¢. By iterating this
process we end up with a TAS that fulfills the requirements, and the claim follows. [ ]

We can now prove the general properties mentioned above.

Theorem 2 FExtreme TAS are strongly efficient.

Proof Assume that the TAS S yields the extreme point A and is WSS-optimal for weights
w € WT. Suppose that S defines a dominated substrategy S;(¢) for node i and time t.
Since w; > 0 for each 1 < k < r, we have wT \;(t) > wT Xi(t), where X\;(¢) and \.(¢) denote
labels assigned by S and by another TAS ', respectively. Thus the substrategy S;(¢) is not
WSS-optimal for w. However, it follows from Lemma [Il and Lemma [2] that a WSS-optimal
TAS must define optimal substrategies, which implies a contradiction. [ ]

. . > . . . > . > >
Theorem 3 FEach extreme point in Vg is an extreme point in Y5, i.e., Vg = Vr.

Proof Let A be an extreme point in yg. It is well-known that some w € W exist such
that \ is the unique solution of

min w? \.

SV
Therefore, any optimal solution to the WSS with weights w yields the label \. By Lemmal2]
at least one such optimal TAS exists, thus A € y% and the claim follows. [ ]

In Appendix B it is shown that the number of HAS may be exponential in the number
of TAS. Despite this fact, Theorem B shows that the extreme points in Y5 and Y7 are
the same. This means that if a decision maker is primarily interested in one of the criteria,
it is sufficient to consider T'AS. On the other hand, non-extreme H AS give a much better



representation of the entire solution space inside the set y%. This might also be interesting
to a decision-maker.

Theorem [ states that history-adaptive route choice does not allow to “jump out” of
the time-adaptive set V7. This may be related to the taxonomy of Gao and Chabini [2],
observing that both models assume stochastic independence, even if they assume different
online information. An extensive interpretation of Theorem [B would suggest that stochastic
dependency (groups 2 and 3 in [2]) should be taken into account in order to find solutions
outside yTZ. In our context, stochastic dependency means that a history may provide
information on travel time distributions at future times.

4 Computational issues

We address some computational and algorithmic issues in this section; claims on the num-
ber and size of adaptive strategies are proved in Appendix B. As pointed out in |4, [3] the
multicriterion problems for time-adaptive route choice are computationally intractable, also
for r = 2 and for instances of reasonable size. Indeed, the solution space is extremely dense,
and thus very hard to explore with current state-of-the-art techniques. Similar conclusions
are drawn by Opasanon and Miller-Hooks |7] for history-adaptive route choice. In fact, the
latter case is likely to be even more difficult, for at least two reasons (see Appendix B):

e the number of HAS may be much larger (in some cases, exponentially larger) than
the number of TAS;

e while the size of a TAS is linear in the size of the STD network, a single HAS can
require exponential space.

For the above reasons, solution methods for weighted sum scalarizations become crucial.
Existing methods can solve a WSS efficiently, actually in polynomial time in the input
size |3, [7]; however, these methods only return one single WSS-optimal TAS. According
to Theorem Bl a single TAS suffices as long as extreme solutions are searched. However,
non-extreme supported solutions may be relevant as well, as shown by our example.

Example [ (continued) The two supported HAS S%°? and S%%, as well as the extreme
TAS S°? and S, are optimal solutions to a WSS with weight w = [1,1]. Only the extreme
TAS can be found by existing methods, even though S¢°? and S%% may be more attractive,
since they offer a better time/cost trade-off. Note that the two successors of node b at time
3 are both optimal, since w?[9,0] = w?[5,4]. This is not the case for node b at time 2,
where (b, ¢) is the only optimal successor. If we forbid the non-optimal successor (b, d) at
time 2 (i.e., we remove hyperarc ey;(2) from the time-expanded hypergraph) the remaining
efficient solutions are exactly S©°¢, Sed¢ §ed and Se. ([

In practice, we may be interested in finding all the non-dominated labels corresponding
to optimal solutions to a WSS, including labels corresponding to WSS-optimal HAS that
are not TAS. In general, this is a difficult task, since the number of optimal labels for a
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single WSS can be exponential in the input size, see Appendix B. Up to our knowledge, no
methods have been proposed for this task, except of course finding all the efficient HAS.
The above observations on our example suggest a possible approach. Given a weight vector
w we proceed as follows.

