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Abstract

We consider the bicriterion multi modal assignment problem which is a
new generalization of the classical linear assignment problem. A two-phase
solution method using an effective ranking scheme is presented. The algorithm
is valid for generating all nondominated criterion points or an approximation.

Extensive computational results are conducted on a large library of test
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Also, test results of the algorithm applied to the bicriterion assignment
problem is given. Here our algorithm outperforms all previously known exact
solution methods for this problem class.
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1 Introduction

The linear assignment problem (AP) is a well-known combinatorial problem with
applications in a widespread field of operations. In its most classical formulation,
AP is described as the problem of assigning n workers to n jobs such that cost is
minimized.

In 1955 Kuhn [12, 13] presented the first polynomial solution method for AP,
called the Hungarian method. Later, alternative AP algorithms have been presented
among which some of the most efficient are the successive shortest path algorithms1,
see e.g. Ahuja, Magnanti, and Orlin [1] and Jonker and Volgenant [11]. Dell’Amico
and Martello [5] give an annotated bibliography on AP, mentioning more than 100
papers. An excellent survey is given by Dell’Amico and Toth [6] including compar-
ative tests of several implementations of AP algorithms.

Different generalizations of AP have generated interest in the literature. One
prominent research field considers ranking the K best assignments in nondecreasing
order of cost. Applications for ranking problems are numerous. For instance, they
are often used with success as subroutines for more complex optimization problems.
Recent developments have been given by Pascoal, Captivo, and Cĺımaco [18] and
Pedersen, Nielsen, and Andersen [19].

In general a description of real world applications as single criterion optimiza-
tion problems is seldom realistic, since they are often by nature imposed with more
objectives to be simultaneously optimized. Assigning workers to jobs with minimal
cost and time yields the bicriterion assignment problem (BiAP), which is another
important generalization of AP. Within the last ten years focus on BiAP has risen.
Ulungu and Teghem [24] presented the first exact solution method for BiAP, propos-
ing a two-phase method identifying in phase one all supported efficient solutions and
in phase two all unsupported efficient solutions. In that paper, a scheme resembling
total enumeration in all nonbasic variables is employed. The method in [24] was
implemented by Tuyttens, Teghem, Fortemps, and Nieuwenhuyze [23], showing –
with large CPU times – the limitations of this algorithm. Recently, an improvement
of this algorithm was given in Przybylski, Gandibleux, and Ehrgott [20], proposing
also a two-phase method applying ranking for BiAP.

The main focus on BiAP in literature, however, seems to be on heuristical meth-
ods. Tuyttens et al. [23] use a version of the MOSA method which is an extension
of simulated annealing to deal with multiple objectives. Gandibleux, Morita, and
Katoh [8] use genetic information for BiAP, and population based heuristics using
path relinking are described in Gandibleux, Morita, and Katoh [9] and Przybylski
et al. [20].

In this paper, we deal with another highly relevant extension of the classical
assignment problem, which has, to the best of our knowledge, not yet been discussed
in literature. Imagine a large global company with n specialists spread across the
world and suppose that exactly n jobs have to be performed by these n specialists.
Hence, each specialist must be assigned to exactly one job and furthermore suitable
modes of transportation must be chosen for the workers to travel to the destinations
of the jobs. For this problem, it seems relevant to consider two weight criteria to be

1Also known as shortest augmented path algorithms.
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minimized simultaneously, namely travel time and travel or assignment cost. Since
a specialist i has possibly multiple modes of transportation and routes to choose
from in order to reach the destination of job j, several two-dimensional cost vectors
exist for each i and j. Therefore, the bicriterion multi modal assignment problem
(BiMMAP) is an extension of BiAP containing, in each assignment cell, several
two-dimensional cost vectors/points. The objective is to identify either all efficient
assignments or all nondominated criterion points for the problem. Notice that the
predominant thought within bicriterion optimization is to identify all nondominated
points with one efficient solution corresponding to each nondominated point. This
is equivalent to identifying a minimal complete set of efficient solutions [9, 10].

In this paper, we propose a two-phase method to identify all the nondominated
criterion points for BiMMAP. Acknowledging that ranking procedures have been ap-
plied with great success for other bicriterion optimization problems (see e.g. Nielsen,
Andersen, and Pretolani [16]), we employ ranking of multi modal assignments as a
subroutine. The subroutine is an efficient extension of the algorithm for finding the
K best assignments by Pedersen et al. [19].

A method for finding an ε-approximation (Warburton [25]) of the set of nondom-
inated points, which enable us to control the quality of the set of criterion points
reported, is also presented. An approximation may be needed for large problem sizes
if it is too time-consuming to find all nondominated criterion points.

Using a large library of test instances for BiMMAP, we give numerical results
indicating the effectiveness of our method. The concept of approximating the non-
dominated points is shown to have a large effect on the computational performance.
Since BiMMAP is a generalization of BiAP, we also report computational results
for some BiAP instances previously solved in literature showing that our algorithm
outperforms all known exact solution methods.

The paper is organized as follows. In Section 2 we introduce the bicriterion
multi modal assignment problem and give a few theoretical results for this problem
class. In Section 3 we describe our two-phase method both for the exact and the
approximation solution method. Section 4 provides a description on how to rank
multi modal assignments. Computational results for BiMMAP and BiAP are given
in Section 5, and conclusions are drawn in Section 6.

2 The bicriterion multi modal assignment prob-

lem

In this section we give the mathematical formulation of the bicriterion multi modal
assignment problem (BiMMAP), introduce the relevant terminology and give a few
theoretical results.

Imagine a large global company with n specialists spread across the world and
suppose that exactly n jobs have to be performed by these n specialists. That is,
each specialist must be assigned to exactly one job. Moreover, a specialist i has Lij

different mode choices of transportation for reaching the destination of job j with
travel or assignment cost c1

ijl and travel time c2
ijl, l = 1, . . . , Lij .

BiMMAP is an extension of BiAP where, for each cell (i, j) in the assignment
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Figure 1: The cost matrix of BiMMAP.

cost matrix, we have several two-dimensional cost vectors as illustrated in Figure 1.
The objective is to identify either all efficient minimal cost assignments or all non-
dominated criterion points for the problem.

