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Abstract: We consider the bicriterion multimodal assignment problem, which is a new general-
ization of the classical linear assignment problem. A two-phase solution method using an effective
ranking scheme is presented. The algorithm is valid for generating all nondominated criterion
points or an approximation. Extensive computational results are conducted on a large library of
test instances to test the performance of the algorithm and to identify hard test instances. Also,
test results of the algorithm applied to the bicriterion assignment problem are provided.
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1 Introduction

In general, a description of real-world applications as single-criterion optimization problems is
seldom realistic, because they are often by nature imposed with more objectives to be simulta-
neously optimized. The classical linear assignment problem consists of assigning workers to jobs
with total minimum cost. Recently, an important generalization of it has generated considerable
interest, namely, assigning workers to jobs with minimal cost and time. This yields the bicriterion
assignment problem (BiAP). Ulungu and Teghem (1995) presented the first exact solution method
for BiAP, proposing a two-phase method identifying in phase one all supported efficient solutions,
and in phase two all unsupported efficient solutions. In that paper, a scheme resembling total
enumeration in all nonbasic variables is employed. The method in (Ulungu and Teghem 1995)
was implemented by Tuyttens et al. (2000), showing – with large CPU times – the limitations of
this algorithm. Recently, an improvement of this algorithm was given in Przybylski et al. (2008),
proposing also a two-phase method applying ranking for BiAP.

In this paper, we deal with another highly relevant extension of the classical assignment prob-
lem, which has, to the best of our knowledge, not yet been discussed in the literature. Consider a
large global company with n specialists spread across the world, and suppose that exactly n jobs
have to be performed by these n specialists. Hence, each specialist must be assigned to exactly
one job, and furthermore, suitable modes of transportation must be chosen for the workers to
travel to the destinations of the jobs. For this problem, it seems relevant to consider two weight
criteria to be minimized simultaneously, namely, travel time and travel or assignment cost. Be-
cause a specialist i has possibly multiple modes of transportation and routes to choose from to
reach the destination of job j, several two-dimensional cost vectors exist for each combination of
i and j. Therefore, the bicriterion multimodal assignment problem (BiMMAP) is an extension of
BiAP containing, in each assignment cell, possibly several two-dimensional cost vectors/points.

1

crpe@tdc.dk
lars@relund.dk
kia@asb.dk


The objective is to identify either all efficient assignments or all nondominated criterion points for
the problem.

Note that the predominant thought within bicriterion optimization is to identify all nondomi-
nated points with one efficient solution corresponding to each nondominated point. This is equiv-
alent to identifying a minimal complete set of efficient solutions (Hansen 1979, Gandibleux et al.
2005).

Apart from the above application, BiMMAP also serves as an important subproblem in the
bicriterion directed Chinese postman problem (BiDCPP). Restricting the deviation of in- and out-
degree for all nodes in the original postman graph to be no larger than one, BiDCPP may be solved
via a number of bicriterion shortest-path computations followed by the solution of a BiMMAP
instance. For more details, refer to Pedersen (2006).

To identify all nondominated criterion points for BiMMAP, we propose a two-phase method.
Acknowledging that ranking procedures have been applied with great success for other bicriterion
optimization problems (see, e.g., (Nielsen et al. 2003)), we employ ranking of multimodal assign-
ments as a subroutine. The subroutine is an efficient extension of the algorithm for finding the K
best assignments by Pedersen et al. (2005a).

A method for finding an ε-approximation (Warburton (1987)) of the set of nondominated
points, which enable us to control the quality of the set of criterion points reported, is also
presented. It may be the case that an approximation of the set of nondominated points is sufficient
when considering a particular application. Moreover, for large problems, it may only be feasible
to obtain an approximation if it is too time-consuming to find all nondominated criterion points.

Using a large library of test instances for BiMMAP, we give numerical results indicating the
effectiveness of our method. The concept of approximating the nondominated points is shown to
have a large effect on the computational performance. Because BiMMAP is a generalization of
BiAP, we also report computational results for some BiAP instances previously solved in literature.

This paper is organized as follows. In §2, we introduce the bicriterion multimodal assignment
problem and give a few theoretical results for this problem class. In §3, we describe our two-
phase method both for the exact and the approximation solution method. Section 4 provides
a description of how to rank multimodal assignments. Computational results for BiMMAP and
BiAP are given in Section 5.

2 The Bicriterion Multimodal Assignment Problem

In this section, we give the mathematical formulation of (BiMMAP), introduce the relevant ter-
minology, and give a few theoretical results.

2.1 Mathematical Formulation

In BiMMAP, n specialists must be assigned to n jobs such that each specialist performs exactly
one job. Moreover, a specialist i has Lij different mode choices of transportation for reaching
the destination of job j with travel or assignment cost c1

ijl and travel time c2
ijl, l = 1, . . . , Lij .

Obviously, BiMMAP is an extension of BiAP where, for each cell (i, j) in the assignment cost
matrix, we have several two-dimensional cost vectors as illustrated in Figure 1. The objective is
to identify either all efficient minimum-cost assignments or all nondominated criterion points for
the problem.

