
Solution algorithms for
multi-objective integer linear

programming models
– A study of the branch-and-bound algorithm applied to

the multi-objective case

A PhD Dissertation
by

Nicolas Forget

Aarhus BSS, Aarhus University
Department of Economics and Business Economics

August 2022

Solution algorithms for
multi-objective integer linear

programming models
– A study of the branch-and-bound algorithm applied to

the multi-objective case

Thesis advisors
– Lars Relund Nielsen
– Sune Lauth Gadegaard

Nicolas Forget
Department of Economics and Business Economics
School of Business and Social Sciences
Aarhus University
Fuglesangs Allé 4
DK-8210
Denmark
E-mail:nforget@econ.au.dk

Copyright © 2022 Nicolas Forget
Rules of usage: None except the standard copyright rules. If any of the work, that being
theory, computational results or figures, is used or reproduced in any way, cite the work and
the author(s) in appropriate manners.

The LATEX template used to typeset this document is originally created by Sune Lauth
Gadegaard and adapted by Nicolas Forget
The template was originally designed for the PhD thesis Gadegaard (2016)
Font: Latin modern. 12pt scaled to 95 percent
Produced with pdfLATEX and the memoir–class

E-mail : nforget@econ.au.dk

Table of contents

Summary v

Abstract ix

Resumé xi

Acknowledgments xiii

Notation xv

1 Introduction 1
1.1 Multi-objective optimization . 3

1.1.1 Bound sets . 6
1.1.2 Solution methods for MOILP . 9

1.2 Objective Space Search algorithms . 9
1.3 Decision Space Search algorithms . 12

1.3.1 Node selection . 13
1.3.2 Lower bound set computation . 15
1.3.3 Fathoming rules . 17
1.3.4 Creation of sub-problems . 20
1.3.5 Termination of the algorithm . 21

1.4 Contributions and structure of the dissertation 24

2 Warm-starting lower bound set computations for branch-and-bound
algorithms for multi objective integer linear programs 25
2.1 Introduction . 26
2.2 Preliminaries . 30

2.2.1 Polyhedral theory . 30
2.2.2 Bound sets . 31

ii Table of contents

2.3 A branch-and-bound framework for MOILP 32
2.4 Linear relaxation for MOBB . 34

2.4.1 Warm-starting Benson-like algorithms in MOBB 37
2.5 Computational experiments . 39

2.5.1 Implementation details and algorithm configurations 40
2.5.2 Test instances . 42
2.5.3 Performance of the different algorithm configurations 44
2.5.4 Variable selection - Rules for choosing the bound 44
2.5.5 Detailed performance of different algorithm parts 47
2.5.6 Fathoming nodes . 48
2.5.7 Geometric properties of the lower bound set during the algorithm . . 49
2.5.8 Proving optimality . 51
2.5.9 Performance of the MOBB algorithm compared to an objective space

search algorithm . 52
2.6 Conclusion . 55
2.A Notes on the the unbounded case . 57
2.B Problem classes . 58

2.B.1 Production Planning Problem . 58
2.B.2 Uncapacitated Facility Location Problem 58

3 Branch-and-bound and objective branching with three or more objectives 61
3.1 Introduction . 62
3.2 Definitions and notations . 66

3.2.1 Bound sets . 67
3.2.2 Search region and local upper bounds 67

3.3 General multi-objective Branch-and-Bound framework 69
3.4 Objective branching . 72

3.4.1 Complications of going from two to three objectives 74
3.4.2 Objective branching in the multi-objective case 76

Merging operations on local upper bounds 77
Desirable properties of the set of super local upper bounds 78
An algorithm to compute a set of super local upper bounds 79
Implications of Property 3.2 . 80

3.4.3 An alternative branching strategy using an upper bound on the ob-
jectives . 83

3.5 Computational experiments . 83
3.5.1 Test instances . 85
3.5.2 Performance of the different algorithm configurations 87

Table of contents iii

3.5.3 Objective branching: a closer look . 88
3.5.4 Branching tree structure when using fullOB 91
3.5.5 Comparison with an Objective Space Search algorithm 93

3.6 Conclusion . 95

4 Enhancing branch-and-bound for multi-objective 0-1 programming 97
4.1 Introduction . 98
4.2 Definitions and notation . 100
4.3 Related work . 101
4.4 Branch-and-bound framework . 103
4.5 Enhanced objective branching . 105

4.5.1 Probing . 107
A naive strategy . 107
An advanced strategy . 109
Combining probing and bounding . 110

4.5.2 Objective branching based cover inequalities 110
4.6 Node selection rules . 112

4.6.1 Weighted-sum rule . 112
4.6.2 Gap measure rule . 114

4.7 Experiments . 115
4.7.1 Probing and objective branching . 117
4.7.2 Combining probing and bounding . 120
4.7.3 Node selection rules . 121
4.7.4 Objective branching and cover cuts inequalities 122
4.7.5 Investigating variable selection rules: the case of CFLP 123
4.7.6 Enumeration in MOBB . 124
4.7.7 Comparison with objective space search algorithms 125

4.8 Conclusion . 126

Bibliography 129

Summary

Many real-world optimization problems can be expressed as a linear program with integer
variables, e.g. in logistics, scheduling, supply chain management, ect. Usually, an objective
is defined by the decision maker (minimize a cost, a distance, a travelling time, maximize
a profit, ect.), and the problem is optimized accordingly. However, considering a unique
objective function does not necessarily lead to a solution that satisfies the decision maker. To
overcome that, multiple objectives can be considered simultaneously, and solutions that are
good trade-offs between these objectives are provided instead. Multi-objective optimization
is the science of computing these interesting trade-offs.

A popular algorithm used to solve such optimization problems is the branch-and-bound
algorithm. It has received a lot of attention and improvements over the paste decades for
solving problems with a single objective, and nowadays, even large problems can be solved
using this method. Extensions to multiple objectives have been proposed in the past, but
it is only recently that the branch-and-bound algorithm has been able to efficiently solve
problems with two objective functions.

Given the recent success of the method for the bi-objective case, the main purpose of this
thesis is to develop a branch-and-bound framework that can solve problems with three or
more objective functions efficiently. Indeed, while significant difficulties occur when a second
objective is considered, additional challenges arise when a third objective is introduced. Thus,
the goal here is to identify and overcome these challenges, study the performance and the
behavior of the branch-and-bound algorithm on such problems, and propose improvements
that lead to an efficient framework. All chapters of this thesis are directed towards this goal,
and evidence that the resulting framework obtain significant speed-ups using the proposed
approaches is given through the dissertation. In the first chapter, research gaps and potential
directions for improvement are identified, whereas in the three other chapters, various key
components of the algorithm are enhanced. The results of each chapter are cumulative, i.e.
chapter four relies on results from chapter three, that benefits itself from results presented
in chapter two. Together, they build an efficient branch-and-bound framework for solving
linear optimization problems with integer variables and three or more objective functions.

vi Summary

Note that the chapters are written in a way such that they can be read independently.
In the first chapter, referred to as Introduction, a detailed description of the problem

considered is provided as well as definitions and notations used through the dissertation.
Then, an exhaustive literature review is given with a special focus on the branch-and-bound
algorithm. In particular, research gaps are identified, key components of efficient bi-objective
frameworks are highlighted, and research directions for the thesis are stated.

The second chapter, Warm-starting lower bound set computations for branch-and-bound
algorithms for multi objective integer linear programs, lays the foundation of a branch-and-
bound framework that can solve problems with three or more objective functions. Besides
handling any number of objectives, the novelty lies in the use of the linear relaxation to
generate lower bound sets and in its computation, which is warm-started using particular
properties of the algorithm. Extensive experiments are carried out on a set of various prob-
lem classes presenting different properties and evidence that the proposed warm-starting
procedure results in a significant speed-up is reported. Moreover, statistics on the behavior
of the algorithm are presented and analyzed with a particular focus on the lower bound sets.

In the third chapter, Branch-and-bound and objective branching with three or more
objectives, the goal is to extend objective branching to the case where three or more objective
functions are considered. Objective branching consists of reducing the search region by
creating sub-problems in a particular way with the expectation that the overall computational
costs decrease due to the smaller size of the problems being handled. Objective branching
is one of the key features that significantly improved the branch-and-bound algorithm in
the bi-objective case but, unfortunately, its extension to any number of objectives is not
straightforward. This paper identifies the difficulties that arise in this case and proposes
a method to compute objective branching in a way that satisfies a number of desirable
properties. Furthermore, an alternative to objective branching that relies on a similar principle
is also proposed. Experiments are carried out on five different problem classes with three,
four, and five objective functions. The results show that improvements in terms of CPU
time are observed most of the time, even though the numbers are not as promising as in the
bi-objective case due to the difficulties occurring with a higher number of objectives. Similar
to Chapter 2, statistics on the behavior of the algorithm are analyzed with a particular focus
on branching.

Finally, the fourth chapter, Enhancing branch-and-bound for multi-objective 0-1 pro-
gramming, restricts the analysis to problems with binary variables only. However, with a
few changes, all the ideas presented can be applied to problems with integer variables. The
chapter can be divided into three main contributions. First, an extension of probing to the
multi-objective case is proposed. Probing is a technique used in the single-objective case
that consists of fixing variables to 0 or 1, and derive information from the consequences

vii

observed. It has been proven to be a very efficient approach in the single-objective case,
and the experiments carried out in this chapter show that when coupled with objective
branching, significant speed-ups are obtained in the multi-objective case. Then, different
node selection strategies based on the best-bound principle are explored. These are tested
against the traditional depth-first and breadth-first strategies, and the experiments show
that some of the proposed rules result in lower CPU times. Finally, small experiments are
carried out on other features, namely problem specific variable selection rules, cut generation
on objective branching constraints, and pure enumeration of solutions, i.e. without lower
bound computation. The results show that some of these elements can generate a speed-up
too.

In each chapter, the new branch-and-bound framework proposed is tested against other
algorithms from the literature, and the final framework appears to be competitive on some
problem classes.

Abstract

In this thesis, the aim is to design an efficient branch-and-bound algorithm to solve linear
optimization problems with integer variables and three or more objective functions.

The first chapter provides an exhaustive overview of the state-of-the-art with a particular
focus on branch-and-bound methods. Research gaps are identified and the contributions of
the thesis are presented.

In the second chapter, the basic branch-and-bound framework, that can be considered
as the skeleton of this thesis, is built. It can handle any number of objectives and uses the
linear relaxation as lower bound sets. Moreover, the computation of the latter is improved
by a warm-starting procedure developed in this chapter, and experiments show that smaller
CPU times are reached by using the proposed approach.

The third chapter is dedicated to the extension of objective branching, an effective
method to create sub-problems in the bi-objective case, to any number of objective functions.
A number of difficulties are presented, and an algorithm satisfying a set of properties is
proposed to compute the sub-problems in the given context. The experiments show that
better CPU times are achieved most of the time.

The fourth chapter further improves objective branching by introducing probing at the
creation of the sub-problems, resulting in significant speed-ups. Besides, various node selection
rules are tested and found to be more effective than those usually used in the literature.
Finally, other features such as cut generation, variable selection rules, and enumeration
techniques are explored. The resulting branch-and-bound framework is competitive against
other recent methods from the literature.

