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Abstract: One of the most important operations in the production of growing/finishing pigs is the

marketing of pigs for slaughter. While pork production can be managed at different levels (animal,

pen, section, or herd), it is beneficial to consider the herd level when determining the optimal mar-

keting policy due to inter-dependencies, such as those created by fixed transportation costs and cross-

level constraints. In this paper, we consider sequential marketing decisions at herd level. A high-

dimensional infinite-horizon Markov decision process (MDP) is formulated which, due to the curse of

dimensionality, cannot be solved using standard MDP optimization techniques. Instead, approximate

dynamic programming (ADP) is applied to solve the model and find the best marketing policy at herd

level. Under the total expected discounted reward criterion, the proposed ADP approach is first com-

pared with a standard solution algorithm for solving an MDP at pen level to show the accuracy of the

solution procedure. Next, numerical experiments at herd level are given to confirm how the marketing

policy adapts itself to varying costs (e.g., transportation cost) and cross-level constraints. Finally, a

sensitivity analysis for some parameters in the model is conducted and the marketing policy found by

ADP is compared with other well-known marketing polices, often applied at herd level.

Keywords: OR in agriculture; approximate dynamic programming; Markov decision process; herd

management; stochastic dynamic programming.

1 Introduction

One of the most important operations in the production of growing/finishing pigs is the marketing

(culling) of pigs for slaughter. Each week, the farm manager must decide which pigs should be deliv-

ered to the abattoir and when the pen (or section) should be emptied (Kure 1997). In the production

system, animals may be considered at different levels: herd, section, pen, or animal. The herd is a

group of sections, a section includes a number of pens, and a pen involves some animals (usually
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15-20 animals). Marketing decisions can be considered at different levels, e.g., animal (Glen 1983)

or pen (Kristensen, Nielsen, and Nielsen 2012) and (Kure 1997). The complexity of the marketing

decisions depends on the number of levels that are taken into account simultaneously and on how

decisions at different levels are linked together. In other words, cross-level constraints between pen,

section, and herd level can affect marketing decisions and they should be considered in the problem.

For example, all pens in a section have to be terminated at the same time and it may be optimal to

terminate a section before all the remaining pigs in the section reach their optimal individual weight

to keep the length of a production cycle short. In this paper, we focus on marketing decisions at herd

level. In the following, we describe the problem in more detail.

A production cycle in the production process of finishing pigs in a section is started by buying

piglets on the market or transferring them from another production unit when they weigh approxi-

mately 30 kilograms. In the section of the finisher herd, the piglets grow until marketing (9-15 weeks).

Because pigs grow at different growth rates, they obtain their slaughter weight at different times in the

last weeks of the growing period. Hence, at the end of the growing period, the decision maker should

determine which pigs should be selected for slaughter in each pen (individual marketing) and after a

sequence of individual marketings, the decision maker must decide when to terminate (empty) each

section. Terminating a section means that the remaining pigs in the section are sent to the abattoir (in

one delivery) and after cleaning the section, another group of piglets (each weighing approximately 30

kilograms) is inserted into the pens of the corresponding section and the production cycle is repeated.

During the marketing period, marketed pigs from the pens are grouped in one weekly delivery and are

transported to the abattoir by means of a number of trucks. Depending on the number of marketed

pigs at herd level and the capacity of each truck, the decision maker should also determine the number

of trucks needed to transport the pigs to the abattoir. That is, transportation costs may have an effect

on the marketing policy of the fattening pigs. In most Danish herds, transportation of culled pigs is

handled by a single abattoir and the transportation cost is fixed per truckload.

The reward of marketing depends on the price of the carcass weight in the abattoir, the cost of

buying the piglets, the cost of feeding the pigs, and the cost of transporting the culled pigs to the abat-

toir. Other costs such as labour and veterinary services are assumed fixed and are not included in the

model. The best meat price is obtained if the carcass weight lies within a specific interval. Therefore,

the farmer must time the marketing decisions while simultaneously considering the carcass weight

in relation to the best interval, the transportation cost of trucks (more pigs per truck better utilizes

capacity), and the length of the production cycle for feeding the rest of the pigs (small production

cycles give a higher throughput per time unit). For an extended overview over pig production of

growing/finishing pigs, see Pourmoayed and Nielsen (2014).

Marketing decisions have been studied by a number of researchers. Kure (1997) proposed a recur-

sive dynamic programming method and used replacement theory concepts to find the best marketing

strategy. In the study by Jørgensen (1993), a hierarchical Markov decision process (HMDP) was ap-

plied to analyse the precision of the weighing methods on the marketing policy of fattening pigs. Toft,
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Kristensen, and Jørgensen (2005) combined decisions related to the delivery strategy of pigs to the

abattoir and epidemic diseases using an HMDP. In the study by Kristensen et al. (2012), an HMDP

was employed to model marketing decisions with online weight information and the state space of

the HMDP was related to state space models using Bayesian updating. In the study by Plà-Aragonés,

Rodriguez-Sanchez, and Rebillas-Loredo (2013), the optimal marketing policy was found by a mixed

integer linear programming method under an all-in all-out strategy. They formulated the problem by a

mathematical programming model and solved their model using a heuristic approach under different

pig size distributions and pig growth rates. Niemi (2006) applied a stochastic dynamic programming

method to find the best time of marketing for an individual pig and the best nutrient ingredients in

the feed-mix, simultaneously. In a recent study, Pourmoayed, Nielsen, and Kristensen (2016) have

considered optimal marketing and feeding strategies at pen level.

To the best of our knowledge, few studies consider the problem at herd level and take the effect

of transportation costs on marketing decisions into account. Boys, Li, Preckel, Schinckel, and Foster

(2007) analysed the effect of single and multiple shipping decisions on the marketing strategy of

a heterogeneous herd using a simulation method. For each simulation instance they optimize the

shipment times to the abattoir. No fixed transportation cost is assumed and the pigs must be shipped

in full truckloads if possible. Ohlmann and Jones (2011) used a mixed integer programming (MIP)

model to find the best marketing strategy in a barn of pigs. Pig growth is modelled using a set of

weight classes and the weekly growth is modelled using growth transition probabilities. A fixed

transportation cost is assumed. A sequence of MIP models are solved for different length of the

production cycle to identify the cycle length that maximizes the objective. In both studies, a single

section is considered (the whole barn must be cleaned) and marketing decisions are examined under

an annual profit criterion.

In this paper, we consider marketing decisions in a herd composed of sections and pens. We

formulate the sequential marketing decisions using a discounted infinite-horizon Markov decision

process (MDP) and assume that the production process is cyclic at section level, i.e., when a section is

terminated, a new batch of piglets is inserted into the pens of this section and a new production cycle

is started. The model is stochastic due to the uncertainty of the growth of the pigs. This uncertainty

is described by a stochastic process relying on state space models formulated in Pourmoayed et al.

(2016). Due to the large number of states and actions in the model, the curse of dimensionality

becomes apparent and the usual solution procedures for MDPs (e.g., policy iteration) can not be used

to solve the model. Therefore, we use an approximation strategy to identify a marketing policy at herd

level. More precisely, we first use the properties of the value function in a discounted infinite-horizon

MDP at pen level to find an approximation architecture for the value function at herd level, and next

we apply an approximate dynamic programming (ADP) approach with post-decision states to find the

best marketing policy at herd level (Powell 2007).

The main idea of approximate dynamic programming is to approximate the value function by

finding the best actions for a set of states observed in the system. The approximation architecture of
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the value function is often described by a parametric function and there are well-known algorithms ex-

ploiting simulation and linear programming techniques to estimate the parameters (see e.g., de Farias

and Van Roy 2003, Powell 2010, Topaloglu and Powell 2006). For more details about ADP algo-

rithms, the interested reader may refer to Powell (2007). Examples of approximation strategies used

to optimize livestock systems are Kristensen (1992) and Ben-Ari and Gal (1986) that exploit a param-

eter iteration algorithm developed by Gal (1989) to find the best replacement policy in a dairy herd. In

these studies, however, the estimation of transition probabilities and the calculation of expected value

operators in the solution procedure are computationally challenging and require much computational

effort, due to complicated transition functions and large state and action spaces. In the present study,

we have reformulated the Bellman equations in the form of post-decision states and we thereby gain

a significant improvement in the computational efficiency (CPU time) of the solution procedure and

present a novel approach for optimizing livestock systems modelled by high-dimensional MDPs. To

summarize, the main contributions of this paper are as follows.