Let xijl be a binary variable with value 1, if i is assigned to j using mode choice l,
and 0 otherwise. Obviously, exactly one i must be assigned to each j using a specific
mode choice which gives us the following mathematical formulation of BiMMAP.

min

n
∑

i=1

n
∑

j=1

Lij
∑

l=1

c1
ijlxijl

min
n

∑

i=1

n
∑

j=1

Lij
∑

l=1

c2
ijlxijl

st.
n

∑

j=1

Lij
∑

l=1

xijl = 1, i = 1, 2, . . . , n

n
∑

i=1

Lij
∑

l=1

xijl = 1, j = 1, 2, . . . , n

xijl ∈ {0, 1} ∀i, j, l

(1)

We assume that for each cell (i, j) the costs satisfy

0 < c1
ij1 < c1

ij2 < · · · < c1
ijLij

and c2
ij1 > c2

ij2 > · · · > c2
ijLij

> 0 (2)

Moreover, c1
ijl and c2

ijl are integer for all i, j and l.
A feasible solution x to (1) is called a multi modal assignment or short an assign-

ment. An assignment may alternatively be written as a = {(1, j1, l1) , . . . , (n, jn, ln)}
where (i, j, l) ∈ a if and only if xijl = 1.

Let the multi modal assignment polytope MMAP be the set of all feasible
solutions to the continuous relaxation of (1). For x ∈ MMAP, we denote by
y = (y1, y2) = (c1x, c2x) the corresponding objective vector (or criterion vector).
Note that if Lij = 1 for all i, j, MMAP reduces to the assignment polytope, AP.
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2.1 Methodology

For single criterion optimization, the concept of optimality is well-defined. However,
minimizing a vector-valued objective function requires some more explanation since
there is no complete order defined in Rp for p ≥ 2. Respecting common practice
in the field of multicriteria optimization, we shall deploy the Pareto concept of
optimality, which is based on the following binary relation. Let y1, y2 ∈ R2. Then

y1 ≤ y2 ⇔ y1
r ≦ y2

r r = 1, 2 and y1 6= y2

A point y2 ∈ R2 is dominated by y1 ∈ R2 if y1 ≤ y2.
Consider the following biobjective minimization problem:

min c1x

min c2x

s.t. x ∈ X

(3)

where X denotes the set of feasible solutions also referred to as the decision space.
Let Y = {(y1, y2) ∈ R2 | y1 = c1x, y2 = c2x, x ∈ X} denote the corresponding
criterion space. The efficient set XE is defined as

XE = {x ∈ X | ∄x̄ ∈ X : (c1x̄, c2x̄) dominates (c1x, c2x)},

and the nondominated set YN is given by

YN = {(y1, y2) ∈ R2 | y1 = c1x, y2 = c2x, x ∈ XE}.

The nondominated points in YN can be partitioned into supported and unsupported
points. The supported ones can be further subdivided into extreme and nonextreme.
To this aim, let us define the following set

Y≥ = conv
{

YN ⊕ {y ∈ R2 : y ≥ 0}
}

where ⊕ denotes the usual direct sum. A point y ∈ YN is a supported nondominated
point if it is on the boundary of Y≥; otherwise it is unsupported. A supported
nondominated point y is extreme if it is an extreme point of Y≥; otherwise it is
nonextreme.

The criterion space is illustrated in Figure 2. Nondominated points are displayed
as dots and Y≥ is the shaded area. Supported points are y1-y5 of which y3 is the only
nonextreme. Unsupported nondominated points are y6 and y7 while y8 is dominated.

In some cases it may be enough to find an approximation of the nondominated
set. In this case we need the concepts of ε-domination and ε-approximation intro-
duced by Warburton [25]. A point y = (y1, y2) ε-dominates point ŷ = (ŷ1, ŷ2) if
(1− ε)y dominates ŷ. A set Y1 is an ε-approximation of a nondominated set Y2, if,
for each point ŷ ∈ Y2, there exists y ∈ Y1 that ε-dominates it.

It is well-known that unsupported nondominated points may exist for BiAP [7],
and hence also for BiMMAP. Also, due to the fact that BiMMAP is a generalization
of BiAP, it holds true that BiMMAP is intractable and NP-complete ([7, 22]).
Moreover, because of (2), we have that all cost vectors for a cell are nondominated.
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Figure 2: The criterion space.

This is no restriction, since a dominated cost vector in a given cell will never be used
in an efficient assignment.

Let G = (V, E) denote the adjacency graph of MMAP, where V is the set
of efficient basic feasible solutions to the continuous relaxation of (1). An edge
between two nodes of V is included in E, if and only if the corresponding efficient
basic feasible solutions can be obtained from each other by a single pivot operation.
Along the same lines as in Przybylski, Gandibleux, and Ehrgott [21], it can be shown
that the adjacency graph for MMAP may not be connected. In particular, this
means that it may not be possible to find the full set of nondominated solutions by
simple pivot operations. Therefore, to find such a full set of nondominated points,
we propose to use a two-phase method not based upon simplex operations. We
explain our two-phase in the next section.

3 Solving BiMMAP using the two-phase method

The two-phase approach is a general method for solving bicriterion combinatorial
problems such as (3). As the name suggests, the two-phase method divides the search
for nondominated points into two phases.

In phase one, the supported extreme nondominated points are found. These
extreme points define a number of triangles in which unsupported nondominated
points may be found. Phase two proceeds to search the triangles one at a time.
Both phases make use of a parametric minimization problem defined as follows:
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Figure 3: The criterion space and its corresponding parametric space.

min fλ(x) = (λc1 + c2)x

s.t. x ∈ X
(4)

The method is best illustrated using an example. Suppose that the points in the
right side of Figure 3 represent the criterion space of the biobjective minimization
problem (3). Points y1, y4, y5, y6 and y10 are supported nondominated points of
which y5 is the only nonextreme. y9 is the only unsupported nondominated point.
The remaining points are dominated.

Consider the parametric problem (4). For a fixed criterion point y = (c1x, c2x),
fλ(x) define a line with slope y1 = c1x and intersection y2 = c2x in the parametric
space as illustrated on the left side of Figure 3. The lower envelope of the lines in the
parametric space defines a non-decreasing piecewise linear function f(λ) with break
points λi. Note that each line on f(λ) corresponds to an extreme nondominated
point. As a result, each extreme nondominated point can be found by identifying
the point with minimal parametric weight for fixed λ values, i.e. solving (4). This is
done in phase one which uses a NISE2 like algorithm (see [3]) as shown in Figure 4.
This idea was first applied to the bicriterion transportation problem by Aneja and
Nair [2].