Resumé

Denne afhandling har til formål at designe en effektiv branch-and-bound algoritme til at løse
lineære optimeringsproblemer med heltalsvariabler og tre eller flere objektfunktioner.

Det første kapitel giver et udtømmende overblik over litteraturen med særligt fokus på
branch-and-bound metoder. Forskningshuller identificeres, og afhandlingens bidrag præsen-
teres.

I det andet kapitel opbygges den grundlæggende branch-and-bound tilgang, der kan
betragtes som skelettet i denne afhandling. Den kan håndtere et hvilket som helst antal
objektfunktioner og bruger den lineære relaksering som nedre grænse. Desuden er beregningen
af sidstnævnte forbedret med en warm-starting procedure udviklet i samme kapitel, og
eksperimenter viser, at bedre CPU-tider opnås ved at bruge den foreslåede fremgangsmåde.

Det tredje kapitel er dedikeret til udvidelsen af branching i kriterierummet (en effek-
tiv metode til at skabe delproblemer i tilfældet med to objektfunktioner) til et arbitrært
antal objektfunktioner. En række udfordringer præsenteres, og en algoritme, der opfylder
en mængde af egenskaber, foreslås til at skabe delproblemerne i proceduren. De numeriske
beregninger viser, at der opnås bedre CPU-tider det meste af tiden.

Det fjerde kapitel forbedrer yderligere branching i kriterierummet ved at introducere
såkaldt probing i forbindelse med oprettelsen af delproblemet, hvilket resulterer i betydelige
reduktioner i CPU tiden. Desuden testes forskellige regler til udvælgelse af nye delproblemer
og disse viser sig at være mere effektive end dem, der oftest bruges i litteraturen. Til sidst ud-
forskes andre tiltag såsom snitplansgenerering, regler for udvælgelse af branching variabel, og
enumerationsteknikker. Den resulterende branch-and-bound algoritme er konkurrencedygtig
i forhold til de bedste metoder fra litteraturen.

Acknowledgments

My PhD started at the Economics and Business Economics department of Aarhus BSS in
September 2019. These three years have been a valuable and stimulating journey. I have
discovered many things, improved the knowledge accumulated through my studies, developed
new skills, and learned a lot about myself. On top of that, I have had the opportunity to
meet a lot of supportive and inspiring people, whom I would like to thank here.

First, I would like to thank my supervisor Lars Relund Nielsen and my co-supervisor
Sune Lauth Gadegaard. Both of them have been very welcoming when I first arrived and
have always been very supportive since then, be it for the academic or personal matters. I
thank them for the nice research discussions and guidance they offered me. I have learned
so much from them and I am very grateful for all the knowledge and help they have given
me in these three years.

Thank you to Kathrin Klamroth from Wuppertal in Germany and Athony Przybylski
from Nantes in France, who accepted to be co-author on one of the chapters of this thesis.
Despite the distance, they always found the time to share nice research discussions and
provide feedback to my work. A particular thank to Kathrin Klamroth for welcoming me
and Sune as guests in Wuppertal for a few days in December 2019.

In September 2021, I had the privilege to visit Sophie Parragh at Johannes Kepler
University in Linz, Austria. Thank you for the opportunity, for the great academic discussions,
and for the contributions to my thesis. I would like to express my special thank for the very
warm welcome to all members of the Institut für Produktions- und Logistikmanagement, and
to Sabine Frank, who helped me with the practical matters. Finally, I would like to thank
again Sophie Parragh, who invited me a second time in Linz for a three week visit in April
2022.

Thank you to all my colleagues at the CORAL (Cluster for Operation Research, Analytics,
and Logistics) for the relaxed conversations over lunch breaks and interesting seminars. Thank
you to my fellow PhD students at the CORAL Lone Kiilerich Christensen, Maximiliano
Cubillos, Quiping Ma, Johan Clausen, Farnaz Farzadnia, Shohre Zehtabian, Julian Baals,
and Jesper Bang Mikkelsen, for the valuable experience sharing, the delicious cakes, and

xiv Acknowledgments

all the great times together. I would like to express a special thank to Johan Clausen, who
shared an office with me during these three years. Thank you for all the fun, long and nice
discussions we have had, and for helping me many times with practical and personal matters
here in Denmark.

I would like to thank Karin Vinding, Solveig Nygaard Sørensen, and Lene Engelst Chris-
tensen for proofreading my chapters, and Betina Sørensen, Solveig Nygaard Sørensen, and
Charlotte Sparrevohn for their help with administrative matters.

I am grateful to Michael Stiglmayr (University of Wuppertal, Germany), Serpil Sayın
(Koç University, Turkey), and Michael Malmros Sørensen (Aarhus University, Denmark), the
members of the PhD committee, who kindly accepted to spend time reading carefully this
manuscript, and to provide valuable feedback on my work.

Finally, I would like to express my gratitude to my family, who supported me from
the start and always reached out when I needed. To my parents Sophie Pavageau and Jean
Pavageau, to my sister Marion Forget, and my extended family, thank you. To Cyrielle Cadio,
Harmony Agasse, Jeremy Gaulier, Corentin Bouvier, and all my friends from France, who
have always been there for me and helped me go through the pandemic despite the distance,
thank you.

Nicolas Forget
August 2022

Notation

Throughout this dissertation I have aimed at keeping a consistent use of symbols. In general,
calligraphic capitals denote sets, upper case Latin letters denote problems, and lower case
Latin letters denote elements of sets, variables, functions, parameters, or indices. Table 1
summarizes the standardized notation for the dissertation.

Notation Explanation of notation

n Number of variables.
p Number of objectives.
y A point in the objective space Rp.
x A feasible solution.
z Objective function.
z(x) Objective vector of a feasible solution.
X Feasible set of an optimization problem.
Y Feasible set in objective space of a multi–objective optimization problem.
y1 < y2 y1

k < y2
k, for all k ∈ {1, ..., p}.

y1 ≦ y2 y1
k ≤ y2

k, for all k ∈ {1, ..., p}.
y1 ≤ y2 y1 ≦ y2 and y1 ̸= y2.
Rp

> {y ∈ Rp | y > 0}.
Rp

≧ {y ∈ Rp | y ≧ 0}.
Rp

≥ {y ∈ Rp | y ≥ 0}.
SN {s ∈ S | ∄s′ ∈ S, s′ ⩽ s}. The non–dominated set of S ⊂ Rp.
YN Set of non–dominated points of a multi–objective optimization problem.
U Upper bound set on the non–dominated set of a multi–objective optimization problem.
N (U) Set of local upper bounds corresponding to the upper bound set U .
u A local upper bound.
η Node of the branch-and-bound tree.
L(η) Lower bound set on the non–dominated set of the problem contained in node η.

Table 1: Notation

; First Chapter <

Introduction

History: This chapter is the basis for a future review paper. It has been adapted to be the
introduction of the thesis.

2 Chapter 1. Introduction

Introduction

Nicolas Forget*

* Department of Economics and Business Economics, School of Business and Social
Sciences, Aarhus University, Denmark

In the real world, many decisions can be formulated as an optimization problem. For
instance, a decision maker wants to minimize a cost or to maximize a profit, under certain
constraints. Often, a single, unique objective is optimized. However, the nature of some prob-
lems implies the need to include more objectives that take into account several incomparable
measures. For example, when a city examines where to build firefighter stations, multiple
objectives naturally emerge. First, a city-planner could aim at minimizing the average dis-
tance between a firefighter station and the citizens. This ensures that the solution is effective,
i.e. citizens are in general close to a firefighter station and thus can receive assistance in a
reasonable amount of time. However, this is not necessarily a desirable situation. Indeed, if
the city has a very dense city center but only a few individuals that live further away in the
outskirts of the city, the stations will most likely be located very close to the city center.
In this case, if an emergency occurs in one of the households in the periphery areas, the
firefighters may not be able to arrive fast enough. Hence, the city may as well be interested
in minimizing the maximal distance to a station. That way, fairness among the citizens is
also considered.

It is easy to see that these two measures are conflicting, and the city is interested in a
good trade-off between these two objectives, i.e. a solution such that there is no other solution
that is both more effective and fair. Multi-objective optimization is the science of finding
all or some of the interesting compromises to such problems. Considering two objectives
at the same time is a special case of multi-objective optimization and is called bi-objective
optimization. However, many additional objectives can be added to the problem.

In recent years, more and more real world problems consider multiple objectives. For
instance, with the rise of new environmental challenges and new measures regarding climate
regularly introduced by governments, a company may be interested in minimizing e.g. its
CO2 emissions, waste production, or carbon footprint in addition to the standard objectives.

This paper focuses on a particular class of problem that considers linear objective func-
tions, linear constraints, and integer variables only. A complete overview of the existing
methods to solve such problems is provided. The various techniques are divided into two
categories here. Section 1.1 is dedicated to the presentation of the problem and introduces
important notations and definitions. In Section 1.2, a brief state-of-the-art of the first class
of algorithms is given, whereas Section 1.3 explores the state-of-the-art of the second class of

1.1. Multi-objective optimization 3

algorithms. The latter being the focus of this dissertation, a deep and exhaustive analysis is
provided, and research gaps are identified. Finally, Section 1.4 will present the research gaps
that are addressed in this dissertation.

1.1 Multi-objective optimization

A Multi-Objective Linear Program (MOLP) with p objective functions, n decision variables,
and m constraints can be written in the following form:

min z(x) = Cx

s.t. Ax ≧ b

x ∈ D

where C is a p × n matrix representing the coefficients of the objective functions. The
objective functions are written as z(x) = Cx. The matrix A is an m× n matrix representing
the coefficients of the constraints, and b is a vector of size m representing the right-hand side
of the constraints. Finally, the set D ⊆ Rn corresponds to the domain of the variables. If
D = Rn

+, the problem is a Multi-Objective Continuous Linear Program (MOCLP); if D = Zn,
the problem is a Multi-Objective Integer Linear Program (MOILP); and if D = {0, 1}n,
the problem becomes a Multi-Objective 0-1 Linear Program (MO01LP). A MO01LP with a
specific structure in the constraints is also sometimes called a Multi-Objective Combinatorial
Optimization problem. Finally, there exists problems that contain both continuous and integer
variables. Let 0 < nB < n be the number of integer variables, if D = ZnB × Rn−nB

+ , the
problem is a Multi-Objective Mixed Integer Linear Program (MOMILP); whereas if D =
{0, 1}nB ×Rn−nB

+ , the problem is a Multi-Objective Mixed 0-1 Linear Program (MOM01LP).
A vector of decision variables x ∈ Rn is called a solution. As a result, the set Rn is also

named decision space or solution space, and the feasible set X = {x ∈ D : Ax ≧ b} ⊂ Rn is
the set of all solutions that satisfies the constraints of the MOLP at hand. A solution x such
that x ∈ X is called a feasible solution.

