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Abstract

In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in

stochastic time-varying networks. They propose a label correcting algorithm for finding the

full set of efficient strategies. In this note we show that their algorithm is not correct, since

it is based on a property that does not hold in general.

Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem.

We give a simplified algorithm which is linear in the input size.

Keywords: Multiple objective programming; shortest paths; stochastic time-dependent net-

works; time-adaptive strategies.

1 Introduction

In this note we consider stochastic time-varying networks (STV networks, also known as stochastic
or random time-dependent networks) where the arcs carry multiple attributes. In particular, we
address some incorrect results contained in a recent paper by Opasanon and Miller-Hooks [5].

In STV networks travel times are modelled as random variables with time-dependent distri-
butions. STV networks were first addressed by Hall [2], who showed that the best route between
two nodes is not necessarily a path, but rather a time-adaptive strategy that assigns optimal
successor arcs to a node as a function of departure time. A detailed review of the literature on
the subject can be found in the recent paper by Gao and Chabini [1], where time-adaptive route
choice is considered in a more general framework, that takes into account several variants of online
information.
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The above works only consider a single objective. Nevertheless, due to the multi-objective
nature of many transportation and routing problems, a single objective function is not sufficient
to completely characterize most real-life problems. Several attributes such as time, cost and
incident rate may be of interest. If this is the case the solution will be a set of efficient (Pareto
optimal) strategies. Finding the efficient set is well known to be NP-hard also in deterministic
networks.

Previous work on the multi-objective case has been focused on discrete STV networks, where
travel times have integer-valued discrete distributions. Nielsen [3] and Nielsen, Andersen, and
Pretolani [4] consider the bicriterion case, and propose algorithms based on the two-phase method
for finding the set of efficient strategies, as well as fast heuristic methods providing reasonable
approximations. Opasanon and Miller-Hooks [5] consider the problem for an arbitrary number of
criteria. After pointing out some relevant properties of Pareto-optimal strategies, they propose a
label correcting algorithm (Algorithm APS) for finding the set of efficient strategies. Moreover,
since the generation of all such efficient strategies may require enormous computational effort,
they devise two algorithms that find a single strategy by minimizing the expectation of a weighted
sum of the criteria (referred to as “disutility”). In fact, this approach extends to r > 2 criteria, the
parametric problem considered in Nielsen [3] and Nielsen et al. [4].

We show that the work of Opasanon and Miller-Hooks [5] has some technical flaws, in particular,
one of the properties in their paper (Lemma 1) does not hold in general. As a result, the proof
of correctness of Algorithm APS is no longer valid, indeed, we provide an example where the
algorithm fails. More precisely, we show that APS may fail to generate all efficient strategies,
and may generate labels not corresponding to strategies. We also point out that the model of
STV network proposed by Opasanon and Miller-Hooks [5] is unnecessarily complicated and can
be simplified. As a consequence, we obtain an improved algorithm for the parametric problem,
whose complexity is linear in the size of the input. Note that this algorithm is essentially the same
proposed in [4, 3] for the bicriterion case.

For easiness of comparison in this paper, we adopt the notation from [5]; however, we skip most
of the definitions here, showing their application to a running example instead. To this purpose
we adopt the representation of an STV network as a time-expanded hypergraph, see Pretolani [6];
however, we use this representation only as a graphical tool, without any theoretical development.

In the next section we introduce the STV network model adopted by Opasanon and Miller-
Hooks [5], and we show a counterexample to their Lemma 1. In Section 3 we describe Algorithm
ASP, showing that it fails on the counterexample. In Section 4 we show a simplified network model
and an improved parametric algorithm. Final observations and motivations for further research
are briefly discussed in the last section.

2 STV networks, strategies, and dominance

Let G = (N ,A) be a directed graph, referred to as the topological network. Arrival and departure
times to/from nodes are integer in the interval [0, I], which corresponds to a peak period [t0, t0+I∆t]
discretized into time intervals of length ∆t.

