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Abstract
We consider the problem of ranking assignments according to cost in the classical

linear assignment problem. An algorithm partitioning the set of possible assignments,
as suggested by Murty, is presented where, for each partition, the optimal assignment
is calculated using a new reoptimization technique. Its computational performance
is compared with all available implementations of algorithms with the same time
complexity. The results are encouraging.
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1 Introduction

The linear assignment problem (AP) is a well-known problem and may be considered as
the problem of assigning n workers to n jobs. Each worker must be assigned to exactly one
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job. The objective is to minimize total cost.
In an annotated bibliography authored by Dell’Amico and Martello [5], more than

100 papers on the problem are mentioned. Kuhn [10, 11] suggested the first polynomial
method for the solution of AP, called the Hungarian method with O(n4) complexity. Since
1955 several other algorithms for AP have been developed. Some of the most efficient
algorithms are the class of successive shortest path procedures1 with an O(n3) complexity
(see e.g. Tomizawa [22] and Jonker and Volgenant [9]). An excellent survey is given by
Dell’Amico and Toth [6] including comparative tests of several implementations of different
AP algorithms.

As for other optimization problems, the assignment problem can be generalized to
ranking the best K assignments in nondecreasing order of cost. Applications of ranking
assignments are numerous. First, ranking assignments can be used to generate near optimal
solutions which may be better from a practical point of view. Second, applications of
AP may include constraints which are hard to specify formally and makes the problem
difficult to optimize. Here an optimal assignment can be found by enumerating suboptimal
assignments until an assignment satisfying the complicating constraints is found. Last but
not least, ranking assignments appears as a subproblem within algorithms for solving the
bicriterion assignment problem and related extensions, see for example Pedersen, Nielsen,
and Andersen [17].

Several algorithms for ranking assignments have been suggested. They may be clas-
sified using two identifiers: a specific branching technique is used to partition the set of
possible assignments into smaller subsets, and a solution method is used to find an optimal
assignment for each subset.

Murty [13] suggested a branching technique where the set of possible assignments is
partitioned into at most n − 1 disjoint subsets for each additional ranking made. The
Hungarian algorithm was used to find the best assignment for each subset resulting in an
O(Kn5) complexity. However, applying a successive shortest path procedure improves the
overall complexity to O(Kn4). Later, the branching technique in [13] was applied in the
more general framework of finding the K best solutions to a discrete optimization problem
by Lawler [12].

Hamacher and Queyranne [8] presented an alternative general framework for ranking
solutions to combinatorial problems, later specialized for bipartite matchings by Chegireddy
and Hamacher [4]. There an alternative branching technique is suggested, partitioning the
current set into at most two subsets for each additional ranking. For each subset, the
second best assignment has to be calculated. Different solution methods are suggested.
One consists of identifying the second best assignment by a shortest cycle determination in
an auxiliary network. The shortest cycle can be found by solving at most n shortest path
problems resulting in an overall O(Kn3) time complexity, the best known so far.

Recently, Pascoal, Captivo, and Cĺımaco [16] presented a ranking algorithm with the
same branching technique as in [13]. However, by considering the subsets in reverse order
when applying their solution method, they are able to reoptimize the solution from the

1Also known as shortest augmenting paths algorithms.
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previous subset considered and find the best assignment by solving a single shortest path
problem yielding the same time complexity as in [4].

The solution methods in all the above ranking algorithms use shortest path methods
to find the best assignment for each subset. Methods based on shortest paths are dual
algorithms. Dual feasibility exists and primal feasibility has to be reached. Tomizawa [22]
noted that the original costs in the assignment may be replaced with the reduced costs
when using successive shortest path procedures. Since the reduced costs are non-negative,
the shortest path may be found using the algorithm of Dijkstra [7].