A solution x ∈ Rn can be mapped through the objective function, resulting in a vector
y = Cx ∈ Rp. The set Rp is named the objective space, and a vector y ∈ Rp is called a point
or an objective vector. Each feasible solution x ∈ X can be mapped through the p objective
functions, resulting in the set of feasible points Y := CX = {y ∈ Rp : y = Cx, x ∈ X}. A
point y ∈ Y is called a feasible point.

Contrary to the single-objective case where each solution is evaluated by a unique value,
namely the value of the objective function, solutions are evaluated by a vector of objective
function values in the multi-objective case. This implies that comparisons between solutions

4 Chapter 1. Introduction

involve comparisons between vectors, and new relations need to be defined to accomplish
that. For this purpose, we introduce the dominance relations in Definition 1.1 and illustrate
them in Figure 1.1a.

Definition 1.1. Let y1, y2 ∈ Rp. We have the three following dominance relations:

• weak dominance: y1 ≦ y2 if y1
k ≤ y2

k for each k ∈ {1, ..., p}. We say that y1 weakly
dominates y2;

• dominance: y1 ⩽ y2 if y1 ≦ y2 and y1 ̸= y2. We say that y1 dominates y2;

• strict dominance: y1 < y2 if y1
k < y2

k for each k ∈ {1, ..., p}. We say that y1 strictly
dominates y2.

In Figure 1.1a, we can see that y1 dominates both y2 and y3, since y1 is better or equal
on both objectives and strictly better in at least one of them. Moreover, y1 strictly dominates
y3 as it is strictly better in all objectives, but does not strictly dominate y2 since they are
equal in the second objective. Finally, nothing can be concluded between y2 and y3 with
respect to the dominance relations from Definition 1.1 since they are both better than the
other in one objective, but worse on the remaining objective.

When multiple conflicting objectives are considered, there is usually no feasible solution
that minimizes all the objectives at the same time. Instead, the focus is on finding feasible
solutions that represent good trade-offs between the objectives. A classical way to define
what a good trade-off solution is is to use the dominance relations. Let x ∈ X , we say that
x is efficient if there is no other feasible solution x′ ∈ X such that x ̸= x′ and z(x′) ⩽ z(x),
and we call its image in the objective space z(x) a non-dominated point. From there, we can
define the set of efficient solutions XE = {x ∈ X : ∄x′ ∈ X , z(x′) ⩽ z(x)} and the set of
non-dominated points YN := CXE = {y ∈ Y : ∄y′ ∈ Y, y′ ⩽ y}. It is important to note that
since multiple efficient solutions can have similar images, there can exist one or multiple
sub-sets X ′

E ⊂ XE such that CX ′
E = YN . It is said that a complete set of efficient solutions

is computed if at least one solution for each non-dominated point is obtained, i.e. YN is
computed. On the other hand, a maximal complete set of efficient solutions is computed if,
for each non-dominated point, all the corresponding efficient solutions are obtained, in which
case XE is computed. In the example from Figure 1.1, the set of non-dominated points is
depicted in green in Figure 1.1b.

Analogously to XE and YN , we define the set of weakly efficient solutions as XW E =
{x ∈ X : ∄x′ ∈ X , z(x′) < z(x)} and the set of weakly non-dominated points as YW N = {y ∈
Y : ∄y′ ∈ Y, y′ < y}. Any solution x ∈ XW E is called weakly efficient and a point y ∈ YW N

is said to be weakly non-dominated. It is interesting to note that, necessarily, YN ⊆ YW N .
In Figure 1.1b, YW N is given by the green and orange points, the latter corresponding to
points that are weakly non-dominated but not non-dominated.

1.1. Multi-objective optimization 5

y1
y2

y3

z1(x)

z 2
(x

)

(a) The point y1 strictly dominates y3 since
it is strictly lower on both objectives. The
point y1 dominates y2 but does not strictly
dominate it since they are equal on objective
2. Finally, nothing can be concluded regard-
ing the relation between y2 and y3 as they
are both better on one objective but worse
on the other.

z1(x)

z 2
(x

)

(b) In green is depicted YN , the set of non-
dominated points. The green and orange
points correspond to the set of weakly non-
dominated points YW N . In particular, the
orange points are those that are weakly non-
dominated but not non-dominated.

z1(x)

z 2
(x

)

(c) The convex hull of the non-dominated
points is given by the green line. The
supported extreme points corresponds to
the green points, and the supported non-
extreme to the blue points. The red points
represent the unsupported points.

yI

yN
yAI

z1(x)

z 2
(x

)

(d) The set of non-dominated points YN is
given by the green points. The ideal point
yI corresponds to the blue cross. The nadir
point yN is represented by the red cross. Fi-
nally, the anti-ideal point yAI is depicted by
the gray cross.

Figure 1.1: An example of a set of feasible points of a MOILP with two objective
functions in minimization, plotted in the objective space. Each point corresponds to a
feasible point, and each axis corresponds to one objective function.

6 Chapter 1. Introduction

The non-dominated points can be further classified into three categories, namely sup-
ported extreme, supported non-extreme, and unsupported points. First, we define Rp

≧ :=
{z ∈ Rp : z ≧ 0}, Rp

> := {z ∈ Rp : z > 0}, and Rp
⩾ := {z ∈ Rp : z ⩾ 0}. Let conv(.)

define the convex hull operator, a supported point is a non-dominated point that lies on the
boundary of conv(YN) + Rp

≧. In Figure 1.1c, the boundary of conv(YN) + Rp
≧ is depicted by

the green line, and the supported points are drawn in green and blue. A supported point that
is an extreme point of conv(YN) + Rp

≧ is called supported extreme, and is named supported
non-extreme otherwise. In Figure 1.1c, supported extreme points are given in green, and
supported non-extreme points are depicted in blue. Finally, a non-dominated point that does
not lie on the boundary but in the interior of the convex hull is called non-supported and
shown in red in Figure 1.1c.

1.1.1 Bound sets

Three particular points are worth mentioning because they are often used in multi-objective
optimization. First, the ideal point yI is the point that minimizes all the objectives among
all feasible points at the same time, i.e. yI

k = miny∈Y yk. It is interesting to note that
yI

k = miny∈YN
yk also holds true, i.e. that it is equivalent to say that it minimizes all the

objectives among the non-dominated points. Due to the conflicting nature of the objectives,
the ideal point is often not feasible, i.e. usually yI /∈ Y. On the contrary, the anti-ideal point
is the point that maximizes all the objectives among the feasible points at the same time, i.e.
yAI

k = maxy∈Y yk. Finally, the nadir point yN is the point that maximizes all the objectives,
but considering non-dominated points only, i.e. yN

k = maxy∈YN
yk. The ideal, anti-ideal, and

nadir points are depicted in blue, gray, and red respectively in Figure 1.1d.
In the single-objective case, the optimal value z∗ is often estimated using lower bounds

l ∈ R and upper bounds u ∈ R, i.e. l ≤ z∗ ≤ u. In the multi-objective case, since there is
not a unique optimal value but a set of non-dominated points, lower bound sets and upper
bound sets, formally defined by Ehrgott and Gandibleux (2007), are used instead. Given two
sets S1,S2 ⊆ Rp, we define S1 + S2 as the Minkowski sum, i.e. S1 + S2 := {s1 + s2 : s1 ∈
S1, s2 ∈ S2}. A set S is Rp

≧-closed if the set S +Rp
≧ is closed, and Rp

≧-bounded if there exists
s ∈ Rp such that S ⊂ {s}+ Rp

≧. Finally, the closure of S is denoted by cl(S), and we define
SN as the non-dominated points of S, i.e. SN = {s ∈ S : ∄s′ ∈ S, s′ ≦ s}.

Definition 1.2. Given a set S ⊂ Rp and its set of non-dominated points SN :

• a lower bound set L on SN is an Rp
≧-closed and Rp

≧-bounded set such that L = LN

and SN ⊂ L+ Rp
≧

• an upper bound set U on SN is an Rp
≧-closed and Rp

≧-bounded set such that U = UN

and SN ⊂ cl[Rp\(U + Rp
≧)]

1.1. Multi-objective optimization 7

A classical lower bound for a problem with integer variables is obtained by solving the
linear relaxation. Its multi-objective equivalent yields valid lower bound sets (Ehrgott and
Gandibleux, 2007). The linear relaxation P LP of a MOILP P : min{z(x) : Ax ≧ b, x ∈ Zn}
is constructed by relaxing the integrality constraints on the variables, i.e. P LP : min{z(x) :
Ax ≧ b, x ∈ Rn}. The feasible set of the linear relaxation is a polyhedron in the decision
space. Since linear functions only are considered, its image in the objective space is also
a polyhedron. Hence, the lower bound set obtained by solving the multi-objective linear
relaxation corresponds to the non-dominated part of a polyhedron. An example is given for
p = 2 in Figure 1.2a. The non-dominated points of the original problem are represented by
the black dots, and the lower bound set obtained by solving the linear relaxation is depicted
by the thick green lines. One can observe that in particular, the non-dominated points are
located in the region of the objective space that is dominated the lower bound set, i.e. in the
green region on the figure.

Stronger lower bound sets can be obtained by solving the convex relaxation, i.e. by
generating the convex hull of the non-dominated points. An example is given in Figure 1.2b,
where the convex relaxation is shown by the thick green line, and the non-dominated points
by the black dots. Once again, in accordance with Definition 1.2, the non-dominated points
are located in the region that is dominated by the lower bound set, depicted by the green
region. Moreover, one can observe that the supported points are part of the lower bound
sets, and that the extreme points of the convex relaxation correspond to extreme supported
points.

Finally, two particular lower bound sets are the ideal point and the ideal point of the
linear relaxation (Ehrgott and Gandibleux, 2007).

In the single-objective case, a typical upper bound is the incumbent solution, i.e. the
best known feasible solution for the problem at hand. Its multi-objective counterpart is the
incumbent set, i.e. the set of known feasible solutions that are pairwise non-dominated. This
means that there is no solution in the incumbent set that is dominated by another known
feasible solution. In other words, solutions of poor quality with respect to all objectives
are discarded. In Figure 1.3, an example of incumbent set for a MOILP is given. Each red
circle corresponds to a known feasible solution and is part of the upper bound set. The
non-dominated points are represented by the black dots, and are located in the red region,
which denotes the region of the objective space that is not dominated by any point of the
upper bound set.

An alternative representation of the upper bound set U is often used. It is called the set
of local upper bounds (or set of local nadir points), and is denoted by N (U). The concept
has been used in the literature for many years and was formally defined for any number of
dimensions by Klamroth, Lacour, and Vanderpooten (2015). The definitions from this paper

8 Chapter 1. Introduction

z1(x)

z 2
(x

)

(a) The lower bound set, depicted by the
thick green line, is obtained by solving the
linear relaxation. One can observe that the
non-dominated points of the initial problem,
represented here by the black dots, are lo-
cated in the region of the objective space
that is dominated by the lower bound set,
i.e. in the green region.

z1(x)

z 2
(x

)

(b) The lower bound set, depicted by the
thick green line, is obtained by solving the
convex relaxation. In particular, the non-
dominated points of the initial problem, rep-
resented here by the black dots, are located
in the region of the objective space that is
dominated by the lower bound set, i.e. in
the green region.