We consider a set R = {1, 2, . . . , r} of r ≥ 2 criteria, thus with each arc we associate r proba-
bility distributions. For each arc (i, j) ∈ A, t ∈ [0, I] and k ∈ R, Ck = {ckzk

ij (t) : zk = 1, . . . ,D}
denotes the set of possible non-negative values for criterion k when travelling along arc (i, j) at de-
parture time t. Each value ckzk

ij (t) occurs with probability ρkzk

ij (t), thus
∑

zk=1,...,D ρkzk

ij (t) = 1. It

is assumed that travel times are identified with criterion 1; therefore, the set Aij(t) = {t+ c1z1

ij (t) :
z1 = 1, . . . ,D} contains the possible arrival times at node j when leaving node i at time t along
arc (i, j). Waiting at nodes is not permitted.

Note that the above model, adopted in [5], is unnecessarily involved; as we shall show later, it
suffices to consider a single possible value (i.e., D = 1) for each criterion other than travel time.
In the rest of this section we assume that for each arc (i, j) ∈ A, t ∈ [0, I] and criterion k > 1 we
have a single possible value, denoted by ck

ij(t). Note that this is the model adopted in [6] in the
case of a single cost criterion.
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(i, j), t (o, a), 0 (a, b), 1 (a, b), 2 (b, d), 2 (b, d), 3 (b, c), 2 (b, c), 3 (c, d), 4

C1 {1, 2} {1, 2} {1} {2} {9} {2} {1} {4}
Aij(t) {1, 2} {2, 3} {3} {4} {12} {4} {4} {8}

Table 1: Travel times and arrival times

o0

a1 a2

b2 b3

c4

d4 d8 d12o

a

b

c

d

8(1 + ε) 4

Figure 1: Topological network and time-expanded hypergraph

Example 1 Consider the topological network G = (N ,A) shown in the top left corner of Figure 1.
We assume that a traveller leaves the origin node o at time zero towards the destination node d,
thus we only consider departure times corresponding to the traveller’s possible arrival times at
intermediate nodes. For each arc (i, j) and relevant time t, the set C1 of travel times and the set
Aij(t) of arrival times are given in Table 1.

We only have two non-deterministic travel times, namely arc (o, a) at departure time 0 and arc
(a, b) at departure time 1; in both cases we assume that arrival times have the same probability
1/2, that is ρ1,1

oa = ρ1,2
oa = ρ1,1

ab = ρ1,2
ab = 1/2. Note that routing decisions are needed (actually,

possible) only at node b.
We represent the STV network by means of a time-expanded hypergraph, as shown in Figure 1.

For each node i ∈ G and time t we introduce a hypergraph node it; for each arc (i, j) and
departure time t we introduce a hyperarc eij(t) that connects node it to the set {jθ : θ ∈ Aij(t)}
of hypergraph nodes corresponding to possible arrival times at j. For example, hyperarc eab(1)
connects node a1 to the node set {b2, b3}, since Aab(1) = {2, 3}.

We assume r = 2, and we refer to criterion 2 as cost; the cost is zero for each arc and departure
time, except for the two cases shown in Figure 1, namely: arc (c, d) at departure time 4, with
cost c2

cd(4) = 4, and arc (b, d) at departure time 2, with cost c2
bd(2) = 8(1 + ε), where we assume

0 < ε < 1. ¤

According to the routing model proposed by Hall [2] a time-adaptive strategy assigns to each
node a successor arc as a function of departure time. In a discrete STV network, a strategy is
defined by choosing a single successor arc for each node i 6= d and time t. Each strategy associates
with each node i, time t and k ∈ R the expected value of criterion k for travelling from i to
the destination at departure time t. Given a strategy, the corresponding expected values can be
formally defined by means of a set of recursive equations, see e.g. Pretolani [6]. In practice, the
computation of these values consists in a labelling process such as the one described by Opasanon
and Miller-Hooks [5]. We illustrate this process by applying it to the strategies in our running
example.
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o0

a1 a2

b2 b3

c4

d4 d8 d12

[0, 0] [0, 0]