1. find a WSS-optimal TAS, keeping track of all the optimal successor arcs for each
intermediate node and time;

2. apply a labelling algorithm where, for each intermediate node and time, only the
optimal successor arcs tracked in the previous step are used.

It follows from Lemma 2] (we omit details here) that the above method finds all the non-
dominated labels in Vg corresponding to WSS-optimal HAS for w. Both steps require
minor changes in existing algorithms.

Note that the above approach defines a sort of “hybrid” between labelling and two-
phase methods, which seems to be quite suitable for the bicriterion case. For r = 2 each
face of y% is a segment, defined by a unique weight w that can be found in polynomial
time, see [3]. By applying the method above to each w defining a face we can find all the
supported solutions under history-adaptive route choice. Clearly, this process is intractable
in general, however, the overall computational effort may be reasonably affordable as long
as, for each w, the second step works on a small fraction of the whole STD network.

5 Final remarks

In this paper we investigated relations and differences between two known models for
multicriterion routing in STD networks. Our results can be summarized as follows.

e we described the structure of the solutions for the two models;

e we classified the two models according to the taxonomy given by Gao and Chabini

[2];

e we showed that, opposed to HAS, an efficient TAS is not necessarily strongly efficient;
however, extreme efficient TAS are strongly efficient;

e we showed that a WSS always admits an optimal TAS, which implies that the two
models define the same extreme nondominated points;

e we showed that the number and size of the solutions grow exponentially when moving
from time-adaptive to history-adaptive route choice; this remains true even if only
supported solutions are considered;

e we proposed a hybrid two-phase/labeling method finding supported HAS that are
not TAS.

11



Due to the inherent intractability of multicriterion routing problems for both models,
further research should concentrate on heuristic methods, e.g., scalarization techniques or
e-approximations. To this aim, the theoretical results provided in this paper may provide
a useful guidance. In particular, the hybrid approach proposed here may be an interesting
subject for further research.
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is the set of possible travel times. Each value csz’“ (t) occurs with probability pkz"( t), thus

szzl D pf]zk(t) = 1. This model is unnecessarily detailed, since for each criterion £ > 1,

it suffices to know the expectation

D

cht) =" (1) o).

Zkzl

In order to prove that the simplified model is correct, it suffices to show that the formula
used to compute new labels for criteria other than travel time (see Step 3 of Algorithm
APS, Section 4 in [7]) can be simplified as follows:

nit) = Z(zl,x €Q ZZ 1 [ sz( )+>‘k (t""clzl (t)) } pz1J21 prZk(t)
= Stemmeq PO [SE R0 4540 + DO (@) o)
Z@w i@ i () [ehi(@) + N (t+ e (1)]
= B S A7 DN+ (1)

Note that this simplification is purely algebraic, and does not depend on the choice of the
labels to combine, i.e. on the value of x. Since the new label is obtained as a function
of the expectation cj;(t) (and of the travel time distribution) the model assigning a single
expected value can be adopted without loss of generality.

Clearly, in both models the distribution is necessary for travel times; indeed, for £ = 1

the two models are equivalent: given ¢’ = ¢ + clz1 we have ¢’ € A, and pj;(t') = pllfl.

Appendix B: number and size of strategies

We define a (somehow pathological) STD network that may help to figure out the inherent
difficulty of history-adaptive route choice.
Given K > 1 consider the topological network G = (N, A) satisfying:

N:{ui: 0<i<K+1} U {,Ui: 0<i<K)
A:{(ui,vi), (Ui’ui—i-l) O<z<K} U {(K K+1)}

We identify the origin 0 = u° and the destination d = u®*!. Note that G is an o-d path
plus the single arc (v, d). We define the STD network as follows.

e Each arc (uf,v?) with i < K is stochastic but time independent: possible travel times
are 1 and 2, with equal probability 1/2.

e Each arc (v',u™) with ¢ < K is time-dependent but deterministic: when leaving v°
at time t the travel time is 2 if ¢t modulo 3 = 1 and 1 otherwise.

o Arcs (uf,v%), (uf,d) and (v¥,d) have static travel time 1.