We formulate a novel MDP model for sequential decision-making at herd level optimizing the total

expected discounted reward over an infinite time horizon. The model is a high-dimensional MDP and

differs from the model in Pourmoayed et al. (2016) which only consider marketing decisions at pen

level (modelled as an HMDP). The MDP model differs from previous papers focusing on herd level

(Boys et al. 2007, Ohlmann and Jones 2011) in both methodology and assumptions. In both Boys

et al. (2007) and Ohlmann and Jones (2011) a single section is assumed. That is, the whole barn must

be terminated and cleaned before new piglets can be inserted. We extend this to multiple sections, that

may be terminated at different times depending on the production state in each section.

Our model optimizes decisions dynamically. That is, decisions are optimized based on the current

state of the system, the present reward, and the expected value of the future states in the system. As

a result, the length of the production cycle under a policy is stochastic and different decisions may

be taken depending on the realization of states. The uncertainty is described by stochastic processes

relying on state space models formulated in Pourmoayed et al. (2016). That is, a Bayesian approach

is used to update the system such that it contains the relevant information based on the realized obser-

vations. The state space models are embedded into the MDP such that the state of each pen is found

using the current data stream for each pen in the herd. That is, the model takes into account the impact

of the sectioning of the production facility. As a result, the model has an operational focus.

Because our MDP suffers from the curse of dimensionality, we formulate a tailored ADP al-

gorithm to find the best marketing policy at herd level which is validated on a small sized model.

Extensive computational results are given for a standard Danish herd. First, we analyse the effect

of increasing fixed transportation cost on marketing decisions. Next, we show that the policy found

using ADP outperforms other well-known marketing policies in the industry. Finally, we examine the

effect of changes in feed cost and pork price.

The rest of the paper is organized as follows. In Section 2, sequential marketing decisions are

modelled using a discounted infinite-horizon MDP model. Section 3 describes an approximate dy-
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namic programming approach for solving the MDP model. In Section 4, numerical examples are

given and the policy resulting from the ADP is compared with other marketing policies, and finally in

Section 5, conclusions are given.

2 Model description

An infinite-horizon MDP models a sequential decision problem over an infinite time horizon. We

assume weekly decision epochs and let S denote the finite set of system states at an arbitrary decision

epoch. Given system state s ∈ S at the current stage or decision epoch, an action a from the finite set of

allowable actions A(s) is chosen resulting in an immediate reward r(s,a) and a probabilistic transition

to state s+ ∈ S at the next decision epoch. This transition is based on the transition function φ(s,a,ω)

where ω denotes random information received between the current and next decision epochs. Random

information ω depends on a stochastic process affecting the system state. A policy π is a decision rule

or function that assigns for each state an action a = π(s) ∈A(s), i.e., a policy prescribes which action

to take for each state. Our goal is to find a policy that maximizes the total expected discounted reward

over an infinite time horizon:

max
π

E

(
∞

∑
n=1

γ
n−1rn(s,π(s))

)
, (1)

where γ is the discount factor used to calculate the net present value and subscript n is added to show

the stage number. We assume that S and A(s) are finite, 0 < γ < 1, and r(s,a) is bounded. Hence

an optimal policy can be found among the set of deterministic stationary policies (Puterman 2005,

Theorem 6.2.10) and a unique solution to the following optimality equations will exist (Puterman

2005, Section 6.2):

ν(s) = max
a∈A(s)

( r(s,a)+ γE
(
ν(s+)

)
), ∀s ∈ S, (2)

where s+ = φ(s,a,ω), and the value function ν(s) denotes the expected discounted reward of being

in state s.

We consider the following assumptions when modelling sequential marketing decisions at herd

level:

1. A herd consists of |I| sections and each section i∈ I includes |J| pens (for simplicity and without

loss of generality, we assume that the number of pens is the same in all sections).

2. In the beginning of a production cycle in a section, each pen is filled with qmax pigs.

3. The marketing decisions are made on a weekly basis and the culled pigs are transferred to the

abattoir after a few days.

4. Individual marketing at pen level is started in week tmin at the earliest.
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5. A section is terminated in week tmax at the latest, i.e., the maximum life time of a pig is tmax

weeks.

6. Weekly deliveries to the abattoir are based on a cooperative agreement where culled pigs from

each section in the herd are grouped and transferred to the abattoir by trucks. Transportation

of culled pigs is handled by the abattoir and the transportation cost is fixed per truck. Hence,

variable costs of transportation, e.g., costs of loading a pig into the truck, are not considered in

the model.

7. A section is cleaned after termination. After the cleaning period, a new batch of piglets is

inserted into the pens immediately, i.e., piglets are always available. Moreover, information

about the current growth and weight of the piglets is known at insertion time.

8. The production process is independent among sections, i.e., piglets can be inserted into different

sections at different times, and a section can be terminated independent of other sections.

9. The sequence of feed-mixes used during the production cycle (feeding strategy) is known and

fixed.

10. A new batch of piglets and the required feed stock are bought at known and fixed prices.

11. The pigs are sold to the abattoir according to a known settlement pork price function.

To define the MDP, we describe the state space, action space, rewards, and transition function in the

following subsections.

2.1 State space

In a given decision epoch, state s ∈ S is defined using state variables:

ti week number in a production cycle of section i ∈ I;

qi j number of remaining pigs in pen j ∈ J of section i ∈ I;

wi j = (µi j,σi j,gi j) weight information of the pigs in pen j ∈ J of section i ∈ I. The three state

variables µi j, σi j, and gi j correspond to the estimated mean and standard deviation of the pig

weights and the average growth of the pigs in the pen, respectively. The values of these variables

can be obtained by using repeated measurements of weight and feed intake data at pen level

applied to a state space model using Bayesian updating (see Pourmoayed et al. (2016)).

That is, state s is represented as s = (t,q,w) where

t =(t1, .., ti, .., t|I|),

q =(q11, ..,qi j, ..,q|I||J|),

w =(w11, ..,wi j, ..,w|I||J|),
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and the set of states becomes

S = {s = (t,q,w) | ti ∈ {1, . . . , tmax},

qi j ∈ {0 · I{ti>tmin}+qmaxI{ti≤tmin}, . . . ,q
max},wi j ∈W, i ∈ I, j ∈ J},

where I{·} denotes the indicator function. The set W denotes the set of weight information that is the

result of the discretisation of the possible outcomes for the statistical models embedded into the MDP;

this discretisation is described in Section 4.1. The statistical models are taken from Pourmoayed et al.

(2016) and a short review is given in Appendix A.

2.2 Action space

Assume that the pigs are sorted in ascending order based on their live weight in each pen such that

index k denotes the kth lightest pig in the pen. We consider the following decision variables for

defining action a:

xi jk equals 1 if the kth pig (k ∈ {1,2, . . . ,qi j}) in pen j ∈ J of section i ∈ I is culled and zero

otherwise;

yi equals 1 if section i ∈ I is terminated and zero otherwise.

Hence action a is defined as a = (x,y) where

x =(x111, ..,xi jk, ..,x|I||J|q|I||J|),

y =(y1, ..,y j, ..,y|I|),

and the set of possible actions A(s) is defined using the following constraints:

xi jk ≤ xi jk+1, ∀i ∈ I, j ∈ J,k ∈ {1,2, . . . ,qi j−1}, (3)

∑
j∈J

qi j−∑
j∈J

qi j

∑
k=1

xi jk ≤M(1− yi), ∀i ∈ I, (4)

∑
j∈J

qi j−∑
j∈J

qi j

∑
k=1

xi jk ≥ (1− yi), ∀i ∈ I, (5)

∑
i∈I

∑
j∈J

qi j

∑
k=1

xi jk ≤ ktruckz, (6)

z integer, (7)

xi jk binary, ∀i ∈ I, j ∈ J,k ∈ {1,2, . . . ,qi j}, (8)

yi binary, ∀i ∈ I. (9)

Due to the order of the sorted pigs in the pen, constraint (3) enforces that a lighter pig cannot be culled

earlier than the heavier pigs. If section termination happens (yi = 1), big-M constraint (4) implies that
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all the remaining pigs in the pens of section i must be culled. Moreover, if all pigs are culled in

section i, (5) ensures that this section will be terminated (yi = 1). Constraint (6) expresses that the

total number of marketed pigs in the herd must be less than the capacity of the trucks called from the

abattoir. In this constraint, ktruck is the capacity of one truck and z is a supplementary integer variable

denoting the number of trucks needed to transport the marketed pigs to the abattoir which is uniquely

determined given action a.

In addition, if state s = (t,q,w) is observed such that 1 ≤ ti ≤ tmin then xi jk = 0 for all j ∈ J and

k ∈ 1,2, ...,qi j because marketing is not allowed. Also if ti = tmax, then yi = 1 since the section must

be terminated in the last week of the production cycle.

