
Erratum to “An algorithm for ranking assignments using reoptimization” [Com-
puters and Operations Research 35 (2008) 3714-3726

Christian Roed Pedersen
Department of Operations Research, Aarhus University, Ny Munkegade, Building 1530, DK-8000 Aarhus C,

Denmark.

Lars Relund Nielsen
Department of Genetics and Biotechnology, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark.

Kim Allan Andersen∗

Department of Business Studies, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark.

April 16, 2009

In the paper Pedersen, Nielsen, and Andersen [5] we developed an algorithm for ranking n×n assign-
ments using reoptimization and compare our algorithm with other algorithms with the same time complex-
ity. However, as pointed out by Dr. A. Volgenant, we unfortunately missed one available implementation
written by Miller, Stone, and Cox [3] in IEEE Transactions on Aerospace and Electronic Systems.

The algorithm of Miller et al. [3] (Miller) and Pedersen et al. [5] (DU1) are both based on the
branching technique presented in Murty [4] where the set of possible assignments is partitioned into at
most n−1 disjoint subsets for each additional ranking made. In each subset the best assignment is found
by applying the successive shortest path procedure implementation of Jonker and Volgenant [2]. The
algorithms differ in the following ways:

1. In DU1 dual variables are updated before reoptimization. This is not the case in Miller.

2. In Miller (partial) assignments are saved while maintaining the candidate set. In DU1 the optimal
assignment is recalculated each time a subset is selected from the candidate set to reduce memory
size.

3. An interval heap is used in DU1 to maintain a priority deque of the candidate set and keeping the size
of the queue low. Miller uses a priority queue of the candidate set.

4. In Miller an assignment is selected from the candidate set based on a lower bound. This is not the
case in DU1.

5. Miller uses a heuristic to select subsets from the candidate set with many fixed variables.

6. DU1 uses a heuristic that improve the way two subsets with the same optimal value are inserted into
the candidate set.

From a theoretical point of view items 1 and 6 will speed up DU1 compared to Miller while items
2-5 will speed up Miller compared to DU1. However, due to items 2 and 3, Miller requires more
memory. Moreover, the heuristic must be fast and the lower bound tight to speed up Miller.

We obtained the source code of Miller, written in C, from Professor I.J. Cox’s homepage1, with his
permission. The algorithms were compared using the Beasley test instances [1]. The tests were performed
on a Dualcore Intel EMT64 Xeon 2.80 GHz with 1 MB cache and 6 GB RAM using Ubuntu linux. The
results, averaged over five runs, are presented in Figure 1.

Figure 1 shows that Miller has a better performance than DU1 for the smaller instances
n ∈ {100,200,300}. For the instances n ∈ {400,500,600,700} neither of the algorithms outperform the
∗Corresponding author, e-mail: kia@asb.dk.
1http://www.adastral.ucl.ac.uk/∼ icox/

1



K

se
co

nd
s

0
1

2
3

200 400 600 8001000

●

●

●

●

●
●

●

●

●
●

100

0
10

20
30

200 400 600 8001000

●

●
●

●

●

●

●

●
●

●

200

0
20

40
60

80

200 400 600 8001000

●

● ●

●
●

●

●

●

● ●

300

10
20

30
40

50
60

200 400 600 8001000

●

●
●

●

● ●

●
●

●

●

400
20

30
40

50
60

70

200 400 600 8001000

● ●

●

●

●

●
●

●

●
●

500
10

15
20

25
30

35
40

200 400 600 8001000

●

●

●

●

●

● ●

● ●

●

600

20
30

40
50

60
200 400 600 8001000

●

●

●

●
●

●

●

●

●
●

700

50
10

0
15

0
20

0
25

0

200 400 600 8001000

● ●
●

● ● ● ●

● ● ●

800

DU1 Miller●

Figure 1: CPU times for Miller and DU1.

other. For the instance n = 800 DU1 performs better. It appears that the results obtained by DU1 are
more unstable than the ones obtained by Miller which is due to the candidate set implementation shortly
described in item 3 above.

Acknowledgement

We thank Dr. A. Volgenant for directing our attention to the paper by Miller et al. [3].

References
[1] J.E. Beasley. Linear programming on cray supercomputers. The Journal of the Operational Research

Society, 41(2):133–139, 1990.

[2] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear assign-
ment problems. Computing, 38(4):325–340, 1987.

[3] M.L. Miller, H.S. Stone, and I.J. Cox. Optimizing murty’s ranked assignment method. IEEE Transac-
tions on Aerospace and Electronic Systems, 33:851–862, 1997.

[4] K.G. Murty. An algorithm for ranking all the assignments in order of increasing cost. Operations
Research, 16(3):682–687, 1968.

[5] C.R. Pedersen, L.R. Nielsen, and K.A. Andersen. An algorithm for ranking assignments using reopti-
mization. Computers & Operations Research, 35(11):3714–3726, 2008.

2