Let xijl be a binary variable with value one, if i is assigned to j using mode choice l, and zero
otherwise. Obviously, exactly one i must be assigned to each j using a specific mode choice, which
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Figure 1: The Cost Matrix of BiMMAP.

gives us the following mathematical formulation of BiMMAP:

min

n∑

i=1

n∑

j=1

Lij∑

l=1

c1
ijlxijl

min
n∑

i=1

n∑

j=1

Lij∑

l=1

c2
ijlxijl

st.

n∑

j=1

Lij∑

l=1

xijl = 1, i = 1, 2, . . . , n,

n∑

i=1

Lij∑

l=1

xijl = 1, j = 1, 2, . . . , n,

xijl ∈ {0, 1} ∀i, j, l.

(1)

Assume that within each cell (i, j) the costs are mutually nondominated; hence

0 ≤ c1
ij1 < c1

ij2 < · · · < c1
ijLij

and c2
ij1 > c2

ij2 > · · · > c2
ijLij

≥ 0 . (2)

This is no restriction, because a dominated cost vector in a given cell will never be used in an
efficient assignment. Moreover, assume that c1

ijl and c2
ijl are integer for all i, j and l.

A feasible solution x to (1) is called a multimodal assignment, or for short, an assignment. An
assignment may alternatively be written as a = {(1, j1, l1) , . . . , (n, jn, ln)} , where (i, j, l) ∈ a if
and only if xijl = 1.

Let the multimodal assignment polytope MMAP be the set of all feasible solutions to the
continuous relaxation of (1). For x ∈ MMAP, we denote by y = (y1, y2) = (c1x, c2x) the
corresponding objective vector (or criterion vector). Note that if Lij = 1 for all i, j, MMAP
reduces to the assignment polytope, AP. Due to the fact that BiMMAP is a generalization of
BiAP, it holds true that BiMMAP is NP-complete (Ehrgott 2000, Serafini 1986).

2.2 Methodology

For single-criterion optimization, the concept of optimality is well defined. Respecting common
practice in the field of multicriteria optimization, we shall deploy the Pareto concept of optimality,
which is based on the following binary relation. Let y1, y2 ∈ R2. Then,

y1 ≤ y2 ⇔ y1
r ≦ y2

r , r = 1, 2 and y1 6= y2.

A point y2 ∈ R2 is dominated by y1 ∈ R2 if y1 ≤ y2.
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Figure 2: The Criterion Space.

Consider the following biobjective minimization problem:

min c1x

min c2x

s.t. x ∈ X ,

(3)

where X denotes the set of feasible solutions, also referred to as the decision space. Let Y =
{(y1, y2) ∈ R2 | y1 = c1x, y2 = c2x, x ∈ X} denote the corresponding criterion space. The
efficient set XE is defined as

XE = {x ∈ X | ∄x̄ ∈ X : (c1x̄, c2x̄) dominates (c1x, c2x)},

and the nondominated set YN is given by

YN = {(y1, y2) ∈ R2 | y1 = c1x, y2 = c2x, x ∈ XE}.

The nondominated points in YN can be partitioned into supported and unsupported points. The
supported ones can be further subdivided into extreme and nonextreme. To this aim, let us define
the following set:

Y≥ = conv
{
YN ⊕ {y ∈ R2 : y ≥ 0}

}
,

where ⊕ denotes the usual direct sum. A point y ∈ YN is a supported nondominated point if it is
on the boundary of Y≥; otherwise it is unsupported. A supported nondominated point y is extreme
if it is an extreme point of Y≥; otherwise it is nonextreme. The supported extreme nondominated
points define a number of triangles in which unsupported nondominated points may be found,
as can be seen in the illustration of the criterion space in Figure 2. Nondominated points are
displayed as dots, and Y≥ is the shaded area. Supported points are y1-y5, of which y4 is the only
nonextreme. Unsupported nondominated points are y6 and y7, while y8 is dominated.

For practical reasons, it may be enough to find an approximation of the nondominated set,
and it may for some large problem sizes be too time-consuming to find all the nondominated
criterion points. In such a case, the concepts of ε-domination and ε-approximation introduced by
Warburton (1987) can be used to control the quality of the set of criterion points reported.

Definition 1 A point y = (y1, y2) ε-dominates point ŷ = (ŷ1, ŷ2) if (1 − ε)y dominates ŷ, i.e., if
(1 − ε)y ≤ ŷ.
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Definition 2 A set Ỹ is an ε-approximation of a nondominated set YN if, for each point ŷ ∈ YN ,
there exists y ∈ Ỹ that ε-dominates it.

Note that by finding an ε-approximation, it is ensured that any nondominated point is kept
within a prespecified range from the nearest point in the approximation.

It is well known that unsupported nondominated points may exist for BiAP (Ulungu and Teghem
1995, Ehrgott 2000), and hence also for BiMMAP. Also, due to the fact that BiMMAP is a gen-
eralization of BiAP, it holds true that BiMMAP is intractable and NP-complete (Ehrgott 2000,
Serafini 1986). In particular, it can be shown along the lines given in Ehrgott (2000), that the
set of supported nondominated points as well as the set of unsupported nondominated points in
BiAP and hence in BiMMAP can be exponential in cardinality.