2.3 Rewards

The reward of action a ∈ A(s) is calculated as the revenue of selling the marketed pigs to the abattoir

minus the cost of feeding the remaining pigs until the next decision epoch, the cost of transferring the

marketed pigs to the abattoir by trucks, and the cost of buying a new batch of piglets (if a section is

terminated). Hence, the reward associated with state s and action a is formulated as

r(s,a) = ∑
i∈I

∑
j∈J

qi j

∑
k=1

ccullk (wi j)xi jk−∑
i∈I

∑
j∈J

qi j

∑
k=1

cfeedk (wi j)(1− xi jk)− ctruckz−∑
i∈I

cpiglet|J|qmaxyi,

(10)

where ccullk (wi j) is the expected unit reward of selling the kth pig in pen j of section i to the abattoir

given weight information wi j. Similarly, cfeedk (wi j) denotes the expected feeding cost of the kth pig in

pen j of section i kept in the herd until the next decision epoch. Note that when marketing decisions

are made, culled pigs are sent to the abattoir after a few days and therefore the additional feeding

cost and reward, resulting from the weight gain of culled pigs in this period, are considered in the

calculation of ccullk (wi j). We use a simulation method to calculate functions ccullk (wi j) and cfeedk (wi j)

given weight information wi j (for more details, see Appendix B). The coefficient ctruck is the fixed

truck cost for transporting the culled pigs to the abattoir, and cpiglet is the cost of buying a new piglet

in the beginning of a production cycle.

2.4 Transition function

Given state s = (t,q,w) and action a, the transition function φ(s,a,ω) = (t+,q+,w+) = s+ describes

how the system evolves from state s to state s+. That is, for every i ∈ I and j ∈ J, we have

ti+ = (1− yi)(ti +1)+ yi,

qi j+ = (1− yi)(qi j−
qi j

∑
k=1

xi jk)+ yiqmax,

wi j+ = (1− yi)Γ(wi j,ω)+ yiw0,
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where w0 denotes the weight information at the start of a production cycle and the stochastic function

Γ(wi j,ω) describes a stochastic transition between wi j and wi j+ given random information ω. This

transition relies on two state space models using Bayesian updating presented in Pourmoayed et al.

(2016). Hence, given weight information wi j = (µi j,σi j,gi j), in state s, the transition probabilities can

be calculated. For more details about this stochastic process, see Appendix A.

3 Approximate dynamic programming

Solving the model using the optimality equations in (2) is not possible in practice. First, the sizes

of the state and action spaces in the model are prohibitive and hence computation of ν(s) for every

possible state is impossible. Second, due to the large number of states and possible outcomes for

random information ω, an exact computation of the expected value E
(
ν(s+)

)
in (2) is expensive.

Finally, due to the expected value operator, the maximization problem in (2) is not deterministic and

hence it may be difficult to solve it and find the optimal actions. These computational challenges are

known as the three curses of dimensionality (Powell 2007, Section 4.1) that prevent us from applying

standard solution algorithms (e.g., policy and value iteration) to solve the model.

In this section, we formulate an approximate dynamic programming (ADP) algorithm using post-

decision states to find an approximate solution for the model. First, in Section 3.1, we design a

parametric approximation architecture for the value function ν(s). Second, in Section 3.2, the opti-

mality equations are reformulated in terms of post-decision states to find a deterministic version of the

maximization problem in (2). Finally, in order to estimate the parameters of the approximated value

function, an approximate value iteration algorithm is employed and presented in Section 3.3.

3.1 Approximation architecture of the value function

In order to find an approximation architecture for the value function, we have to consider a balance

between the computational efficiency and the quality of the resulting policy. For instance, a second

or third polynomial approximation for the value function ν(s) may change the maximization problem

in (2) to a very difficult non-linear model (Powell and Van Roy 2012). In this study, we use our

knowledge about the value function at pen level to find an approximation architecture for the value

function at herd level (Pourmoayed et al. 2016).

Due to the hierarchical structure of the herd with sections and pens, we assume that the value

function at herd level is additive over the value functions at pen level. That is, an approximation of

the value function is:

ν(s)≈∑
i∈I

∑
j∈J

νi j(ti,qi j,wi j), (11)

where νi j(ti,qi j,wi j) denotes the value function related to pen j of section i including qi j pigs in week

ti with weight information wi j. According to the form of the value function when optimizing at pen
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s−...

sa
− s

sa s+

sa
+

...

ϕ(s−,a)

ψ(sa
−,ω)

ϕ(s,a)

ψ(sa ,ω)

ϕ(s+,a)

Figure 1: The relation between pre- and post-decision states over three stages. ϕ(·) indicates a de-
terministic transition from a pre-decision state to a post-decision state, and ψ(·) shows a stochastic
transition from a post-decision state to a pre-decision state. Subscripts ‘-’ and ‘+’ clarify a state in the
previous and the next decision epochs, respectively.

level (Pourmoayed et al. 2016), a good functional form of νi j(ti,qi j,wi j) is

νi j(ti,qi j,wi j)≈ qi jb(ti,wi j), (12)

where b(ti,wi j) is a parameter describing the effect of weight information wi j in week ti at pen level.

Note that b(ti,wi j) is the value of having exactly one pig more in the pen and hence it is the gradient

or slope parameter of the value function with respect to the number of remaining pigs, qi j.

By substituting (12) in (11), the final form of the approximation architecture for the value function

at herd level becomes

ν(s)≈∑
i∈I

∑
j∈J

qi jb(ti,wi j), (13)

which eliminates the need for updating the value function for every possible state as we now only need

to estimate the slope parameter b(ti,wi j) for ti ∈ {1, ..., tmax} and wi j ∈W. Note that since the number

of slope parameters is much lower than the number of possible states, the computational effort of the

solution algorithm will be noticeably reduced.

3.2 Post-decision states

The transition function φ(s,a,ω) can be split such that the effect of action a and random information

ω is separated. For a given state s = (t,q,w) and action a, the transition to s+ = φ(s,a,ω) is divided

into two steps:

sa =ϕ(s,a) = (ta,qa,wa), (14)

s+ =ψ(sa ,ω) = (t+,q+,w+),
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where for every section i ∈ I and pen j ∈ J:

ta
i = (1− yi)(ti +1)+ yi,

qa
i j = (1− yi)(qi j−

qi j

∑
k=1

xi jk)+ yiqmax,

wa
i j = (1− yi)wi j + yiw0.

State sa is often defined as the post-decision state, and s+ as the pre-decision state (Powell 2007).

The deterministic transition function ϕ(s,a) only considers the effect of action a while the stochastic

transition function ψ(sa ,ω) takes into account the effect of random information ω. That is, the post-

decision state sa is the state of the system immediately after making the decision while the pre-decision

state s refers to the state of the system just before a decision. Figure 1 shows the relation between pre-

and post-decision states over three stages.

Now suppose s ∈ S is the pre-decision state of the system at the current decision epoch. Moreover,

assume that sa ∈ S and sa
− ∈ S are two post-decision states in the current and the previous decision

epochs, respectively. According to the transition function ψ(sa
−,ω), the pre-decision state s is the

result of a stochastic transition from post-decision state sa
− (see Figure 1) and hence we can conclude

that

ν(sa
−) = E(ν(s)|sa

−) . (15)

Furthermore, by reformulating the optimality equations in (2), the value of being in pre-decision state

s is

ν(s) = max
a∈A(s)

(r(s,a)+ γν(sa)) , (16)

where sa = ϕ(s,a). Now by substituting (16) in (15), the optimality equation for the value function

in post-decision state sa
− becomes

ν(sa
−) = E

(
max

a∈A(s)
( r(s,a)+ γν(sa))|sa

−

)
. (17)

Note that in (17), the expectation is now outside the max operator and the main benefit of using this

optimality equation, compared to (2), is that the optimization problem contained in the expectation

is deterministic and hence it can be solved by well-known optimization techniques. However, to

calculate ν(sa
−), the expectation in equation (17) must be computed. Calculation of this expected

value is often computationally intractable and is approximated using simulation techniques. For more

details about post-decision states, see Powell (2007, Chapter 4).