In spite of the connection between the dual variables and successive shortest path
procedures, no one has considered updating the dual variables of the previous solution
before the shortest path procedure is applied to a subset. We shall see that such an update
yields an improvement in computational performance to the overall algorithm for ranking
assignments. The new algorithm presented in this paper uses the branching technique of
Murty [13]. For each subset, a solution method is used where only one single shortest path
problem has to be solved. Hence, the overall time complexity of the proposed method is
the same as in [4].

The main contributions of this paper can be shortly summarized as follows:

1. A new ranking algorithm for assignment problems using reoptimization is presented.
Its time complexity is O(Kn3).

2. The computational performance of our algorithm when the dual variables are up-
dated before reoptimization is compared to the case where the dual variables are not
updated. We show that updating yields a significant improvement.

3. We point out the impact on computational performance for different implementations
of the ranking algorithm.

4. Comparative tests against other ranking algorithms known from the literature with
complexity O(Kn3) are carried out.

The paper is organized as follows. In Section 2 we provide the preliminaries. In Section 3
the new ranking algorithm is presented, and in Section 4 computational experiments are
given.

2 Preliminaries

Let G = (U∪V, A) be a bipartite directed graph with node sets U = V = {1, . . . , n}, m = n2

arcs in A and with cost cij on arc (i, j). Note that non-existing arcs can be represented
as arcs having infinite cost. The assignment problem (AP) consists in assigning – with
minimum total cost – each node in U to a node in V .

Defining the variables

xij =

{
1, if node i is assigned to node j
0, otherwise
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AP can, due to its totally unimodular constraint matrix, be formulated as the following
continuous linear program.

min
n∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = 1, i = 1, . . . , n

n∑
i=1

xij = 1, j = 1, . . . , n

xij ≥ 0 i, j = 1, . . . , n

(1)

A feasible solution x to (1) is called an assignment. Using the network formulation,
an assignment may alternatively be written as a = {(1, j1), . . . , (n, jn)} where (i, j) ∈ a if
and only if xij = 1. A partial primal solution is a solution in which less than n variables
are assigned value one and the constraints in (1) are satisfied with a ≤ sign instead of
equality. Note that a partial primal solution corresponds to a partial assignment a =
{(i1, ji1), . . . , (iq, jiq)}.

By associating dual variables ui and vj with the constraints above, the corresponding
dual problem becomes

max
n∑

i=1

ui +
n∑

j=1

vj

s.t. ui + vj ≤ cij, i, j = 1, . . . , n

(2)

Given the reduced costs c̄ij = cij − ui − vj, ∀ (i, j) ∈ A, the complementary slackness
optimality conditions become

xij c̄ij = 0, ∀ (i, j) ∈ A . (3)

2.1 The successive shortest path procedure

Successive shortest path procedures for AP are dual methods. Dual feasibility exists and
the optimal solution is built step by step by iteratively adding assignments to a current
partial primal solution.

A successive shortest path procedure consists of two phases. In phase one, the cost
matrix [cij] is preprocessed and a partial primal solution (or partial assignment) and a
dual feasible solution satisfying the complementary slackness optimality conditions (3)
are determined. In phase two, the partial primal solution is augmented by adding one
row/column assignment at a time until the solution becomes feasible. At each step in phase
two, the dual solution is updated so that complementary slackness still holds. Hence, at
the end of the second phase, the current primal and dual solutions are optimal.
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1 procedure SuccSP()
2 (a, u, v) := Preprocess([cij ]);
3 while (|a| < n) do
4 Ḡ(a) := BuildResNetwork(a, u, v);
5 P := FindAugmentPath(Ḡ(a));
6 a := AugmentSolution(P);
7 (u, v) := AdjustDualSolution(P);
8 end while
9 end procedure

Figure 1: The successive shortest path procedure.

A pseudo-code for the successive shortest path procedure is given in Figure 1. Phase
one is executed by function Preprocess which returns a partial assignment a and a dual
feasible solution (u, v) satisfying (3). Phase two is executed on lines 3–8.