Let G = (V, E) denote the adjacency graph of MMAP, where V is the set of efficient basic
feasible solutions to the continuous relaxation of (1). An edge between two nodes of V is included
in E, if and only if the corresponding efficient basic feasible solutions can be obtained from each
other by a single simplex pivot operation. Along the same lines as in Przybylski et al. (2006), it
can be shown that the adjacency graph for MMAP may not be connected. In particular, this
means that it may not be possible to find the full set of nondominated solutions by simple simplex
pivot operations. Therefore, to find such a full set of nondominated points, we propose to use a
two-phase method not based upon simplex operations. The worst-case computational complexity
of the method is exponential, as is every exact method for solving the problem.

3 Solving BiMMAP Using the Two-Phase Method

The two-phase approach is a general method for solving bicriterion combinatorial problems such
as (3). As the name suggests, the two-phase method divides the search for nondominated points
into two phases.

In phase one, the supported extreme nondominated points are found, and in phase two sup-
ported nonextreme and unsupported nondominated points are found. Both phases make use of a
parametric minimization problem. To define this problem, two supported nondominated points
y1 = (y1

1 , y
1
2) and y2 = (y2

1 , y
2
2), with y1

1 < y2
1 , are needed. During the two-phase method, two

such points will always be available in both phases. The parametric function fλ(x) is defined as
follows:

min fλ(x) = (λc1 + c2)x

s.t. x ∈ X ,
(4)

where λ ∈ R+ is defined by the slope of the line between y1 and y2:

λ = λ(y1, y2) := (y1
2 − y2

2)/(y2
1 − y1

1). (5)

Let x⋆ denote an optimal solution of (4) for a given value of λ. It is well known that (c1x⋆, c2x⋆)
is a supported nondominated point.

Figure 3 shows the pseudo code for phase one. The procedure first finds the upper-left and the
lower-right points (y1 and y5 in Figure 2). Given two supported extreme nondominated points
y+ and y−, the search direction λ = λ(y+, y−) defined by (5) is calculated and (4) is solved. If
the optimal solution x⋆ corresponds to a new supported extreme nondominated point, then the
parametric weight fλ(x⋆) must be below the parametric weight of y+ and y− (line 10). The points
y+, y⋆ and y− then define two new search directions, and the while step is repeated on the points
y+ and y⋆. Otherwise, no new supported extreme nondominated point has been found, and we
proceed with the two next points in S. The Next function with arguments S and y returns the
point following y in S. The procedure stops when no additional supported extreme nondominated
points can be found.

Because there may exist supported nonextreme nondominated criterion points such as y4 or
unsupported nondominated criterion points such as y6 in Figure 2, it is not in general possible to
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1 procedure PhaseOne()

2 yUL:=(c1xUL, c2xUL), where xUL is optimal for lexmin(c1x, c2x);
3 yLR:=(c1xLR, c2xLR), where xLR is optimal for lexmin(c2x, c1x);
4 if (yUL=yLR) then stop (only one nondominated point);

5 S:=
{
yUL, yLR

}
;

6 y+:=yUL; y−:=yLR;

7 while (y+ 6= yLR) do

8 λ := λ(y+, y−);
9 solve (4) with optimal decision x⋆ and cost y⋆ = (c1x⋆, c2x⋆);

10 if (fλ(x⋆) < y+

1 λ + y+

2 ) then add y⋆ between y+ and y− in S;
11 else y+:=y−;

12 y−:=Next(S , y+);

13 end while

14 end procedure

Figure 3: Phase One – Finding Supported Extreme Nondominated Points.

1 procedure PhaseTwo(△(y+, y−))
2 λ := λ(y+, y−);
3 S:=

{
y+, y−

}
;

4 k:=1; LB:=λy+

1 + y+

2 ; UB:=UpdateUB(S);
5 while (LB ≤ UB) do

6 yk:=KBest(k, λ);

7 if (NonDom(yk)) then

8 S:=S ∪ {yk};
9 UB:=UpdateUB(S);

10 end if

11 LB:=λyk
1 + yk

2; k:=k + 1;
12 end while

13 end procedure

Figure 4: Phase Two – Finding Unsupported Nondominated Points.

find all nondominated points during the first phase. These points are found in phase two, which
searches each triangle defined by the set of supported extreme nondominated points found in phase
one.

Consider a triangle △(y+, y−) defined by the supported extreme nondominated points y+ and
y− and by the point (y−

1 , y+
2 ). The second phase searches each triangle using a K-best procedure

to rank the parametric weight fλ(x) in the ranking direction given by λ = λ(y+, y−). The search
stops when the parametric value fλ(x) reaches an upper bound. Initially, the upper bound is
UB0 = y−

1 λ + y+
2 . When a new unsupported nondominated point y is found inside the triangle,

the upper bound is updated to UB1 = max{y−
1 λ + y2; y1λ + y+

2 } (Ulungu and Teghem 1995).
A pseudo code for phase two is given in Figure 4, where initialization is done on lines 2-4. In

the main loop, the parametric weight fλ(x) is ranked until the upper bound is reached. Procedure
KBest returns the cost vector yk of the kth best solution. If it is nondominated, we add yk to
the nondominated set and update the upper bound using UpdateUB. Finally, we update the lower
bound to the parametric weight and repeat the loop.