3.3 Approximate value iteration algorithm

An approximate value iteration (AVI) algorithm is used to estimate the value function (17) using the

approximation architecture of the value function defined in (13) and post-decision states. That is,
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Algorithm 1 - AVI (approximate value iteration algorithm)

1 INI: Set h = 1 and initialize the slope parameters b̂ (Pourmoayed et al. 2016);
2 DO

3 Select s randomly; b̂− := b̂;
4 FOR n = 1 TO N DO
5 Solve a∗ = argmaxa∈A(s)(r(s,a)+ γν̂

b̂
(sa ));

6 IF (n > 1) THEN b̂ :=UpdateSlope(s, sa
−, h, b̂, a∗);

7 sa∗ = ϕ(s,a∗);
8 s:=ψ(sa∗ , ω̃) (where ω̃ denotes a sample generated);

9 sa
− := sa∗;

10 END FOR
11 h := h+1;
12 UNTIL (n > 1) AND (h = H OR ||b̂− b̂−|| ≤ λ)

Algorithm 2 - UpdateSlope (update estimates of slope parameters b)

1 INPUT: s = (t,q,w), sa
− = (ta

−,q
a
−,w

a
−), h, b̂ and a∗ = (x∗,y∗).

2 FOR i ∈ I DO

3 IF ( ti ≥ tmin) THEN
4 FOR j ∈ J DO
5 IF ( qi j < qmax) THEN
6 Set s̃ = (t, q̃,w) where q̃i j = qi j +1;
7 ∇ν̂i j = maxa∈A(s̃)(r̂(s̃,a)+ γν̂

b̂
(s̃a))−maxa∈A(s)(r̂(s,a)+ γν̂

b̂
(sa));

8 ELSE
9 Set s̃ = (t, q̃,w) where q̃i j = qi j−1;

10 ∇ν̂i j = maxa∈A(s)(r̂(s,a)+ γν̂
b̂
(sa))−maxa∈A(s̃)(r̂(s̃,a)+ γν̂

b̂
(s̃a));

11 END IF

12 b̂
(
(ta
−)i,(wa

−)i j
)

:= (1−αh)b̂
(
(ta
−)i,(wa

−)i j
)
+αh∇ν̂i j;

13 END FOR
14 END IF
15 IF (yi

∗ = 1) THEN

16 ν̂ =
∑ j∈J qi j b̂(ti,wi j)−(∑ j∈J ĉcull(wi j)qi j−cpigletqmax|J|)

γqmax |J| ;

17 b̂(1,w0) := (1−αh)b̂(1,w0)+αhν̂;
18 END IF
19 END FOR

estimates of the slope parameters

b̂ =
(

b̂(ta
1 ,w

a
11) , .., b̂

(
ta
i ,w

a
i j
)
, .., b̂

(
ta
|I|,w

a
|I||J|

))
,

must be found.

The pseudo-code of the algorithm is illustrated in Algorithm 1. Let ν̂
b̂
(·) : sa → R denote the ap-

proximate value function given estimates b̂. First, the slope parameters are initialized using estimated

slope values obtained by considering the model at pen level (Pourmoayed et al. 2016).

Next, the main part of the algorithm is executed using two loops. Each iteration of the outer

loop (lines 2-12) simulates a sample path by randomly selecting an initial state s on line 3 and then

simulating stages 1,2, . . . ,N using an interior loop.

At each stage, the optimal action is found on line 5 and the slope parameters are updated on line 6.

Next, the post-decision state is calculated on line 7 and the pre-decision state for the next stage is

12



found on line 8. Finally, the post-decision state is stored on line 9 because we need it in the sub-

algorithm (Algorithm 2) in the next iteration of the loop. The algorithm is stopped after generating at

most H sample paths or if the maximum difference between two consecutive estimates of the slopes

in the outer loop is less than or equal to a predefined error criterion:

||b̂− b̂−||= max
ta
i ∈{1,..,tmax},wa

i j∈W

(
|b̂(ta

i ,w
a
i j)− b̂−(ta

i ,w
a
i j)|
)
.

More details about the algorithm are described below.

Optimal action Given the pre-decision state s in each iteration, the optimal action a∗ = (x∗,y∗)

must be found by maximizing r(s,a)+ γν̂
b̂
(sa) on line 5. The one-stage reward r(s,a) is given

in (10) and the value function ν̂
b̂
(sa) is obtained using the approximation architecture (13) and

the deterministic transition of the post-decision state defined in (14). The set of possible actions

A(s) is defined using constraints (3)-(9). Hence the maximization problem becomes:

max∑
i∈I

∑
j∈J

qi j

∑
k=1

ccullk (wi j)xi jk−∑
i∈I

∑
j∈J

qi j

∑
k=1

cfeedk (wi j)(1− xi jk)− ctruckz−

∑
i∈I

cpiglet|J|qmaxyi + γ ∑
i∈I

∑
j∈J

( (qi j−
qi j

∑
k=1

xi jk)b̂
(
ta
i ,w

a
i j
)
+ yiqmaxb̂(1,w0)), (18)

s.t. (3)-(9).

Sample path Each sample path is simulated over N stages using the interior loop (lines 4-10).

Because we cannot simulate an infinite trajectory, parameter N is chosen large enough to give

a good estimation of the total expected discounted reward of the model defined in (1). That

is, N is chosen such that the discount factor γN−1 becomes sufficiently small and hence further

stages have a small impact on the value function (for more details, see (Powell 2007, page 340)).

In general, the use of a discount factor close to one means that states in the distant future are

assigned the same value of money as are states in the present. Both a VI and an AVI algorithm

will therefore converge very slowly.

Updating the slope The sub-algorithm for updating the slope parameters is given in Algorithm 2.

The slope parameters are updated using the gradients of the value function with respect to the

number of pigs in each pen. That is, given a pen with weight information wi j in week ti, one

pig of average weight is added (line 6) or if there are qmax pigs in the pen, one pig is removed

(line 9). This is used to calculate the gradient ∇ν̂i j which, according to (13) and (15), is an

estimate of the slope b((ta
−)i,(wa

−)i j) at post-decision state sa
−.

Note that the slope parameters in value function (13) are dependent on the weight information

at pen level (not on the weights of the individual pigs). Hence for estimating the gradient, we

consider an average weight for the pigs in the pen and therefore the one-stage reward (10) in

13



the maximization problem becomes:

r̂(s,a) =∑
i∈I

∑
j∈J

qi j

∑
k=1

ĉcull(wi j)xi jk−∑
i∈I

∑
j∈J

qi j

∑
k=1

ĉfeed(wi j)(1−xi jk)−ctruckz−∑
i∈I

cpiglet|J|qmaxyi,

where ĉcull(wi j) and ĉfeed(wi j) denote the reward and feeding cost of a pig with average

weight. This ensures a more stable convergence of the gradients. The slope parameter is

updated on line 12 where the step size αh specifies the weight of the current estimate when

updating the slope at iteration h. The step size αh has an important effect on the convergence

rate of the algorithm and our computational testing showed that the generalized harmonic step

size αh = ᾱ/(ᾱ + h− 1) performs well (Powell 2007, page 430). Note that we only update

slope parameters if ti ≥ tmin because when ti < tmin, all terms related to section i in the objective

function (18) are constant (xi jk = 0 for all j ∈ J and k ∈ {1,2, ...,qi j}) and hence do not have an

impact on the solution.

If termination occurs in section i (y∗i = 1), we update the slope b(1,w0) (lines 16-17) by con-

sidering a contribution to the approximate value function for section i which according to (13)

is

ν̂b̂(si) = ∑
j∈J

qi jb̂(ti,wi j) , (19)

where si denote the state of section i (state s may be stated as (s1, . . . ,s|I|)). Based on (16) this

contribution is

ν̂b̂(si) = r(si,a∗i )+ γν̂b̂(s
a∗i
i ), (20)

where a∗i denote the optimal action (y∗i = 1; x∗i jk = 1,∀ j ∈ J,k = 1, . . .qi j) and

r(si,a∗i ) = ∑
j∈J

ĉcull(wi j)qi j− cpigletqmax|J|,

denote the reward related to terminating section i. Hence by combining (19) and (20) we get:

∑
j∈J

qi jb̂(ti,wi j) = r(si,a∗i )+ γν(sa∗
i ) = ∑

j∈J
ĉcull(wi j)qi j− cpigletqmax|J|+ γ|J|qmaxb(1,w0),

and an estimate for b(1,w0) (see line 16) is

ν̂ =
∑ j∈J qi jb̂(ti,wi j)− (∑ j∈J ĉcull(wi j)qi j− cpigletqmax|J|)

γ|J|qmax .

When the AVI algorithm terminates, the estimated slope parameters can be used to find the best actions

in the system. For an arbitrary observed state s, the best action a∗ can be found by solving

a∗ = arg max
a∈A(s)

(r(s,a)+ γν̂b̂(s
a)).