The procedure first finds the upper/left and the lower/right point (y1 and y10

in Figure 3). Given two extreme nondominated points y+ and y−, we calculate the
search direction λ defined by the slope of the line between the points and solve (4).
That is, we find the value of λ where the two lines corresponding to y+ and y−

meet in the parametric space. If the optimal solution x⋆ of (4) corresponds to a

2Non-inferior set estimation.

7



1 procedure PhaseOne()

2 yUL:=(c1xUL, c2xUL), where xUL is optimal for lexmin(c1x, c2x);
3 yLR:=(c1xLR, c2xLR), where xLR is optimal for lexmin(c2x, c1x);
4 if (yUL=yLR) then stop (only one nondominated point);

5 Y:=
{

yUL, yLR
}

;

6 y+:=yUL; y−:=yLR;

7 while (y+ 6= yLR) do

8 λ:=(y+
2 − y−2 )/(y−1 − y+

1 );
9 solve (4) with optimal decision x⋆ and cost y⋆ = (c1x⋆, c2x⋆);

10 if (fλ(x⋆) < y+
1 λ + y+

2 ) then add y⋆ between y+ and y− in Y;
11 else y+:=y−;
12 y−:=Next(Y, y+);

13 end while

14 end procedure

Figure 4: Phase one - Finding supported extreme nondominated points.

y+

y
  ---

UB1

UB0

search direction

y
2

y
1

Figure 5: A triangle defined by y+ and y−.

new extreme nondominated point, then the parametric weight fλ(x
⋆) must be below

the parametric weight of y+ and y− (line 10). The points y+, y⋆ and y− then define
two new search directions and the while step is repeated on the points y+ and y⋆.
Otherwise no new extreme nondominated point has been found and we proceed
with the two next points in Y , i.e we call the Next function that returns the point
following y in Y . The procedure stops when no additional extreme nondominated
points can be found.

Since there may exist unsupported nondominated criterion points, it is not in
general possible to find all nondominated points during the first phase. This can be
seen in Figure 3 where unsupported nondominated points inside the triangles, such
as y9, correspond to a dashed line lying above f(λ). These points are found in phase
two which searches each triangle defined by the set of extreme nondominated points
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1 procedure PhaseTwo(△(y+, y−))
2 λ:=(y+

2 − y−2 )/(y−1 − y+
1 );

3 Y:={y+, y−};
4 k:=1; LB:=λy+

1 + y+
2 ; UB:=UpdateUB(Y);

5 while (LB ≤ UB) do

6 yk:=KBest(k, λ);
7 if (NonDom(yk)) then

8 Y:=Y ∪ {yk};
9 UB:=UpdateUB(Y);

10 end if

11 LB:=λyk
1 + yk

2; k:=k + 1;
12 end while

13 end procedure

Figure 6: Phase two - Finding unsupported extreme nondominated points.

found in phase one.
Consider the triangle △(y+, y−) defined by the extreme nondominated points

y+ and y− (see Figure 5). The second phase searches each triangle using a K best
procedure to rank the parametric weight fλ(x) in the search direction defined by
the slope between the two points defining the triangle. The search stops when
the parametric value fλ(x) reaches an upper bound. Initially, the upper bound is
UB0 = y−1 λ+y+

2 . When a new unsupported nondominated point is found inside the
triangle, the upper bound is updated to UB1 as can be seen in Figure 5.

A pseudo code is given in Figure 6 where initialization is done on lines 2-4.
In the main loop the parametric weight fλ(x) is ranked until the upper bound is
reached. Procedure KBest returns the cost vector yk of the k’th best solution. If it
is nondominated, we add yk to the nondominated set and update the upper bound
using UpdateUB. Finally, we update the lower bound to the parametric weight and
repeat the loop.

A detailed description of procedure KBest is given in Section 4. Furthermore,
note that in general UpdateUB finds the upper bound by using the points in the non-
dominated set. However, special properties such as integrality of the nondominated
points may be used to improve the bound, as we will see in the following sections.

3.1 BiMMAP – Finding the complete set of nondominated

points

To solve BiMMAP using the two-phase method, we must be able to solve the para-
metric problem:

min fλ(x) =
(

λc1 + c2
)

x =

n
∑

i=1

n
∑

j=1

Lij
∑

l=1

(λc1
ijl + c2

ijl)xijl

s.t. x ∈MMAP

(5)
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For a given value of λ and a given cell (i, j), define

l⋆(λ) = argmin1≤l≤Lij
{λc1

ijl + c2
ijl} (6)

That is, for a specific value of λ the minimal parametric cost entry, l⋆, in each
assignment cell (i, j) is chosen. It is straightforward to see that (5) reduces to the
following problem:

min fλ(x) =
(

λc1 + c2
)

x =
n

∑

i=1

n
∑

j=1

cijl⋆(λ)xijl⋆(λ)

s.t. x ∈ AP

(7)

which is a single criterion assignment problem. This is summarized in Proposition 1.

Proposition 1. The parametric problem min{fλ(x)|x ∈ MMAP} reduces to the
classical AP min{

∑

ij
cijl⋆(λ)xijl⋆(λ)|x ∈ AP}.

Therefore, the minimal cost assignment for BiMMAP given a fixed value of λ

can be found in procedure PhaseOne by solving a single criterion AP. Moreover, since
each criterion point in BiMMAP is integer, the following obvious proposition may
be used to reduce the computational effort in phase one.

Proposition 2. Consider two extreme nondominated points y+ and y−. Then no
further nondominated extreme points can be found below the line connecting y+ and
y− in phase one, if any of the following conditions are fulfilled

y−1 − y+
1 = 1 or y+

2 − y−2 = 1 (8)

That is, we simply skip the search between y+ and y− if (8) holds in phase one.
Condition (8) may also be used in phase two to skip searching some triangles. If any
of the conditions in (8) are fulfilled, we do not have to apply procedure PhaseTwo

to triangle △(y+, y−) since no unsupported nondominated point can exist in this
triangle.

Observe that this also holds true even if the points y+ and y− are supported
nonextreme nondominated points. Hence, storing such nonextreme points in phase
one (by using a ≤ sign instead of a < sign on line 10 in Figure 4) may reduce the
computational effort in phase two. Furthermore, since all nondominated points have
integer coordinates, the upper bound used in phase two may be improved.

