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Abstract: Feeding is the most important cost in the production of growing pigs and has a direct
impact on the marketing decisions, growth and the final quality of the meat. In this paper, we
address the sequential decision problem of when to change the feed-mix within a finisher pig pen
and when to pick pigs for marketing. We formulate a hierarchical Markov decision process with
three levels representing the decision process. The model considers decisions related to feeding
and marketing and finds the optimal decision given the current state of the pen. The state of the
system is based on information from on-line repeated measurements of pig weights and feeding
and is updated using a Bayesian approach. Numerical examples are given to illustrate the fea-
tures of the proposed optimization model.
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1 Introduction
In production systems of growing pigs, feeding is the most important operation and has a direct
influence on the cost and the quality of the meat. Another important operation is the timing of
marketing. It refers to a sequence of culling decisions until the production unit is empty. As a
result the profit of the production unit is highly dependent on the feeding cost and on good timing
of marketing, i.e. decisions about feeding and marketing have a direct impact on profit.

In a production system of growing/finishing pigs (Danish standards), the animals may be
considered at different levels: herd, section, pen, or animal. The herd is a group of sections,
a section includes some pens, and a finisher pen involves some animals (usually 15-20). New
piglets are transferred to a weaner unit approx. four weeks after birth, and they stay for approx.

∗Corresponding author, email: rpourmoayed@econ.au.dk, phone +45 87165537.

1

rpourmoayed@econ.au.dk


eight weeks until they weigh approx. 30 kg. The pigs are then moved to a finisher pen where they
grow until marketing (9-12 weeks). In the finisher pen, the farmer should determine which pigs
should be selected for slaughter (individual marketing). The reward of marketing a pig depends
on the unit meat price of the carcass weight and the leanness of the pig. The meat price is highest
if the carcass weight of the pig lies in a specific interval. Next, after a sequence of individual
marketings, the farmer must decide when to terminate (empty) the rest of the pen. Terminating
a pen means that the remaining pigs in the pen are sent to the slaughterhouse (in one delivery)
and after cleaning the pen, another group of piglets (each weighing approx. 30 kg) is inserted
into the pen and the production cycle is repeated. That is, the farmer must time the marketing
decisions while simultaneously considering the carcass weight in relation to the best interval, the
leanness, and the length of the production cycle. For an extended overview over pig production
of growing pigs, see Pourmoayed and Nielsen (2014a).

The growth and leanness of the pigs will be highly dependent on the feed given. Phase
feeding is a common method used in the production of the growing pigs. In the finisher pen the
growing period typically includes 3 or 4 phases and each phase involves a predefined feed-mix
which is a mixture of different ingredients (barley, soy, maize, etc.). A relevant decision is when
to change the current feed-mix (transition to a new phase) and what type of feed-mix to use in
the next phase.

Since the choice of feed-mix affects the pigs’ growth, a specific feeding strategy has an im-
pact on the marketing strategy. That is, the economic optimization of feeding and marketing
decisions is interrelated and requires a simultaneous analysis. Consequently, a sequential deci-
sion model is needed that considers both feeding and marketing decisions. To the best of our
knowledge, there are only a few studies that take into account these decisions simultaneously
(Niemi, 2006; Sirisatien, Wood, Dong, and Morel, 2009). However, these studies consider the
problem at animal level and do not take into account the inhomogeneity of animals in growth
and feed intake. The aim of this paper is to close this gap and consider the problem at pen level
instead.

In this paper we formulate a hierarchical Markov decision process which takes into account
decisions related to feeding and marketing of growing pigs at pen level. We assume that the
production is cyclic, i.e. when the pen is emptied, not only a regular state transition takes place,
but rather the process (the current batch of pigs) is restarted.

The model considers time series of pig weights and feeding obtained from online monitoring,
e.g. from a set of sensors in the pen. A Bayesian approach is used to update the state of the
system such that it contains the relevant information based on the previous measurements. More
precisely, two state space models for Bayesian forecasting (West and Harrison, 1997) are used to
update the estimates of live weights and feed intake on a weekly basis.

The structure of the paper is as follows. First, Section 2 gives a short literature review.
Second, a detailed description of the optimization model is given in Section 3. Next, Section 4
presents the statistical models which are embedded into the model. In Section 5, numerical
examples are considered to show the functionality of the proposed optimization model. Finally,
conclusions and directions for further research are given in Section 6.
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2 Literature review
Due to the dynamic nature of the production environment of growing pigs, the marketing and
feeding decisions are sequential, complex and hard to optimize. Various models have been con-
sidered to deal with this complexity.

Some studies consider only the marketing decisions. Chavas, Kliebenstein, and Crenshaw
(1985) applied the concepts of optimal control theory to find the optimal time of marketing of
individual animals. Jørgensen (1993) used a dynamic programming approach to optimize a given
heuristic framework for delivering the pigs to the slaughterhouse. Boland, Preckel, and Schinckel
(1993) considered the optimal slaughter pig marketing problem under different pricing models
and for each pricing system, they found the optimal slaughter weight. Kure (1997) considered
the problem at batch level and used the replacement theory concepts and a recursive dynamic
programming method to determine the optimal time of marketing the pigs. Toft, Kristensen, and
Jørgensen (2005) optimized both marketing and treatment decisions (e.g. regarding vaccination
for disease problems) using a hierarchical Markov decision process (HMDP). Boys, Li, Preckel,
Schinckel, and Foster (2007) implemented a simulation approach to determine the best marketing
strategy to utilize full truck capacity for delivering the pigs to the packers. In the study by
Ohlmann and Jones (2008), a mixed integer programming model was proposed to find the best
marketing strategy under an annual profit criterion. Kristensen, Nielsen, and Nielsen (2012)
suggested a two-level HMDP to find the best marketing strategy according to the data from an
online monitoring system.

Other studies focus on sequential feeding decisions, i.e. finding the best strategy for choosing
the appropriate feed-mix during the growing period of animals. One example is Glen (1983)
who proposed a dynamic programming approach to determine the sequence of feed-mixes in
the production unit. In the study by Boland, Foster, and Preckel (1999), a linear programming
approach was used to specify the optimal time of changing the feed-mix and also the optimal
nutrient ingredients of the feed-mix. A genetic algorithm was applied by Alexander, Morel, and
Wood (2006) to find the best nutrient components of each feed-mix.

Only few studies take both marketing and feeding decisions into account. Niemi (2006) used
a mechanistic function to model the animal growth trend during the growing period. Niemi
(2006) further applied a stochastic dynamic programming method to find the best nutrient in-
gredients and also the best time of marketing. In the study by Sirisatien et al. (2009), a genetic
algorithm was used. Each iteration resulted in a set of feeding schedules followed by the optimal
values of the nutrient ingredients and feeding period. Both studies considered the problem at
animal level and did not take into account the inhomogeneity of animals with respect to growth
and feed conversion rate.

Markov decision models are a well-known modeling technique within animal science used
to model livestock systems. See for instance Rodriguez, Jensen, Pla, and Kristensen (2011) and
Nielsen, Jørgensen, Kristensen, and Østergaard (2010). For a recent survey see Nielsen and Kris-
tensen (2015), which cites more than 100 papers using (hierarchical) Markov decision processes
to model and optimize livestock systems. An HMDP is an extension of a semi Markov decision
process (semi-MDP) where a series of finite-horizon semi-MDPs are combined into one process
at the founder level called the main process (Kristensen, 1988; Kristensen and Jørgensen, 2000).
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As a result the state space at the founder level can be reduced and larger models can be solved us-
ing a modified policy iteration algorithm under different criteria (Nielsen and Kristensen, 2015).
Modeling the problem using an HMDP compared to a semi-MDP contributes to reducing the
curse of dimensionality, since the total number of state variables can be decreased. Moreover,
the total number of states at the founder level is lower (i.e. the matrix which must be inverted in
the modified policy iteration algorithm is much smaller).

A state space model (SSM) (West and Harrison, 1997) is a statistical model which may be
used to transform large datasets obtained using online sensors into the required information about
the production process. An SSM consists of a set of latent variables and a set of observed vari-
ables. At a specified point in time the conditional distribution of the observed variables is a func-
tion of the latent variables specified via the observation equations. The latent variables change
over time as described via the system equations. The observations are conditionally independent
given the latent variables. Thus the estimated value of the latent variables at a time point may be
considered as the state of the system, and with Bayesian forecasting (the Kalman filter) we can es-
timate the latent variables/real state of the system via the observed variables. Examples of SSMs
applied to agricultural problems are Bono, Cornou, and Kristensen (2012); Cornou, Vinther, and
Kristensen (2008) and Bono, Cornou, Lundbye-Christensen, and Kristensen (2013). Moreover,
an SSM can be discretized and embedded into an HMDP (Nielsen, Jørgensen, and Højsgaard,
2011).