14



Table 1: Parameter values used in the base scenario of the model.

Parameter Value Description

qmax 18 Maximum number of pigs in a pen.a

tmax 15 Maximum number of weeks in a growing period (week).a

tmin 9 First possible week of marketing decisions.a

|I| 3 Number of sections.a

|J| 20 Number of pens in a section.a

ktruck 205 Capacity of truck transferring the culled pigs to the abattoir (pig).b

ctruck 400 Fixed cost of the truck (DKK).b

cpiglet 375 Cost of buying a piglet (DKK).c

γ 0.95 Discount factor.

w0 (26.4,3,6.2) Initial weight information, w0 = (µ0,σ0,g0), at the start of a production cycle (kg).d

pfeed 1.8 Unit cost of feed-mix (DKK/FEsve). f

ppork 10.8 Maximum price of 1 kg carcass (DKK/kg). f

a Value based on discussions with experts in Danish pig production. b Value taken from abattoir (http://www.danishcrown.
dk/ejer/svineleverandoer/danish-crown-afregning/danish-crown-logistik-svin/ ). c Value taken from Kristensen et al. (2012).
d Estimated based on time series generated using simulation. e FEsv is the energy unit used for feeding pigs in Denmark
and is equivalent to 7.72 MJ. f Value used in Appendix B for calculating ccullk (wi j) and cfeedk (wi j) based on information
from abattoir (http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx).

where sa = ϕ(s,a). That is, in contrast to the usual solution procedures for MDPs, we do not generate

a policy containing optimal actions for every possible state. Instead, we solve the above maximization

problem to find the best action for the observed states in the system.

4 Computational results

In order to show the functionality of the proposed model, we conduct four numerical experiments.

In Experiment 1, we apply the AVI algorithm at pen level to show the accuracy of the algorithm.

Because the size of the model is tractable at pen level, we first solve the model using non-approximate

value iteration and compare the results with the AVI algorithm. In Experiment 2, we apply the AVI

algorithm at herd level to investigate how the best marketing decisions can be found under different

average growth rates in the sections. Next, in Experiment 3, the marketing policy obtained by the

AVI algorithm is compared with other marketing policies that may be applied to the herd. Finally, in

Experiment 4, we carry out a small sensitivity analysis for some parameters in the model.

4.1 Parameters

The values of the parameters used in the model are given in Table 1. These values have been obtained

using information about finisher pig production units (Danish conditions) and the related literature.

Moreover, the length of the cleaning period (Assumption 7 on Page 6) and the lead time for ordering

a truck (Assumption 3 on Page 6) have been set to 4 and 3, respectively.

15

http://www.danishcrown.dk/ejer/svineleverandoer/danish-crown-afregning/danish-crown-logistik-svin/
http://www.danishcrown.dk/ejer/svineleverandoer/danish-crown-afregning/danish-crown-logistik-svin/
http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx


Table 2: Range of the centre points for continuous state variables µi j,σi j, and gi j (kg). The continuous
state variables µi j,σi j, and gi j are discretised into 21, 9, and 6 intervals, respectively.

Week (t) 1 2 3 4 5 6 7 8

µ 6.4-46.4 13.4-53.4 20.4-60.4 27.4-67.4 34.4-74.4 41.4-81.4 48.4-87.4 55.4-95.4
σ 2-10 2.5-10.5 3-11 3.5-11.5 4-12 4.5-12.5 5-13 5.5-13.5
g 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2

Week (t) 9 10 11 12 13 14 15

µ 62.4-102.4 69.4-109.4 76.4-115.4 83.4-123.4 90.4-130.4 97.4-137.4 104.4-144.4
σ 6-14 6.5-14.5 7-15 7.5-15.5 8-16 8.5-16.9 9-17
g 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2

In the model, we also need the functions ccullk (wi j) and cfeedk (wi j) used in the reward function

(10). These functions depend on the carcass weight, leanness, feeding cost, and the piecewise linear

settlement pork price of each pig in the pen. All functions are described in detail in Pourmoayed et al.

(2016) and hence we only provide a short overview in Appendix B. Moreover, because the framework

of the model is based on a discrete-state MDP, the continuous state variables µi j,σi j, and gi j related

to weight information wi j (see Section 2.1) must be discretised into a set of intervals. We use the

same method as in Pourmoayed et al. (2016). Thereby, in every week of the growing period the state

variables µi j,σi j, and gi j are divided into 21, 9, and 6 intervals, respectively. That is, interval lengths

of 2 kilograms, 1 kilograms and 0.8 kilograms, respectively. Hence, the size of the set W representing

possible weight information is |W| = 21 · 9 · 6 = 1,134. An overview of the discretisation is given

in Table 2 where the ranges of the centre points of each interval are shown. These ranges represent

realistic values of weight and growth information in each week of the growing period. For further

information, see Pourmoayed et al. (2016).

The AVI algorithm was coded in C++ (MS VS2010 compiler) using CPLEX 12.6.2 (C++ API by

Concert Technology) as the optimization solver to solve the maximization problem of the algorithm.

The source code is available online (Pourmoayed 2016). In the algorithm, parameters N , H, λ , ᾱ

are set to 120, 300, 5, and 100, respectively. The best setting was obtained by testing the algorithm

with different values of these parameters. Note that with these parameter values, at most 36,000

decision epochs are simulated in the algorithm and in each simulation the slope parameters are updated

according to the weight information in 60 pens, i.e., the maximization problem of the algorithm is

solved up to 2,160,000 times in total.

The sample paths used in the computational experiments are randomly generated from the stochas-

tic process describing the evolution of weight information wi j = (µi j,σi j,gi j) in the pens (for more

details see Appendix A). This process depends on the conditional probability distributions of the state

space models formulated in Pourmoayed et al. (2016).
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Figure 2: Convergence of the slope parameters in the AVI algorithm. The horizontal axis shows the
number of updates of an observed slope, and the vertical axis indicates the estimated value of the
observed slope. The lines represent different combinations of week and weight information.

4.2 Experiment 1: Accuracy of the AVI algorithm

In this section, we investigate the accuracy of the AVI algorithm and compare it with the value iteration

(VI) algorithm. To have a tractable model, we consider a single section with one pen and use the VI

algorithm to solve the MDP model under the total discounted reward criterion described in Section 2.

In order to compare the AVI and VI algorithms, we compare the slopes resulting from the VI

algorithm with the estimated slopes obtained by the AVI algorithm. The AVI algorithm was initialized

using a value of 450 for the slope parameter for all combinations of t and w and terminated after

approximately 45 minutes. Figure 2 illustrates the convergence of the slope parameters obtained by

the AVI algorithm. Because the algorithm is based on sample paths, some of the states are observed

more often than others and hence the related slope parameters converge faster.

Figure 3 compares the slope values obtained by the AVI algorithm against the slope values ob-

tained by the VI algorithm. Each point corresponds to the slope values for a specific pair (t,w) such

that the x-coordinate value of a point is the estimated value of slope b(t,w) obtained by the AVI al-

gorithm and the y-coordinate is the slope value estimated by the VI algorithm. The dashed line is

the 45-degree line where the slope values of x- and y-coordinate are equal. Figure 3 shows that the

data points are relatively close to the dashed line indicating that there is a little difference between the
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Figure 3: Comparison between the estimated slope values obtained by the AVI and VI algorithms.
Each point corresponds to a specific pair (t,w). The x-coordinate value of each point is the estimated
value of slope b(t,w) obtained by the AVI algorithm, and the y-coordinate value is the slope value
estimated by the VI algorithm. The dashed line is a 45-degree line considered as a marker in the plot
when the values of the x and y coordinates are equal.

slope values calculated by the AVI and VI algorithms. However, underestimation and overestimation

of a slope may happen. A closer analysis of the data showed that this happens mainly in the first and

last weeks of the growing period when the pen is almost full and empty, respectively. The root mean

square error (RSME) between the slopes obtained by the AVI and VI algorithms is 22.7, which is a

relatively small error with respect to the range of the estimated values (between 500 and 900). As a re-

sult, the AVI algorithm gives a reasonable estimation for the slope parameters used in the approximate

value function. Note that if the values of parameters N and H are increased in the AVI algorithm, then

the estimation error will be lower. However, the parameters of the algorithm have been adjusted in a

way such that we have a good balance between the computational efficiency of the algorithm and the

quality of the approximated value function. Moreover, when the algorithm is applied at herd level, the

approximated value function will be significantly better because the slope parameters are estimated

using sample paths with simulated weight information of 60 pens instead of one pen, i.e., each loop of

the AVI algorithm for updating the slope parameters will contain 60 interior loops, one for each pen

(see Algorithm 2).