A detailed description of procedure KBest is given in Section 4. Furthermore, note that in
general UpdateUB finds the upper bound by using the points in the nondominated set. However,
special properties such as integrality of the nondominated points may be used to improve the
bound, as we will see in the following sections.
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3.1 BiMMAP – Finding the Complete Set of Nondominated Points

To solve BiMMAP using the two-phase method, we must be able to solve the parametric problem.

min fλ(x) =
(
λc1 + c2

)
x =

n∑

i=1

n∑

j=1

Lij∑

l=1

(λc1
ijl + c2

ijl)xijl

s.t. x ∈ MMAP .

(6)

For a given value of λ and a given cell (i, j), define

l⋆ij(λ) = arg min
1≤l≤Lij

{λc1
ijl + c2

ijl} . (7)

That is, for a specific value of λ, the minimal parametric cost entry, l⋆ij(λ), in each assignment cell
(i, j), is chosen. It is straightforward to see that (6) reduces to the following problem:

min fλ(x) =
(
λc1 + c2

)
x =

n∑

i=1

n∑

j=1

cijl⋆
ij

(λ)xijl⋆
ij

(λ)

s.t. x ∈ AP ,

(8)

which is a single criterion assignment problem. This is summarized in Proposition 1.

Proposition 1 The parametric problem min{fλ(x)|x ∈ MMAP} reduces to the classical AP
min{

∑
ij cijl⋆

ij
(λ)xijl⋆

ij
(λ)|x ∈ AP}.

Therefore, the minimum-cost assignment for BiMMAP given a fixed value of λ can be found
in procedure PhaseOne by solving a single criterion AP. Moreover, because each criterion point in
BiMMAP is integer, the following obvious proposition may be used to reduce the computational
effort in phase one.

Proposition 2 Consider two supported extreme nondominated points y+ and y−. Then, no fur-
ther supported extreme nondominated points can be found below the line connecting y+ and y− in
phase one, if any of the following conditions are fulfilled:

y−
1 − y+

1 = 1 or y+
2 − y−

2 = 1 . (9)

That is, we simply skip the search between y+ and y− if (9) holds in phase one. Condition
(9) may also be used in phase two to skip searching some triangles. If any of the conditions in
(9) are fulfilled, we do not have to apply procedure PhaseTwo to triangle △(y+, y−) because no
unsupported nondominated point can exist in this triangle. Observe that this also holds true even
if the points y+ and y− are supported nonextreme nondominated points. Hence, storing such
nonextreme points in phase one (by using a ≤ sign instead of a < sign on line 10 in Figure 3) may
reduce the computational effort in phase two.

Furthermore, because all nondominated points have integer coordinates, the upper bound
used in phase two may be improved. The following result was discovered independently in
Pedersen et al. (2005b) and in Przybylski et al. (2008).

Proposition 3 Given the triangle △(y+, y−) with previously found nondominated points {y+ =
y1, . . . , yq = y−} ordered in increasing order of the first objective and a search direction given by
λ = λ(y+, y−), define

UBIP = max
i=1,...,q−1

{λ
(
yi+1
1 − 1

)
+

(
yi
2 − 1

)
} . (10)

Then, all unsupported nondominated criterion points in △(y+, y−) have parametric weight below
or equal to UB IP .

As a result, we can use (10) in function UpdateUB of procedure PhaseTwo. Furthermore, note that
upper bound (10) is valid for all bicriterion problems with integer criterion points and is an improve-
ment to the upper bounds reported in the literature (Ulungu and Teghem 1995, Tuyttens et al.
2000).
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Figure 5: Using ε-Dominance in the First Phase.

3.2 BiMMAP - Finding an Approximation

In some cases, it may be sufficient to find an approximation of the nondominated set. In this
section, we consider the problem of finding an ε-approximation (ε > 0) of the nondominated set,
which enables us to control the quality of the approximation reported. Only slightly modified
versions of phase one and phase two are needed.

First, consider phase one and a set of supported extreme nondominated points found during
phase one as illustrated in Figure 5. Note that any new supported extreme nondominated point
between y+ and y− must belong to the shaded area in Figure 5. As a result, we can skip searching
for such points between y+ and y− if the following proposition is satisfied.

Proposition 4 Given extreme points {yUL, . . . , ys, y+, y−, yt, . . . , yLR} found during phase one,
each extreme nondominated point between y+ and y−, i.e., inside the shaded area of Figure 5, is
ε-dominated by either y+ or y− if

λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ1y

+
1 + y+

2

or λ2

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ2y

−
1 + y−

2 ,
(11)

where λ1 = λ(ys, y+) and λ2 = λ(y−, yt).

Proof. We only show the result if the first condition in (11) is satisfied. The second case is
shown with similar arguments. Therefore, assume that λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ1y

+
1 +

y+
2 . Furthermore, suppose that there exists a nondominated point (y1, y2) in the shaded area

between y+ and y− (see Figure 5), which is not ǫ-dominated by neither y+ nor y−. It follows that
(1 − ε) y−

1 > y1 and (1 − ε) y+
2 > y2. Due to integrality of y1 and y2, this means that

λ1y1 + y2 ≤ λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
. (12)

The nondominated point (y1, y2) is necessarily strictly above the line through ys and y+ (oth-
erwise y+ is not an extreme point found before (y1, y2)). Therefore, λ1y1 + y2 > λ1y

+
1 + y+

2 . This
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implies that
λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ1y

+
1 + y+

2 < λ1y1 + y2. (13)

Combining equations (12) and (13), a contradiction is obtained.