[4, 4]

[5, 4]

[2, 8(1 + ε)]

[6, 4]

[5, 6 + 4ε]

[7, 5 + 2ε]
(a) Strategy Sdc

o0

a1 a2

b2 b3

c4

d4 d8 d12

[4, 4]

[5, 4]

[0, 0]

[6, 4]

[6, 4]

[7, 4]

[8, 4]
(b) Strategy Scc

o0

a1 a2

b2 b3

c4

d4 d8 d12

[6

[0, 0] [0, 0]

[9, 0]

[2, 8(1 + ε]

[10, 0]

[7, 4(1 + ε)]

[10, 2(1 + ε)]
(c) Strategy Sdd

o0

a1 a2

b2 b3

c4

d4 d8 d12

[0, 0][0, 0]

[4, 4]

[9, 0]

[6, 4]

[10, 0]

[9, 2]

[11, 1]
(d) Strategy Scd

Figure 2: Strategies and corresponding time-cost pairs.

Example 1 (continued) In order to define a strategy, we must choose a successor for node b at
time 2 and at time 3; for the other nodes, only one successor is available. Since two choices are
possible at node b, namely going to the destination d or to the intermediate node c, we can define
four possible strategies. We denote these strategies by Sdd, Scd, Sdc and Scc, where u and v in Suv

denote the successor of b at time 2 and 3, respectively. The four strategies are shown in Figure 2;
each one is represented by the corresponding hyperpath, containing the hyperarcs corresponding
to the successor arcs.

Each strategy assigns to each hyperpath node it a label λi(t) = [λ1
i (t), λ

2
i (t)], where λ1

i (t) is
the expected travel time and λ2

i (t) is the expected cost for traveling from node i at departure
time t to the destination. For each destination node dt the label is [0, 0]. If (i, j) is the successor
arc of node i at departure time t, then the label of node it is obtained from the labels at nodes
{jθ : θ ∈ Aij(t)}. For instance, consider strategy Sdc; here label [4, 4] for c4 is obtained from [0, 0]
at d8, since both travel time and cost are 4 for arc (c, d) at time 4; the label [5, (6 + 4ε)] for a1

is obtained from labels [2, 8(1 + ε)] and [5, 4] (nodes b2 and b3), since the expected travel time is
(1 + 2)/2 + (2 + 5)/2 = 5, while the expected cost is 8(1 + ε)/2 + 4/2 = (6 + 4ε).

Figure 2 reports the labels assigned to hyperpath nodes by each strategy. The four circles in
Figure 3 plot the labels assigned to o0 by the four strategies for ε = 0.5. ¤

Since 0 < ε < 1, the labels λo(0) given by the four strategies turn out to be non-dominated.
However, if the labels λa(1) are considered, Sdd is dominated by Scc. Therefore, a traveller leaving
o at time zero and follows strategy Sdd has a nonzero probability (actually, probability 1/2) of
arriving at a at time one and afterwards following a dominated substrategy. Note also that no
other strategy yields the same label [λ1

o(0), λ2
o(0)] as Sdd. We may therefore state

Theorem 1 There may exist an efficient strategy S satisfying:

1. S contains non-efficient substrategies.

2. There does not exist any strategy S′ 6= S with the same label as S containing only efficient

substrategies.
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Note that similar results are given in [3] for the bicriterion case, where expected as well as
maximum possible values are considered. Theorem 1 shows that a well known property of de-
terministic bicriterion shortest paths does not extend to adaptive routing in STV networks and
thus contradicts Lemma 1 in Opasanon and Miller-Hooks [5]. As a consequence, the proof of
correctness of algorithm APS (Proposition 6 in [5]) is not valid, since it exploits Lemma 1. In the
next section we show that APS may actually fail.