Proposition 3. Given the triangle △(y+, y−) with previously found nondominated
points {y+ = y1, . . . , yq = y−} ordered in increasing order of the first objective and
a search direction given by λ, define

UB IP = max
i=1,...,q−1

{λ
(

yi+1
1 − 1

)

+
(

yi
2 − 1

)

}. (9)

Then all unsupported nondominated criterion points in △(y+, y−) have parametric
weight below or equal to UB IP .
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Proof. Consider a non-found nondominated point (y1, y2) located in △(y+, y−). Due
to integrality of y1 and y2 we have

∃i ∈ {1, . . . , q − 1} : y1 ≤ yi+1
1 − 1 ∧ y2 ≤ yi

2 − 1

⇓

λy1 + y2 ≤ λ
(

yi+1
1 − 1

)

+
(

yi
2 − 1

)

Since nondominated points can be located between any two consecutive points
yi and yi+1, we obtain expression (9) for the upper bound.

As a result, we can use (9) in function UpdateUB of procedure PhaseTwo. Further-
more, note that upper bound (9) is valid for all bicriterion problems with integer
criterion points and is an improvement to the upper bound previously reported in
literature [23, 24].

3.2 BiMMAP - Finding an approximation

In some cases it may be sufficient to find an approximation of the nondominated
set. In this section we consider the problem of finding an ε-approximation (ε > 0) of
the nondominated set, which enables us to control the quality of the approximation
reported. Only slightly modified versions of phase one and two are needed.

First, consider phase one and a set of extreme nondominated points found during
phase one as illustrated in Figure 7. Note that any new extreme nondominated point
between y+ and y− must belong to the shaded area in Figure 7. As a result we can
skip searching for new extreme nondominated points between y+ and y− if the
following proposition is satisfied.

Proposition 4. Given extreme points {yUL, . . . , ys, y+, y−, yt, . . . , yLR} found dur-
ing phase one, each extreme nondominated point between y+ and y−, i.e. inside the
shaded area of Figure 7, is ε-dominated by either y+ or y− if

λ1

⌊

(1− ε) y−1
⌋

+
⌊

(1− ε) y+
2

⌋

≤ λ1y
+
1 + y+

2

or λ2

⌊

(1− ε) y−1
⌋

+
⌊

(1− ε) y+
2

⌋

≤ λ2y
−
1 + y−2

(10)

where λ1 is defined by the slope of the line between ys and y+ and λ2 is defined by
the slope of the line between y− and yt.

Proof. We only show the result if the first condition in (10) is satisfied. The second
case is shown with similar arguments. Therefore, assume that λ1

⌊

(1− ε) y−1
⌋

+
⌊

(1− ε) y+
2

⌋

≤ λ1y
+
1 + y+

2 . Furthermore, suppose that there exists a nondominated
point (y1, y2) in the shaded area between y+ and y− (see Figure 7), which is not ǫ-
dominated by neither y+ nor y−. It follows that (1− ε) y−1 > y1 and (1− ε) y+

2 > y2.
Due to integrality of y1 and y2, this means:

λ1y1 + y2 ≤ λ1

⌊

(1− ε) y−1
⌋

+
⌊

(1− ε) y+
2

⌋

(11)

The nondominated point (y1, y2) is necessarily strictly above the line through
ys and y+ (otherwise y+ is not an extreme point found before (y1, y2)). Therefore,
λ1y1 + y2 > λ1y

+
1 + y+

2 . This implies that

λ1

⌊

(1− ε) y−1
⌋

+
⌊

(1− ε) y+
2

⌋

≤ λ1y
+
1 + y+

2 < λ1y1 + y2 (12)
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Figure 7: Using ε-dominance in the first phase.

Combining equations (11) and (12) a contradiction is obtained.

Observe that Proposition 4 also holds true for the case where no points are
identified to the left (or to the right) of the points y+ and y− by an appropriate
choice of λi, i = 1, 2.

Corollary 1. If y+ = yUL (y− = yLR) Proposition 4 holds true by choosing λ1 = ∞
(λ2 = 0).

Proposition 4 and Corollary 1 are used in procedure PhaseOne to skip the search
between two points y+ and y−.

In phase two, the upper bound (9) can be further strengthened if an ε-approximation
is wanted.

Proposition 5. Given the triangle △(y+, y−) with previously found nondominated
points {y+ = y1, . . . , yq = y−} ordered in increasing order of the first objective,
define

UB IP (ε) = max
i=1,...,q−1

{λ⌊(1− ε)yi+1
1 ⌋+ ⌊(1− ε)yi

2⌋} (13)

Then all criterion points in △(y+, y−) with parametric weight above UB IP (ε) are
ε-dominated by the current ε-approximation of the triangle.

Proof. Let y = (y1, y2) be a nondominated point in △(y+, y−). Assume that y is
located between yi and yi+1. If y is not ǫ-dominated then

12



∃i ∈ {1, . . . , q − 1} : y1 < (1− ε) yi+1
1 ∧ y2 < (1− ε) yi

2

⇓ (since y is integral)

y1 ≤
⌊

(1− ε) yi+1
1

⌋

∧ y2 ≤
⌊

(1− ε) yi
2

⌋

⇓

λy1 + y2 ≤ λ⌊(1− ε) yi+1
1 ⌋+ ⌊(1− ε) yi

2⌋

Since nondominated points can be located between any two consecutive points
yi and yi+1, we obtain expression (13) for the upper bound.

It follows that for ε > 0 equation (13) can be used to find the upper bound in
function UpdateUB of procedure PhaseTwo. Also, note that if we consider the shaded
area between y+ and y− (see Figure 7) not searched in phase one (i.e. satisfying
(10)), then UB IP(ε) for △(y+, y−) will be less than the parametric weight of y+.
Therefore, △(y+, y−) is not searched in procedure PhaseTwo either. Furthermore,
there can be some possible gains in storing nonextreme supported points in phase
one as well. The more supported nondominated points that are identified in the first
phase, the more likely are UB IP (ε) to be below the parametric weight of y+ and
hence △(y+, y−) is not searched.

Note that, the approximation found in phase one is a subset of the supported
nondominated points, since the optimal solution of (5) corresponds to an extreme
nondominated point. Moreover, because we apply a ranking procedure in the second
phase, a dominated point cannot be found before a point dominating it. These
comments provide us with the following result.

Proposition 6. The approximation of the nondominated set for an ε > 0 is a subset
of YN .

4 Finding the K best multi modal assignments

In this section, we describe our method for ranking multi modal assignments in
nondecreasing order of cost, used in phase two when searching a triangle. That is,
ranking assignments using the single criterion parametric costs defined for a given
parameter λ.