3 Model description
Our pig marketing and feeding problem is modeled using a hierarchical Markov decision process
(HMDP) with three levels. A short introduction to HMDPs is given below. As techniques from
both statistical forecasting and operations research are used, consistent notation can be hard to
specify. To assist the reader, Appendix A provides an overview.

An HMDP is an extension of a semi-MDP where a series of finite-horizon semi-MDPs are
combined into one infinite time-horizon process at the founder level called the founder process
(Kristensen and Jørgensen, 2000). The idea is to expand the stages of a process to so-called child
processes, which again may expand stages further to new child processes leading to multiple
levels. At the lowest level the HMDP consists of a set of finite-horizon semi-MDPs (see e.g.
Tijms, 2003, Chap. 7). All processes are linked together using jump actions (see Figure 1).

A finite-horizon semi-MDP considers a sequential decision problem over N stages. Let
In denote the finite set of system states at stage n. When state i ∈ In is observed, an action a
from the finite set of allowable actions An(i) must be chosen, and this decision generates reward
rn(i,a). Moreover, let un(i,a) denote the stage length of action a, i.e. the expected time until the
next decision epoch (stage n+1) given action a and state i. Finally, let Pr( j | n, i,a) denote the
transition probability of obtaining state j ∈ In+1 at stage n+ 1 given that action a is chosen in
state i at stage n.

An HMDP with three levels is illustrated in Figure 1 using a state-expanded hypergraph
(Nielsen and Kristensen, 2006). At the first level, a single founder process p0 is defined. Index
0 indicates that the process has no ancestral processes. We assume that p0 is running over an
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Figure 1: An illustration of a stage in an HMDP. At the founder level (Level 0) we have a single
infinite-horizon founder process p0. A child process, such as p1 at Level 1 (oval box), is uniquely
defined by a given stage, state (node), and action (hyperarc) of its parent process and linked with
the parent process using its initial probability distribution (solid lines) and its terminating actions
(dashed lines). Each process at level 2 is a semi-MDP. Note that only a subset of the actions is
drawn.

infinite number of stages and that all stages have identical state and action spaces and hence just
a single stage is illustrated in Figure 1. Let pl+1 denote a child process at level l+1. Process pl+1

is uniquely defined by a given stage nl , state il and action al of parent process pl . For instance,
the semi-MDP p2 in Figure 1 is defined at stage n1 = 2, state i1 and action a1 of the process
p1 symbolized by the notation p2 = (p1 ‖ (n1, i1,a1) ). Each process is connected to its parent
and child processes using jump actions which can be divided into two groups, namely, a child
jump action that represents an initial probability distribution of transitions to a child process or a
parent jump action that represents a terminating probability distribution of transitions to a parent
process. This is illustrated in Figure 1 for process p1 where child jump action a1 (illustrated
using a solid hyperarc) represents a transition to the child process p2 and parent jump action a2

(illustrated using a dashed hyperarc) represents termination of the process p2. Like traditional
actions, jump actions are associated with an expected reward, action length, and a set of transition
probabilities. Each node in Figure 1 at a given stage n of a process pl corresponds to a state in
Il

n . For example, there are 3 states at stage 1 in process p2. Similarly each hyperarc corresponds
to an action, e.g. action a (gray hyperarc) results in a transition to either state j1 or j2.

A policy is a decision rule/function that assigns to each state in a process a (jump) action.
That is, choosing a policy corresponds to choosing a single hyperarc out of each node in Figure 1.
Given a policy, the reward at a stage of a parent process equals the total expected rewards of the
corresponding child processes. For instance, in Figure 1, the reward of choosing action a1 in
state i1 at stage n1 = 2 in process p1 equals the total expected reward of process p2. A similar
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approach can be used to calculate the transition probabilities and the stage length of an action at
a stage of a parent process.

Different optimality criteria may be considered. In this paper, our optimality criterion is to
maximize the expected reward per time unit and the optimal policy of the HMDP can be found
using a modified policy iteration algorithm. For a detailed description of the algorithm, the
interested reader may consult Nielsen and Kristensen (2015).

3.1 Assumptions
Consider the problem of optimizing feeding and marketing decisions in a finisher pig pen. The
problem can be modeled as a three-level semi-HMDP under the following assumptions:

- qmax pigs are inserted into the finisher pen;

- a finite set of feed-mixes F is available and feed-mix f ∈ F cannot be changed before it
has been used for at least tmin

f weeks (for simplicity, tmin
f is the same for all feed-mixes);

- at most bmax feeding phases can be used;

- marketing of pigs is started in week tmin at the earliest;

- the pen is terminated in week tmax at the latest, i.e. the maximum life time of a pig in the
pen is tmax;

- the growth of a pig is independent of the other pigs in the pen, i.e. the growth is not
dependent on the number of pigs in the pen;

- weekly deliveries to the abattoir in the marketing period are based on a cooperative agree-
ment where culled pigs from each pen are grouped in one transportation delivery at a fixed
time each week, i.e. the transportation cost is fixed.

To give a complete description of the three-level HMDP with feeding and marketing decisions,
each semi-MDP must be specified at all levels, i.e. stages, states, and (jump) actions including
the corresponding rewards, stage lengths (measured in weeks), and transition probabilities.

3.2 Stages, states and actions
As illustrated in Figure 1, the founder process of the HMDP is an infinite time-horizon process
where a stage represents a life of qmax pigs inserted into the pen (until termination). A stage of
the process at the second level corresponds to a feeding phase in which the pigs are fed a specific
feed-mix f . Finally, a stage at the third level is a week of the current production cycle in the pen
under the specific feed-mix. The length, stage, states, and (jump) actions of each process at the
different levels are described below. Whenever, the level is clear from the context, the superscript
indicating the current level under consideration will be left out to avoid heavy notation.
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Level 0 - Founder process p0

Stage: A production cycle of qmax pigs, i.e. from inserting the piglets into the pen until termi-
nating the pen.

Time horizon: Infinite (since the number of filling and emptying a pen is infinite).

States: A single state representing the start of a production cycle (I = {i0}).

Actions: One child jump action a0 representing insertion of a new group of piglets (A(i0) =
{a0}).

Level 1 - Parent process p1 = (p0 ‖ (n0, i0,a0) )

Stage: A feeding phase with a given feed-mix.

Time horizon: Given a maximum of bmax feeding phases, the maximum number of stages in
process p1 is N = bmax +1 since a dummy stage is added at the end.

States: First, consider stage/feeding phase 2≤ n≤ bmax. A state i is defined using the following
state variables:

fn: previous feed-mix (feed-mix in stage/phase n−1);

tn: starting time of phase (week);

qn: number of pigs in the pen at the beginning of stage/phase n;

wn: model information related to the weight of the pigs, obtained using Bayesian updating
(wn ∈Wn). Section 4 provides details on the way the information is obtained.

Furthermore, at this level, a dummy state ĩ is added to represent pen termination. Note
that due to the model assumptions, the earliest starting time of phase n is (n−1)tmin

f +1.
Moreover, if tn ≤ tmin then qn = qmax. Hence the set of states becomes

In = {i = ( fn, tn,qn,wn) | fn ∈ F, tn ∈ {(n−1)tmin
f +1, . . . , tmax−1},

qn ∈ {qmaxI{tn≤tmin}+ I{tn>tmin}, . . . ,q
max},wn ∈Wn}∪{ĩ},

where I{·} denotes the indicator function.

Next, consider stage n = 1. Here the number of states to In =Wn can be reduced, since
tn = 1, qn = qmax, and there is no previous feed-mix.

Finally, at the dummy stage (n = N 1), only the dummy state ĩ representing pen termina-
tion is defined.

Actions: At stage n = 1, it is possible to choose a feed-mix f ∈ F at state i = wn, i.e. the set
of child jump actions is An(i) = {a f | f ∈ F}. At the subsequent stages (1 < n < N 1),
possible child jump actions at state i = ( fn, tn,qn,wn) are An(i) = {a f | f ∈ F\{ fn}}. The
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length of all child jump actions choosing a feed-mix is zero. In the dummy state ĩ a single
dummy parent jump action ã with length zero is considered which represents that the pen
has been terminated.

Level 2 - MDP p2 = (p1 ‖ (n1, i1,a1))

At the lowest level a semi-MDP is defined for each stage/feeding phase n1, parent state i1 =
( fn1, tn1,qn1,wn1), and action a1 = a f corresponding to choosing feed-mix f .

Stage: A week in the current feeding phase.

Time horizon: A stage is defined for each week tn1, . . . , tmax and hence the time horizon becomes
N = tmax− tn1 + 1. That is, stage n = 1, . . . ,N corresponds to week tn1 + n− 1 (n− 1
weeks since the feed-mix was changed).

States: Given stage n, a state i consists of the following state variables:

qn: number of pigs in the pen at the beginning of the week;

wn: model information related to the weight of the pigs, obtained using Bayesian updating
(wn ∈Wn);

gn: model information related to the growth of the pigs, obtained using Bayesian updating
(gn ∈Gn). Further details on how gn and wn are obtained, are given in Section 4.