Observe that Proposition 4 also holds true for the case where no points are identified to the
left (or to the right) of the points y+ and y− by an appropriate choice of λi, i = 1, 2.

Corollary 1 If y+ = yUL (y− = yLR) Proposition 4 holds true by choosing λ1 = ∞ (λ2 = 0).

Proposition 4 and Corollary 1 can be used in procedure PhaseOne to skip the search between
two points y+ and y−.

In phase two, the upper bound (10) can be further strengthened if an ε-approximation is
wanted.

Proposition 5 Given a triangle △(y+, y−) with previously found nondominated points {y+ =
y1, . . . , yq = y−} ordered in increasing order of the first objective, define

UB IP (ε) = max
i=1,...,q−1

{λ⌊(1 − ε)yi+1
1 ⌋ + ⌊(1 − ε)yi

2⌋} , (14)

where λ = λ(y+, y−). Then, all criterion points in △(y+, y−) with parametric weight above
UB IP (ε) are ε-dominated by the current ε-approximation of the triangle.

Proof. Let y = (y1, y2) be a nondominated point in △(y+, y−). Therefore, there exists an
i ∈ {1, . . . , q − 1} such that y is located between yi and yi+1. If y is not ǫ-dominated, then

y1 < (1 − ε) yi+1
1 ∧ y2 < (1 − ε) yi

2

⇒ (because y is integral) y1 ≤
⌊
(1 − ε) yi+1

1

⌋
∧ y2 ≤

⌊
(1 − ε) yi

2

⌋

⇒ λy1 + y2 ≤ λ⌊(1 − ε) yi+1
1 ⌋ + ⌊(1 − ε) yi

2⌋

Because nondominated points can be located between any two consecutive points yi and yi+1,
we obtain expression (14) for the upper bound.

It follows that for ε > 0, equation (14) can be used to find the upper bound in function UpdateUB

of procedure PhaseTwo. Also, note that if we consider the shaded area between y+ and y− (see
Figure 5) not searched in phase one (i.e., satisfying (11)), then UB IP (ε) for △(y+, y−) will be less
than the parametric weight of y+. Therefore, △(y+, y−) is not searched in procedure PhaseTwo

either.
There can also be some possible gains in storing nonextreme supported points in phase one as

well. The more supported nondominated points that are identified in the first phase, the more
likely are UB IP (ε) to be below the parametric weight of y+, and hence △(y+, y−) is not searched.

Note that the approximation found in phase one is a subset of the supported nondominated
points, because the optimal solution of (6) corresponds to a supported nondominated point. More-
over, because we apply a ranking procedure in the second phase, a dominated point cannot be
found before a point dominating it. These comments provide us with the following result.

Proposition 6 The approximation of the nondominated set for an ε > 0 is a subset of YN .

4 Finding the K-Best Multimodal Assignments

In this section, we describe our method for ranking multimodal assignments in nondecreasing order
of cost, used in phase two when searching a triangle - that is, ranking assignments using the single
criterion parametric costs defined for a given parameter λ. Note that when searching a particular
triangle, solutions outside that triangle may be found. The more often this happens, the slower is
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the search in that particular triangle. However, by storing all nondominated solutions found, the
search in other triangles may finish faster.

Without loss of generality, assume that each cell (i, j) contains entries cij1 ≤ . . . ≤ cijLij
. Our

objective is to determine the K-best assignments a1, a2, . . . , aK , in a single-criterion multimodal
assignment problem, such that� c(ai) ≤ c(ai+1), i = 1, 2, . . . , K − 1,� c(aK) ≤ c(a) for any assignment a 6∈ {a1, . . . , aK},

where c(a) denotes the cost of assignment a.
In general, ranking algorithms use a specific branching technique to partition the set of possible

solutions into smaller subsets, and a solution technique to find the optimal solution for each subset.
Let A denote the set of possible multimodal assignments. In this paper, we use a branching

technique which is an extension of the branching technique originally proposed by Murty (1968).
Here, we partition the set A into smaller subsets as follows: Given the optimal assignment a1 =
{(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)} of A, the set A\{a1} is partitioned into n− 1 disjoint subsets
Ai, i = 1, . . . , n − 1, where

A1 = {a ∈ A | (1, j1, l1) /∈ a} ,

Ai = {a ∈ A | (1, j1, l1), . . . , (i − 1, ji−1, li−1) ∈ a, (i, ji, li) 6∈ a}, i = 2, . . . , n − 1 .

Clearly, the second-best assignment a2 can be identified using a solution technique to find the
minimum-cost assignment in the sets Ai, i = 1, . . . , n− 1. Moreover, the branching technique can
be applied recursively to subsets Ai ⊂ A.

In general, the algorithm maintains a candidate set Φ of pairs (â, Â), where â is the minimum-
cost assignment in subset Â. Suppose that we have found the (k−1)-best assignments a1, . . . , ak−1.
Then, the current candidate set Φ represents a disjoint partition of A \ {a1, . . . , ak−1}. The kth-
best assignment is then found as the pair (â, Â) ∈ Φ, which contains the assignment â with
minimum-cost c(â) among all assignments in the candidate set Φ.