4.3 Experiment 2: Marketing decisions at herd level

In this section, we use the AVI algorithm to find the best marketing decisions in a herd with 3 sec-

tions. In order to show how the marketing decisions change according to the conditions of the herd,

we assume that there are different environmental effects (e.g., temperature, housing conditions, and

humidity) for each section resulting in different average growth rates of the pigs in the three sections.

The average growth rate of pigs in Section II is considered normal (6 kilograms per week) whereas

in Sections I and III, the pigs grow 10 percent slower and faster than in Section II, respectively. The
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Figure 4: The range of the simulated weight data in the three sections during tmax = 15 weeks of
growing period in the production cycles. The lines are the average weight of the pigs during the
growing period. The ribbon for each section shows the variability of data using one standard deviation
of uncertainty.

AVI algorithm was initialized using the slopes obtained from the VI algorithm in Experiment 1 and

the parameters in Section 4.1. The algorithm terminated after approximately 21 hours.

Figure 4 shows the range of the simulated weight data during tmax = 15 weeks of the growing

period in the three sections. The lines show the average weight of the pigs during the growing period

in the three sections. The variability of weight data in each section is represented using ribbon surfaces

showing one standard deviation of uncertainty. Figure 4 illustrates, in each week (e.g., week 10), the

weight values of the pigs in Section III are higher than those in Sections I and II, and the pigs in

Section II grow faster compared to Section I. Moreover, when the pigs become older, the weights vary

more widely between the pigs of the same age across all sections (see the area of the ribbons from

Week 1 to Week 15).

Figure 5 illustrates the best marketing decisions during 49 weeks of production in the herd (from

Week 46 to Week 94). We have randomly selected this period to have a plot of marketing decisions

in each of the sections which are in different stages (weeks) of the production cycle. That is, weeks

1 to 45 can be considered as the warm-up period of the simulation. In this figure, the bars show the

number of remaining pigs before a decision is made, the numbers below the bars denote the number
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Figure 5: Marketing decisions in a herd with three sections during 49 weeks of production (Week
46 to Week 94). Bars show the number of remaining pigs in the sections before a decision is made.
Numbers below the bars denote the number of the heaviest pigs culled from the section, the letter “T”
indicates termination of a production cycle in the section, and the letter “C” corresponds to continuing
the production process without any marketing.

of the heaviest pigs culled from the section, the letter “T” indicates termination of the production

cycle in the section, and the letter “C” corresponds to continuing the production process without

any marketing. Note that when termination occurs in a section, a new production cycle is started in

this section. Moreover, the time period between two successive terminations shows the length of a

production cycle in the section.

As seen in Figure 5, the length of the production cycles in Section III is shorter than in other

sections because the average weight of the pigs in this section is higher than in Sections I and II, and

hence the pigs obtain their optimal slaughter weight earlier. It is therefore beneficial to terminate the

section after a few weeks of individual marketing resulting in a higher number of production cycles

in Section III compared to the other sections. In Sections I and II, the pigs grow more slowly than

in Section III, and hence it is better to keep them for a longer period compared to Section III, i.e.,

the lengths of the production cycles in Sections I and II are longer than in Section III. However, after

starting the marketing decisions in Sections I and II, we observe that in each production cycle, the

fraction of pigs remaining in Section I is higher than in Section II (compare the height of the bars for

Sections I and II in Figure 5). This happens because the average growth of pigs in Section II is higher

than in Section I and hence more pigs are culled from Section II compared to Section I resulting in a

lower number of pigs in Section II at termination.

Figure 6 illustrates the total number of culled pigs in the herd from Week 46 to Week 94. The
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Figure 6: The total number of culled pigs from the herd in Week 46 to Week 94. The numbers below
the bars show the number of trucks needed to transfer the culled pigs to the abattoir. The horizontal
dashed line shows the full capacity of a truck.
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Figure 7: The effect of fixed transportation cost on the marketing policy of the herd. Black and grey
bars show the number of culled pigs when the transportation costs are 2000 DKK and 400 DKK,
respectively. The horizontal dashed line shows the full capacity of a truck (205 pigs).

numbers below the bars show the number of trucks needed to transport the culled pigs to the abattoir

and the horizontal dashed line shows the capacity (ktruck = 205) of a single truck. As can be seen, the

full capacity of the trucks is not used in most cases and only the pigs with appropriate live weight are

sent to the abattoir. This happens because the fixed cost of a truck (400 DKK) is lower than the profit

obtained by culling a specific number of pigs that are ready for slaughter. For instance, when 40 pigs

are ready for slaughter, it is beneficial to call a truck and transport them to the abattoir. Moreover,

in some cases a compulsory termination at the latest week of the growing period (week tmax = 15)

leads to a small number of pigs being culled and sent to the abattoir by one truck (e.g., Week 84 in

Figure 5).

21



Transportation costs can affect the marketing policy of the farm. Figure 7 shows the change in the

number of marketed pigs in the herd when the fixed transportation cost (ctruck) is changed from 400 to

2,000 DKK. We note that, a high transportation cost leads to better utilization of the trucks and fewer

deliveries to the abattoir. More precisely, with a transportation cost of 400, the number of deliveries

to the abattoir is 39 while with a transportation cost of 2,000, this number is decreased to 18 and the

average cycle length has increased 1.7 weeks. A high transportation cost may result in culling some

pigs that have not reached their optimal slaughter weight because the lost revenue from slaughtering

at a sub-optimal weight is outweighed by the fixed transportation cost. Note that the variable costs

of transportation per pig (e.g., cost of loading a pig into the truck) are not considered in the model.

Because the total number of pigs culled per production cycle is fixed, the total variable cost per cycle

will also be fixed and hence the variable transportation cost will not have a noticeable impact on the

marketing policy.

4.4 Experiment 3: AVI policy compared to other marketing policies

In order to evaluate the performance of the marketing policy obtained by the ADP, we compare it with

other well-known marketing polices that are often applied at herd level. We compare the marketing

policy calculated with the AVI algorithm with the following policies:

Myopic (M) This policy does not consider the impact of the present decisions on the future con-

ditions of the system, i.e., only the immediate reward of the decisions is taken into account in

the model. To find the best marketing decisions under this policy, we solve

maxa∈A(s)(r(s,a))

at each stage without considering the future reward. This policy was chosen for comparison in

order to stress the importance of using dynamic programming that considers the future value of

decisions.

Full truck capacity (FTC) Here the farmer prefers to use the maximum capacity of the trucks

when a delivery to the abattoir takes place. In order to evaluate this policy, we change the sign

of the transportation constraint (6) to an equality constraint if the total number of pigs above the

capacity. Moreover, if the total number of pigs is below the capacity, a compulsory termination

at herd level occurs. This policy may be followed by farmers who want to use the maximum

capacity of the truck when sending the pigs to the abattoir.

Pen-level (PL) This policy use the marketing decisions found at pen level in Experiment 1. That

is, marketing decisions are made without taking into account the cross-level transportation costs.

This policy was chosen to illustrate the effect of ignoring herd level considerations.

All-In All-Out (AIAO) This policy does not consider individual marketing decisions in the pens.

Instead, when the length of the production cycle in a section equals a specified value, all pigs
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are marketed from the section in one delivery. We evaluate this policy under the assumption that

a section is terminated in week t (t = 9, . . . ,15). This policy is commonly used in the industry

as the main delivery strategy to the abattoir.

No learning (NL) Here no learning is applied to the slope parameters, i.e., the slope parameters

remain at the values initialized from the pen-level model.
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Table 3: Performance of different marketing policies. For each policy, 100 sample paths are applied and results are reported as 95% confidence
intervals m±1.96s/

√
100, where m and s are the mean and standard deviation of the values.