If |a| < n, then all nodes in U have not been assigned to a node in V and function
BuildResNetwork builds the directed residual network Ḡ(a) = (U ∪V, Af ∪Ab) constructed
from G and the current partial solution a. In accordance with the introduction of the
residual network in [1], let

Af = {(i, j) : (i, j) ∈ A ∧ (i, j) /∈ a} and

Ab = {(j, i) : (i, j) ∈ A ∧ (i, j) ∈ a} .

Each forward arc (i, j) in Af is assigned reduced cost c̄ij and each backward arc (j, i) in Ab

is assigned cost −c̄ij = 0 due to (3).
It is easy to see that any directed path in Ḡ(a) contains an arc in Af and an arc in

Ab, alternatingly. Such paths are called alternating paths. If the directed path P starts
in an unassigned node in U and terminates with an unassigned node in V , it is called an
augmenting path.

It is well known that, by removing assignments in a corresponding to the backward arcs
in P and adding the forward arcs in P to a, the number of assignments in the resulting
(partial) assignment ā increases by one. Furthermore, since AP is a special instance of the
minimum cost flow problem, the following result can be derived from the general optimality
results given by Ahuja et al. [1].

Theorem 1. Let a be a partial assignment and (u, v) the corresponding dual variables
fulfilling the complementary slackness optimality conditions. Let P in Ḡ(a) be a shortest
augmenting path and set

ā = (a \ [P ∩ Ab]) ∪ (P ∩ Af ) . (4)

Then ā is a minimum cost (partial) assignment with |a|+ 1 assignments.

Hence, finding a minimum cost (partial) assignment ā with |a|+ 1 assignments can be
done by finding the shortest augmenting path in Ḡ(a). As a consequence, AP can be solved
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by identifying at most n successive shortest augmenting paths. Since the reduced costs are
non-negative, each path can be determined by Dijkstra’s method running in O(n2) time.
Therefore, the overall computational complexity of a successive shortest path procedure
is O(n3).

In procedure SuccSP the shortest augmenting path P is found using function Find-

AugmentPath and next the (partial) assignment a is updated as in (4) using function Aug-

mentSolution. Finally, the dual variables are updated using function AdjustDualSolution

such that (3) holds. For an efficient implementation of procedure SuccSP see for instance
Jonker and Volgenant [9].

3 Ranking assignments

Consider the problem of ranking the best K assignments in nondecreasing order of cost,
i.e. finding the K best assignments a1, . . . , aK satisfying

1. c (ai) ≤ c (ai+1) , i = 1, . . . , K − 1

2. c
(
aK

)
≤ c (a) , ∀a ∈ A \

{
a1, . . . , aK

}
where c(a) denotes the cost of assignment a = {(1, j1), . . . , (n, jn)}, and A denotes the set
of all assignments.

In this paper we use the branching technique described in [13] where the set A is parti-
tioned into smaller subsets as follows. Given an optimal assignment a1 = {(1, j1), . . . , (n, jn)},
the set A \ {a1} is partitioned into n− 1 disjoint subsets Ai, i = 1, . . . , n− 1 where

A1 = {a ∈ A : (1, j1) /∈ a} and

Ai = {a ∈ A : {(1, j1) , . . . , (i− 1, ji−1)} ∈ a, (i, ji) /∈ a} , i = 2, . . . , n− 1 .

We say that {(1, j1), . . . , (i − 1, ji−1)} is forced to be in all assignments belonging to
Ai. Clearly, the second best assignment a2 can be found by establishing the optimal
assignment in the sets Ai, i = 1, . . . , n − 1. Moreover, the branching technique can be
applied recursively to subsets Ai ⊂ A.

The pseudo-code for the ranking algorithm, named K-AP, is shown in Figure 2. The
algorithm implicitly maintains a candidate set Φ of pairs (ā, Ā) where ā is the optimal
assignment in (sub)set Ā. Assuming that the first k−1 assignments a1, . . . , ak−1 have been
found, the current candidate set represents the partition of A\{a1, . . . , ak−1}. Assignment

ak is then found by selecting and removing the pair (â, Â) containing the assignment with
minimum cost in the candidate set (lines 5–7). Next, the branching technique is used to

partition Â, possibly obtaining new pairs that are added to the candidate set (lines 8–11).