Next, let us consider the solution technique, i.e., how to determine the minimum-cost assign-
ments in Âi when applying the branching technique to some subset Â ⊂ A. Without loss of
generality, assume that the minimum-cost assignment in subset Â is given by

â = {(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)} . (15)

Furthermore, assume that, according to previous partitions, no assignments in Â can contain
(m1, p1, h1), . . . , (mq, pq, hq). Recall that any assignment belonging to Âi must contain (1, j1, l1), . . . , (i−

1, ji−1, li−1). Assuming that Âi contains an assignment, it can be found as follows:

Step 1. Delete rows {1, 2, . . . , (i − 1)} and columns {j1, j2, . . . , ji−1} from the cost matrix.

Step 2. The cost of entries (i, ji, li) and (m1, p1, h1), . . . , (mq, pq, hq) in the cost matrix is set
to infinity.

Given a nonempty subset Âi, let MMAP(Âi) denote the multimodal assignment problem
defined by the two steps above. Due to Proposition 1, we have the following.

Corollary 2 The minimum-cost multimodal assignment in MMAP(Âi) can be found by solving a
classical assignment problem, denoted AP(Âi), using the minimum cost of each cell in MMAP(Âi).

Due to Corollary 2, we can use an algorithm for ranking classic linear assignments with the
slightly more general branching technique described above. An efficient algorithm for ranking
classic assignments is given in Pedersen et al. (2005a). The algorithm uses a reoptimization so-
lution technique such that the minimum-cost assignments for the subsets can be found easily
(see (Pedersen et al. 2005a) for more details). Because the general branching technique described
above does not create more subsets than the classic branching technique, the overall complexity
for ranking the K-best multimodal assignments is the same.
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Corollary 3 The complexity for finding the K-best multimodal assignments is O(Kn3).

Actually, in some cases the minimum-cost assignment for subset Âi can be found without
solving an AP. Given subset Â, assume without loss of generality that each cell (i, j) in MMAP(Â)
contains Lij entries cij1 ≤ . . . ≤ cijLij

(not set to infinity). Moreover, let û and v̂ denote the dual

row and column variables of the optimal assignment (15) found by solving AP(Â). Hence, the
corresponding reduced cost for each cell (i, j) becomes ĉij = cij1 − ûi − v̂j . If we disregard cell
(i, j), the minimum reduced costs in row i and column j are

Ri = min
t
{ĉit | t 6= j} and Cj = min

s
{ĉsj | s 6= i} .

Note that Ri, Cj ≥ 0 ∀i, j, due to optimality of û and v̂. Now, consider subset Âi. In MMAP(Âi),

we set ciji1 to infinity. If Liji
> 1, we replace ciji1 with ciji2 in AP(Âi). That is, AP(Âi) uses

the same costs as AP(Â) except in cell (i, ji), where ciji2 is used. Hence, we have the following
proposition proved in Pedersen et al. (2005b).

Proposition 7 Assume that Liji
> 1 and Ri + Cji

≥ ciji2 − ciji1. Then, a minimum-cost assign-

ment for subset Âi is
âi = (â \ {(i, ji, 1)}) ∪ {(i, ji, 2)} .

Using Proposition 7, we do not have to solve AP(Âi) if Ri +Cji
≥ ciji2 − ciji1. The minimum-

cost assignment âi is simply obtained by assigning the rows to the same columns as in assignment
â and, in cell (i, ji), by using entry 2 instead of entry 1.

5 Computational Results

In this section, we report the computational experience on BiMMAP test instances. Moreover,
because BiMMAP is an extension of BiAP, we also report some results on test instances for BiAP.
All tests were performed on an Intel Xeon 2.67 GHz computer with 6 GB RAM using a Red Hat
Enterprise Linux version 4.0 operating system.

5.1 Implementational Details

The algorithms have been implemented in C++ and compiled with the GNU C++ compiler version
3.4.5 using optimize option -O3.

The cost matrix of BiMMAP (see Figure 1) is stored using a two-dimensional array of cell
objects. Each cell object contains an array holding the cost entries and an ordered array holding
the parametric costs of the entries for a specific λ.

In phase one, for a given search direction specified by λ, we update the parametric costs and
order them in nondecreasing order. Due to Proposition 1, we consider the smallest entry in each
cell and solve the resulting AP using the implementation given by Jonker and Volgenant (1987) in
a slightly modified version allowing problems of varying sizes to be solved. Furthermore, we take
advantage of Proposition 2 or Proposition 4 (if ε > 0) whenever possible.

In phase two, the parametric costs are again updated and ordered in nondecreasing order
for a given ranking direction specified by λ. Next, the K-best multimodal assignment proce-
dure described in Section 4 is utilized for searching a triangle, using the upper bounds given in
Proposition 3 or Proposition 5 (if ε > 0).