A dummy state ĩ is also added to represent pen termination. Therefore the set of states
becomes:

In = {i = (qn,wn,gn) | qn ∈ {qmaxI{tn1+n−1≤tmin}+ I{tn1+n−1>tmin}, . . . ,q
max},

wn ∈Wn,gn ∈Gn}∪{ĩ}.

Actions: Consider state i = (qn,wn,gn) at stage n. If marketing is not possible at this stage
(since tn1 +n−1 < tmin), then the production process continues for another week with the
current feed-mix using action acont. If marketing is possible (tn1 +n−1≥ tmin,n < N 1),
then the set of actions can be expanded to the parent jump action aterm where the pen is
terminated and actions aq, which implies that the q heaviest pigs are culled (individual
marketing). If n > tmin

f the current feed-mix can be changed, which corresponds to parent
jump action anewMix. Finally, at the last stage n = N , the pen must be terminated. Hence
the set of actions becomes

An(i) =



{acont}, tn1 +n−1 < tmin,n≤ tmin
f ,

{acont,anewMix}, tn1 +n−1 < tmin, tmin
f < n < N ,

{acont,aterm}∪{aq | 1≤ q < qn}, tn1 +n−1≥ tmin,n ≤ tmin
f ,

{acont,anewMix,aterm}∪{aq | 1≤ q < qn}, tn1 +n−1≥ tmin, tmin
f < n < N ,

{aterm}, n = N .
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The lengths of actions acont and aq are one week while the lengths of actions aterm and
anewMix are zero. State ĩ has a single dummy parent jump action ã of length zero.

3.3 Transition probabilities
To complete the formulation of the HMDP, transition probabilities must be specified for all
(jump) actions.

Level 0 - Founder process p0

Given state i0 and child jump action a0 (insertion of a new group of piglets), a transition to state
i1 =w1 at the first stage (n1 = 1) of process p1 happens with probability Pr

(
i1 | i0,a0)= Pr0(w1),

where Pr0(w1) denotes the initial probability of weight information w1.

Level 1 - Parent process p1

Consider state i = ( fn , tn ,qn,wn) and child jump action a = a f that corresponds to choosing a
specific feed-mix f ∈F. A transition to state i2 = (q̃1,w̃1, g̃1) at the first stage (n2 = 1) of process
p2 happens with probability

Pr
(
i2 | n, i,a

)
=

{
Pr0(g̃1 | f ), q̃1 = qn , w̃1 =wn ,

0, otherwise,

where Pr0(g̃1 | f ) denotes the initial probability of growth information for state g̃1 given feed-
mix f . For dummy state ĩ and parent jump action ã, a deterministic transition to state i0 happens.

Level 2 - Semi-MDP p2 = (p1 ‖ (n1, i1,a1))

First, consider state i = (qn,wn,gn) in process p2 starting at week tn1 , given a1 = a f , i.e. the
process uses feed-mix f . At Level 2, two parent jump actions are considered. If the feed-mix is
changed (a = anewMix), then the process terminates and makes a deterministic transition to state
i1 = ( f , tn1 +n−1,qn,wn) at stage n1 +1. If the process is terminated using parent jump action
aterm, then the system makes a deterministic transition to state i1 = ĩ in level 1.

Next, consider states i = (qn ,wn,gn) at stage n and j = (qn+1,wn+1,gn+1) at stage n +
1. Two types of actions are possible. If the current feed-mix is not changed, the transition
probability equals

Pr( j | i,acont) =

{
Pr(wn+1,gn+1 |wn ,gn) , qn+1 = qn ,

0, otherwise.
(1)

and if q pigs are culled, the transition probability equals:

Pr
(

j | i,aq
)
=

{
Pr(wn+1,gn+1 |wn,gn) , qn+1 = qn−q,
0, otherwise.

(2)
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The probability Pr(wn+1,gn+1 |wn,gn) depends on the statistical models used for Bayesian
forecasting and will be given in Section 4.

Finally, if the dummy parent action in state ĩ is considered, a deterministic transition to state
i1 = ĩ in process p1 occurs.

3.4 Expected rewards
To finalize the description of the model, the expected reward of each (jump) action must be
specified.

Level 0 - Founder process p0

Action a0 represents the insertion of qmax piglets and hence the reward equals r(i0,a0)=−cpigqmax,
where cpig denotes the unit cost of a piglet.

Level 1 - Parent process p1

The reward of child jump action a f (choose feed-mix f ) is zero since the cost of reconfiguring
the feeding system is added in Level 2. The same holds for the parent jump action ã where the
reward is assumed to be zero.

Level 2 - MDP p2 = (p1 ‖ (n1, i1,a1))

The reward of choosing a new feed-mix (parent jump action anewMix) is −cnewMix where cnewMix
denotes the fixed cost of changing from one feed-mix to another. The reward of the dummy
parent jump action ã is zero.

For the remaining actions (acont,aterm,aq) the expected reward equals the expected revenue
from selling the pigs minus the expected cost of feeding the pigs conditioned on the values of
the state variables and the action. Let (w(1),z(1)), . . . ,(w(qn),z(qn)) denote the weight and weekly
feed intake of the pigs ordered such that w(k) ≤ w(k+1). That is, w(k) is the weight of kth pig, i.e.
the kth order statistics. If the q heaviest pigs are culled, the revenue becomes

qn

∑
j=qn−q+1

w̃( j) · p(w̃( j), w̆( j)), (3)

where w̃( j) and w̆( j) denote the carcass weight (kg) and the leanness (non-fat percentage) of the
jth pig in the pen, respectively. Price function p(·) is the unit price of the meat. Similarly, the
cost of feeding the qn−q lightest pigs is

qn−q

∑
j=1

z( j) · c f , (4)

where c f denotes the unit cost of feed-mix f . The expected reward rn(i,aq) can now be found
as the difference between the expected value of Equations (3) and (4). Actions acont and aterm
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may be considered as extreme culling decisions (q = 0 and q = qn), i.e. rn(i,acont) equals the
expectation of (4) with q = 0 and rn(i,aterm) equals the expectation of (3) with q = qn.

To evaluate the expected reward of (3) and (4), statistical models are needed to transform
the repeated measurements of weight and feed intake into relevant information about weight and
growth using Bayesian forecasting. This will be the focus in the next section.

4 Bayesian updating of weight and growth
In animal production, online monitoring is a relevant method to obtain data for tracking the
changes and can be done regularly by sensors placed in the production units. Two types of
online sensors are considered in the finisher pen which provide data about live weight and feed
intake, respectively. To transform these data into information about weight and growth, we need
a statistical model. In this paper state space models (SSMs) are used to estimate the mean weight
µt and growth gt of the pigs in the pen at time t. The same holds for the standard deviation σt of
the pig weights in the pen.

The set Wn in the HMDP will therefore contain discretized estimates of the mean weight and
standard deviation and the set Gn will include discretized estimates of the mean growth.

SSMs can be categorized into different groups based on the dynamic nature of the considered
system and the probability distribution assumed. Two kinds of SSMs are considered and later
embedded into the HMDP. In the first model, the probability distribution of the observations,
related to the online sensors, is Gaussian (GSSM) and in the second model, these observations
come from a non-Gaussian distribution (nGSSM). The dynamics of the system is modeled by
linear equations in both models.

The next sections, first provide a description of the two models and afterwards use the models
to calculate the reward and transition probabilities of the HMDP. For a short introduction to SSMs
and the theorems used for Bayesian updating see Appendix B.

4.1 A GSSM for average weight and growth estimations
Let (ŵ1, . . . , ŵd)t denote d weight estimates obtained by an online weighting method (e.g. image
processing) at time t. That is, an estimate of the average weight at time t is w̄t = ∑

d
k=1 ŵk/d.

Moreover, assume that the average feed intake per pig z̄t , given feed-mix f , is measured using an
automatic feeding system. The following GSSM is used to model mean weight and growth:

system equation (θt = Gθt−1 +ωt) :
(

µt
gt

)
=

(
1 1
0 1

)(
µt−1
gt−1

)
+

(
ω1t
ω2t

)
, (5)

observation equation (yt = F ′t θt +νt) :
(

w̄t
z̄t

)
=

(
1 0

k1t k2

)(
µt
gt

)
+

(
ν1t
ν2t

)
, (6)

The system equation (5) models the relation between the latent variables θt = (µt ,gt)
′ where

the first equation in (5) states that the mean weight µt in the pen at time t equals the mean weight
at time t− 1 plus the mean growth and some noise. The second equation states that the mean
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growth gt in the pen follows a random process. The system noise is ωt ∼ N(0,W) and the prior
distribution is θ0 ∼ N(m0, f ,C0, f ) given a fixed feed-mix f .