Policy AVI M FTC PL NL
AIAO

9 10 11 12 13 14 15

Discounted reward per week (DKK/herd) 2072±45.5 1078±11.1 1830±103 1745±13 1025±23.2 470±11.9 1398±10.3 1831±7.6 1881±6.7 1679±4.6 1365±4 1014±3.9
Discounted reward reduction (%) 0 48.0 11.7 15.8 50.6 77.3 32.5 11.6 9.2 19.0 34.1 51.1
Length of production cycle (weeks) 11.8±0.01 10±0 11.6±0.06 10.7±0.01 15±0 9±0 10±0 11±0 12±0 13±0 14±0 15±0
Number of production cyclesa 30.5±0.14 36±0 31.3±0.28 34.4±0.16 24±0 39±0 36±0 33±0 30±0 27±0 27±0 24±0
% of truckload capacity utilized 76±1 75±0 88±0 69±0 88±0 87±0 87±0 87±0 87±0 87±0 87±0 87±0
Number of trucks sent to abattoirb 73.7±1 84±0 63.6±0.5 89.3±0.9 48±0 84±0 72±0 66±0 60±0 54±0 54±0 48±0

a Total number of production cycles in all three sections over 120 weeks. b Total number of trucks sent to the abattoir over 120 weeks.
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To compare marketing policies, we generated 100 sample paths over a period of 120 weeks (ap-

proximately 2.5 years) in a herd where all sections follow an average growth rate of 6 kilograms per

week which are used to evaluate all the policies. Moreover, the following statistics are calculated for

each policy π: discounted reward per week defined as ∑
N
n=1 γn−1rn(s,π(s))/N , length of a production

cycle, number of production cycles, percentage of truckload capacity utilized, and number of trucks

sent to the abattoir.

Table 3 shows the results for the AVI, M, FTC, PL, NL and AIAO policies. Results are reported as

95% confidence intervals. The policy found by the AVI algorithm outperforms other policies in terms

of average discounted reward per week, and the AIAO policy with termination in week 9 results in the

lowest reward.

For ctruck = 400, the difference between the ADP and FTC policies is noticeable. Using the

maximum capacity of trucks in the FTC policy results in marketing some pigs that are not ready for

slaughter yet and hence the farmer loses the possible profit that could have been earned by keeping

these pigs for a longer time in the herd. Note that in this policy, as expected, the utilization of truckload

capacity is better than in other policies. Using a myopic policy results in significant losses because

we do not take into account the effect of current decisions on future rewards.

When considering the AIAO policies, it seems that policies with a length of 11 or 12 weeks

perform well. Note that the length of the production cycle in these policies is close to the average

length of the production cycle under the AVI policy. That is, the difference in discounted average

reward is mainly due to individual marketing that is possible under the AVI policy.

Because the PL policy does not take into account the cross-level transportation cost, the utilization

of truckload capacity is low compared to other policies. This highlights the importance of considering

marketing decisions at herd level. Using optimal decisions at pen level may result in higher trans-

portation costs.

In the AIAO policies, as expected, when the length of the growing period is increasing (from 9 to

15 weeks), the number of production cycles decreases during the 120 weeks of production and hence

we need fewer trucks to transfer the culled pigs to the abattoir. Furthermore, in these policies the

utilization of truckload capacity is high and close to the FTC policy, because all the pigs are sent to

the abattoir in specific weeks and hence the capacity of most trucks is utilized.

Using the initial slope parameters from the pen-level model when finding optimal actions by

solving model (18) finds a policy very close to the AIAO policy (15 weeks). This demonstrates the

effectiveness of the AVI’s learning.

Finally, note that for longer production cycles (e.g., 14 or 15 weeks), the average discounted

reward per week is reduced noticeably. This happens because the feeding cost of the pigs increases

considerably during the last weeks of the growing period, and the revenue obtained by selling the

heavy pigs cannot compensate for the increased feeding cost. Hence the average reward is reduced

which demonstrates the impact of feeding costs.
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Figure 8: The effect of marginal changes in the unit feed or pork price on the total number of culled
pigs in Section II of the herd.

Table 4: Percentage effect of a 20% marginal increase/decrease in the unit feed-mix or pork price
compared to the base scenario (the parameters in Table 1).

Feed price Pork price

-20% +20% -20% +20%

Discounted reward per week (DKK/herd) 52.8 -37.1 -165.5 91.9
Length of production cycle (weeks) 1.1 -1.0 26.7 -23.9
Number of production cyclesa -1.3 2.3 -21.2 28.1
% of truckload capacity utilized -0.5 -2.2 4.2 16.1
Number of trucks sent to abattoirb -2.2 4.3 -27.7 13.6

a Total number of production cycles in all three sections over 120 weeks. b Total number of trucks sent to the abattoir over 120 weeks.

4.5 Experiment 4: Sensitivity analysis

In order to see the effect of changes in feed and pork prices we conduct a small sensitivity analysis. We

compare the AVI policy calculated in Experiment 2 against a 20% marginal increase/decrease in the

unit feed-mix or pork price in a herd with three sections and different average growth rates. Similar to

Experiment 3, we calculate a set of key performance indicators using 100 sample paths over a period

of 120 weeks in the herd.

The percentage effect of a 20% marginal increase/decrease in the unit feed-mix price or pork price

compared to the base scenario is shown in Table 4. Moreover, the effect of marginal changes on the

total number of culled pigs in Section II of the herd is illustrated in Figure 8.

As expected, a decrease (increase) in the feed-mix cost and pork price gives a higher (lower)

average discounted reward. Moreover, as seen in the table, the pork price is much more sensitive
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compared to the feed-mix unit price. That is, the objective of the model is more sensitive to changes

in the pork price.

A 20% decrease in the pork price results in a negative reward (a decrease below 100%). The

farmer may of course close the production in such a case. However, in practice often this is not

possible. In this case it is best to keep the pigs in the pens as long as possible resulting in a cycle

length of 15 weeks as shown in Figure 8. However, a few pigs with a very high weight (about 90-100

kilogram) are culled at week 9 in a production cycle because otherwise the feeding cost would be very

high. On the contrary, if the pork price increases by 20%, the price is so favourable that most pigs

are culled as soon as possible (-23.9% ≈ 9 weeks). Figure 8 demonstrates this accelerated marketing

where a section of 360 pigs are culled with a gap of 9 weeks in-between. Both cases result in culling

pigs at the lower or upper bounds of the length of a production cycle and hence almost no individual

marketing is done. That is, batches sent to the abattoir are larger (4.2% and 16.1%).

A decrease in the feed price results in a longer cycle length because it is more optimal to feed the

pigs for a longer period. As a result larger batches are sent to the abattoir. An increase in the feed

price have a negative impact on reward and the cycle length is reduced with 1%. Individual marketing

increase, resulting in lower truck utilization (-2.2%).

5 Conclusions

In this paper, we consider sequential marketing decisions of finishing pigs at herd level and take into

account cross-level constraints (termination at section level and transportation at herd level).

The problem is modelled using a discounted infinite-horizon MDP where the state of the system is

based on the weight information of each pen in the herd and is updated using state space models and

a Bayesian approach. Due to the curse of dimensionality, we apply an ADP approach and solve the

model by using an AVI algorithm based on post-decision states to find the best marketing policy. The

value function of the model is approximated by a parametric function and the AVI algorithm estimates

the slope parameters.

A set of numerical experiments was conducted. First, by comparing the AVI algorithm with

the exact solution at pen level, it seems that good estimates of slope parameters can be found by

the AVI algorithm. Second, the AVI algorithm was used to find the best marketing decisions in a

herd under different conditions of average growth in the sections. It was illustrated how the marketing

policy adapts under different fixed transportation costs. Increasing transportation cost results in higher

truck utilization and longer production cycles. Next, the best policy found by the AVI algorithm was

compared against several well-known marketing policies. This policy outperformed other marketing

polices in terms of average discounted reward per week. Having individual marketing, i.e., allowing

multiple shipping dates within a section will increase profit. This result is in agreement with the

results in Boys et al. (2007) and Ohlmann and Jones (2011). Optimizing the current production cycle

without considering the effect on the future production cycles (a myopic policy) or trying to utilizing
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the maximum capacity of the truck (FTC policy) is not recommended which also was confirmed in

Ohlmann and Jones (2011). Moreover, ignoring herd constraints and culling pigs based on an optimal

pen-level policy will reduce profit. This highlights the importance of considering the whole herd when

optimizing marketing. Finally, a sensitivity analysis showed the importance of feed and pork prices

on the reward of the model.

The model presented in this paper has an operational focus and optimizes decisions sequentially

given the current state of the system. The uncertainty is represented using state space models. That

is, a Bayesian approach is used to update the system such that it contains information based on the

previous data. The state space models are embedded into the MDP such that the state of each pen is

found using the current data stream for each pen in the herd. Hence the sectioning of the production

facility is considered because the model optimizes sequential decisions based on information about

each pen in the herd.
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A Modelling the pen-level pig weight information

Consider a pen with weight information X = (X1,X2) = ((µ,g),σ) where X1 = (µ,g) and X2 = σ

denote the average weight and weekly growth, and the standard deviation of the weights, respectively.

Moreover, let X̂ denote a realization (sample) of this random variable.