In general, it is not necessary to consider all subsets in the partitioning of Â. Consider
the case where (i, ji) was forced to be in any assignment belonging to Â in some previous

partition. Therefore, Âi = ∅ since (i, ji) is not allowed in any assignment of Âi, and it may

be assumed that Âi is not generated by the algorithm.
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1 procedure K-AP()
2 a := SuccSP();
3 Φ := {(a,A)};
4 for (k := 1 to K) do
5 (â, Â) := arg min{c(ā) : (ā, Ā) ∈ Φ};
6 if ((â, Â) = null) then stop; else output ak := â;
7 Φ := Φ \ {(â, Â)};
8 for (i := 1 to n− 1) do
9 â∗ := FindOptimal(Âi);

10 if (c(â∗) < ∞) then Φ := Φ ∪ {(â∗, Âi)};
11 end for
12 end for
13 end procedure

Figure 2: The ranking assignments algorithm.

Function FindOptimal represents the solution method applied to find the optimal assign-
ment in a given subset. Consider partition Â with optimal assignment â = {(1, j1), . . . , (n, jn)}
and assume that an assignment in Â cannot contain (l1, t1), . . . , (lq, tq) due to previous par-
titions. Recall that (1, j1), . . . , (i − 1, ji−1) are forced to be in all assignments belonging

to subset Âi. Therefore, assuming that Âi is non-empty, the optimal assignment can be
found solving an AP of size n− (i− 1) where

1. Rows {1, . . . , i− 1} and columns {j1, . . . , ji−1} have been removed from the reduced
cost matrix [c̄ij], i.e. these indices are not considered in (1) and (2).

2. The reduced cost in cells (i, ji) and (l1, t1), . . . , (lq, tq) is set to infinity.

Given a non-empty subset Âi, let AP (Âi) denote the AP defined as above. If the
successive shortest path procedure, SuccSP, is used as the solution method to find the
optimal assignment to AP (Âi), i = 1, . . . , n− 1, the overall complexity of K-AP is O(Kn4).

However, the optimal assignment to AP (Âi) can be found using reoptimization, thereby
reducing the complexity of the algorithm.

Let â denote the optimal assignment in subset Â found by solving AP (Â), let (û, v̂)
denote the corresponding dual values and let the partial assignment a(i) be defined by
removing from â the single assignment {(i, ji)},. Hence,

a(i) := â \ {(i, ji)} . (5)

The following lemma is well known, Ahuja et al. [1].

Lemma 1. a(i) is a partial assignment of size n − 1, and (û, v̂) remains dual feasible to

AP (Âi) and satisfies the complementary slackness optimality conditions (3).
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i ∞ ciji+1
− ui − v̂ji+1

· · · cijn − ui − v̂jn

i + 1 ci+1ji
− ûi+1 − vji

ĉi+1ji+1
· · · ĉi+1jn

...
...

...
. . .

...

n cnji
− ûn − vji

ĉnji+1
· · · ĉnjn

Figure 3: The reduced cost matrix to AP (Âi).

However, by updating the dual variables according to the following scheme

ui = ûi + minj∈V \{j1,...,ji} {cij − ûi − v̂j}
ur = ûr, r ∈ {i + 1, . . . , n}
vji

= v̂ji
+ minr∈{i+1,...,n} {crji

− ûr − v̂ji
}

vj = v̂j, j ∈ V \ {j1, . . . , ji} ,

(6)

the following revised version of Lemma 1 can be derived. As we will see in Section 4,
this provides a speed-up of the overall algorithm due to the present implementation of the
method to find a shortest augmenting path.

Lemma 2. a(i) is a partial assignment of size n − 1 and (u, v) defined in (6) is a dual

feasible solution to AP (Âi), satisfying the complementary slackness optimality conditions
(3).