Figure 1.2: Two examples of lower bound sets.

z1(x)

z 2
(x

)

Figure 1.3: The upper bound set is depicted by the red circles, and the set of local
upper bounds by the red squares. The set of non-dominated points, represented by
the black dots, is located in the region of the objective space that is not dominated by
any point of the upper bound set.

1.2. Objective Space Search algorithms 9

are used and adapted to our context here (see Definition 1.3). Let u ∈ Rp, we define the
search cone of u as C(u) = {y ∈ Rp : y ≦ u}.

Definition 1.3. Given an upper bound set U , the corresponding set of local upper bounds
N (U) is the set that satisfies:

• cl(Rp\(U + Rp
≧)) =

⋃
u∈N (U) C(u)

• ∀u1, u2 ∈ N (U), u1 ̸= u2, C(u1) ̸⊂ C(u2)

In Figure 1.3, the local upper bounds are represented by the red squares. One can observe
that they are located in the corner points of the red regions, and that each non-dominated
point weakly dominates at least one local upper bound. Similarly, any point that does not
dominate at least one local upper bound is not non-dominated and is located in the white
region of the objective space.

1.1.2 Solution methods for MOILP

In this dissertation, the focus is on the resolution of MOILPs, although other problem classes
such as MOMILP and MOCLP will be briefly mentioned. The algorithms to solve MOILPs
can be roughly divided into two main categories: Objective Space Search algorithms (OSS),
and Decision Space Search algorithms (DSS). An objective space search algorithm works
by solving a series of Single-Objective Integer Linear Programs (SOILP) to enumerate one
by one all the non-dominated points. The SOILPs are modified based on what is observed
in the objective space, and their resolution is left to the powerful single-objective solvers
such as CPLEX or Gurobi. On the other hand, a decision space search algorithm works by
exploring and dividing the decision space to reach efficient solutions. Decision space search
algorithms are typically branch-and-bound algorithms, and usually they do not rely on the
use of powerful SOILP solvers. Moreover, much attention has been paid in the recent years
to techniques that consider both the objective space and the decision space at the same
time. This is typically done by retrieving information from the objective space to enhance a
decision space search algorithm.

In Section 1.2, we will outline the basic principles behind OSS algorithms and provide
a brief overview of the literature for these methods. In Section 1.3, a complete overview of
branch-and-bound methods found in the literature is given.

1.2 Objective Space Search algorithms

As previously mentioned, Objective Space Search (OSS) algorithms work by solving a series
of SOILP to compute, one by one, each non-dominated point. These SOILPs are often

10 Chapter 1. Introduction

scalarizations of the MOILP at hand. One of the most straightforward scalarizations is the
weighted sum scalarization. Let P : min{z(x) : x ∈ X} be an MOILP, and λ ∈ Rp

≧ a weight
vector, the weighted sum scalarization of P is the single-objective problem Pλ given by
min{λz(x) : x ∈ X}.

Let x∗ be an optimal solution to Pλ, and z∗ its optimal value, then x∗ is a weakly efficient
solution of P , and if λ ∈ Rp

>, x∗ is efficient (Goeffrion, 1968). Besides, non-supported points
cannot be obtained through the use of weighted-sum scalarizations with positive weights.

One class of OSS algorithms that relies on this scalarization technique are the so-called
two-phase methods, in which all supported points are obtained solving a series of weighted
sum scalarizations during the first phase. Then, all other non-dominated points, often harder
to compute, are obtained using a different algorithmic approach in a second phase. In the
bi-objective case, appropriate weights for the first phase can be obtained using the algorithm
of Aneja and Nair (1979). The approach of Aneja and Nair (1979) and the general two-phase
method was extended to the case where p ≥ 3 by Przybylski, Gandibleux, and Ehrgott
(2010). In the second phase, a large variety of algorithms can be used, such as another OSS
algorithm (Clímaco and Pascoal, 2016), problem specific algorithms (Ulungu and Teghem,
1995; Przybylski et al., 2010), or even DSS algorithms (Visée, Teghem, Pirlot, and Ulungu,
1998).

Another widely used scalarization is the ϵ-constraint scalarization. Letting k̂ ∈ {1, ..., p},
the principle is to minimize zk̂(x) under the constraints that all other objective functions
zk(x), k ∈ {1, ..., p}\{k̂}, should be lower or equal to a certain value ϵk. Hence, we write
that the ϵ-scalarization of P with parameters k̂ ∈ {1, ..., p} and ϵ ∈ Rp is the single-objective
problem P (k̂, ϵ) : min{zk̂(x) : x ∈ X , zk(x) ≤ ϵk∀k ∈ {1, ..., p}\{k̂}}.

The solution of an ϵ-scalarization is a weakly efficient solution of P , and if the optimal
solution of P (k̂, ϵ) is unique, it is even efficient (Haimes, Lasdon, and Wismer, 1971). Moreover,
each non-dominated point can be obtained by solving an ϵ-scalarization. Hence, YN can be
generated using a very simple procedure that consists of solving a series of ϵ-scalarizations
obtained by gradually decreasing the values in ϵ based on the solutions already obtained;
and then filtering out the points that are not non-dominated.

Over the past decades, great effort has been dedicated to improving the ϵ-constraint
method, e.g. by reducing or proving bounds on the number of SOILPs solved (Chalmet,
Lemonidis, and Elzinga, 1986; Santis, Grani, and Palagi, 2020; Al-Rabeeah, Al-Hasani,
Kumar, and Eberhard, 2020), improving the choice of the values of ϵ (Bérubé, Gendreau,
and Potvin, 2009), exploring variants that guarantee the efficiency of the solutions obtained
(Mavrotas, 2009; Mavrotas and Florios, 2013; Zhang and Reimann, 2014; Özlen and Azizoğlu,
2009; Kirlik and Sayın, 2014), and parallelization (Pettersson and Ozlen, 2017, 2019).

While the ϵ-constraint method works by progressively restricting the area of the objective

1.2. Objective Space Search algorithms 11

space that is explored, other methods work by decomposing the objective space and explor-
ing each sub-region independantly. In the bi-objective case, the various methods explore
triangles or boxes in the objective space defined by adjacent non-dominated points (Lemesre,
Dhaenens, and Talbi, 2007; Hamacher, Pedersen, and Ruzika, 2007; Boland, Charkhgard,
and Savelsbergh, 2015; Leitner, Ljubić, Sinnl, and Werner, 2016). These areas are then sub-
divided into smaller pieces as long as new non-dominated points are found, or discarded if it
is proven that no new non-dominated point can be found in the area. Boland, Charkhgard,
and Savelsbergh (2016) and Boland, Charkhgard, and Savelsbergh (2017) developed methods
specifically for the tri-objective case, namely the L-shaped method and the quadrant shrink-
ing method. When considering three or more objective functions, Dächert and Klamroth
(2015) showed that objective space decomposition methods can be extended and improved
(in particular by solving fewerSOILP) by having an appropriate representation of the search
region, namely using the local upper bounds. Klamroth et al. (2015) and Dächert, Klamroth,
Lacour, and Vanderpooten (2017) developed algorithms designed to efficiently compute the
local upper bounds, in particular in higher dimensions, thus improving the class of objective
space decomposition algorithm. Tamby and Vanderpooten (2021) further improved this ap-
proach by using some properties of the ϵ-constraint method to explore more efficiently the
regions defined by the local upper bounds.

Instead of exploring the objective space region by region like in objective space decom-
position methods, some authors suggest to consider the entire search region at the same
time, thus solving fewerSOILP. However, the search region is usually not convex (union of
rectangles), and “or” constraints are used to overcome that, leading to more time consuming
SOILP. This class of algorithms is often referred to as disjunctive programming (Sylva and
Crema, 2004, 2008; Lokman and Köksalan, 2012; Bektaş, 2018).

Finally, other scalarizations have been used in OSS algorithms, such as the Tchebycheff
scalarization. This scalarization technique consists of choosing a reference point and find the
feasible point that minimizes the distance to this reference point. In principle, any norm
could be used, but the infinite norm (l∞-norm) is often selected, as a variant where positive
weights to each objective guarantees that all non-dominated points can be reached. However,
weakly non-dominated points may be generated as well with the latter approach. For more
studies on the Tchebycheff scalarization, the reader is refered to Sayın and Kouvelis (2005);
Ralphs, Saltzman, and Wiecek (2006); Dächert, Gorski, and Klamroth (2012); Clímaco and
Pascoal (2016); Holzmann and Smith (2018); Filho, Moretti, Pato, and de Oliveira (2019).

The majority of the OSS algorithms works by solving a series of SOILP using one of the
powerful commercial single-objective solvers to enumerate each non-dominated point one by
one. However, the solver acts as a black-box solver, and thus potential information is lost each
time it is used. For example, if the SOILPs are solved using a branch-and-bound algorithm,

12 Chapter 1. Introduction

it is possible that a particular sub-tree is explored multiple times for different non-dominated
points. This creates a lot of redundant information, since exploring the sub-tree once would
be sufficient. Moreover, many of the OSS algorithms require to solve infeasible SOILP to
prove that no new non-dominated point can be found under particular conditions. Depending
on the problem, this can be a very time consuming operation. As an attempt to overcome
these drawbacks, Decision Space Search algorithm have been developed in the literature and
have received more and more attention in recent years.

1.3 Decision Space Search algorithms

The class of Decision Space Search (DSS) algorithms mostly refers to Multi-Objective Branch-
and-Bound algorithms (MOBB). The basic principle is the same as its single-objective
counterpart: a problem that is computationally difficult is placed in a root node and split into
disjoint sub-problems that are stored in children nodes in the tree. One keeps sub-dividing the
sub-problems until all can be solved easily, and feasible potentially non-dominated solutions
are harvested and added to the upper bound set, here denoted by U , throughout the process.
The algorithm stops when all nodes have been explored, and U = YN .

Contrary to OSS algorithms, for which a new search tree is started from scratch at each
iteration to possibly obtain a single non-dominated point, the idea behind DSS algorithms
is rather to find all non-dominated points using a single search tree. In this case, branching
decisions (creation of sub-problems) are made in the decision space in order to reach a
complete set of efficient solutions (DSS approach), instead of solving a sequence of single
objective ILPs, which are modified according to the accumulated information from previous
iterations (OSS approach).

To the best of the author’s knowledge, the first attempt to solve a MOILP using a
single branching tree is Klein and Hannan (1982). The authors propose to optimize one
of the p objectives, and add disjunctive constraints on the p − 1 remaining ones. These
constraints are created and updated based on the incumbent set at each step. In this regard,
the approach is similar to the class of disjunctive programming algorithms mentioned in
Section 1.2. However, the main difference is that instead of calling an external single-objective
solver at each iteration, their algorithm maintains a single search tree in which they allow
some of the nodes to be temporarily closed. Once a new potentially non-dominated point is
obtained, some of the previously fathomed nodes may become of interest to reach the next
point. Such nodes are re-opened, and the search continues from there.