Without loss of generality, assume that each cell (i, j) contains entries cij1 ≤
. . . ≤ cijLij

. Our objective is to determine the K best assignments a1, a2, . . . , aK , in
a single criterion multi modal assignment problem, such that

• c(ai) ≤ c(ai+1), i = 1, 2, . . . , K − 1

• c(aK) ≤ c(a), for any assignment a 6∈ {a1, . . . , aK}

where c(a) denotes the cost of assignment a.
In general, ranking algorithms use a specific branching technique to partition

the set of possible solutions into smaller subsets and a solution technique to find the
optimal solution for each subset.

Let A denote the set of possible multi modal assignments. In this paper, we use
a branching technique which is an extension of the branching technique originally
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proposed by Murty [14]. Here we partition the set A into smaller subsets as follows:
Given the optimal assignment a1 = {(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)} of A, the set
A \ {a1} is partitioned into n− 1 disjoint subsets Ai, i = 1, . . . , n− 1, where

Ai = {a ∈ A | (1, j1, l1), . . . , (i− 1, ji−1, li−1) ∈ a, (i, ji, li) 6∈ a}, i = 1, . . . , n− 1

Clearly, the second best assignment a2 can be identified using a solution technique
to find the minimal cost assignment in the sets Ai, i = 1, . . . , n− 1. Moreover, the
branching technique can be applied recursively to subsets Ai ⊂ A.

In general, the algorithm maintains a candidate set Φ of pairs (â, Â), where â

is the minimum cost assignment in subset Â. Suppose we have found the k − 1
best assignments a1, . . . , ak−1, then the current candidate set Φ represents a disjoint
partition of A \ {a1, . . . , ak−1}. The kth best assignment is then found as the pair
(â, Â) ∈ Φ which contains the assignment â with minimum cost c(â) among all
assignments in the candidate set Φ.

Next let us consider the solution technique, i.e how to determine the minimum
cost assignments in Âi when applying the branching technique to some subset Â ⊂
A. Without loss of generality, assume that the minimum cost assignment in subset
Â is given by

â = {(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)}. (14)

Furthermore, assume that, according to previous partitions, no assignments in Â
can contain (m1, p1, h1), . . . , (mq, pq, hq). Recall that any assignment belonging to

Âi must contain (1, j1, l1), . . . , (i − 1, ji−1, li−1). Assuming that Âi contains an as-
signment, it can be found as follows:

1. Delete rows {1, 2, . . . , (i− 1)} and columns {j1, j2, . . . , ji−1} from the cost ma-
trix.

2. The cost of entries (i, ji, li) and (m1, p1, h1), . . . , (mq, pq, hq) in the cost matrix
is set to infinity.

Given a nonempty subset Âi, let MMAP(Âi) denote the multi modal assignment
problem defined by the two steps above. Due to Proposition 1 we have the following.

Corollary 2. The minimal cost multi modal assignment in MMAP(Âi) can be found
by solving a classical assignment problem, denoted AP(Âi), using the minimal cost
of each cell in MMAP(Âi).

Due to Corollary 2, we can use an algorithm for ranking classic linear assign-
ments with the slightly more general branching technique described above. An
efficient algorithm for ranking classic assignments is given by Pedersen et al. [19].
The algorithm uses a reoptimization solution technique such that the minimal cost
assignments for the subsets can be found easily (see [19] for more details). Since
the general branching technique described above does not create more subsets than
the classic branching technique, the overall complexity for ranking the K best multi
modal assignments is the same.

Corollary 3. The complexity for finding the K best assignments is O(Kn3).
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Actually, in some cases the minimal cost assignment for subset Âi can be found
without solving an AP. Given subset Â, assume without loss of generality that each
cell (i, j) in MMAP(Â) contains Lij entries cij1 ≤ . . . ≤ cijLij

(not set to infinity).
Moreover, let û and v̂ denote the dual row and column variables of the optimal
assignment (14) found by solving AP(Â). Hence the corresponding reduced cost for
each cell (i, j) becomes ĉij = cij1 − ûi − v̂j . If we disregard cell (i, j), the minimum
reduced costs in row i and column j are

Ri = min
t
{ĉit | t 6= j} and Cj = min

t
{ĉtj | t 6= i}.

Note that Ri, Cj ≥ 0, ∀i, j, due to optimality of û and v̂. Now, consider subset

Âi. In MMAP(Âi) we set ciji1 to infinity. If Liji
> 1, we replace ciji1 with ciji2 in

AP(Âi). That is, AP(Âi) uses the same costs as AP(Â) except in cell (i, ji) where
ciji2 is used. We have the following proposition to enhance the performance of our
procedure.

Proposition 7. Assume Liji
> 1 and Ri +Cji

≥ ciji2− ciji1. Then an minimal cost

assignment for subset Âi is

âi = (â \ {(i, ji, 1)}) ∪ {(i, ji, 2)}

Proof. Define
∆iji

= ciji2 − ciji1 ≥ 0

The assignment â of AP(Â) is primal feasible and satisfies the complementary slack-
ness conditions x̂ij1ĉij = 0. Consider AP(Âi) with dual row and column variables ū

and v̄. If ∆iji
≤ Ri, set ūi = ûi+∆iji

and keep the remaining dual values unchanged.
Then c̄it ≥ 0, ∀t 6= ji and

c̄iji
= ciji2 − (ûi + ∆iji

)− v̂ji
= ĉiji

= 0

Hence the assignment âi of AP(Âi) is primal feasible and satisfies the complementary
slackness conditions, i.e. âi is an optimal solution.

If ∆iji
> Ri, we set ūi = ûi +Ri and v̄ji

= v̂ji
+∆iji

−Ri and keep the remaining
dual values unchanged. Hence c̄it ≥ 0 and

c̄iji
= ciji2 − (ûi + Ri)− (v̂ji

+ ∆iji
−Ri) = ĉiji

= 0

Again, assignment âi is optimal.

Using Proposition 7, we do not have to solve AP(Âi) if Ri + Cji
≥ ciji2 − ciji1.

The minimal cost assignment âi is simply obtained by assigning the rows to the same
columns as in assignment â and, in cell (i, ji), by using entry 2 instead of entry 1.