A discrete-time stochastic process {Xt , t = 1,2, ..., tmax} modelling weight information in the pen

is defined as a collection of random variables X indexed by week number t. The random variable

Xt depends on the earlier values observed in the process, X̂t−1, X̂t−2, .., X̂1. Therefore, in order to

generate samples, we need to find the probability distribution of the conditional random variables

Xt |X̂t−1, X̂t−2, .., X̂1. In order to find this conditional distribution, we use two state space models

(SSMs) formulated in Pourmoayed et al. (2016) for modelling the dynamics of the state variables

(µt ,gt) and σt in a finisher pen.

Given d weight measurements at time t measured by e.g., an online sensor and let w̄t denote the

average of these measurements. Moreover assume z̄t is the average feed intake at time t that can

be measured by a feeding control system. The following Gaussian SSM is used to model the mean

weight and growth (X1) (West and Harrison 1997):

system equation (θt = Gθt−1 +ωt) :

(
µt

gt

)
=

(
1 1

0 1

)(
µt−1

gt−1

)
+

(
ω1t

ω2t

)
,

observation equation (yt = F ′t θt +νt) :

(
w̄t

z̄t

)
=

(
1 0

k1t k2

)(
µt

gt

)
+

(
ν1t

ν2t

)
.

The system equation of this SSM describes the dynamics of latent variables µt and gt corresponding

to average weight and growth of pigs at time t. The observation equation models the relation between

latent variables and observable variables w̄t and z̄t . Here ωt and νt are two random terms in system

and observation equations following normal distributions with mean zero and unknown variances V

and W , respectively. Variances V and W are estimated using maximum likelihood estimation (see

Pourmoayed et al. (2016)). Parameters k1t and k2 are two constants used to estimate the average feed

intake (z̄t) given weight and growth information (µt ,gt) (Jørgensen 1993).
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In order to model the inhomogeneity among the pigs (X2), a non-Gaussian SSM is used to model

the evolution of the variance of the weights. Assume d weight measurements that are normal dis-

tributed with true variance σ2
t and let s2

t denote the sample variance of these measurements. Since

(d−1)s2
t /(σt)

2 follows a chi-square distribution with d−1 degrees of freedom (Wackerly, Menden-

hall, and Scheaffer 2008, p357), an SSM can be defined with latent variable σ2
t and observable variable

yt = s2
t that follows a gamma distribution with shape and scale parameters d−1

2 and 2(σt)
2

d−1 , respectively.

Assuming that the true variance σ2
t in the pen increases by coefficient ( t

t−1)
2 (Kristensen et al. 2012),

the SSM becomes:

σ
2
t = Gtσ

2
t−1,

where Gt = ( t
t−1)

2 for t > 1 (G1 = 1).

Note that the SSMs satisfy the Markovian property, i.e.,

Pr(Xt |X̂t−1, X̂t−2, .., X̂1) = Pr(Xt |X̂t−1),

and because (µt ,gt) and σt are estimated independently we have

Pr(Xt |X̂t−1) = Pr( (µt ,gt) | (µ̂t−1, ĝt−1) ) ·Pr(σt |σ̂t−1).

As a result the probability distributions of these random variables can be found using Theorems 2

and 4 in Pourmoayed et al. (2016). Therefore the random information ω in the stochastic transition

function Γ(·) (defined in Section 2.4) can be sampled using the conditional probability distributions

of the conditional random variables (µt ,gt) given (µ̂t−1, ĝt−1) and σt given σ̂t−1.

B Calculation of ccullk (wi j) and cfeedk (wi j)

Before calculating ccullk (wi j) and cfeedk (wi j), we need to describe the methods of obtaining the carcass

weight, leanness, feeding cost, and the settlement pork price function.

Carcass weight, leanness, feeding cost, and settlement pork price

Consider the kth lightest pig with live weight w and daily growth ğ in the pen. The carcass weight w̃

can be approximated as (Andersen, Pedersen, and Ogannisian 1999)

w̃ = 0.84w−5.89+ ec, (21)

where ec is normally distributed with a mean of zero and a standard deviation of 1.96. The relation

between growth rate, leanness (lean meat percentage), and feed conversion ratio varies widely between

herds. Hence, these formulas must be herd specific. The leanness w̆ can be found as (Kristensen et al.
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2012)

w̆ =
−30(ğ−6)

4
+61. (22)

The feed intake (energy intake) is modelled as the sum of feed for maintenance and feed for

growth. The basic relation between daily feed intake f (FEsv1), live weight, and daily gain is (Jør-

gensen 2003)

f = k1ğ+ k2w0.75, (23)

where k1 = 1.549 and k2 = 0.044 are constants describing the use of feed per kilograms gain and per

kilograms weight, respectively. As a result the expected feed intake of the kth pig over the next d̃ days

equals

f feedk (d̃) = E

(
d̃

∑
d=1

fd

)
= E

(
d̃

∑
d=1

(
k1ğ+ k2(w+(d−1)ğ)0.75))=

E

(
d̃k1ğ+ k2

d̃

∑
d=1

(w+(d−1)ğ)0.75

)
,

where fd denotes the feed intake at day d calculated recursively using (23). The feeding cost for the

kth pig during d̃ days can be calculated by multiplying f feedk (d̃) to the unit feed cost pfeed per FEsv

pfeed

k (d̃) = pfeed f feedk (d̃). (24)

Consider the kth lightest pig with carcass weight w̃ and leanness w̆ at delivery. Under the Danish

system, the settlement pork price is the sum of two linear piecewise functions related to the price of

the carcass and a bonus of the leanness:

ppork

k (w̃, w̆) = p̃(w̃)+ p̆(w̆). (25)

Functions p̃(w̃) and p̆(w̆) correspond to the unit price of carcass and the bonus of leanness for 1

kilogram meat, respectively. We define p̃(w̃) and p̆(w̆) based on the meat prices used in Kristensen

et al. (2012) as

1FEsv is the energy unit used for feeding the pigs in Denmark. One FEsv is equivalent to 7.72 MJ.
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p̃(w̃) =



0 w̃ < 50

ppork−0.1(70−60)−0.2(60− w̃) 50≤ w̃ < 60

ppork−0.1(70− w̃) 60≤ w̃ < 70

ppork 70≤ w̃ < 86

ppork−0.1(w̃−86) 86≤ w̃ < 95

9.3 95≤ w̃ < 100

9.1 w̃ ≥ 100

p̆(w̆) = 0.1(w̆−61),

where ppork is the maximum price of 1 kilogram carcass (DKK/kg) when the carcass weight lies

between 70 and 86 kilograms. Note that when marketing decisions are made, the culled pigs are sent

to the abattoir after td = 3 days. The additional feeding cost and reward, resulting from keeping the

culled pigs in this period, can be calculated using equations (24) and (25), respectively.

Calculation of reward and feed cost

The calculations of ccullk (wi j) and cfeedk (wi j) are rather complex due to the ordered random variables

and the non-continuous function p̃(w̃). However, these values can be calculated using simulation

with a sorting procedure as described in Algorithm 3 that takes the current weight information wi j =

(µ,σ,g) as input. First the weight of qmax pigs are simulated and sorted on line 3. Next, for each

pig we calculate the carcass weight, leanness and the settlement pork price at slaughter (lines 6-8).

Moreover, the feed cost until slaughter and for a week are found on line 9. These values are used

to find ccullk,l (wi j) and cfeedk,l (wi j) on lines 10-11. We run the simulation 1,000 times and afterwards

calculate the average values for the feed cost and the reward of selling to the abattoir (lines 15-16).
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Algorithm 3 - Calculation of ccullk (wi j) and cfeedk (wi j)

1 INPUT: Weight information wi j = (µ,σ,g)
2 FOR l = 1 TO 1000
3 Draw qmax samples from N(µ,σ) and sort them in non-decreasing order (ŵ1, . . . , ŵqmax );
4 FOR k = 1 TO qmax DO
5 Set w := ŵk; wtd = w+ td ·g/7;
6 Calculate carcass weight w̃ using (21) with w = wtd;
7 Calculate leanness w̆ using (22) with ğ = g/7;
8 Calculate ppork

k (w̃, w̆) using (25);
9 Calculate feed cost f feedk (d̃) for d̃ = 7 and d̃ = td using (24) with w and g/7;
10 Calculate ccullk,l (wi j) = ppork

k (w̃, w̆)− f feedk (td);
11 Set cfeedk,l (wi j) = f feedk (7);
12 END FOR
13 END FOR
14 FOR k = 1 TO qmax DO
15 ccullk (wi j) = ∑l ccullk,l (wi j)/1000;
16 cfeedk (wi j) = ∑l cfeedk,l (wi j)/1000;
17 END FOR
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