Proof. Given (û, v̂), let ĉ denote the corresponding non-negative reduced costs. The re-

duced cost matrix to AP (Âi) using (u, v) from (6) can be seen in Figure 3 where it is
utilized that ur = ûr, r ∈ {i + 1, . . . , n}, and vj = v̂j, j ∈ V \ {j1, . . . , ji}.

Only the reduced costs in column ji and row i have changed. Due to (6), the reduced
costs in row i satisfy

cij − ui − vj ≥ cij − (ûi + (cij − ûi − v̂j))− v̂j = 0, ∀j ∈ V \ {j1, . . . , ji} .

Similar results hold for the reduced costs in column ji. Hence, (u, v) is a dual feasible

solution to AP (Âi). Moreover, since the reduced costs corresponding to the elements in
assignment a(i) have not changed, the complementary slackness optimality conditions (3)
still hold.

A pseudo-code for the reoptimization algorithm is given in Figure 4. Here, the partial
assignment a(i) and the dual values (u, v) are calculated first due to (5) and (6), respec-
tively. As an alternative to updating the dual variables, one could substitute the dual
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1 procedure FindOptimal(Âi)
2 a(i) := CreatePartial(â);
3 (u, v) := ModifyDual(û, v̂);
4 Ḡ(a(i)) := BuildResNetwork(a(i), u, v);
5 P := FindAugmentPath(Ḡ(a(i)));
6 a := AugmentSolution(P);
7 end procedure

Figure 4: Finding the optimal solution for a subset.

variables by (û, v̂) in line 3 of Figure 4. Next, the residual network corresponding to a(i)
and the dual solution is built. Finally, the shortest augmenting path and the corresponding
solution are found. Due to Theorem 1 and the fact that the length of the partial assignment
a(i) is n− 1, the following result holds true.

Theorem 2. Using partial assignment a(i) and dual values (u, v) (or (û, v̂)), the optimal

assignment in subset Âi can be found by solving a single shortest path problem.

Using Dijkstra’s method to find the shortest path, function FindOptimal runs in O(n2).
Therefore, the following time complexity of K-AP is obtained, which is equal to the best
known time complexity for ranking the K best assignments.

Theorem 3. The K best assignments using procedure K-AP can be found in O(Kn3) time.

4 Computational experiments

In this section, computational experiments for different versions of the algorithm presented
in this paper are given.

All tests were performed on an Intel Xeon 2.67 GHz computer with 6 GB RAM using a
Red Hat Enterprize Linux operating system version 4.0. In order to minimize the impact of
other processes, interrupts etc., we ran the benchmarks on a system with as little workload
as possible. Since the results may still vary slightly, we repeated each run on a test instance
five times, removed the fastest and slowest CPU time and then used the average of the
remaining.

In all implementations of our algorithm the candidate set Φ of pairs (ā, Ā) is maintained
implicitly using a binary tree as described in Nielsen [14], p137. In each node of the
branching tree, no information on the solution is stored apart from the solution value.
Therefore, a given solution must be recalculated before branching on this solution can be
performed. On the downside, this results in an increased running time of the algorithm.
However, on the positive side, the memory requirements are much smaller.

The successive shortest path procedure implementation of Jonker and Volgenant [9] and
related sub-procedures are used in a slightly modified version allowing problems of varying
size to be solved.
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The algorithms were all implemented in C++ and compiled with the GNU C++ compiler
version 3.4.5 using optimize option -O3.

4.1 Test instances

To yield consistency with the literature, the algorithms were tested on two separate classes
of test instances known from the literature where only for the first class, different test
instances are considered for a given problem size. Therefore, the main part of the results
presented in this section are on the first class of test instances.

The first class of test instances are the ones used by Pascoal et al. [16] plus a few
larger instances not reported on in that paper. The test instances consist of assignment
problems on complete bipartite networks of size n ∈ {50, 100, . . . , 300}. Costs cij are drawn
uniformly at random in {0, . . . , 99}, which is a much smaller cost range than previously
stated in [16].2 For each problem size, ten instances generated with different seeds are
available. As a consequence average results will be reported.