3 The labelling algorithm

In this section we show that Algorithm APS can fail when applied to our running example. We only
provide a short summary of the algorithm here and refer the reader to Opasanon and Miller-Hooks
[5] for a complete description.

In general terms, APS is a label correcting algorithm that explores the topological network in
a backward fashion, starting from the destination d. For each node i and departure time t, APS
maintains an efficient set of labels, where each label is a vector containing the expected values
of the r criteria for one strategy. A set SE of scan eligible nodes is maintained throughout the
algorithm; at each iteration, a node j is removed from SE, and each arc (i, j) ∈ A is processed. In
this phase, in order to generate a label for i at time t, each possible combination of the labels of
node j at times in Aij(t) is considered. Whenever new labels are added to label sets, dominated
labels are dropped. Upon termination, the strategies corresponding to the final set of labels can
be retrieved by means of a suitable predecessor data structure.

Example 1 (continued) We consider a version of APS where the SE list is a FIFO queue. We
assume that when the destination d is selected, arc (c, d) is processed before arc (b, d), thus node c
is processed before node b. As before, labels correspond to time-cost pairs [λ1

i (t), λ
2
i (t)]; we denote

by Li(t) the set of labels for i at time t. APS calculates labels in the following way.

1. Node d selected. Arc (c, d): Lc(4) = {[4, 4]}; Arc (b, d): Lb(2) = {[2, 8(1 + ε)]}, Lb(3) =
{[9, 0]}. SE = {c, b}.

2. Node c selected. Arc (b, c): Lb(2) = {[2, 8(1 + ε)], [6, 4]}, Lb(3) = {[9, 0], [5, 4]}. SE = {b}.

3. Node b selected. Arc (a, b): La(2) = {[10, 0], [6, 4]}. For La(1) we have |Lb(2)| · |Lb(3)| = 4
possible combinations of labels, as described below:

λb(2) λb(3) λa(1)
1 [2, 8(1 + ε)] [9, 0] [7, 4(1 + ε)]
2 [2, 8(1 + ε)] [5, 4] [5, 6 + 4ε)]
3 [6, 4] [9, 0] [9, 2]
4 [6, 4] [5, 4] [7, 4]

Since 0 < ε < 1, label 4 dominates label 1, and the resulting set of efficient labels is
La(1) = {[5, 6 + 4ε)], [9, 2], [7, 4]}. SE = {a}.

4. Node a selected. Arc (o, a): at departure time 0 we have |La(1)| · |La(2)| = 6 possible
combinations:

λa(1) λa(2) λo(0)
1 [5, 6 + 4ε] [10, 0] [9, 3 + 2ε)]
2 [5, 6 + 4ε] [6, 4] [7, 5 + 2ε)]
3 [9, 2] [10, 0] [11, 1]
4 [9, 2] [6, 4] [9, 3]
5 [7, 4] [10, 0] [10, 2]
6 [7, 4] [6, 4] [8, 4]

Since label 4 dominates label 1, the resulting set of efficient labels (sorted in increasing order
of travel time) is Lo(0) = {[7, 5 + 2ε)], [8, 4], [9, 3], [10, 2], [11, 1]}. SE = {}.
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The five crosses in Figure 3 plot the efficient labels in set Lo(0). ¤

cost

time

1

11

2

3

4

5

6

7 8 9 10

Scc

Scd

Sdc

Sdd

Figure 3: Strategies and efficient labels (ε = 1/2).

Comparing the results of Algorithm APS to Figure 2 leads to two observations.

1. Algorithm APS fails to generate the label [10, 2(1+ ε)], corresponding to strategy Sdd. This
can be easily explained since the label corresponding to the dominated sub-strategy of Sdd

for node a at time 1 is discarded.