The observation equation (6) illustrates the relation between the observed variables yt =
(w̄t , z̄t)

′ and the latent variables. That is, in the first equation, the observed average weight equals
the mean weight plus the measurement error of the weighing method, and in the second equation,
the observed average feed intake equals

z̄t = k1t µt + k2gt +ν2t ,

where k1t and k2 are two known parameters. This relation is based on a linear approximation of
the relation between feed intake and growth stated in Jørgensen (1993) where k1t is a dynamic
parameter to cover the non-linearity of the weight term. The observation error is assumed to be
νt ∼ N(0,V).

Let Dt =(y1, ...,yt ,m0, f ,C0, f ) denote the information available up to time t. When new values
of the observable variable yt = (w̄t , z̄t)

′ are received, Bayesian updating (Theorem 1 in Appendix
B) can be used to update the posterior (θt |Dt)∼ N(mt ,Ct) at time t. That is, the posterior mean
and covariance given the current feed-mix f become

mt =

(
µ̂t
ĝt

)
, Ct =

(
Ct,1 Ct,12
Ct,12 Ct,2

)
.

The estimated means (µ̂t , ĝt)
′ are the best estimate of the latent variables (µt ,gt)

′. The starting
time of the GSSM is when the pigs are inserted into the pen, i.e. the prior mean of the latent
variable is m0, f = (µ̂0, ĝ0, f ) where µ̂0 denotes the average weight of the piglets at insertion and
ĝ0, f is the estimated growth rate given feed-mix f (prior to receiving sensor data). The initial
covariance C0, f contains the initial covariance components of live weight and growth rate at the
time of insertion given feed-mix f .

If the feed-mix is changed at time t to a new feed-mix f , this change is interpreted as a system
intervention (Kristensen, Jørgensen, and Toft, 2010, Section 8.2.5) and the posterior mean and
covariance are modified to

mt =

(
µ̂t

ĝ0, f

)
, Ct =

(
Ct,1 C0, f ,12

C0, f ,12 C0, f ,2

)
,

where ĝ0, f denotes the initial estimate of the growth rate of the new feed-mix (prior to receiving
sensor data for feed-mix f ) and C0, f ,· denotes the initial covariances for the feed-mix f .

4.2 An nGSSM to estimate the variance of weights in the pen
Assuming d weight estimates (ŵ1, . . . , ŵd)t at time t, the unbiased sample variance at time t is
s2
t = ∑

d
k=1(ŵk− w̄t)

2/(d−1). It is well known that if s2
t is based on observations from a normal

distribution with true variance (σt)
2, then (d−1)s2

t /(σt)
2 follows a chi-square distribution with

d−1 degrees of freedom (Wackerly, Mendenhall, and Scheaffer, 2008, p357). Hence the sample
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variance s2
t follows a gamma distribution with shape at and scale bt given as

at =
d−1

2
, bt =

2(σt)
2

d−1
.

Note that since d is constant, at is constant and known for all t > 1.
An nGSSM can now be defined with observation yt = s2

t and latent variable θt = (σt)
2 at

time t where yt follows a gamma distribution with shape at and scale bt . The natural parameter
becomes ηt =−1/(σt)

2 and the impact on the latent variable (g(ηt) =F ′t θt) is defined as g(ηt) =
(σt)

2, i.e. g(ηt) =−1/ηt ,F ′t = 1 (see Appendix B). The system equation is:

(σt)
2 = Gt(σt−1)

2,

where Gt = ( t
t−1)

2 for t > 1 (G1 = 1). That is, it is assumed that the true variance in the pen
increases by coefficient ( t

t−1)
2 (Kristensen et al., 2012).

It should be noted that the conjugate prior distribution of (σt)
2 is an inverse-gamma distribu-

tion (Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin, 2004, p50). Hence, when the piglets
are inserted into the pen (t = 0), the initial (prior) distribution of the variance is

θ0 ∼ Inv-Gamma
(
c0 =

d−1
2

,d0 =
(d−1)s2

0
2

)
, (7)

with shape c0 and scale d0 where s2
0 is the initial estimated sample variance of the live weight

with sample size d. Given the nGSSM and the initial distribution (7), the estimate of the variance
can now be updated when a new observation s2

t is obtained from the pen by using Theorem 3 and
Corollary 1 in Appendix B.

4.3 Embedding the SSMs into the HMDP
The two SSMs described in the previous sections provide information about the mean weight and
growth (µt ,gt) and the standard deviation σt of the weights in the pen. To embed this information
into the HMDP these values have to be discretized (Nielsen et al., 2011).

Let Uxn = {Π1, . . . ,Π|Uxn |} be a set of disjoint intervals representing the partitioning of pos-
sible values of the continuous state variable x at stage n (e.g. x = µ̂n). Moreover, given interval
Π, let centre point π denote the centre of the interval. The set of possible values of the state
variables in the HMDP related to information about weight is Wn =Uµ̂n ×Uσ̂n and hence a state
wn corresponds to area Πµ̂n ×Πσ̂n and is represented using the centre point wn = (πµ̂n ,πσ̂n ).
Similarly the corresponding set of possible values of the state variable related to information
about growth is Gn = Uĝn .

4.3.1 Transition probabilities

It is now possible to compute the transition probability Pr(wn+1,gn+1 |wn,gn) used in (1) and
(2). Since the mean and variance estimations are treated separately in different SSMs, this tran-
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sition probability can be split into two parts:

Pr(wn+1,gn+1 |wn ,gn) =Pr
(
mn+1 = (µ̂n+1, ĝn+1) ∈Πµ̂n+1×Πĝn+1 | mn = (πµ̂n ,πĝn )

)
·Pr
(
m′n+1 = σ̂n+1 ∈Πσ̂n+1 | m

′
n = πσ̂n

)
.

The first part can be calculated using the GSSM as

Pr
(
mn+1 ∈Πµ̂n+1×Πĝn+1 | mn

)
=
∫

Πµ̂n+1

∫
Πĝn+1

f(mn+1|mn)(x,y)dydx,

where the distribution of (mn+1 |mn) can be found using Theorem 2 in Appendix B. The second
part can be calculated using the nGSSM as

Pr
(
m′n+1 ∈Πσ̂n+1 | m

′
n
)
=
∫

Πσ̂n+1

f(m′n+1|m′n)(x)dx,

where the distribution of (m′n+1 | m′n) can be found using Theorem 4 in Appendix B.

4.3.2 Expected rewards

The expected reward given stage n and state (qn ,wn ,gn) = (qn,(πµ̂n,πσ̂n),πĝn) in process p2 can
be calculated as the expected value of (3) minus the expected value of (4). The expected revenue
of (3) can be written as

qn

∑
k=qn−q+1

E
(
w̃(k) · p(w̃(k), w̆(k))

)
, (8)

where w̃(k) and w̆(k) denote the carcass weight and leanness of the jth pig (based on the order
statistics w(k), see Section 3.4). The carcass weight, w̃(k), of the jth pig is a fraction of live weight
(Andersen, Pedersen, and Ogannisian, 1999):

w̃(k) = 0.84w(k)−5.89+ ε, (9)

where ε ∼ N(0,σ2
ε ) is a random error. Furthermore, Kristensen et al. (2012) proposed a rule of

thumb for use in production units, which is used to compute the lean meat percentage w̆(k) at
marketing:

w̆(k) =
−30(ḡ(k)− ḡ)

4
+ ¯̆w,

where ḡ(k) denotes the average daily growth/gain of the kth pig until marketing, ḡ is the average
daily growth in the herd, and ¯̆w is the average herd leanness percentage at marketing. The
average daily growth t days after insertion into the pen is ḡ(k) = (w(k)− µ̂0)/t, where µ̂0 denotes
the average weight at time of insertion into the pen.

The expected cost of (4) is:

c f

qn−q

∑
k=1

E
(
z(k)
)
. (10)
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and from (6), the ordered random variable z(k) equals:

z(k) = k1tw(k)+ k2g(k).

Note that the evaluation of (8) and (10) is rather complex since it involves calculating the
mean of a piecewise reward function and the truncated normal distribution. However, the values
of (8) and (10) can be simulated using a simple sorting procedure and given the fact that w ∼
N(πµ̂ ,πσ̂) where w denotes the weight of a pig randomly selected in the pen at the current stage.

5 Numerical example
To illustrate the functionality of the proposed optimization model, the HMDP is applied on three
pens with different properties (average weekly gain). The average weekly gain of Pen 2 is as-
sumed to be “normal” (an initial growth of 5.8 kg/week using Feed-mix 1), and Pens 1 and 3
grow twenty percent slower and faster, respectively, than Pen 2. Moreover, to initialize the three
pens with the same conditions, the pigs are fed by the same feed-mix (Feed-mix 1) at the time of
insertion into the pen.

5.1 Model parameters and observation data
To obtain time series of observations (w̄t , z̄t) and s2

t used by the GSSM and nGSSM a simula-
tion model was developed. The model is based on the biological growth formulas in Jørgensen
(1993). The simulation model and the generated data are available online for reproducibility (see
Pourmoayed and Nielsen (2014b)).