In the following years, MOBB frameworks, inspired by its single-objective counterpart,
started to emerge in the literature. Rapidly, a classical framework became widely used, and
is still relevant nowadays (see Algorithm 1.1). Let P be a MOILP solved using a MOBB. The

1.3. Decision Space Search algorithms 13

Step 0: initialize the list of open nodes with the root node T ← {η0}; initialize the
upper bound set U ← ∅.
Step 1: Select a node η from T .
Step 2: Compute a lower bound set for P (η).
Step 3: Check whether η can be fathomed. If possible, update U . If η is fathomed,
go to Step 1.
Step 4: Split P (η) into disjoint sub-problems. Create a new node for each and add
them to T .

Algorithm 1.1: Multi-objective B&B algorithm

search tree of a MOBB is typically represented by a list of unexplored nodes (or open nodes)
T , in which each node η corresponds to a particular sub-problem of P . The sub-problem
contained in the node η is denoted by P (η). At the beginning, T is initialized with the root
node η0 that contains the entire initial problem P , and with an empty upper bound set U .
Then, at each iteration, a node η is selected from T , and a lower bound set is computed for
P (η). Afterwards, using the upper and lower bound sets at hand, a number of conditions
are tested to understand whether new potentially non-dominated points can be found in
P (η). These rules are often referred to as fathoming rules. If it can be concluded that no
new potentially non-dominated point can be found in P (η), the node is fathomed, i.e. it is
removed from the list of open nodes. Otherwise, P (η) is split into disjoint sub-problems. All
sub-problems are stored in child nodes of η, which are then added to the list of unexplored
nodes T , whereas η is removed from T . The algorithm terminates when all nodes have been
explored, i.e. when T = ∅. The general outline of a MOBB is given in Algorithm 1.1.

Throughout the years, and particularly in the recent years, more and more research has
been done to improve the different components. The remainder of this section is dedicated
to present the general outline of MOBB, and to discuss the improvements proposed in the
literature for each components. At the end of this section, a table gathering all the research
gaps identified (see Table 1.1) is given, as well as a table showing the different characteristics
of each MOBB framework identified in the literature (see Table 1.2).

1.3.1 Node selection

At each iteration, the first operation performed is the selection of an open node from T
(Step 1). There are two classical ways to explore a tree: depth-first and breadth-first. The
first is equivalent to selecting the last node added to T , whereas the latter corresponds to
exploring the oldest node of T first. The main advantage of these node selection rules is that

14 Chapter 1. Introduction

they are independent of the nature of the problem, i.e. they can be used in a straightforward
way in MOBB without any particular thought about its extension to the multi-objective
case. For this reason, these have been widely used in the literature and are still in use at the
time of writing.

In many of the first papers developing DSS algorithms, the depth-first strategy was
the most used (Kiziltan and Yucaoğlu, 1983; Ramos, Alonso, Sicilia, and González, 1998;
Visée et al., 1998; Mavrotas and Diakoulaki, 1998, 2005; Sourd and Spanjaard, 2008; Florios,
Mavrotas, and Diakoulaki, 2010). Vincent, Seipp, Ruzika, Przybylski, and Gandibleux (2013)
tested both strategies on a set of randomly generated instances, and showed that depth-first
strategy performed significantly better. Parragh and Tricoire (2019), on the other hand,
showed that breadth-first was more efficient on some of their problem classes. This indicates
that the performance of these strategies is problem-dependant, and that the difference can
be significant. Given this observation, MOBB would benefit from node selection rules that
are more robust, i.e. rules where the performance relative to other rules do not drastically
change when the problem class changes.

Furthermore, although the chances of exploring a non-interesting part of the search tree
are lower in multi-objective optimization problems due to the multiple efficient solutions that
have to be reached in the tree, there is still some room for node selection rules that could
improve the performance in terms of CPU time. Stidsen, Andersen, and Dammann (2014)
proposed to leave the decision to a single-objective solver. Indeed, they use lower bound
sets that are obtained by solving a unique linear program, namely the linear relaxation of a
weighted-sum scalarization, leading to a unique optimal value associated with each node. In
that respect, their setting is similar to a single-objective branch-and-bound algorithm and
thus, they can benefit from the strong rules implemented in the solver to make an appropriate
decision. This strategy was reused by Stidsen and Andersen (2018) and Gadegaard, Nielsen,
and Ehrgott (2019).

However, to the best of the author’s knowledge, there is no comparison between depth or
breadth first and other rules in the literature. This is due to the fact that alternative rules
to depth and breadth first have not received a lot of attention so far. This constitutes the
first research gap in Table 1.1. In particular, a promising approach would be to extend the
best-bound strategy, known to be efficient for the single-objective case, to the multi-objective
case. This is, however, no trivial matter due to the fact that sets are used as bounds. Indeed,
it is very common to have one set that is neither better nor worse than another, but instead
one is better than the other in a particular region of the objective space, and the reverse
holds true in other regions. In such cases, the question of which set is the best bound is no
longer clear.

1.3. Decision Space Search algorithms 15

1.3.2 Lower bound set computation

When a node η is selected in Step 2 of Algorithm 1.1, a lower bound set is computed for the
corresponding problem P (η). In the very first MOBB frameworks, the minimal completion
was used as lower bound set. In the single objective case, it is computed by fixing each
free variable xi to 0 if ci > 0, and to 1 otherwise. Klein and Hannan (1982) consider a
single-objective version of the problem during the resolution and thus, it can be computed
without further considerations required. On the other hand, Kiziltan and Yucaoğlu (1983)
consider all objectives at once. Thus, the authors chose to fix xi to 0 if

p∑
k=1

ck
i > 0, and to

1 otherwise instead. The resulting lower bound set is a singleton, and the corresponding
solution has the advantage to be integer-valued, but it may violate the constraints of the
problem.

An alternative to the minimal completion is to use the ideal point. This has the advan-
tage of considering the constraints of the problem, leading to a more realistic estimation.
Unfortunately, even the ideal point is in general not feasible. Moreover, it requires to solve p

single-objective versions of the problem P (η) (one for each objective), which can be expensive
if the single-objective version is already hard to solve. Thus, the ideal point of the linear
relaxation is often used instead, as for instance in Mavrotas and Diakoulaki (1998), Mavrotas
and Diakoulaki (2005) and Florios et al. (2010). It requires to solve only p continuous linear
programs (one for each objective), and Vincent et al. (2013) showed that it performs better
than the ideal point with respect to CPU time if the problem is hard. The ideal point can
still be used efficiently if the single-objective version of the problem is easy, as for example
in Ramos et al. (1998), where a DSS algorithm is applied to the bi-objective minimal cost
spanning tree problem. Indeed, its single-objective version can be solved in polynomial time
and consequently, the ideal point can be obtained in polynomial time too.

The use of more complex lower bound sets has been popularized by Sourd and Spanjaard
(2008). In their paper, the authors use the convex relaxation, and apply their framework to the
bi-objective minimal cost spanning tree problem, resulting in a very promising performance.
In the bi-objective case, the convex relaxation can be computed by using the algorithm of
Aneja and Nair (1979), which consists in solving a series of weighted-sum scalarization with
appropriate weights until all supported points have been enumerated. Przybylski et al. (2010)
developed a method for the case where p ≥ 3.

However, the convex relaxation presents two drawbacks. First, it involves the resolution of
multiple (and potentially many) SOILP. As an attempt to overcome that difficulty, Sourd and
Spanjaard (2008) proposed a procedure to warmstart its computation using the lower bound
set from the father node. Indeed, there is no need to recompute a supported point obtained
in a father node that is still feasible in the child node. However, despite this improvement,
Vincent et al. (2013) showed in their experiments that for hard problems, using the convex

16 Chapter 1. Introduction

relaxation did not necessarily lead to the best CPU times, even though it did result in
the smallest search tree. Second, the main algorithms used to enumerate supported points
work by inner approximations, meaning that a valid lower bound set is obtained only if the
algorithm terminates. This can be problematic in nodes where the convex relaxation happens
to be particularly expensive to compute, and not desirable in cases where computing only a
subset of the lower bound set is sufficient to fathom a node.

A weaker but less expensive alternative to the convex relaxation is the linear relaxation.
It has been widely used for MOBB tackling MOMILP with two objectives, as it naturally
takes into account the continuous characteristics of YN , occurring due to the non-integer
variables (Vincent et al., 2013; Belotti, Soylu, and Wiecek, 2016; Adelgren and Gupte, 2022).
Note that Mavrotas and Diakoulaki (1998) and Mavrotas and Diakoulaki (2005) also used the
extreme points of the linear relaxation in addition to the ideal point of the linear relaxation to
perform some operations in the fathoming rules. However, MOMILP is not the only domain
of application for the linear relaxation. Gadegaard et al. (2019) and Parragh and Tricoire
(2019) both used it successfully to solve MOILP with two objectives, together with either
less expensive or stronger lower bound set. In the bi-objective case, the parametric simplex
algorithm (Ehrgott, 2005) is often used to solve the linear relaxation. Parragh and Tricoire
(2019) warm-started the computation by retrieving the different optimal basis from the father
node, helping to reduce the total CPU time. These recent MOBB frameworks have proven
the relevance of the linear relaxation when p = 2. However, it appears that experiments for
MOBB using the linear relaxation as lower bound set has yet to be conducted for the case
where p ≥ 3. This constitutes the second gap in Table 1.1.

In recent years, solving the linear relaxation of a weighted-sum scalarization to obtain
a lower bound set has also become a popular approach. The main advantage is that it is
very cheap to compute compared to more complex lower bound set, as it requires to solve
only one single-objective linear program, but is generally stronger than the ideal point of
the linear relaxation in the bi-objective case. This idea was first introduced by Stidsen et al.
(2014) and re-used by Stidsen and Andersen (2018). In the experiments of Gadegaard et al.
(2019), solving the linear relaxation in particular nodes and switching to the linear relaxation
of a weighted sum scalarization the rest of the time resulted in very promising performances.
Parragh and Tricoire (2019) also used the integer version of the weighted sum scalarization
coupled with the linear relaxation for stronger lower bound sets, which also resulted in better
CPU times for the bi-objective case. In the case where p ≥ 3, Santis, Eichfelder, Niebling, and
Rocktäschel (2020) generated hyperplanes that yield valid lower bound sets. Their approach
was initially developed to tackle mixed-integer convex optimization problems, implying that
it can be applied to MOMILP and MOILP as well. In this context, each hyperplane is in
fact equivalent to the linear relaxation of a weigthed sum scalarization, solved with weights

1.3. Decision Space Search algorithms 17

corresponding to the normal vector of that hyperplane.
Finally, other lower bound sets have been explored for particular problem classes. Joze-

fowiez, Laporte, and Semet (2012) applied the MOBB to problems with two objectives,
including one easy objective. This is the case for example for min-max objectives, where
the number of possible values is polynomial in the input size. Then, they suggest to com-
pute a point by fixing the easy objective to some of its possible values, and solving the
single-objective linear relaxation for the hard objective. In a sense, their approach to com-
pute lower bound sets is similar to some OSS algorithms, except that they solve continuous
programs instead of integer programs. The resulting lower bound set consists of a finite set
of points. Parragh and Tricoire (2019) also explored the use of strong techniques from the
single-objective case such as column generation to generate strong lower bound sets.