13
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Figure 5: Fragments of the time-expanded hypergraph

e Each arc has a static and deterministic zero cost, except arc (uf,d) that has cost
one.

Figure [b] may help to understand the structure of the time-expanded hypergraph. The
left part shows the fragment corresponding to arcs (u’,v") and (v',u'™), with leaving time
from node u’ at time 3i; the right part involves arcs (u,v®), (u®, u® 1) and (v, uf+1).
Note that the time subscript index of each node in the hypergraph is not shown. The STD

network satisfies:

1. If leaving node o at time 0, then the only possible arrival/departure time at each
node u' with i < K is 3i.

2. Since the leaving time from node u® is 3K = T — 1 the possible arrival times at d
areT'=3K+1land T+ 1=3K +2.

3. Routing decisions are possible only at node u® and time 7' — 1. Hence there are only
two time-adaptive strategies, corresponding to successor arcs (u€,d) and (u,v%),

denoted by S¢ and S, respectively.

4. Setting the time horizon H = [0, T + 1], a complete description of the STD network
or its input size is O(K?).

Theorem 4 The number of history-adaptive strategies can be exponential in the number
of time-adaptive strategies.

Proof There are 25 possible histories leading to node u”. For each of these histories either
node d or v may be the successor node of u” leading to 22" history-adaptive strategies
compared to only two time-adaptive strategies. [ ]

Theorem 5 The number of non-dominated labels corresponding to supported HAS that
are optimal for a single WSS can be exponential in the input size and also in the number
of supported TAS.
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Proof Time-adaptive strategies S? and SV yield labels [T, 1] and [T + 1,0], and are sup-
ported extreme solutions. Under history-adaptive route choice we have a set of 2% + 1
nondominated labels

yHZ{)\(j):[T+5j’ 1—4j]: OSJSQK}

where 6 = 275 and each AU is obtained by choosing arc (u®,v¥) for j out of the 2¥
possible histories at node u’. Note that \(?) and AC0) correspond to S and SV, respec-
tively. Labels in Yy identify points in the segment joining [T, 1] and [T+ 1, 0], thus they
correspond to supported solutions, in particular, optimal solutions to a WSS with weights
w = [1,1]. [

Note all HAS are supported HAS.

Corollary 2 The number of (supported) efficient HAS can be exponential in the number
of (supported) efficient TAS.

Moreover, since the number of HAS is 22 corresponding to 2% + 1 different labels we
have.

Corollary 3 The number of supported HAS corresponding to the same non-dominated
label can be exponential in the input size.

Let us now consider efficient labels at intermediate nodes, as they are generated by
the labelling algorithm APS proposed by Opasanon and Miller-Hooks [7]. For the sake of
simplicity, we associate these labels to nodes u°, ..., u" in G, since for each ! there is a
unique arrival /departure time 3i. For node u® we have two efficient labels [1,1] and [2, 0].
Now suppose that we have two labels [a, b] and [/, 1] at node u*!. Tt is easy to verify that
at node u’ we can obtain three efficient labels [3+a, b], [3+d’,b'] and [3+(a+a’) /2, (b+V) /2];
note that the last label is the mid-point of the segment joining the first two ones. In this
way we obtain three efficient labels at node u® 1, five efficient labels at node u® =2, ...,
2K=1 4 1 efficient labels at node u’. Clearly, this gives |Vy| = 2K + 1 efficient labels at
node u".

Theorem 6 The size of a single supported history-adaptive strategy, by means of the data
structure devised by Opasanon and Miller-Hooks [7], can be exponential in the input size,
i.e. exponential in the size of a TAS, which is linear in the input size.

Proof Assume that K is even. We know we have at least 2%/2 efficient labels at node
uf/2; we can use these labels to obtain 25/2=! labels at node u//2=1, 25/2-2 Jabels at node
w272 . 29 =1 label at node u°. In this way we define a single history-adaptive strategy
that requires at least 2% different labels to be represented, i.e., O(2%) space. By contrast,
a TAS requires at most linear space in the input size. [ ]
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