An example is given in Figure 2 that shows the observed values of average live weight w̄t ,
average feed intake z̄t , and the standard deviation st (resulted from the simulation). It also gives
the estimated information of live weight and growth (calculated using Bayesian updating with
the GSSM and nGSSM) in the three pens. These values together with the other state variables are
used to identify the current state in the HMDP. Note that the simulation is started with Feed-mix
1 and each time the feed-mix is changed, we continue the simulation using the new feed-mix.

The parameters used for the HMDP are given in Table 1. The parameter values have been ob-
tained using information about finisher pig production (Danish conditions) and related literature
(see the footnotes in Table 1).

Table 2 contains parameter values related to the GSSM and nGSSM. The values have been
estimated with time series generated using the simulation model. More specifically, we used the
expectation-maximization algorithm (Dethlefsen, 2001) to find V and W, and the initial posterior
parameters m0,1 and C0,1 were estimated using the weight data at the time of inserting the piglets
into the pen. For the nGSSM, the initial sample variance s2

0 was calculated using the time series
data and d = 35 is used as the number of weight estimates per day. Finally, note that each feed-
mix implies a special growth rate in the pen (ĝ0, f ) and that feed-mixes with higher growth rates
are more expensive in comparison with other feed-mixes (c f ).

To calculate the revenue of marketing in (3), the unit price function p(w̃( j), w̆( j)) should be
specified, which under Danish conditions is the sum of two piecewise linear functions p̃(w̃)
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Figure 2: Observed and estimated information of live weight and growth rate in the three pens.
Observed information are average live weight w̄t , average feed intake z̄t and standard deviation of
live weight st per week (resulted from simulation). Estimated information are estimated means
of live weight and growth rate, µ̂t and ĝt (computed using the GSSM), and estimated standard
deviation of live weight σ̂t (computed using the nGSSM). Bars show the number of pigs qn in
the pen before the optimal action is carried out. The vertical dotted and solid lines show the
times when the marketing and feeding decisions occur in the system based on the optimal policy,
respectively.

and p̆(w̆) related to the price of carcass and a bonus for the leanness percentage per kg meat,
respectively. We define p̃(w̃) and p̆(w̆) based on the meat prices used in Kristensen et al. (2012)1

as
1For current prices see http://www.danishcrown.dk/Ejer/Noteringer/

Aktuel-svinenotering.aspx
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Table 1: Parameter values (HMDP).

Parameter Value Description

qmax 15 Number of pigs inserted into the pen.a

bmax 4 Maximum number of feeding phases.a

|F| 3 Number of available feed-mixes.a

tmin
f 3 Minimum number of weeks using feed-mix f .a

tmax 12 Maximum number of weeks in a growing period.a

tmin 9 First possible week of marketing decisions.a

cnewMix 0 Cost of changing the feed-mix (DKK).a

cpig 375 Cost of a piglet (DKK).bc

c f {1.8, 1.88, 1.96} Unit cost of feed-mix f = 1, . . . ,3 (DKK/FEsv).ad

g 6 Average weekly gain (kg) in the herd.c

¯̆w 61 Average leanness percentage in the herd.c

σε 1.4 Standard deviation of ε .c

a Value based on discussions with experts in Danish pig production. b Time series of Danish prices can be seen
at http://www.notering.dk/WebFrontend/. c Value taken from Kristensen et al. (2012). d FEsv is the
energy unit used for feeding the pigs in Denmark. One FEsv is equivalent to 7.72 MJ.

p̃(w̃) =



0 w̃ < 50
0.2w̃−2.7 50≤ w̃ < 60
0.1w̃+3.3 60≤ w̃ < 70
10.3 70≤ w̃ < 86
−0.1w̃+18.9 86≤ w̃ < 95
9.3 95≤ w̃ < 100
9.1 w̃ ≥ 100,

(11)

and

p̆(w̆) = 0.1(w̆−61).

A plot of the two functions is given in Figure 3.
Finally, in order to initialize the HMDP, possible values of the state variables should be

determined for each stage. For the discrete state variables (qn, tn, fn), the possible values are
set according to the set of states defined in Section 3.2. Moreover, based on the discretization
method in the beginning of Section 4.3, the continuous state variables (µ̂n, σ̂n, ĝn) are divided
into the 11, 7 and 5 intervals, respectively. The centre points of these intervals are specified such
that they represent the possible values of the weight and growth information in the system. An
overview over the values of each state variable is given in Table 3.
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Table 2: Parameter values (GSSM and nGSSM).

Parameter Value Explanation

GSSM

V
(

0.066 0.027
0.027 0.012

)
Observation variance.a

W
(

2.1 −0.124
−0.124 0.112

)
System variance.a

m0,1

(
26.49

5.8

)
Initial prior mean weight and growth m0,1 = (µ̂0, ĝ0,1) for Feed-mix 1.a

C0,1

(
4.26 0.32
0.32 0.53

)
Initial prior covariance matrix for Feed-mix 1.a

k1t
{0.134−0.004i+0.0001i2 :
i = 1, . . . ,12} Energy requirements (FEsv) per kg live weight.b

k2 1.549 Energy requirement (FEsv) per kg gain.c

ĝ0, f {5.8,6.3,6.8} Initial growth rate estimate of feed-mix f = 1, . . . ,3.d

nGSSM
s2

0 7.65 Initial sample variance (kg2).a

d 35 Sample size (observations per day).e

a Estimated based on time series generated using the simulation model. b Based on a linear approximation of the
relation between feed intake and growth stated in Jørgensen (1993). c Value taken from Jørgensen (1993). d Value
based on discussions with experts in Danish pig production. e Value used in the simulation model.

Table 3: Possible values of the state variables and the range of the centre points in the HMDP.

State / Week (n) 1 2 3 4 5 6 7 8 9 10 11 12

qn 15 15 15 15 15 15 15 15 1-15 1-15 1-15 1-15
tn (week) 1 1 1 1, 4 1, 4-5 1, 4-6 1, 4-7 1, 4-8 1, 4-9 1, 4-10 1, 4-11 1, 4-11
fn 1 1 1 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3
πµ̂n (kg)a 7-47 14-54 20-61 28-68 35-75 42-82 49-88 56-96 63-103 70-110 77-116 84-124
πσ̂n (kg)a 1.6-6.4 2.1-6.9 2.6-7.4 3.1-7.9 3.6-8.4 4.1-8.9 4.6-9.4 5.1-9.9 5.6-10.4 6.1-10.9 6.6-11.4 7.1-11.9
πĝn (kg)a 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2

a Variables µ̂n, σ̂n, ĝn are discretized into 11, 7, and 5 intervals, respectively. Rows πµ̂n ,πσ̂n , and πĝn show the range of the possible values of

µ̂n, σ̂n and ĝn.

5.2 Model results
The HMDP was coded using C++ (gcc compiler) and R (R Core Team, 2015). The source code
is available online (Pourmoayed and Nielsen, 2014b). After the model was built, the optimal
policy was calculated with the modified policy iteration algorithm using the R package “MDP”
(Nielsen, 2009). The resulting model consists of 802581 states and 5050446 actions (one stage
of the founder process including states and actions of sub-processes).

The CPU time for building and solving the model was 268 and 94 seconds, respectively
(Fujitsu laptop with i7-4800MQ CPU and 32 GB of memory running on a Windows 7 64 bit
OS). Note that the model has only to be resolved when the model parameters change, e.g. a new
estimation of V and W which might be re-estimated monthly. Therefore, a fast solution time is
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Figure 3: Price functions (DKK/kg) given carcass weight (p̃(w̃) = 0 for w̃ < 50) and leanness
percentage.
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Figure 4: The optimal feeding and marketing decisions for the three pens. Upper part of each
plot illustrates the optimal feed-mix (solid line) and the lower part shows the optimal marketing
decision. Numbers close to cull actions (aq) are the number of pigs culled.
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not the primary focus.
The information from each pen, i.e. the values qn, tn, fn, µ̂n, σ̂n and ĝn, is used to find the

relevant state in the HMDP. Next, the optimal action is found using the calculated optimal policy.
The resulting optimal feeding and marketing decisions (i.e. the sample path of the MDP) are
illustrated in Figures 2 and 4 for each pen. In Figure 2 the vertical dotted and solid lines show
weeks where marketing and feeding decisions are taken in the system. The bars show the number
of pigs left in the pen before a (possible) marketing decision. For instance, in week 9, three pigs
in Pen 3 are marketed. A detailed overview of the optimal decisions is given in Figure 4. Here
the plot of each pen is separated into two parts. The solid line in the upper part shows the optimal
feed-mix. A jump indicates that the optimal decision is to change the current feed-mix. In the
lower part of each plot the optimal marketing decision is illustrated by means of symbols. For
instance, the black dots indicate a culling action.