1.3.3 Fathoming rules

In the single-objective case, there are three cases in which a node η can be fathomed. First,
if no feasible point exists in P (η), then the node is fathomed by infeasibility. Second, if the
computation of the lower bound results in a solution that is feasible for P (η), the node is
fathomed by optimality. Finally, if the lower bound computed for P (η) is greater than or
equal to the upper bound, the node is fathomed by dominance. Each of these cases has its
equivalent in the multi-objective case, but the application of the conditions usually differs
depending on the lower bound set used, since it can take many different forms (singleton,
finite set of points, hyperplane, polyhedron...). For the same reason, some of these fathoming
rules are sometimes not applicable to particular lower bound sets.

First, fathoming by infeasibility has the most straightforward extension to the multi-
objective case, since it is a condition based on the feasible set rather than on the objective
functions. Let X (η) be the feasible set of the problem P (η) corresponding to the node η.
When computing the ideal point, a weighted sum scalarization, the multi-objective linear
relaxation, or the convex relaxation, feasible solutions to a relaxed problem are obtained. Let
XR(η) be the feasible set of this relaxed problem. If the relaxed problem is infeasible, that
is, if XR(η) = ∅, then so is the original problem, i.e. X (η) = ∅. Hence, if a program solved
during the computation of the lower bound set happens to be infeasible, so is P (η), and η is
fathomed by infeasibility.

Fathoming by optimality in the multi-objective case naturally requires a stronger con-
dition, namely if all points of the lower bound set are feasible for P (η), the node can be
fathomed. The easiest case is for lower bound sets that are singletons, such as the ideal point
(the reasoning is analogous for the ideal point of the linear relaxation). In this case, if the
ideal point yI is feasible, then by definition all other feasible points of P (η) are dominated
by yI and thus, no new non-dominated points except yI can be found in P (η). The general-

18 Chapter 1. Introduction

ization to lower bound sets that have more than one point follows a similar reasoning. Let
Y(η) denote the feasible points of P (η), and L(η) the lower bound set computed at node
η. By Definition 1.2, we have Y(η) ⊆ L(η) + Rp

≧, meaning that all feasible points of P (η)
are weakly dominated by at least one point from L(η). In the case where all points of L(η)
are feasible for P (η), this implies that each feasible point of P (η) that is not part of L(η) is
dominated by a feasible point that is already known. Hence no new non-dominated points
can be found in P (η) and the node is fathomed by optimality.

A node is fathomed by dominance if each point of the lower bound set is dominated
by at least one point of the upper bound set. Fathoming by dominance is perhaps the
most challenging fathoming rule, as comparing sets of different nature is not necessarily
straightforward. Indeed, while the incumbent set is always a finite set of points for MOILP,
the lower bound set can take various shapes, and consequently the approach chosen for
fathoming by dominance depends on the latter. We distinguish between three categories of
lower bound sets here: finite sets of points, complex lower bound sets, and unique hyperplanes.

Lower bound sets with a finite set of points include in particular the ideal point and
the ideal point of the linear relaxation, but are not restricted to singletons. In this case, the
dominance test consists in a pairwise dominance test between points of the lower and upper
bound set: each known feasible point from the upper bound is tested for dominance against
each point of the lower bound set. Unless the problem is unbounded, both the lower and
upper bound set are finite sets of points and thus, the dominance test terminates in a finite
number of steps. This dominance test was widely used, in particular in the early years of
MOBB, when more complex lower bound sets were not commonly used (Klein and Hannan,
1982; Kiziltan and Yucaoğlu, 1983; Ramos et al., 1998; Visée et al., 1998; Mavrotas and
Diakoulaki, 1998, 2005; Florios et al., 2010; Jozefowiez et al., 2012).

A more general rule for fathoming by dominance was established by Sourd and Spanjaard
(2008). Indeed, the authors observed that at node η, if a hypersurface H satisfying a number
of properties, such that all feasible points of P (η) are above H, and such that all local upper
bounds are below H, then the node can be fathomed by dominance. Sourd and Spanjaard
(2008) and Gadegaard et al. (2019) showed that the convex relaxation and the linear relaxation
respectively both yield valid hypersurfaces for this dominance test. In practice, the condition
can be easily verified by checking if any local upper bound is located in the polyhedron
L(η) + Rp

≧ by using simple geometrical rules. If there is none, the node can be fathomed
by dominance. Gadegaard et al. (2019) also proposed to use what they call an implicit
lower bound set. It consists of checking if a local upper bound is located in L(η) + Rp

≧ by
solving a single-objective linear program, instead of computing explicitly the entire linear
relaxation and then apply geometrical rules. However, they showed in their experiments
that the explicit approach is more efficient for the bi-objective case. Although both papers

1.3. Decision Space Search algorithms 19

restrict their analysis to the bi-objective case, the main advantage of this approach is that
it is applicable with any number of objectives. Furthermore, the arbitrage between implicit
and explicit lower bound sets as defined by Gadegaard et al. (2019) for this approach for
the case p ≥ 3 has not been studied in the literature yet, and is consequently still an open
question.

As an alternative to this dominance test for bi-objective MOMILP, Vincent et al. (2013)
proposed to compute and discard the parts of the lower bound set that are dominated by
the upper bound set. If, during the procedure, it becomes an empty set, the node can be
fathomed by dominance. This method has also been used by Parragh and Tricoire (2019) for
MOILP. This approach is particularly suitable for MOMILP, as it naturally computes the
continuous part of the non-dominated set. However, its extension to the case where p ≥ 3
is not a trivial task. Indeed, the most complex lower bound sets and non-dominated sets
in the bi-objective case consist of points and edges, which can be easily represented and
handled. In particular, these objects remain convex even if a part of it is discarded. This
property does not hold true when p ≥ 3, as lower bound sets can be constituted of objects of
dimension greater than 2. Although the basic principle of the method can be applied to any
dimension, this makes the approach more delicate to handle from an implementation point
of view. This also opens the question of appropriate representations and possibly efficient
and meaningful data structures to handle the complex structure of the non-dominated set of
a MOMILP with three or more objectives. To the best of the author’s knowledge, this has
not been addressed yet in the literature, and this constitutes the third gap in Table 1.1.

Solving a unique weighted sum (integer or linear relaxation) yields a lower bound set that
is made of a unique hyperplane and is also a valid hypersurface according to the definition of
Sourd and Spanjaard (2008). Because of the simple shape of this hypersurface, the dominance
test can be simplified. Let λ ∈ Rp

≧ be the weight used for the weighted sum scalarization, and
z∗ be its optimal value. Stidsen et al. (2014) showed that if all local upper bounds u ∈ N (U)
satisfy λu < z∗, then the node can be fathomed by dominance. Hence, the authors highlighted
that it is sufficient to keep track of the local upper bound with the largest weighted-sum
value umax and compare it to z∗. The dominance test is then reduced to a simple comparison
between two values: if λumax < z∗, the node is fathomed by dominance.

Stidsen et al. (2014) further improved their approach for the bi-objective case by dividing
the objective space into multiple slices, and run the MOBB in each. The idea is that a larger
number of easier problems will be handled by the MOBB. Moreover, a different value for
umax is computed in each slice, resulting in a faster processing overall due to the improved
upper bound in some of the slices.

Finally, Belotti et al. (2016) proposed an overview of existing fathoming rules and devel-
oped stronger fathoming rules for MOMILP that rely on the resolution of single-objective

20 Chapter 1. Introduction

linear programs.

1.3.4 Creation of sub-problems

If a node η cannot be fathomed, the problem P (η) is divided into easier, usually disjoint,
sub-problems. In the single-objective case, a classical way is to select a variable xi that has
not been fixed to a specific value through previous branching decisions (also called a free
variable). Then, two sub-problems are created with the constraints xi ≤ t and xi ≥ t + 1
respectively, for t ∈ Z. This form of branching is referred to as decision space branching, as
sub-problems are created by adding constraints on the bounds of the decision variables.

Fortunately, the basic principle does not involve any objective function, meaning that it
can be directly applied to the multi-objective case. However, the heuristics for the choice of
the variable to branch on are not necessarily easily extended to the multi-objective case and
consequently differ. Moreover, it is well known that branching decisions have a very large
impact on the CPU time in the single-objective case. We refer the reader to Achterberg,
Koch, and Martin (2005) for an overview and a performance comparison of single-objective
strategies. To the best of the author’s knowledge, no extensive comparison of branching
rules has been carried out for the multi-objective case in the literature, and this constitutes
the fourth gap in Table 1.1. Nevertheless, several rules have been proposed over the years.
Kiziltan and Yucaoğlu (1983) use the minimal completion as lower bound set, which can
be easily computed. Thus, they propose to branch on the variable that yields the least
infeasible minimal completion, the feasibility of a solution being measured by a particular
criterion provided in the paper. Vincent et al. (2013) propose to rank the variables depending
on their objective coefficients prior to resolution, and to branch on the free variable with
the largest rank. Another common strategy is to use problem specific rules if the problem
solved is known prior to resolution (Visée et al., 1998; Sourd and Spanjaard, 2008; Florios
et al., 2010; Parragh and Tricoire, 2019). Finally, similar to their node selection rule, Stidsen
et al. (2014); Stidsen and Andersen (2018); and Gadegaard et al. (2019) leave the decision
of the branching variable to a powerful single-objective solver. Again, this is possible in
their framework because their lower bound set is obtained by solving a scalarization of the
problem, i.e. a single-objective problem.

Recently, a new form of branching has emerged in the literature, namely objective space
branching, as opposed to decision space branching. The principle, first proposed by Stidsen
et al. (2014), consists of creating sub-problems by adding constraints on the objective func-
tions. Slicing is one way to perform objective space branching in the bi-objective case by
adding constraints in the form z2(x) ≥ tan(αi + ∆)z1(x) and z2(x) ≥ tan(αi − ∆)z1(x),
where alpha is the angle defining slice i and ∆ a constant defining the span of the slice. That
way, the objective space is split in multiple slices, and each slice is treated independently.

1.3. Decision Space Search algorithms 21

Consequently, Stidsen and Andersen (2018) proposed to parallelize the sliced MOBB. This
has resulted in promising improvements in terms of CPU time.

Another method, also proposed by Stidsen et al. (2014), and improved independently by
Gadegaard et al. (2019) and Parragh and Tricoire (2019), has become popular in recent years.
It is often referred to as Pareto branching, extended Pareto branching, or objective branching.
In this approach, sub-problems are created by adding upper bounds on the objective functions.
The idea is to discard from the search the regions of the objective where the lower bound
set is already dominated by the upper bound set, and to focus on regions where new non-
dominated points could possibly be found instead. Multiple studies showed the efficiency of
this technique in the bi-objective case, e.g. Stidsen et al. (2014); Gadegaard et al. (2019);
Parragh and Tricoire (2019); Adelgren and Gupte (2022).

The recent success of objective space branching in bi-objective MOBB frameworks shows
the value of hybrid methods, i.e. techniques that retrieve information from the objective
space to enhance a decision space search algorithm. However, these methods are applied
in the bi-objective case only, and no study or extensions to problems with three or more
objectives exist to this day in the literature. Hence, this opens the question of objective space
branching in the case where p ≧ 3. This constitutes the fifth gap in Table 1.1.