5 Computational results

In this section, we report the computational experience on BiMMAP test instances.
Moreover, since BiMMAP is an extension of BiAP, we also report some results on test
instances for BiAP. All tests were performed on an Intel Xeon 2.67 GHz computer
with 6 GB RAM using a Red Hat Enterprise Linux version 4.0 operating system.
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5.1 Implementation details

The algorithms have been implemented in C++ and compiled with the GNU C++
compiler using optimize option -O.

The cost matrix of BiMMAP (see Figure 1) is stored using a two-dimensional
array of Cell objects. Each Cell object contains an array holding the cost entries
and an ordered array holding the parametric costs of the entries for a specific λ.

In phase one, for a given search direction specified by λ, we update the parametric
costs and order them in nondecreasing order. Due to Proposition 1, we consider the
smallest entry in each cell and solve the resulting AP using the implementation given
by Jonker and Volgenant [11]. Furthermore, we take advantage of Proposition 2 or
Proposition 4 (if ε > 0) whenever possible.

In phase two, we, as in phase one, update the parametric costs and order them in
nondecreasing order for a given search direction specified by λ. Next, we use the K
best multi modal assignment procedure described in Section 4 to search a triangle,
using the upper bounds given in Proposition 3 or Proposition 5 (if ε > 0).

The K best multi modal assignment procedure was implemented using the re-
optimization algorithm in Pedersen et al. [19] for ranking classic assignments, with
the slightly more general branching technique given in Section 4. In particular, note
that, when considering a subset where we remove an entry in the ordered array of
parametric costs, the new entry with minimal cost is the next cost in the array. That
is, we just have to increase a local pointer by one to find the new minimal cost. See
Pedersen et al. [19] for more details on the ranking implementation.

All nondominated points found by the ranking procedure are stored in a single
linked list available in both phase one and two.

5.2 BiMMAP test instances

The bicriterion multi modal assignment problem has, to the best of our knowledge,
not previously been studied in literature, and hence no available test instances exist
for this problem. To facilitate a comprehensive computational study of our BiMMAP
algorithm, we build a problem generator, APGen, for this problem class.3 As a side-
effect our generator can be used to generate a variety of BiAP instances. In the
following we give a brief description of the generator, and we refer readers requiring
more information on this topic, to the full documentation paper [17]. A BiMMAP
instance is generated specifying a number of parameters:

n – the size of the problem.

maxEnt – the maximal number of entries in each assignment cell.

minEnt – the minimal number of entries in each assignment cell (default 1).

maxCost – the maximal cost value for both objectives (minimum cost value
is 0).

3The problem generator and the test instances used in this paper are downloadable from the
following webpage http://www.research.relund.dk/.
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Figure 8: Cell entries for method = 1.

method – a choice between three different ways of generating cell entries.

shape – for a given method, the shape parameter describes the shape of the
entries in a given cell.

Obviously, for a given cell, no entries are allowed to be dominated by other entries
in that cell, since this would correspond to a dominated solution. The number of
entries in a cell is chosen randomly in the entry range {minEnt, . . . , maxEnt}.
To describe best the six different versions of method and shape used for generating
BiMMAP instances, we have displayed all two-dimensional cost vectors for a given
cell having 20 entries in Figures 8 to 10.
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Figure 9: Cell entries for method = 2.

As can be seen in Figure 8, with method 1 the shape parameter describes the
curve of the function along which the entries are generated. A negative shape cor-
responds to generating the entries along a concave-like function, using shape 0 gen-
erates entries fluctuating along a straight line, and finally, a positive shape means
generating entries along a convex-like function. Therefore, using a negative (posi-
tive) shape parameter tends to generate many unsupported (supported) entries in
the given cell. We shall see, that this has a strong influence on the difficulty of the
considered problem and hence the computational performance of our algorithm.

For method 2, the entries in a given cell are generated in a number of groups
specified by the shape parameter (see Figure 9). Note, to use method 2, the param-
eter minEnt must be chosen sufficiently large, since at least 2 points have to be in
each group.

Finally, for method 3, the shape parameter has the same meaning as for method
1. However, the entries fall either in the upper left corner of the cost-space or the
lower right corner in consecutive cells. This can be seen in Figure 10, where we
display the entries in the four consecutive assignment cells (1, 1), . . . , (1, 4).

To provide a broad class of test instances and facilitate statistical analysis, we
generated 100 instances of each of the following 80 possible configurations.

• n ∈ {4, 6, 8, 10}.

• Cost ranges : {0, . . . , 500} and {0, . . . , 10000}.

• Entry ranges : {2, . . . , 8} (not for method 2) and {10, . . . , 30}.

• (method, shape) ∈ {(1,−60), (1, 0), (1, 60), (2, 3), (2, 4), (3, 0)}.

The two different ranges of number of entries are chosen to reflect a situation
close to BiAP (few entries) and a situation very far away from BiAP (many entries),
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Figure 10: Cell entries for cells (1, 1) to (1, 4) for method = 3 and shape = 0.

respectively. Note that the number of possible assignments increases exponentially
with the number of entries in each cell. For a problem with n = 10 and entry range
{10, . . . , 30}, the total number of assignments ranges between 10! · 1010 ≈ 3.6 · 1016

in the best case and 10! ·1030 ≈ 3.6 ·1036 in the worst case. In comparison, the BiAP
with size 10 has only 10! ≈ 3.6 · 106 feasible assignments.

5.3 BiMMAP test results

Giving the results of the extensive amount of tests, we first display the logarithm of
the CPU time (in seconds) averaged over the 100 instances against problem size n for
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Figure 11: Logarithm of average CPU against n (cost range {0, . . . , 10000} and entry
range {10, . . . , 30}).

the highest possible cost range and the highest possible entry range (Figure 11). It
can be seen, that, for none of the six different classes, the running time is increasing
exponentially with problem size. Also notice that the most difficult class is by far
using method 1 with shape −60, whereas the easiest class is method 1 and shape
60.

To yield a possible explanation of the difference in difficulty of these two prob-
lem classes, we direct the attention of the reader to Figure 12 where the nondom-
inated points in the criterion space have been plotted for two test instances using
shape = −60 and shape = 60, respectively. Triangles are drawn between consecutive
supported extreme nondominated points.