A closer look at Figure 4 shows that all pens start with Feed-mix 1. After 3 weeks, the feed-
mix in Pen 1 (with the lowest weekly gain) changes to Feed-mix 2, resulting in a better growth
rate compared to Feed-mix 1. Pen 1 (low growth) uses this feed-mix until week 8 and after that
Feed-mix 3 is chosen for the remaining weeks because a higher growth is obtained (compared
to using Feed-mix 2), and hence the appropriate live weight is reached at the end of the growing
period. In Pen 2 (normal growth), we change the feed-mix in week 4 from Feed-mix 1 to Feed-
mix 2 and until week 12 this feed-mix is used in the pen. In this pen, the average growth rate
is appropriate and there is no need to use a more expensive feed-mix (Feed-mix 3) with a faster
expected growth rate. Finally, in Pen 3 (high growth), the feed-mix remains unchanged since
the pigs genetically grow fast in this pen using the cheapest feed-mix (Feed-mix 1) and they will
have an appropriate live weight in the last weeks of the growing period.

The length of the growing period, i.e. the number of weeks before terminating the pen, differs
between pens. Pens 1 and 2 are terminated at the maximum growth length (week 12) since a good
slaughter weight is reached for the remaining pigs. However, Pen 3 is terminated in week 11.
Due to the high growth rate in this pen, the average weight in week 11 is appropriate and the pen
is terminated such that a new batch of piglets can be inserted into the pen earlier (new production
cycle).

Individual marketing decisions are made in all pens to select the heaviest pigs for marketing.
Usually pigs grow with different growth values in the pen and hence in the last weeks of the
growing period (from week 9 to 12) they obtain different live weights. Hence, these decisions
are made in order to market the pigs that are in the best slaughter weight interval (with a live
weight approximately between 89 and 109 kg due to (9) and (11)). For instance, in Pen 2, the
4 heaviest pigs are culled in week 11. As a result, these individual marketing decisions lead to
a decrease in the inhomogeneity between the remaining pigs in the pen, which implies a more
consistent growth among the remaining pigs.

Changing the parameters of the model influences on the optimal policy. To make a small
sensitivity analysis, three groups of scenarios are considered and compared with the basic sce-
nario based on the parameters in Tables 1 and 2. In the first group of scenarios the starting time
of the marketing period is changed by considering different values of tmin under a fixed growing
period (tmax = 12). In the second group, the maximum length of the marketing period is altered
by changing tmax under a fixed starting time for marketing decisions (tmin = 9) and in the third
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Table 4: Three groups of scenarios to show the impact of changing model parameters. The basic
scenario is based on the parameters in Tables 1 and 2 where tmin = 9 and tmax = 12 weeks.

Scenario group Parameter change Gross margin per week (DKK)

Basic none 71.349

Group 1 - starting time of marketing period
tmin = 8 71.355
tmin = 10 71.249
tmin = 11 70.428

Group 2 - maximum length of marketing period
tmax = 11 34.155
tmax = 13 92.618
tmax = 14 104.644
tmax = 15 110.884

Group 3 - feed-mix unit cost 10% increase 27.444
10% decrease 116.064

group different feed-mix unit costs are taken into account. Under each scenario, the optimal
policy of the HMDP and the gross margin per week are calculated for comparison.

The results are shown in Table 4. In Group 1, a change in the starting time of possible
marketing decisions (tmin) has a small impact on the gross margin while in Group 2 the maximum
length of the marketing period (tmax) has a much higher impact on the gross margin per week.
Therefore, it is better to increase the marketing length by extending the growing period tmax

compared to lowering tmin. This illustrates the importance of the length of the growing period in
the pen. Finally, in Group 3, a decrease/increase in the feed-mix unit cost gives a higher/lower
gross margin. The effect is relatively high which shows that the profit of the production unit is
extremely dependent on the feeding costs.

6 Conclusions and further research
In the production of growing pigs, the decision maker must consider feeding and marketing
decisions simultaneously. In this paper, we presented a three-level HMDP which considers both
feeding and marketing decisions at pen level.

We used a Bayesian approach to update the state of the system such that it contains the
updated information based on previous measurements. More specifically, a GSSM is used to
forecast mean weight and growth information based on online measurements and an nGSSM is
used to forecast the weight variance within the pen. By embedding the SSMs into the HMDP, the
model takes into account new online measurements. Both SSMs are embedded into the HMDP
using a general discretization method.

A numerical example shows that the optimal policy adapts to different pen conditions (we
used three pens with different genetic properties) and chooses actions which maximize the ex-
pected reward per time unit. Furthermore, a marginal sensitivity analysis illustrated the impor-
tance of the length of the growing period and feed-mix cost.
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The model presented in this paper can be used as a part of a decision support system with
online data such that the system state can be found using Bayesian updating and the optimal
policy of the HMDP can determine the best feeding and marketing decisions at pen level. For
simplicity we have assumed that the three alternative feed mixes available for the pigs are the
same throughout the production period. In practice it would be natural to adjust the feed mixes
to the various growth phases so that the alternatives taken into account depend on the age of the
pigs. It would be straightforward to implement such a more realistic setup so it is not a limitation
for a practical use. There are, however, some other limitations of the model that require more
thorough consideration.

First, the model considers feeding and marketing decisions at pen level and ignores possible
constraints at section or herd level. For instance, limitations in the feeding management system
and the transportation strategy to the abattoir are currently ignored. That is, we assume weekly
deliveries to the abattoir in the marketing period based on a cooperative agreement where culled
pigs from each pen are grouped in one delivery. Hence, the transportation cost is fixed and can
be ignored. This is the situation in many Danish herds since the majority of farmers in Denmark
use a single abattoir which also handles the transport. To handle constraints and decisions about
transportation costs (e.g. truck capacity), we need to extend the model from pen level to section
or herd level. Given the current modeling framework, this extension may be difficult due to
the curse of dimensionality since the number of states will grow dramatically. As a result there
is a need for an approximation method to approximate the value function of the HMDP and
find the best marketing policy in the herd. This can be done by using an approximate dynamic
programming approach (Powell, 2007) and is a possible direction of future research.

Second, we may have weekly variations in the carcass price (11) and piglet cost in practice.
This fact may have an influence on the marketing decisions but has been ignored in this study and
in previous papers using HMDP models (Nielsen and Kristensen, 2015). Considering price vari-
ations in a model with marketing and feeding decisions is difficult since state variables related
to price information have to be introduced into the model which will result in an exponential in-
crease in the number of state variables. Two directions are possible. Either approximate dynamic
programming methods are applied or other state variables are excluded from the model. Price
variations can be analyzed using an SSM and Bayesian updating and embedded into an HMDP
which is a subject of future research.

Finally, the model may be extended to handle information and decisions about diseases such
as diarrhea and tail biting.
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A Notation
Since the paper uses techniques from both statistical forecasting and operations research, we had
to make some choices with respect to notation. In general, we use capital letters for matrices
and let A′ denote the transpose of A. Capital blackboard bold letters are used for sets (e.g. Wn
and F). Subscript indices indicate e.g. stage, week, and feed-mix and are separated using a
comma. Superscript is only used to indicate the level in the HMDP except when lower and upper
limits on ranges (e.g. tmin

f and tmax) are considered. Greek letters are used for some stochastic
variables and their mean and variance such as θt and µt . Finally, accent x̂ (hat) is used to denote
an estimate of x and accent x̄ (bar) the average of a group of x-variables. A description of the
notation introduced in Section 3 and Section 4 is given in Tables 5 and 6, respectively.
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Table 5: Notation - HMDP model (Section 3). Given in approx. the order introduced.

Symbol Description

In Set of states at stage n.
An(i) Set of actions given stage n and state i.
rn(i,a) Reward at stage n given state i and action a.
un(i,a) Expected length until the next decision epoch at stage n given state i and action a.
Pr( j | n, i,a) Transition probability from state i at stage n to state j at the next stage under action a.
Pr0(i) Initial probability of state i.
pl A process at level l (superscript is used to indicate level).
N l Time horizon of process pl at level l.
nl , il ,al A stage, state, and action in process pl .
qmax Number of pigs inserted into the pen.
bmax Maximum number of feeding phases.
tmax Latest week of pen termination.
tmin

f Minimum number of weeks for using feed-mix f .
tmin First possible week of marketing decisions.

fn Previous feed-mix used at stage/phase n−1, fn ∈ F (set of possible feed-mixes).
tn Starting time of phase/stage n (week number), 1≤ tn ≤ tmax−1.
qn Remaining pigs in the pen at stage n, 1≤ qn ≤ qmax.
wn Model information related to the weight of the pigs, wn ∈Wn (set of possible weight informa-

tion).
gn Model information related to the growth of the pigs, gn ∈Gn (set of possible growth information).
a f Child jump action for choosing feed-mix f ∈ F.
anewMix Parent jump action related to changing the current feed-mix.
aterm Parent jump action related to terminating a pen.
acont Action related to continuing the production process without any marketing.
aq Action related to marketing the q heaviest pigs in the pen (1≤ q < qn).
cpig Unit cost of a piglet (DKK).
cnewMix Fixed cost of changing the feed-mix (DKK).
c f Unit cost of feed-mix f (DKK/FEsv).
w(k) Weight of the kth pig in the pen (kg).
z(k) Weekly feed intake of the kth pig in the pen (FEsv).
w̃(k) Carcass weight of the kth pig in the pen (kg).
w̆(k) Lean meat percentage of the kth pig in the pen (%).
p̃(w̃) Unit price of carcass meat (DKK/kg).
p̆(w̆) Leanness bonus for 1 kg meat (DKK/kg).
p(w̃, w̆) Unit price of meat, p(w̃, w̆) = p̃(w̃)+ p̆(w̆) (DKK/kg).
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Table 6: Notation - GSSM and nGSSM models (Section 4). Given in approx. the order intro-
duced.