2. Algorithm APS returns two labels in Lo(0), namely [9, 3] and [10, 2], that do not correspond
to any strategy. This fact can be explained by observing that these labels are obtained by
combining conflicting substrategies. Consider label [10, 2] obtained by combining [7, 4] ∈
La(1) and [10, 0] ∈ La(2). As shown in Figure 4, [7, 4] is obtained from strategy Scc, that
assigns to node b the successor arc (b, c), while [10, 0] can be obtained only by choosing arc
(b, d) at time 3. Thus the substrategies corresponding to labels [7, 4] and [10, 0] conflict at
node b at departure time 3 and cannot be combined in a strategy. Similar observations can
be done for label [9, 3].

We conclude that Algorithm APS is not correct for two reasons: first, because it drops dom-
inated substrategies, contradicting Theorem 1; and second, because it combines conflicting sub-
strategies.

4 A simplified model, and a faster parametric algorithm

The STV network model adopted by Opasanon and Miller-Hooks [5] specifies a distribution of pos-
sible values for each criterion, arc (i, j) and departure time t. However, this model is unnecessarily
detailed, since for each criterion k > 1 it suffices to know the expectation

ck
ij(t) =

D
∑

zk=1

ckzk

ij (t) · ρkzk

ij (t).

Clearly, the distribution is necessary for travel times; note however that ck
ij(t) can be defined also

for k = 1. In order to prove that the simplified model is correct, it suffices to show that the
formula used to compute new labels for criteria other than travel time (see Step 3 of Algorithm
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o0

a1 a2

b2 b3b3

c4

d4 d8 d12

[0, 0][0, 0]

[4, 4]

[5, 4]

[9, 0]

[6, 4]

[10, 0]

[7, 4]

[10, 2]

Figure 4: Conflicting substrategies at node b and time 3.

APS, Section 4 in [5]) can be simplified as follows:

ηk
i (t) =

∑

(z1,x)∈Q

∑D

zk=1

[

ckzk

ij (t) + λk
jx

(

t + c1z1

ij (t)
) ]

· ρ1z1

ij (t) · ρkzk

ij (t)

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

∑D

zk=1 ckzk

ij (t) · ρkzk

ij (t) +
∑D

zk=1 λk
jx

(

t + c1z1

ij (t)
)

· ρkzk

ij (t)
]

=
∑

(z1,x)∈Q ρ1z1

ij (t) ·
[

ck
ij(t) + λk

jx

(

t + c1z1

ij (t)
)]

= ck
ij(t) +

∑

(z1,x)∈Q ρ1z1

ij (t)λk
jx

(

t + c1z1

ij (t)
)

Note that this simplification is purely algebraic, and does not depend on the choice of the labels
to combine. Since the new label is obtained as a function of the expectation ck

ij(t) (and of the
travel time distribution) the model assigning a single expected value (as originally defined in [6]
for the single criterion case) can be adopted without loss of generality.

Consider now the parametric problem (Section 4.2 in [5]), where we must find a strategy
minimizing the expectation of a weighted sum of the criteria with respect to weights w = {wk :
1 ≤ k ≤ r},

∑

k=1,...,r wk = 1. For each arc (i, j) and departure time t we define the parametric

cost cw
ij as follows:

cw
ij(t) =

r
∑

k=1

wk · ck
ij(t). (1)

Recall that Algorithm ALEDS II computes label Ui(t) for each node i and time t; the formula
used to compute these labels (Equation (2), Lemma 2 in [5]) can be rewritten as follows:

νi(t) =
∑r

k=1 wk ·
[

∑D

zk=1 ckzk

ij (t) · ρkzk

ij (t)
]

+
∑D

z1=1 Uj

(

t + c1z1

ij (t)
)

· ρ1z1

ij (t)

=
∑r

k=1 wk · ck
ij(t) +

∑D

z1=1 Uj

(

t + c1z1

ij (t)
)

· ρ1z1

ij (t)

= cw
ij(t) +

∑D

z1=1 Uj

(

t + c1z1

ij (t)
)

· ρ1z1

ij (t).