1.3.5 Termination of the algorithm

The branch-and-bound algorithm terminates when all nodes have been explored, and U = YN

holds true. In the single objective case, it is well known that branch-and-bound algorithms
are often able to find solutions of great quality (or even optimal solutions), but proving
optimality is expensive. To the best of the author’s knowledge, there is no study of that
aspect of branch-and-bound methods for the multi-objective case in the literature.

Moreover, based on that observation, the single-objective solvers often provide a measure
of the quality of the best known feasible solution. One way to do it is to compare the
upper bound (incumbent solution) and the lower bound with the lowest value among the
open nodes, resulting in the optimality gap g. Hence, a decision maker can chose to stop the
branch-and-bound process if a certain optimality gap is reached, thus avoiding the potentially
expensive proof of optimality that is not always necessary in real world applications.

Extending quality measurements to the multi-objective case is not a trivial matter, since
comparing two sets is not an obvious task, and there are multiple ways to do so. Extensions
of quality measurements based on distance measures between bound sets in the bi-objective
case have been proposed by Ehrgott and Gandibleux (2007). Besides, while computing the
hypervolume of the search region seems to be a natural measure, it is in practice something
in most cases very difficult to compute due to the complex shapes and different natures of
the bound sets used. This is in particular true for the case where p ≥ 3. In the context of

22 Chapter 1. Introduction

the bi-objective MOMILP, Adelgren and Gupte (2022) proposed a framework that uses the
Hausdorff distance to define the gap between a lower and an upper bound set, and that
actively returns gap measures during the resolution process. This distance can be seen as
the longest minimal distance one has to travel between any pair of points from the upper
and lower bound sets. The authors also explain that this measure is more robust than the
hypervolume of the search region, since it can be regarded as a worst-case measurement.

Most of the quality measures used in the bi-objective case rely on the use of both the ideal
and the nadir point to normalize the values and thus, obtain meaningful and comparable
numbers across instances. This opens once again the question of the case where p ≥ 3,
that has not been studied yet for such features. In particular, the nadir point is difficult
to compute and may not be known until completion of the MOBB (Ehrgott, 2005). Hence,
obtaining comparable values become an additional problem to address. This constitutes the
sixth gap in Table 1.1.

Number Component Research gap

1 Node selection Better and more robust node selection rules have yet to be
developed. This is to avoid the large differences in CPU time
between the traditional depth and breadth first strategies when
different problem classes are solved.

2 Lower bound set In the recent literature, using the linear relaxation resulted in
great performances for bi-objective branch-and-bound frame-
works. However, extensions and experiments for p ≥ 3 have yet
to be conducted.

3 Dominance test When p ≥ 3, the non-dominated set becomes significantly more
complex. In particular, facets and faces of the non-dominated set
themselves can be non-convex, which requires extra effort both
in the representation and the computation. A suitable method
to represent and compute YN has yet to be found.

4 Branching No comparison between variable selection rules exists in the
literature. Moreover, almost no generic variable selection rules
have been explored for frameworks using the most common lower
bound sets such as the linear relaxation, the convex relaxation,
or the ideal point.

5 Branching No extension of objective space branching to the case p ≥ 3 has
been proposed yet in the literature.

6 Termination Due to the complexity of computing the nadir point when p ≥ 3,
a gap measure that is easy to compute and comparable across
instances has yet to be determined.

Table 1.1: Main research gaps related to the existing literature for MOBB

1.3. Decision Space Search algorithms 23

R
ef

er
en

ce
Pr

ob
le

m
cl

as
s

p
N

od
e

se
le

ct
io

n1
LB

se
t2

D
S

br
an

ch
in

g3
O

S
br

an
ch

in
g4

Pa
rt

ic
ul

ar
iti

es
K

le
in

an
d

H
an

na
n

(1
98

2)
M

O
IL

P
A

ny
–

M
in

co
m

pl
.

–
–

U
se

a
sin

gl
e

ob
je

ct
iv

e
an

d
di

sju
nc

tiv
e

co
ns

tr
ai

nt
s

K
iz

ilt
an

an
d

Yu
ca

oğ
lu

(1
98

3)
M

O
01

IL
P

A
ny

D
ep

th
M

in
co

m
pl

.
Le

as
t

in
fe

as
ib

le
–

–
R

am
os

et
.a

l.
(1

99
8)

Sp
an

ni
ng

Tr
ee

2
D

ep
th

y
I

–
–

–
V

isé
e

et
.a

l.
(1

99
8)

K
na

ps
ac

k
2

D
ep

th
Pb

sp
ec

.
Pb

sp
ec

.
–

Em
be

dd
ed

in
a

tw
o-

ph
as

e
m

et
ho

d
M

av
ro

ta
s

an
d

D
ia

ko
ul

ak
i(

19
98

)
M

O
01

IL
P

A
ny

D
ep

th
y

I
,S

P
–

–
U

se
s

y
I

an
d

th
e

ex
tr

em
e

po
in

ts
of

th
e

LP
re

la
x

M
av

ro
ta

s
an

d
D

ia
ko

ul
ak

i(
20

05
)

M
O

01
M

IL
P

A
ny

D
ep

th
y

I
,S

P
–

–
–

So
ur

d
an

d
Sp

an
ja

ar
d

(2
00

8)
Sp

an
ni

ng
Tr

ee
2

D
ep

th
C

on
ve

x
re

la
x.

Pb
sp

ec
.

–
In

tr
od

uc
e

hy
pe

rs
ur

fa
ce

s
as

lo
we

r
bo

un
d

se
t

Fl
or

io
s

et
.a

l.
(2

01
0)

K
na

ps
ac

k
A

ny
D

ep
th

y
I

Pb
sp

ec
.

–
–

Jo
ze

fo
w

ie
z

et
.a

l.
(2

01
2)

O
ne

ea
sy

ob
je

ct
iv

e
2

–
SP

M
os

t
fra

ct
io

na
l

–
Pr

ob
le

m
s

w
ith

on
e

m
in

-m
ax

ob
je

ct
iv

e
V

in
ce

nt
et

.a
l.

(2
01

3)
M

O
01

IL
P

2
D

ep
th

LP
re

la
x.

St
at

ic
ra

nk
in

g
–

C
or

re
ct

io
n

of
M

av
ro

ta
s

am
d

D
ia

ko
ul

ak
i(

20
05

)
St

id
se

n
et

.a
l.

(2
01

4)
M

O
01

IL
P

2
SO

so
lv

er
W

S
LP

re
la

x
SO

so
lv

er
Sl

ic
in

g,
O

B
In

tr
od

uc
e

th
e

co
nc

ep
t

of
ob

je
ct

iv
e

sp
ac

e
br

an
ch

in
g

Be
lo

tt
ie

t
al

.(
20

16
)

M
O

M
IL

P
2

–
LP

re
la

x
–

–
D

ev
el

op
st

ro
ng

er
fa

th
om

in
g

ru
le

s
St

id
se

n
an

d
A

nd
er

se
n

(2
01

8)
M

O
01

IL
P

2
SO

so
lv

er
W

S
LP

re
la

x
SO

so
lv

er
Sl

ic
in

g,
O

B
U

se
pa

rr
al

el
iz

at
io

n
Pa

rr
ag

h
an

d
Tr

ic
oi

re
(2

01
9)

M
O

01
IL

P
2

br
ea

dt
h

LP
re

la
x,

W
S,

C
G

Pb
sp

ec
.,

–
O

B
–

G
ad

eg
aa

rd
et

al
.(

20
19

)
M

O
01

IL
P

2
SO

so
lv

er
LR

re
la

x,
W

S
LP

re
la

x
SO

so
lv

er
O

B
–

A
de

lg
re

n
an

d
G

up
te

(2
02

2)
M

O
M

IL
P

2
D

ep
th

LP
re

la
x

Sc
or

e
O

B
Im

pl
em

en
t

pr
ob

in
g

fo
r

th
e

bi
-o

bj
ec

tiv
e

ca
se

1
D

ep
th

:D
ep

th
-fi

rs
t

st
ra

te
gy

,b
re

ad
th

:b
re

ad
th

-fi
rs

t
st

ra
te

gy
,S

O
so

lv
er

:s
in

gl
e

ob
je

ct
iv

e
so

lv
er

,–
:n

ot
sp

ec
ifi

ed
2

Lo
we

rb
ou

nd
se

t.
M

in
co

m
pl

.:
m

in
im

al
co

m
pl

et
io

n,
y

I
:i

de
al

po
in

t(
in

te
ge

ro
rL

P
re

la
x)

,P
b

sp
ec

.:
pr

ob
le

m
sp

ec
ifi

c,
SP

:s
et

of
po

in
ts

,C
on

ve
x

re
la

x.
:c

on
ve

x
re

la
xa

tio
n,

LP
re

la
x:

lin
ea

rr
el

ax
at

io
n,

W
S

LP
re

la
x:

lin
ea

r
re

la
xa

tio
n

of
we

ig
ht

ed
-s

um
sc

al
ar

iz
at

io
ns

,W
S:

we
ig

ht
ed

-s
um

sc
al

ar
iz

at
io

n,
C

G
:c

ol
um

n
ge

ne
ra

tio
n

3
D

ec
isi

on
sp

ac
e

br
an

ch
in

g
(v

ar
ia

bl
e

se
le

ct
io

n)
.–

:u
ns

pe
ci

fie
d

or
fix

ed
or

de
r,

Pb
sp

ec
.:

pr
ob

le
m

sp
ec

ifi
c,

SO
so

lv
er

:s
in

gl
e-

ob
je

ct
iv

e
so

lv
er

,S
co

re
:a

tt
rib

ut
es

a
sc

or
e

to
ea

ch
va

ria
bl

es
.

4
O

bj
ec

tiv
e

sp
ac

e
br

an
ch

in
g.

–:
no

ne
.O

B:
ob

je
ct

iv
e

br
an

ch
in

g
/

Pa
re

to
br

an
ch

in
g

/
ex

te
nd

ed
Pa

re
to

br
an

ch
in

g

Ta
bl

e
1.

2:
M

O
BB

fra
m

ew
or

ks
fo

r
M

O
LP

in
th

e
lit

er
at

ur
e

an
d

th
ei

r
ch

ar
ac

te
ris

tic
s

24 Chapter 1. Introduction

1.4 Contributions and structure of the dissertation

In this thesis, a DSS algorithm to solve MOILP with three or more objective functions is
designed, and gradually improved across the different chapters.

Chapter 2 develops the first MOBB that can handle any number of objectives and that
uses the linear relaxation as lower bound set. In that perspective, the research gap presented
in item number two from Table 1.1 is addressed in this paper. The novelty lies in the fact
that an outer approximation algorithm is used to compute the linear relaxation. Furthermore,
this algorithm is modified to allow warm-starting using the lower bound set from the father
node, and the experiments show that this results in smaller CPU times. Statistics about the
behavior of the algorithm and the complexity of the lower bound sets computed are reported
and analyzed as well. Finally, challenges arising from branching on general integer variables
are presented and addressed.