Symbol Description

GSSM (Section 4.1)
µt Mean weight in the pen at time t.
gt Mean growth in the pen at time t.
w̄t Average weight estimate at time t, w̄t = ∑

d
k=1 ŵk/d where ŵk denotes the kth weight estimate and d is

the number of weight observations per time unit (sample size).
z̄t Average feed intake per pig at time t.
θt Latent/unobservable variable(s).
yt Observable variable(s).
G Design matrix of system equation.
Ft Design matrix of observation equation.
ωt System noise, ωt ∼ N(0,W) where W denotes the system covariance matrix.
νt Observation error, νt ∼ N(0,V) where V denotes the observation covariance matrix.
(m0,C0) Mean and covariance matrix of prior given feed-mix f , θ0 ∼ N(m0,C0 .
Dt Set of information available up to time t in the system, Dt = (y1, ...,yt ,m0,C0).
(mt ,Ct) Mean and covariance matrix of posterior at time t, (θt | Dt)∼ N(mt ,Ct).
k1t Energy requirement per kg live weight (FEsv/kg).
k2 Energy requirement per kg gain (FEsv/kg).

nGSSM (Section 4.2)
σt Standard deviation of the weights in the pen at time t.
s2

t Sample variance of weights in the pen at time t, s2
t = ∑

d
j=1(ŵ j− w̄t)

2/(d−1).
ηt Natural parameter of the exponential family distribution.
(at ,bt) Shape and scale parameter of the Gamma distribution, s2

t ∼ Gamma(at ,bt).
(ct ,dt) Shape and scale parameter of the inverse-Gamma distribution, (σ0)

2 ∼ Inv-Gamma(ct ,dt).

Embedding into the HMDP (Section 4.3)
Uxn Set of disjoint intervals representing the partitioning of possible values of estimate x at stage n, Uxn =

{Π1, . . . ,Π|Uxn |} where Πk denotes interval k.
πk Centre point of Πk.
ε Random error in estimation of carcass weight given live weight, ε ∼ N(0,σ2

ε ) where σε denotes the
standard deviation.

g Average weekly gain (kg) in the herd.
ḡ(k) Average daily growth/gain of the kth pig until marketing.
¯̆w Average leanness percentage in the herd.
µ̂0 Initial average weight (kg) at insertion time into the pen.
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B Statistical models for Bayesian updating

Gaussian state space model (GSSM)
A GSSM includes a set of observable and latent/unobservable continuous variables. The set of
latent variables θ{t=0,1,...} evolves over time using system equation (written using matrix nota-
tion)

θt = Gtθt−1 +ωt ,

where ωt ∼ N (0,Wt) is a random term and Gt is a matrix of known values. We assume that
the prior θ0 ∼ N(m0,C0) is given. Moreover, we have a set of observable variables y{t=1,2,...}
(the data acquired from the online sensors) which are dependent on the latent variable using
observation equation

yt = F ′t θt +νt ,

with νt ∼ N (0,Vt). Here F is the design matrix of system equations with known values and F ′

denotes the transpose to matrix F .
The error sequences ωt and νt are internally and mutually independent. Hence given θt we

have that yt is independent of all other observations and in general the past and the future are
independent given the present.

Let Dt−1 = (y1, ...,yt−1,m0,C0) denote the information available up to time t−1. Given the
posterior of the latent variable at time t−1, we can use Bayesian updating (the Kalman filter) to
update the distributions at time t (West and Harrison, 1997, Theorem 4.1).

Theorem 1 Suppose that at time t−1 we have

(θt−1 | Dt−1)∼ N (mt−1,Ct−1) , (posterior at time t−1).

then

(θt | Dt−1)∼ N (bt ,Rt) , (prior at time t)
(yt | Dt−1)∼ N ( ft ,Qt) , (one-step forecast at time t−1)
(θt | Dt)∼ N (mt ,Ct) , (posterior at time t)

where

bt = Gtmt−1, Rt = GtCt−1G′t +Wt

ft = F ′t bt , Qt = F ′t RtFt +Vt

et = yt− ft , Bt = RtFtQ−1
t

mt = bt +Btet , Ct = Rt−BtQtB′t .

Note that the one-step forecast mean ft only depends on mt−1, i.e. we only need to keep the most
recent conditional mean of θt−1 to forecast the next value. Hence when making a prediction
based on Dt−1, we need only to store mt−1. Similarly, the variance Qt only depends on the
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number of observations made, i.e. we can calculate a sequence Q1, ...,Qt without knowing the
observations y1, ...,yt .

The distribution of (mt+1 | mt) can also be found (Nielsen et al., 2011, page 303).

Theorem 2 The conditional random variable (mt+1 | mt) follows a multivariate normal distri-
bution

(mt+1 | mt)∼ N(Gt+1mt ,Bt+1Qt+1B′t+1).

Non-Gaussian state space model (nGSSM)
An nGSSM relaxes the Gaussian assumption of the observed values, i.e. observations are not
conditional Gaussian given the values of the latent variable θt . Instead the probability distribution
of the observable variable yt belongs to the exponential family, i.e. the density function is:

f (yt |ηt ,ut) = exp
(

x(yt)ηt−a(ηt)

ut

)
q(yt ,ut), (12)

with natural parameter ηt and scale parameter ut . Functions a(ηt), x(yt), and q(yt ,ut) are
assumed known. The equation

g(ηt) = Ftθt , (13)

defines the impact of the latent variable θt on the natural parameter ηt . Here, g(ηt) is a known
function. Finally, to specify the full nGSSM model, a system equation has to be specified:

θt = Gtθt−1 +κt ,

with κt ∼ [0,Ht ], meaning that κt has zero mean and a covariance matrix Ht . There is no as-
sumption about a normal distribution. In other words, the distribution is only partially specified
through its mean and variance (we use the notation κt ∼ [mt ,Ht ]).

As for the GSSM, the purpose of Bayesian updating is to estimate the latent variable θt
using previous information Dt−1 = (y1, ...,yt−1,m0,C0) available up to time t−1. However, due
to (13) we also estimate the parameter ηt . An updating procedure was presented by Kristensen
et al. (2010, Section 8.5.4). Since there is no normality assumption, only an approximate analysis
can be conducted. Moreover, the conjugate family of ηt must be known.

In our application a gamma distribution with shape parameter at and scale parameter bt is
used, i.e. ηt =−1/atbt , Vt = 1/at , a(ηt) = ln(−1

ηt
), x(yt) = yt and q(yt ,at) = yat−1

t aat
t /Γ(at) and

the density becomes

f (yt |at ,bt) =
exp(−yt/bt)y

at−1
t

bat
t Γ(at)

. (14)

Moreover, the conjugate prior of g(ηt) is an Inverse-Gamma distribution. As a result, the updat-
ing procedure (Kristensen et al., 2010, Section 8.5.4) reduces to the theorem below.

Theorem 3 Suppose that at time t−1 we have

(θt−1 | Dt−1)∼ [mt−1,Ct−1] (posterior at time t−1),
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Moreover, assume that g(ηt)∼ Inv-Gamma(ct ,dt), g(ηt)=−1/ηt , and that the density f (yt |at ,bt)
equals (14). Then

(θt | Dt−1)∼ [bt ,Rt ] (prior at time t),
(g(ηt) | Dt−1)∼ [ ft ,Qt ] (prior of g(ηt) at time t),

(θt | Dt)∼ [mt ,Ct ] (posterior at time t),

where

bt = Gtmt−1, Rt = GtCt−1G′t +Ht ,

ft = F ′t bt , Qt = F ′t RtFt ,

mt = bt +RtFt( f ∗t − ft)/Qt , Ct = Rt−RtFtF ′t Rt(1−Q∗t /Qt)/Qt ,

f ∗t =
α∗t
β ∗t

, Q∗t =
α∗2t

(β ∗t )2(β ∗t −1)
α
∗
t = αt +atyt , β

∗
t = βt +at ,

αt =
f 3
t

Qt
+ ft , βt =

f 2
t

Qt
+1.