With the above simplification, Lemma 2 in [5] implies that for a given strategy S, the values Ui(t)
can be defined recursively as:

Ui(t) = cw
ij(t) +

D
∑

z1=1

Uj

(

t + c1z1

ij (t)
)

· ρ1z1

ij (t) (2)

where (i, j) is the successor of node i at time t in S. Equation (2) is a particular case of the
definition of cost given in [6]. We conclude that the parametric problem reduces to finding an
optimal strategy with respect to the parametric cost (1). This allows us to devise an improved
algorithm for the parametric problem, whose computational complexity is discussed below.
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Recall that we have r criteria and I +1 time instances. Let us denote by V = |N | and E = |A|
the number of nodes and arcs in the topological network. Let P denote the maximum number
of possible travel times for each arc and departure time, and let H be the sum, over all arcs
and times, of the number of possible travel times. We may assume H = Θ(P · I · E), even if in
some cases H may be significantly smaller than (P · I · E). For each criterion k > 1 we have one
possible value for each arc and time, thus the description of the input STV network has length
O(H + r · E · I), i.e., O(E · I · (r + P )).

First of all, note that the expected travel times λ1
ij(t) are not part of the input data, but can be

computed in O(H) time. Given a weight vector w, the parametric weights cw
ij(t) can be computed

in O(r ·E · I) time. The best strategy for a single cost criterion can be found in linear time in the
size of the time-expanded hypergraph, which is O(H) [6]. We thus have the following result.

Proposition 1 The parametric problem can be solved in linear time in the input size, that is, in

O(E · I · (r + P )) time.

It is interesting to compare this result to the complexity of algorithm ALEDS II, namely O(V 3 ·
I2 · P · r). Assuming E = Θ(V 2), as implicitly done in [5], our method improves on ALEDS II of
a factor V · I · (P · r)/(P + r), i.e. O(V · I · min{P, r}).

As a final remark, it is worth noting that some efficient strategies may not be found by solving
the parametric problem, regardless of the chosen weights. In fact, it is well known that only
supported efficient solutions can be found with this approach. In our running example, Sdd is an
unsupported strategy which cannot be found by solving the parametric problem. The interested
reader is referred to [4] for further details about finding unsupported points.

5 Final remarks

The results provided in the previous sections show that Algorithm APS should be modified in (at
least) two ways:

1. Labels obtained by combining conflicting sub-strategies must be ignored.

2. Dominated labels cannot be discarded.

Although a correct labelling algorithm may be obtained in this way, its practical efficiency remains
questionable. On the other hand, alternative approaches seem to show some weaknesses as well;
this is the case, for example, of the two-phase method proposed in Nielsen et al. [4]. These
results seem to indicate that bicriterion adaptive routing in STV networks is quite hard, so that
approximation algorithms may be a reasonable direction for further research.

Interestingly, we can look at the issue of conflicting substrategies in the labelling approach
from a different perspective. Consider again Figure 4, showing the computation of label [10, 2];
this figure can be interpreted in terms of a traveller choosing the successor of node b at time 3 as
follows:

- if the departure time from a was 1 go to node c.

- if the departure time from a was 2 go to the destination node d.

The reader can easily verify that the pair [10, 2] correctly gives the expected travel time and cost
obtained with this route choice. However, this route choice is not allowed in the time-adaptive
model, since the successor at node b and time 3 is not unique, but depends on the departure
time from a. Such route choice would be allowed in a more general routing model, that we
may define as a history-adaptive route choice, where the successor arc for each node and time is
chosen as a function of the previous events, i.e. realizations of travel times. In general, the labels
computed by Algorithm APS may be interpreted in terms of history-adaptive strategies. Since the
history-adaptive model is more flexible, we may expect some efficient time-adaptive strategies to
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be dominated by history-adaptive strategies; indeed, this is the case for strategy Sdd, dominated
by the history-adaptive strategy in Figure 3, i.e. by label [10, 2].

Here we do not state any formal definition or property of history-adaptive route choice; as
a matter of fact, at this time we do not know whether such a model may be suitable in some
application and is computationally tractable; we believe however that this may be an interesting
subject for further research.
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