The second class of test instances were taken from the OR library3 and were first used in
Beasley [2]. The instances are complete bipartite networks of size n ∈ {100, 200, . . . , 800}
and costs cij drawn uniformly at random in {1, . . . , 100}. Only one instance of each problem
size is available, i.e. 8 instances in total are considered.

4.2 Some comparative statistics

Denote by δ1,k the relative percentage increase in cost from the optimal solution a1 to the
kth best solution ak, i.e.

δ1,k =
c(ak)− c(a1)

c(a1)
· 100 ,

provided that c(a1) 6= 0 (otherwise δ1,k is not defined).
Also, let amax ∈ A be the worst assignment in terms of cost, i.e. amax := arg max{c(a) :

a ∈ A}. Notice that amax can be found by computing the best assignment in a modified
AP in which all cost entries, cij, are substituted by c̃ij = cmax − cij where cmax is the
maximal cost entry for the original AP.

Table 1 provides some statistics for the first class of test instances. For each problem
size, we display the average of the optimal solution values, the average of the relative
percentage increase in cost for K = 500 and K = 1000, and the average worst solution
value. The relative percentage increase in cost tends to decrease with the dimension, so an
increasing number of the n! feasible solutions becomes alternative optima.

It is worth noticing that c(a1) decreases when n increases. This suggests that it becomes
easier to find an assignment with a small value as n increases. This is not surprising since
the number of possible assignments grows much faster with n than the number of possible
values of c(a1).

2The correction is due to Pascoal [15].
3http://people.brunel.ac.uk/~mastjjb/jeb/info.html (see also [3]).
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Size c(a1) δ1,500 δ1,1000 c(amax)

50 125.2 4.23 5.06 4811.0
100 112.7 1.62 1.70 9787.5
150 87.5 0.94 1.29 14759.2
200 72.0 0.00 0.28 19726.3
250 52.8 0.19 0.19 24697.8
300 37.4 0.00 0.00 29661.7

Table 1: Statistics (class one).

Since the cost of the worst assignment is much higher than the optimal solution value,
the importance of choosing an optimal or near optimal solution, by ranking, is justified.

Analyzing the second class of test instances again shows the number of alternative
optima to be high. In fact, only for the instance of size 100, c(a1) 6= c(a1000) indicating
that the number of alternative optima is larger compared to class one.

4.3 Results - Dual updating

Two versions of the ranking assignment algorithm K-AP were implemented, both using the
reoptimization solution method given in Figure 4. In the DU1 procedure ModifyDual updates
the dual variables according to (6), whereas, in NoDU, the optimal dual variables (û, v̂) of

Âi are used. That is, nothing else than the computation of the dual variables differs in
the two versions. In both versions FindAugmentPath finds the shortest augmenting path
using the modified implementation of Jonker and Volgenant [9] and an interval heap is
used to maintain the candidate set. Further details about the candidate set are provided
in Section 4.4.

Size DU1 NoDU Ratio

50 0.39 0.42 1.08
100 5.04 5.52 1.09
150 18.55 21.28 1.15
200 41.66 48.58 1.17
250 63.44 75.61 1.19
300 77.78 91.57 1.18

Table 2: Average CPU times and ratios (class one, K = 1000).

The effect of updating the dual variables according to (6) is displayed numerically in
Table 2 giving results for ranking the K = 1000 best assignments in each of the class
one test instances. It is evident that updating the dual variables improves the algorithm.
This is a result of the present implementation of procedure FindAugmentPath using the
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specialized Dijkstra’s method in [9]. Updating the dual variables means decreasing the
reduced costs corresponding to the unassigned column ji. Therefore, this column enters
the list of indices to be scanned next faster than if the reduced costs corresponding to
column ji had not been decreased. Since all reduced costs are non-negative, this leads to
a faster termination of procedure FindAugmentPath.