For the test instance with shape = −60, only a limited number of supported
extreme nondominated criterion points exist. Notice that these extreme points are
far from each other resulting in large triangles to search in the second phase. More
important, all the extreme supported nondominated points are almost on a straight
line. Therefore, the search directions for the triangles are more or less the same. As a
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Figure 12: Nondominated points (method = 1, n = 10, entry range {10, . . . , 30}
and cost range {0, . . . , 10000}).
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result, the ranking procedure initiated in the first large triangle has to generate many
points before reaching the upper bound of the triangle making this single triangle
search extremely time consuming. Remember though, that nondominated points
generated which are outside the triangle currently searched, are stored. This may
enable us to finish searching other triangles faster and hence enhance computational
performance.

In contrast, the test instance with shape = 60 has more extreme nondominated
points in the criterion space, resulting in small triangles to search. Moreover, the
search directions are more diverse and hence fewer points have to be generated when
searching a triangle.

Considering other instances the above relationships proved to have general valid-
ity. The larger a triangle is, the longer the search in this triangle continues in phase
two. Therefore, with many extreme points at termination of phase one, only small
triangles need to be searched, resulting in a lower overall running time compared to
an instance with a few extreme points and larger triangles. Moreover, test instances
where the search directions for the triangles are more or less the same are harder to
solve.

Comparing running times of phase one and two, phase two can be seen to be
the major time consumer. On average, phase two uses 98 per cent of the total CPU
time in the 8000 exactly solved instances.

Since method 1 shape −60 has established itself as the most difficult problem
class, we focus on this instance only from here on.

In Figure 13, we show the logarithm of average CPU time against the problem
size for the four different configurations of entry range and cost range. It can be seen,
that the most difficult case is the one with the most entries and highest cost range.
The most significant factor is the entry range, obviously resulting from the increased
number of feasible solutions. Also, for a given number of entries, the most difficult
case arises with the highest possible cost range. In this respect, the BiMMAP follows
the classical single criterion assignment problem since this problem is known to be
easiest solvable with relatively small costs [11].

From here on, we focus on test instances using method = 1, shape = −60 cost
range {0, . . . , 10000} and entry range {10, . . . , 30} only. In Table 1, we give the
numerical results for the exact solution of these instances. In the six columns are
depicted the size of the problem, average CPU time (seconds), maximal CPU time,
average number of supported nondominated points, average number of unsupported
nondominated points and average of the total number of nondominated points, re-
spectively. Obviously, all columns are increasing in size. However, it is interesting
to note the relatively high number of unsupported nondominated criterion points.

Now we describe the results for finding an approximation of the nondominated
set. Two small values 0.01 and 0.05 of ε are chosen to ensure that a sufficiently
accurate approximation is found. We also include the results for the exact solved
instances (ε = 0). In Figure 14, we display the logarithm of average CPU time
against size for all three ε values.

Finding an approximation can be seen to have a strong influence on the running
time of the algorithm. Even for these small ε values (and hence good approxima-
tions) there are significant savings in computation time. We note (not displayed)
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size ave CPU max CPU ave SND ave USND ave ND

4 0.10 0.34 6.95 210.04 216.99

6 4.39 33.21 9.87 437.30 447.17

8 71.84 559.28 13.07 744.34 757.41

10 245.63 2967.09 16.23 1143.72 1159.95

Table 1: Exact results (method = 1, shape = −60, entry range {10, ..., 30} and cost
range {0, ..., 10000}).

that the number of identified nondominated points obviously decreases with increas-
ing ε, as some extreme supported nondominated points may not be considered in the
first phase, and in the second phase, fewer alternatives for each triangle are ranked.

In Figure 15, we graph the empirical distribution functions of CPU time for
the 100 test instances for problem size 10. This clearly shows that the majority of
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Figure 14: Logarithm of average CPU against n (method = 1 and shape = −60).

ε = 0 ε = 0.01 ε = 0.05

size ave. 90% max ave. 90% max ave. 90% max

4 0.10 0.18 0.34 0.05 0.10 0.17 0.02 0.05 0.09

6 4.39 9.19 33.21 1.52 3.01 12.25 0.25 0.52 2.01

8 71.84 163.16 559.28 17.16 41.71 172.38 0.69 1.60 6.01

10 245.63 589.52 2967.09 34.61 85.72 420.15 0.29 0.66 2.82

Table 2: CPU times for ε = 0, 0.01 or 0.05 (method = 1, shape = −60, entry range
{10, ..., 30} and cost range {0, ..., 10000}.

problems are solved fast, while only a few difficult instances are solved relatively
slowly. The numerical results are summarized in Table 2, giving for each ε the
average CPU time (seconds), the 90 per cent fractile of CPU time and the maximum
CPU time.
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Figure 15: Empirical distribution of CPU time for different ε values.

5.4 Results for BiAP

Since BiMMAP is an extension of BiAP, we found it natural to test the perfor-
mance of our current implementation on this problem class. To yield consistency
in literature, we obtained the test instances used in [23] which are BiAP instances
of size {5, 10, . . . , 50}. Also previously used in literature are AP instances of size
{60, 70, . . . , 100} found in [8].4 These instances have recently been solved by an
exact method in [20] and by a heuristic in [9] acknowledging the current interest in
this field. For all the problem classes only one instance is solved, and hence limited
statistics can be performed for those data sets. For all instances, costs are chosen
randomly in the rather narrow interval {0, . . . , 19}.

To provide our reader with statistics based on a broader class of instances, we
generated 100 instances of each of the following sizes {5, 10, . . . , 100} with costs
randomly chosen in {0, . . . , 1000}. This wide interval leaves room for identifying
a large number of large triangles to search in phase two, and hence adds to the

4http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOAP.html
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Figure 16: Cost generation for BiAP test instances.

difficulty of the problem. Also, to investigate the effect of negatively correlated
costs, we generated 100 instances of each of the sizes {5, 10, . . . , 100}, again with
costs in the interval {0, . . . , 1000}. The difference in costs generated randomly and
negatively correlated is shown in Figure 16. We shall see that negatively correlated
cost vectors have a strong influence on the difficulty of the considered problem,
and hence the running time of the algorithm. In general bicriterion problems with
negatively correlated costs are harder to solve, see e.g. [4].
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In Figure 17, we graph CPU time against size for the instances previously found
in literature. We note that the number of nondominated points we found corresponds
exactly to the number of efficient solutions found by CPLEX in [8], making this set a
minimal complete set of efficient solutions. In [8], the results were already concluded
to be questioning the validity of the results from [23], and this is substantiated by our
results. A comparison of our CPU time with the CPU time of the exact algorithms
reported upon in [8, 20, 23] must necessarily include a discussion on the efficiency of
the different computers used. Applying Linpack Benchmark-Peaks from Netlib [15]
to reflect the relative performance of the computers, we can see that our algorithm
outperforms the exact methods previously proposed in literature. Furthermore, the
running time of our exact method is even competitive to the CPU time for the
heuristics proposed in [8, 9].