The K-best multimodal assignment procedure was implemented using the reoptimization al-
gorithm in Pedersen et al. (2005a) for ranking assignments for the classical AP, with the slightly
more general branching technique given in Section 4. In particular, note that, when considering
a subset where we remove an entry in the ordered array of parametric costs, the new entry with
minimal cost is the next entry in the array. That is, we just have to increase a local pointer by one
to find the new minimal cost. For more details on the ranking implementation, see Pedersen et al.
(2005a), an earlier version of Pedersen et al. (2007).
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Figure 6: Cell Entries for Method 1.

All nondominated points found by the ranking procedure are stored in a single linked list
available in both phase one and phase two.

5.2 BiMMAP Test Instances

The bicriterion multimodal assignment problem has, to the best of our knowledge, not previously
been studied in the literature, and hence no available test instances exist for this problem. To
facilitate a comprehensive computational study of our BiMMAP algorithm, a problem generator,
APGen, was built for this problem class. As a side effect, our generator can be used to generate
a variety of BiAP instances. The problem generator and the test instances used in this paper
are downloadable from http://www.research.relund.dk/. In the following, we give a brief
description of the generator, and we refer readers requiring more information on this topic to
the full-documentation paper (Nielsen and Pedersen 2006). A BiMMAP instance is generated
specifying a number of parameters:

n – size of the problem.

maxEnt – maximal number of entries in each assignment cell.

minEnt – minimal number of entries in each assignment cell (default 1).

maxCost – maximum-cost value (minimum-cost value is 0).

method – a choice between three different ways of generating cell entries.

shape – for a given method, the shape parameter describes the shape of the entries in a given cell.

Obviously, for a given cell, no entries are allowed to be dominated by other entries in that cell,
because this would correspond to a dominated solution. The number of entries in a cell is chosen
randomly in the entry range {minEnt, . . . , maxEnt}.

In Figure 6, we have displayed all two-dimensional cost vectors for a given cell having 20 entries
generated by method 1. As can be seen with method 1, the shape parameter describes the curve of
the function along which the entries are generated. A negative shape corresponds to generating the
entries along a concave-like function, using shape 0 generates entries fluctuating along a straight
line, and finally, a positive shape means generating entries along a convex-like function. Therefore,
using a negative (positive) shape parameter tends to generate many unsupported (supported)
entries in the given cell. We shall see that this has a strong influence on the difficulty of the
considered problem, and hence on the computational performance of our algorithm.

For method 2, the entries in a given cell are generated in a number of groups corresponding
to the shape parameter. The groups are equally distributed in the cost space and the entries are
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all generated fluctuating along the straight line between (0, maxCost) and (maxCost, 0). Note,
to use method 2, the parameter minEnt must be chosen sufficiently large, because at least two
points are required in each group.

Finally, for method 3, the shape parameter has the same meaning as for method 1. However,
here the cost space is divided into four regions by halving both criterion axes, and the entries
are generated either in the upper-left cost region or in the lower-right cost region in consecu-
tive cells. For graphical display of assignment cost cells generated using methods 2 and 3, see
Nielsen and Pedersen (2006).

To provide a broad class of test instances and facilitate statistical analysis, 100 instances of
each of the following 80 possible configurations were generated.� n ∈ {4, 6, 8, 10}.� Cost ranges : {0, . . . , 500} and {0, . . . , 10, 000}.� Entry ranges : {2, . . . , 8} (not for method 2) and {10, . . . , 30}.� (method, shape) ∈ {(1,−60), (1, 0), (1, 60), (2, 3), (2, 4), (3, 0)}.

The two different ranges of the number of entries are chosen to reflect a situation close to BiAP
(few entries) and a situation very far away from BiAP (many entries), respectively. Note that the
number of feasible assignments increases exponentially with the number of entries in each cell.

5.3 BiMMAP Exact Results

Let us first note that numerical studies showed the difficulty of the problem to be increasing in
the size of the cost range and in the number of cell entries. The most significant factor is the entry
range, obviously resulting from the increased number of feasible solutions (see (Pedersen et al.
2005b) for further details). Therefore, the focus in this section is entirely on problem instances
using cost range {0, . . . , 10, 000} and entry range {10, . . . , 30}.

In Figure 7, we display, for the six different combinations of method and shape, the logarithm
of the CPU time (in seconds) averaged over the 100 instances against problem size n. It can be
seen that, for none of the six classes, the running time is increasing exponentially with problem
size. Also note that the most difficult class is by far using method 1 with shape −60, whereas the
easiest class is method 1 and shape 60.

To yield a possible explanation of the difference in difficulty of these two problem classes, it is
important to note that phase two is the major time-consumer in this algorithm. More specifically,
comparing the running times for all the 8, 000 exactly solved instances, phase two uses an average
of 98% of the total CPU time. Consider Figure 8, where the nondominated points in the criterion
space have been plotted for two test instances using method 1, shape −60 and method 1, shape 60,
respectively. Triangles are drawn between consecutive supported extreme nondominated points.

For the test instance with shape −60, only a limited number of supported extreme nondom-
inated criterion points exist. Note that these extreme points are far from each other, resulting
in large triangles to search in the second phase. More important, all the supported extreme non-
dominated points are located almost on a straight line. Therefore, the ranking directions for the
triangles are more or less the same. As a result, the ranking procedure of the time demanding
phase two initiated in the first large triangle has to generate many points before reaching the upper
bound of the triangle making this single triangle search extremely time-consuming. Remember
though, that nondominated points generated that are outside the triangle currently searched are
stored. This may enable the algorithm to finish searching other triangles faster, and hence enhance
computational performance.