The same observations hold for class two test instances. Here the ratio varies between
1.11 and 1.21.

4.4 Results - Candidate set implementations

For each iteration of the ranking algorithm an assignment with minimal cost must be picked
from the candidate set (procedure K-AP line 5 in Figure 2). A priority queue can be used
to efficiently sort the costs and retrieve the pair with minimal c(ā).

Heaps are often used to implement priority queues. A heap is a tree where each node
contains a key (the cost in our case). The heap satisfies the heap property, i.e. if node
B is a child node of A, then key(A) ≤ key(B). This implies that the minimal element,
with respect to the key, is always in the root node. A node is inserted into the heap by
adding it at the bottom of the tree and then letting it “shift” up until the heap property is
satisfied. This operation is based on a compare relation ≺ where two nodes are swapped
if key(A) ≺ key(B). In our case the compare relation can be either < or ≤. For further
details about heaps see Tarjan [21].

Note that in this study we are only interested in finding the K best assignments. As a
result the candidate set only needs to contain at most K pairs resulting in lower memory
usage. Therefore, line 10 of procedure K-AP in Figure 2 can be modified to

if (c(â∗) < ∞ and |Φ| < K) then Φ := Φ ∪ {(â∗, Âi)};
else if (c(â∗) ≤ c(amax)) do

Φ := Φ ∪ {(â∗, Âi)};
Φ := Φ \ {(amax,Amax)};

end else if

(7)

where (amax,Amax) is a pair with maximum cost among the pairs in the candidate set.
A priority deque can be used to sort the candidate set for efficiently implementing

(7). As opposed to a priority queue a priority deque, holds the possibility to get both the
smallest and the largest element using the same data structure. Different algorithms for a
priority deque have been implemented and tested by Skov and Olsen [20]. Among these an
interval heap (see [23]) was found to be most efficient. This is also the case in this paper.
Interval heaps resemble ordinary heaps except that an interval of two keys is maintained
in each node of the heap tree instead of a single key. The largest interval (i.e. the minimal
and maximal key) is always in the root node. As a result the smallest and the largest
element can be found in constant time.

Another important feature which will affect the performance of the ranking algorithm
is how we handle pairs in the candidate set with the same cost. As illustrated in Table 1,
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Figure 5: CPU times for different candidate set implementations.

there may exist a huge amount of assignments with the same cost. To improve performance,
the goal is to branch on a pair with many rows/columns fixed since fast computations can
then be made. Consider two pairs, (ai,Ai) and (aj,Aj), with equal cost obtained when
branching on A. If j > i, then Aj is the most constrained subset and a heuristic rule
is always to branch on Aj before Ai. This is obtained using the ≤ compare relation
when inserting the keys c(ai) and c(aj) into the heap tree. Moreover, it is important to
use c(â∗) ≤ c(amax) in (7) (and not c(â∗) < c(amax)), since we then remove the subsets
with least rows/columns fixed. The following implementations of the candidate set are
considered.

DU1: Interval heap using the ≤ compare relation.

DU2: Interval heap using the < compare relation.

DU3: 4-heap using the ≤ compare relation.

DU4: 4-heap using the < compare relation.

Note that for DU3 and DU4 the size of the candidate set is not limited to K since line 10
of procedure K-AP in Figure 2 is used instead of (7). For further details about 4-heaps see
Tarjan [21].

In Figure 5, the CPU time against K is displayed for both class one and two. First,
note that using the < compare relation decreases the performance since we do not branch
on the pairs with relatively many rows/columns fixed. Second, if using an interval heap,
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then for instance CPUK=800 < CPUK=600 if we consider DU2 in Figure 5(b). This strange
behavior is due to the fact that at most K elements are kept in the candidate set. Hence,
a pair with many rows/columns fixed may not be added to the candidate set if many pairs
with cost equal to c(amax) exist. However, for a larger value of K this pair may be added
resulting in smaller CPU times when branching on this pair. Indeed this is the case in
the second class, which has more alternative assignments with minimum cost. Using the
≤ compare relation produces a more stable curve. However, CPUK1 may still be less than
CPUK2 (K1 > K2). Finally, note that DU1 has the best performance. Hence, this algorithm
will be used in the remainder of the paper.