PROOF Consider the updating procedure by Kristensen et al. (2010, Section 8.5.4) which con-
sists of seven steps. The first three steps are the same, but repeated below for readability.

a) Posterior information for θt−1 at time t−1:

(θt−1 | Dt−1)∼ [mt−1,Ct−1],

b) Prior for θt at time t:

(θt | Dt−1)∼ [bt ,Rt ], bt = Gtmt−1, Rt = GtCt−1G′t +Ht .

c) Prior for g(ηt) at time t:

(g(ηt) | Dt−1)∼ [ ft ,Qt ], ft = F ′t bt , Qt = F ′t RtFt .

d) Approximate full prior for ηt at time t: According to our assumptions we have that (g(ηt) |
Dt−1) ∼ Inv-Gamma(ct ,dt) where ct and dt are the shape and scale parameters, g(ηt) =
−1/ηt , and that the density of yt is (14).

In this step we need to identify the conjugate prior of ηt = −1/g(ηt) using the general
form of the conjugate prior with two parameters αt and βt (Kristensen et al., 2010):

f (ηt |Dt−1) = c(αt ,βt)exp(αtηt−βta(ηt)),
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where c(αt ,βt) is a known function and a(ηt) = ln(−1/ηt) as defined in (12). If we
suppose y = ηt and x = g(ηt), i.e. y = h(x) = −1

x , then by applying the transformation rule,
the density function of ηt is

f (ηt |Dt−1) = fx(h−1(y)|Dt−1)
∂h−1(y)

∂y

=
dct

t

Γ(ct)
(−1/ηt)

−ct−1 exp
(
− dt

−1/ηt

)
1

η2
t

=
dct

t

Γ(ct)
(−ηt)

ct−1 exp(dtηt)

=
dct

t

Γ(ct)
exp(dtηt− (ct−1) ln(

−1
ηt

)).

Hence the parameters αt and βt in the conjugate prior of ηt become:

αt = dt , βt = ct−1. (15)

Finally, we fit αt and βt such that

E(g(ηt) | Dt−1) =
dt

ct−1
=

αt

βt
= ft , (16)

Var(g(ηt) | Dt−1) =
d2

t
(ct−1)2(ct−2)

=
α2

t
(βt)2(βt−1)

= Qt ,

implying that

αt =
f 3
t

Qt
+ ft , βt =

f 2
t

Qt
+1.

e) One step forecast of yt : In this step we need to find the forecast distribution f (yt |Dt−1).
According to the concepts of the nGSSM models, the general form of this distribution with
two parameters αt and βt is (Kristensen et al., 2010):

f (yt |Dt−1) =
c(αt ,βt)q(yt ,ut)

c(αt +φtx(yt),βt +φt)
,

where q(yt ,ut) and x(yt) have been defined in (12) and φt =
1
ut

. Using the values of αt and
βt found in Step d, the forecast distribution f (yt |Dt−1) equals

f (yt |Dt−1) =
1

B(at ,ct)
· 1
dt/at

·
(

yt−0
dt/at

)at−1

·
(

1+
yt−0
dt/at

)−at−ct

,

where B(at ,ct) =
Γ(at)Γ(ct)
Γ(at+ct)

. That is a generalized beta prime distribution denoted by β ′

(Crooks, 2013, page 50) and hence

(yt |Dt−1)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5), (17)

with parameters: ψ1 = 0 (location); ψ2 = dt/at (scale); ψ3 = at (first shape); ψ4 = ct
(second shape); and ψ5 = 1 (Weibull power parameter).
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f) Posterior distributions for ηt and g(ηt) at time t: The general form of posterior density
function of ηt is:

f (ηt |Dt) = c(α∗t ,β
∗
t )exp(α∗t ηt−β

∗
t a(ηt)),

with
α
∗
t = αt +φtyt = αt +atyt , β

∗
t = βt +φt = βt +at . (18)

The last relation follows from φt =
1
ut
= at . If we suppose x = ηt and y = g(ηt) then, based

on relation g(ηt) =−1/ηt , we have y = h(x) = −1
x and using the transformation rule, the

posterior distribution of g(ηt) is:

fg(ηt)(g(ηt)|Dt) = fx(h−1(y)|Dt)
∂h−1(y)

∂y

=
(α∗t )

β ∗t +1

Γ(β ∗t +1)
exp(

−α∗t
g(ηt)

−β
∗
t ln(g(ηt)))

1
g(ηt)2

=
(α∗t )

β ∗t +1

Γ(β ∗t +1)
(g(ηt))

−(β ∗t +1)−1 exp(− α∗t
g(ηt)

). (19)

It follows from (19) that (g(ηt) | Dt)∼ Inv-Gamma(c∗t ,d
∗
t ) with

c∗t = β
∗
t +1, d∗t = α

∗
t .

Next, we fit α∗t and β ∗t such that

f ∗t = E(g(ηt) | Dt) =
d∗t

c∗t −1
=

α∗t
β ∗t

,

Q∗t = Var(g(ηt) | Dt) =
(d∗t )

2

(c∗t −1)2(c∗t −2)
=

(α∗t )
2

(β ∗t )2(β ∗t −1)
,

g) Posterior of θt at t: The posterior parameters mt and Ct are

mt = bt +RtFt( f ∗t − ft)/Qt , Ct = Rt−RtFtF ′t Rt(1−Q∗t /Qt)/Qt .

Since the above steps calculate the values stated in Theorem 3, this finishes the proof.

Corollary 1 Given Theorem 3 and Ft = 1 we have that

ft = bt , Qt = Rt ,

mt = f ∗t , Ct = Q∗t .

Finally, the probability distribution of (mt+1 | mt) can be found.
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Theorem 4 Under Theorem 3 and Corollary 1 and assuming Ht = 0, the conditional random
variable (mt+1 | mt) follows a generalized beta prime distribution. That is,

(mt+1 | mt)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

with parameters: ψ1 = Gt+1mtβ
∗
t /(β

∗
t + at+1) (location), ψ2 = ψ1 (scale), ψ3 = at+1 (first

shape), ψ4 = β ∗t + 1 (second shape), and ψ5 = 1 (Weibull power) where at+1 is the shape pa-
rameter of the exponential family distribution of yt+1.

PROOF Assume that Theorem 3 and Corollary 1 hold. Then

(mt+1 | mt) = ( f ∗t+1 | mt) = (
α∗t+1

β ∗t+1
| mt) = At+1 +Bt+1(yt+1|Dt),

since based on (18) we have that

α∗t+1

β ∗t+1
= At+1 +Bt+1yt+1,

where
At+1 =

αt+1

βt+1 +at+1
, Bt+1 =

at+1

βt+1 +at+1
.

From (16) and since Ht = 0, we have that

βt+1 =
αt+1

ft+1
=

f 2
t+1

Qt+1
+1 =

(Gt+1 f ∗t )
2

Gt+1Q∗t G′t+1
+1 =

f ∗2t
Q∗t

+1 =

(
α∗t
β ∗t

)2
α∗2t

β ∗2t (β ∗t −1)
+1 = β

∗
t ,

which implies that
αt+1 = ft+1βt+1 = ft+1β

∗
t = Gt+1mtβ

∗
t .

As a result we can compute At+1 and Bt+1 as

At+1 =
Gt+1mtβ

∗
t

β ∗t +at+1
, Bt+1 =

at+1

β ∗t +at+1
,

which are two scalars given mt (since parameters at+1 and β ∗t are known values given t).
Recall from (17), we have that (yt+1 | Dt)∼ β ′(ψ̌1, ψ̌2, ψ̌3, ψ̌4, ψ̌5), with parameters: ψ̌1 = 0

(location), ψ̌2 = dt+1/at+1 (scale), ψ̌3 = at+1 (first shape), ψ̌4 = ct+1 (second shape), and ψ̌5 = 1
(Weibull power parameter). Hence we have that

(mt+1 | mt)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

with parameters: ψ1 = At+1, ψ2 = Bt+1dt+1/at+1, ψ3 = at+1, ψ4 = ct+1, and ψ5 = 1. Here we
have used the property that if

X ∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

then (based on the transformation rule)

a+bX ∼ β
′(a+ψ1,bψ2,ψ3,ψ4,ψ5).
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Note that due to (15), we have that

ψ2 = Bt+1dt+1/at+1 =
dt+1

β ∗t +at+1
=

αt+1

β ∗t +at+1
= At+1,

and
ψ4 = ct+1 = βt+1 +1 = β

∗
t +1,

which finishes the proof.

34


	Introduction
	Literature review
	Model description
	Assumptions
	Stages, states and actions
	Transition probabilities
	Expected rewards

	Bayesian updating of weight and growth
	A GSSM for average weight and growth estimations
	An nGSSM to estimate the variance of weights in the pen
	Embedding the SSMs into the HMDP
	Transition probabilities
	Expected rewards


	Numerical example
	Model parameters and observation data
	Model results

	Conclusions and further research
	Notation
	Statistical models for Bayesian updating