Figure 18, shows average CPU time against size for the negatively correlated and
random BiAP test instances. For the negatively correlated instances, we were only
capable of solving instances of problem size up to 40 within a reasonable amount of
time. This shows the complex nature of such instances, as is also previously seen for
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other bicriterion problems. The increased difficulty follows mainly because we have
more (see Table 3) and larger triangles (not shown). Moreover, note that the number
of nondominated points is much higher. For the size 40 problem reported upon in
[23], a total of 127 nondominated points was found, 73 of which were unsupported.
In Table 3, we see that the average number of nondominated points and the average
number of unsupported nondominated points for the size 40 negatively correlated
instances (random instances) are 2402.04 (333.24) and 2346.02 (296.55), respectively.

Having CPU times no larger than 182 seconds for the random instances and
2635 seconds for the negatively correlated instances, our algorithm proves capable
of solving BiAP problems rather efficiently.

Let us conclude this section by commenting on some numerical statistics obtained
for the BiMMAP instances and for the different BiAP problems. To collect outputs
for making such statistics, we intentionally neglected to focus on CPU time by
disabling the IP strengthening of the upper bound used when searching a triangle.
This makes the ranking process run much longer resulting in a significant increase
in memory usage.
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neg. corr. data random data

size ave SND ave USND ave ND ave SND ave USND ave ND

5 5.56 14.86 20.42 3.67 2.44 6.11

10 13.23 115.44 128.67 7.80 16.58 24.38

15 20.12 294.78 314.90 12.23 40.83 53.06

20 27.89 539.18 567.07 17.56 72.43 89.99

25 34.95 877.59 912.54 22.68 118.64 141.32

30 41.83 1298.96 1340.79 27.17 167.41 194.58

35 48.63 1773.25 1821.88 32.65 230.82 263.47

40 56.02 2346.02 2402.04 36.69 296.55 333.24

Table 3: Exact results for our BiAP instances.

Calculating the number of times the IP upper bound would succeed in terminat-
ing the search of a triangle when the bound without IP strengthening would fail and
dividing this by the total number of iterations, the average ratio for all 8000 exactly
solved BiMMAP instances is 11.47 per cent. This corresponds to saying that, in
more than one out of 10 cases the search in a given triangle would be terminated
when using the integer based upper bound, whereas the upper bound without inte-
grality would still be higher than the lower bound. The same ratio for our negatively
correlated BiAP instances is 5.80 per cent, for our random instances 7.67 per cent
and finally, for the random BiAP instances found in literature, 79.55 per cent. Obvi-
ously, since only a limited amount of instances have previously been reported upon
in literature, this last number must be interpreted with caution. However, it seems
like the IP strengthening proves to be valuable for primarily instances having a nar-
row cost range. This yields another explanation for our instances being significantly
harder than the instances previously seen in literature.

It is also interesting to consider the ratio between the number of efficient solutions
and the number of nondominated points. For BiMMAP instances, this ratio has an
average of 1.01 and a maximum of 1.25 found for a size 8 instance using the lowest
possible cost range {0, . . . , 500} and highest possible entry range {10, . . . , 30}. This
fits nicely with our intuition that a narrow cost range leads to many alternative
efficient solutions. Moreover, the high number of entries also yields a higher total
number of feasible solutions. For the 15 random generated BiAP instances from
[8, 23], the average of this ratio is 2.11, and for both our random instances and our
negatively correlated instances, this ratio is very close to 1. The main factor here
is again the cost range. A narrow cost range gives a higher number of alternative
efficient solutions corresponding to the same nondominated point.

6 Conclusion

In this paper we have presented a two-phase method for solving a new bicrite-
rion generalization of the classical linear assignment problem. The algorithm uti-
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lizes a ranking scheme relying on reoptimization, which was previously shown to be
very efficient. Exploiting the integral nature of the criterion vectors allowed us to
strengthen an upper bound previously stated in literature. Our algorithm identifies
either the exact set of all nondominated points or an approximation of these with
predetermined approximation quality.

A large library of test instances for both BiMMAP and BiAP was provided by
a new problem generator, and a diversity of numerical results was presented. Below
we summarize the main results.

For BiMMAP the excessive group of test problems allowed us to identify the
instances with cell entries generated along a concave-like function (method 1 and
shape −60) to be significantly harder than any other problem class. This mainly
follows since the many unsupported cost vectors in each cell generate few extreme
supported points located along an almost straight line in criterion space. Therefore,
the search directions for the individual triangles become close to identical, resulting
in long running times for the first large triangle investigated. Since phase two was
established as the main time consumer, this explains why such instances are very
difficult. In contrast, the instances with many supported cell entries (method 1 and
shape 60) generate more supported extreme criterion vectors located along a convex-
like function. Therefore, the triangles to search in the second phase are smaller and
have more diverse search directions, making these instances easier.

Considering two different ranges of costs and of number of entries in each as-
signment cell, it was pointed out that high costs and many cell entries result in the
most difficult instances. This was concluded to fit nicely with results for the single
criterion AP and with the fact that the total number of feasible solutions grows
rapidly with the number of cell entries.

For BiAP, the main knowledge gained by our numerical experiments is that in-
stances with negatively correlated cost vectors by far exceed random BiAP instances
in difficulty. This mainly follows due to the higher number of large triangles to search
in the time-consuming second phase.

Our algorithm was concluded to perform very well even on BiMMAP instances
of high size, and was seen to outperform existing methods for BiAP. The integral
strengthening of the upper bound proved to be contributing significantly to the
efficiency of our algorithm. Finding an approximation of the nondominated set was
seen to be a valuable tool to reduce the computation time significantly. The results
reported here show the approximative algorithm to be a serious rival to heuristical
methods. Note, applying an approximative scheme instead of a heuristical method
allows us to control the quality of the reported set of criterion points.

A natural extension of BiMMAP is the bicriterion multi modal transportation
problem which interests the authors of this paper. Also, under current investiga-
tion is a bicriterion version of the directed Chinese Postman Problem (BiDCPP).
Restricting the deviation in in- and out-degree for all nodes in the original post-
man graph to be no larger than one, BiDCPP can be seen to yield an instance of
BiMMAP as a subproblem.
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