In contrast, the test instance with shape 60 has a higher number of supported extreme nondom-
inated points in the criterion space, resulting in small triangles to search. Moreover, the ranking
directions are more diverse, and hence fewer points have to be ranked when searching a triangle.
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Figure 8: Nondominated Points (Method 1, n = 10, Entry Range {10, . . . , 30}, and Cost Range
{0, . . . , 10, 000}).
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Size Avg. CPU Max. CPU Avg. SND Avg. USND Avg. ND

4 0.08 0.25 7 206 213

6 3.59 34.50 10 445 455

8 52.56 391.10 13 744 757

10 250.34 3412.34 16 1135 1151

Table 1: Exact Results (Method 1, Shape −60, Entry Range {10, ..., 30}, and Cost Range
{0, ..., 10, 000}).

ε = 0 ε = 0.01 ε = 0.05

Size Avg. 90% Max. Avg. 90% Max. Avg. 90% Max.

4 0.08 0.15 0.25 0.05 0.09 0.14 0.02 0.04 0.06

6 3.59 7.18 34.50 1.20 2.63 14.68 0.18 0.35 2.03

8 52.56 141.59 391.10 11.65 37.85 87.01 0.35 1.00 2.14

10 250.34 594.46 3412.34 34.73 82.90 468.09 0.28 0.63 3.94

Table 2: CPU Times for ε = 0, 0.01 or 0.05 (Method 1, Shape −60, Entry Range {10, ..., 30}, and
Cost Range {0, ..., 10, 000}).

Considering other instances, the above relationships proved to have general validity. Because
method 1, shape −60 has established itself as the most difficult problem class, we focus on these
instances only from here on. In Table 1, we give the numerical results for the exact solution
of the instances. The first three columns depict the size of the problem, average CPU time (in
seconds), and maximal CPU time, respectively. In the remaining three columns, we report average
number of supported nondominated points, average number of unsupported nondominated points,
and average of the total number of nondominated points, respectively. In general, we round
the average number of nondominated points to the nearest integer. Obviously, all columns are
increasing in size. However, it is interesting to note the relatively high number of unsupported
nondominated criterion points making these instances very difficult.

5.4 BiMMAP Approximation Results

Now we describe the results for finding an approximation of the nondominated set. Two small
values 0.01 and 0.05 of ε are chosen to ensure that a sufficiently accurate approximation is found.
We also include the results for the exactly solved instances (ε = 0).

In Figure 9, we graph the empirical cumulative distribution functions of CPU time for the 100
test instances of method 1, shape −60, entry range {10, . . . , 30}, and cost range {0, . . . , 10, 000}
with size 10. Finding an approximation can be seen to have a strong influence on the running
time of the algorithm. Even for these small ε values (and hence good approximations), there
are significant savings in computation time. Figure 9 also clearly shows that the majority of 100
problems are solved fast, while only a few difficult instances are solved relatively slowly. The
numerical results are summarized in Table 2, giving for each ε the average CPU time (in seconds),
the 90% fractile of CPU time, and the maximum CPU time.

5.5 BiAP Test Results

Because BiMMAP is an extension of BiAP, we found it natural to test the performance of our
current implementation on this problem class. Below, we summarize only a few of the obtained
results. Readers requiring more information on these topics are referred to (Pedersen et al. 2005b).

To yield consistency in literature, we obtained the test instances used in (Tuyttens et al. 2000),
which are BiAP instances of size {5, 10, . . . , 50}. Also previously used in literature are BiAP
instances of size {60, 70, . . . , 100} found in (Gandibleux et al. 2003). For all problem sizes, costs
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are chosen randomly in the rather narrow interval {0, . . . , 19}, and only one instance of each size
is available. By a comparison of CPU time, respecting the influence of the different computer
architectures used, our algorithm was seen to outperform the exact methods previously reported
in the literature.

To provide our reader with statistics based on a broader class of instances, we generated
100 instances, using APGen, of each of the following sizes {5, 10, . . . , 100} with costs randomly
chosen in {0, . . . , 1000}. This wide cost interval leaves room for identifying a large number of
large triangles to search in phase two, and hence increase the difficulty of the problem. Also, to
investigate the effect of negatively correlated costs, we generated 100 instances of each of the sizes
{5, 10, . . . , 100}, again with costs in the interval {0, . . . , 1000}. For plots showing the difference in
costs generated randomly and negatively correlated see (Nielsen and Pedersen 2006).

Figure 10 shows average CPU time against size for these BiAP test instances. For the negatively
correlated instances, the algorithm was only capable of solving instances of problem size up to 40
within a reasonable amount of time. Therefore, only problems of size up to 40 are considered
for the negatively correlated instances. This shows the complex nature of such instances, as is
also previously seen for other bicriterion problems (see, for example, (da Silva et al. 2006)). The
increased difficulty follows mainly because we have more and larger triangles to search in the second
phase. Having CPU times no larger than 172 seconds for the random instances and 2455 seconds
for the negatively correlated instances, our algorithm proves capable of solving BiAP problems
rather efficiently.
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