4.5 Results - Other ranking algorithms

In the literature, few other algorithms exist for ranking assignments. The three included
below are, to the best of our knowledge, the only available implementations with time com-
plexity O(Kn3). Only original codes implemented by the original authors are considered,
i.e. we compare algorithm implementations (and therefore also each programmer’s skills)
and hence the test results must be interpreted with caution.

VMA1: An executable version of the algorithm from Pascoal et al. [16] was provided to
us by the authors. In VMA1, a label correcting algorithm is used for solving the
shortest path problems. An internal upper bound on the allowable number of
assignment nodes to be stored imposes an implicit limit on the instance size that
can be solved by the current implementation of this algorithm.

VMA2: An implementation of the algorithm from [16] was provided to us by Przybylski
[18].

CH: An implementation of the ranking algorithm suggested by Chegireddy and Hamacher
[4] was provided to us by Przybylski, Gandibleux, and Ehrgott [19]. Using a bi-
nary search tree branching technique [8], the solution method solves shortest
path problems on bipartite graphs as a subprocedure.

The algorithm VMA1 has been implemented in C and compiled using the GNU C++
compiler version 3.3.5 with optimize option -O4. Both VMA2 and CH are implemented in C
and have been compiled with the GNU C++ compiler version 3.4.5 using optimize option
-O3.

In Figure 6, the CPU time against K is displayed for algorithms DU1, VMA1, VMA2, and
CH for the largest problem size (n = 250) from the first class of test instances on which
all algorithms were capable of ranking the 100 best assignments. The algorithm VMA1 was
unable to rank the 100 best assignments for any of the size n = 300 instances because the
upper bound limit of number of assignment nodes was reached. The problem sizes not
displayed show similar results as the one shown in Figure 6. The two algorithms CH and
VMA1 are significantly slower than the remaining two algorithms.
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Figure 6: CPU times for different algorithms (class one, n = 250).

The reason that VMA1 is slow may be due to insufficient data structures compared to
the data structures used in VMA2. However, the exact reason cannot be pointed out since
only an executable of VMA1 was provided to us.

The algorithms CH and VMA2 were both implemented by Przybylski [18]. The results
indicate that using a revised version of the branching technique ascribed to Murty [13]
outperforms the binary search tree algorithms of Hamacher and Queyranne [8]. This is
supported by the numerical results presented in Pascoal et al. [16]. However, to substantiate
this will require further analysis and testing.

Since the implementations VMA2 and DU1 perform best, the remaining test results cover
these two algorithms solely.

The CPU time against K for some representative problem sizes from the first and the
second class of instances are shown in Figures 7 and 8, respectively. For small sizes of
the problem (≤ 250) neither of the two algorithms are capable of outperforming the other
in their present implementation. Remember though that in DU1 the times to recalculate
the optimal assignment for a given subset taken out of the candidate set Φ are included;
this is not the case for VMA2. For larger problem sizes implementation DU1 has a better
performance, which is mainly due to the candidate set implementation. If all runs on the
test instances are considered, then on average the CPU time is 232 per cent higher using
VMA2 instead of DU1.
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Figure 7: CPU times (class one).
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Figure 9: CPU against size for algorithm DU1 (class one, K = 200, 500, 800, and 1000).

Finally, for the first class of test instances, the CPU times for ranking K = 200, 500, 800,
and 1000 assignments with DU1 are displayed against problem size in Figure 9(a). The
algorithm shows more than a linear growth in CPU time with increasing n. However, it is
less than exponential growth, as can be seen in Figure 9(b) displaying logarithms of CPU
times.
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