Chapter 3 addresses the fifth gap described Table 1.1. In particular, it focuses on the
extension of objective branching to any number of objectives. First, the reasons why a
straightforward extension to p ≥ 3 is not possible are detailed, and a set of desirable properties
for the created sub-problems is identified. Then, an algorithm to perform objective branching
with any number of objectives is provided, and the resulting sub-problems are shown to
satisfy the set of properties established. The experiments show that when p ≥ 3, objective
branching is beneficial most of the time, but also that it is not as efficient as in the bi-objective
case due to the challenges related to the greater number of objectives.

Chapter 4 improves multiple key components of the MOBB framework at once. First, an
extension of probing to any number of objectives is provided, and is found to be particularly
effective when coupled with objective branching. In that perspective, this chapter improves
the results from Chapter 3 and thus, contributes to the fifth gap from Table 1.1. Then,
node selection rules based on the popular best-bound idea from the single-objective case are
proposed. The experiments show that some of the described rules are better than both depth
and breadth first strategies on the set of instances studied, providing a partial answer for
the first gap described in Table 1.1. Finally, other components such as cut generation, the
impact of problem specific variable selection rules, and enumeration of solutions are briefly
studied and open the door to future research directions.

; Second Chapter <

Warm-starting lower bound set
computations for branch-and-bound

algorithms for multi objective integer linear
programs

History: This chapter has been prepared in collaboration with Sune Lauth Gadegaard and
Lars Relund Nielsen. It is published in European Journal of Operational Research, Volume
302 number 3, pages 909 to 924. This work was presented at the 31st European Conference
on Operational Research in 2021 in Athens, Greece.

26 Chapter 2. Warm-starting lower bound set computations

Warm-starting lower bound set computations for
branch-and-bound algorithms for multi objective

integer linear programs

Nicolas Forget*, Sune Lauth Gadegaard*, Lars Relund Nielsen*

* Department of Economics and Business Economics, School of Business and Social
Sciences, Aarhus University, Denmark

Abstract

In this paper we propose a generic branch-and-bound algorithm for solving multi-objective
integer linear programming problems. In the recent literature, competitive frameworks has
been proposed for bi-objective 0-1 problems, and many of these frameworks rely on the use
of the linear relaxation to obtain lower bound sets. When increasing the number of objective
functions, however, the polyhedral structure of the linear relaxation becomes more complex,
and consequently requires more computational effort to obtain. In this paper we overcome
this obstacle by speeding up the computations. To do so, in each branching node we use
information available from its father node to warm-start a Bensons-like algorithm. We show
that the proposed algorithm significantly reduces the CPU time of the framework on several
different problem classes with three, four and five objective functions. Moreover, we point
out difficulties that arise when non-binary integer variables are introduced in the models,
and test our algorithm on problems that contain non-binary integer variables too.

Keywords: multiple objective programming; branch and bound; combinatorial optimization;
linear relaxation; warm-starting.

2.1 Introduction

In many real-life problems, it is usually possible to define multiple relevant objectives to
optimize simultaneously. For example, one could be interested in minimizing costs, distances,
traveling time, the impact on the environment, and so forth. Sometimes, it is not enough to
consider only one of these objectives to obtain a satisfactory solution to a real-life problem.

2.1. Introduction 27

Instead, several possibly conflicting objectives should be considered simultaneously. Multi-
objective optimization is the field that addresses such optimization problems and as a result,
produces desirable trade-offs between the conflicting objectives.

In this paper, we consider Multi-Objective Integer Linear Problems (MOILP) with p

linear objectives. It is assumed that all variables in the decision space are integer. A special
class of MOILP consists of Multi-objective Combinatorial Optimization Problems (MOCOP)
with only binary variables and well-structured constraints (Nemhauser and Wolsey, 1999).

Over the past decades, various methodologies have been proposed in the literature to solve
MOILPs. These methodologies can be roughly divided into two main categories: Objective
Space Search (OSS) algorithms and Decision Space Search (DSS) algorithms. The principle
of an OSS algorithm is to search the objective space by solving a series of single-objective
problems, obtained by scalarizing the objective functions (Ehrgott, 2005). Hence, the power
of single-objective solvers can be used to generate the optimal set of solutions (see Section 2.2
for a formal definition). Consequently, much attention has been paid to OSS methods over
the years (see e.g. Ulungu and Teghem (1995); Visée et al. (1998); Sylva and Crema (2004);
Ozlen, Burton, and MacRae (2014); Kirlik and Sayın (2014); Boland et al. (2017); Boland
and Savelsbergh (2016); Tamby and Vanderpooten (2021)).

In contrast, a DSS algorithm searches the decision space. To the best of our knowledge,
Klein and Hannan (1982) were the first to suggest a solution approach for the MOILP using a
DSS algorithm. They used a unique branching tree to solve a series of single-objective integer
programs, resulting in the computation of all desirable solutions. A year later, Kiziltan and
Yucaoğlu (1983) proposed another general branch-and-bound framework. In particular, they
used minimal completion, providing a lower approximation of the ideal point as a lower
bound. Both of these frameworks were designed for the multi-objective case where p ≥ 2.

In the following years, attention was paid to problem-specific methods, for example in
Ulungu and Teghem (1997) and Ramos et al. (1998). In Visée et al. (1998), the authors used
a multi-objective DSS algorithm embedded in an OSS algorithm, the so-called two-phase
method. The next general branch-and-bound framework was developed by Mavrotas and
Diakoulaki (1998), and improved in Mavrotas and Diakoulaki (2005). Their algorithm solves
MOILPs with binary variables, but can also handle continuous variables in addition to binary
ones. Furthermore, whereas previous branch-and-bound frameworks rely on the use of the
ideal point (or an approximation hereof) as lower bound set, the authors propose to consider
both the ideal point for dominance tests, and a finite set of points, namely the extreme points
of the multi-objective linear relaxation, to update the upper bound set. However, Vincent
et al. (2013) showed that dominated solutions may be returned, and corrected the approach
of Mavrotas and Diakoulaki (2005). The use of a finite set of points as a lower bound set
was further explored for specific problems in Jozefowiez et al. (2012) for the bi-objective case

28 Chapter 2. Warm-starting lower bound set computations

and in Florios et al. (2010) for the multi-objective case.
Sourd and Spanjaard (2008) were the first to use more complex lower bound sets for the

bi-objective case. They proposed to use a surface (i.e. an infinite set of points) as a lower
bound set instead of a finite set of points, as was the traditional method used in the literature
at that time. Due to the novel nature of their lower bound set, their approach came with
a new dominance test. In their framework, the lower bound set is obtained by solving the
convex relaxation, which provides the convex hull of the non-dominated points contained
in a specific node. Tested on spanning tree problems, the procedure produces very good
lower bound sets efficiently and results in a major speed-up, but it may be less efficient on
problems having a hard single-objective version, as it needs to solve multiple single-objective
integer problems at each node.

Vincent et al. (2013) showed that for bi-objective problems with computationally demand-
ing single-objective versions, the linear relaxation is often preferable in terms of computation
times, even though it leads to larger branch-and-bound trees. They also showed that the
linear relaxation is preferable to the ideal point and to the ideal point of the linear relax-
ation. Moreover, the authors proposed an extension of their branch-and-bound framework
to Bi-Objective Mixed-Integer Problems (BOMIP) along with an alternative dominance test.
The class of BOMIP was also studied by Belotti, Soylu, and Wiecek (2013), and improved in
Belotti et al. (2016) who developed stronger fathoming rules. Finally, Adelgren and Gupte
(2022) provided an extensive study on BOMIP and incorporated the recent knowledge of
DSS algorithms in their framework.

In recent years, more attention has been paid to hybridizing decision space search and ob-
jective space search methods for the bi-objective case. A first hybrid algorithm was developed
by Stidsen et al. (2014), and later refined by Stidsen and Andersen (2018). The authors used
the linear relaxation of a weighted-sum scalarization as a lower bound set, which provides a
weaker but computationally less expensive surface than the linear or convex relaxation. They
also developed slicing, with the purpose of splitting the search in the objective space into
several independent cones (or slices), yielding stronger upper bound sets and at the same
time enabling the possibility of parallelizing the search of each slice. Finally, the authors
introduced the principle of Pareto branching, which consists of creating sub-problems in the
objective space by deriving information from the partial dominance between the lower bound
set and the upper bound set.

Gadegaard et al. (2019) introduced an improved version of Pareto branching, which they
named extended Pareto branching in their paper, and they coupled the type of branching
with the use of both the linear relaxation of weighted-sum scalarizations and multi-objective
linear relaxation. In parallel, Parragh and Tricoire (2019) also developed further Pareto
branching, herein denoted objective branching. They used it together with linear relaxation,

2.1. Introduction 29

but also with stronger lower bound sets generated using a column generation approach. In
both cases, promising results were shown for the bi-objective case.

It appears that the branch-and-bound frameworks developed over the last decade are
competitive when solving bi-objective problems compared to state-of-the-art-OSS algorithms.
This is achieved by using more sophisticated lower bound sets, stronger fathoming rules,
and injecting information derived from the objective space in the method. In this paper, we
are interested in developing a branch-and-bound framework that is inspired by the recent
bi-objective frameworks and apply it on problems with three objective functions or more.
We focus on the use of more sophisticated lower bound sets, namely the linear relaxation,
and explain how we can accelerate its computation in a multi-objective branch-and-bound
setting. Furthermore, it appears that although many of the recent bi-objective frameworks
can be applied to integer problems, problems with binary variables (MOCOPs) are mostly
studied. We consider the general integer case and devote a section to the difficulties that
may arise when the variables can take arbitrary integer values. To summarize, in this paper,
we:

• develop a multi-objective branch-and-bound framework that extends the bi-objective
branch-and-bound literature for both combinatorial and integer problems;

• use the linear relaxation as a lower bound set by extending the work of Gadegaard
et al. (2019), and using upper bound sets from Klamroth et al. (2015);

• show how redundant half-spaces from the lower bound set can be removed efficiently;

• propose a procedure to warm-start the computation of lower bound sets;

• study how warm-starting can be beneficial for other parts of the framework;

• unveil new challenges that arise when introducing integer (non-binary) variables;

• use four different problem classes including both binary and integer variables to show
that warm-starting significantly reduces the total computational time.

The remainder of this paper is organized as follows: In Section 2.2 we present the
preliminaries and in Section 2.3 we present a generic branch-and-bound framework for
MOILPs. Section 2.4 describes how lower bound sets can be generated using a Benson-like
algorithm and how such an algorithm can be modified so warm-starting becomes possible. In
Section 2.5 we conduct an extensive computational study, and finally Section 2.6 concludes
the paper.

30 Chapter 2. Warm-starting lower bound set computations

2.2 Preliminaries

In multi-objective optimization, not only one but several conflicting objectives are considered
simultaneously, and hence it is most often impossible to find one solution optimizing all ob-
jectives at the same time. Therefore, it is necessary to introduce operators for the comparison
of points and sets. Given y1, y2 ∈ Rp, the point y1 weakly dominates y2 (y1 ≦ y2) if y1

k ≤ y2
k,

∀k ∈ {1, ..., p}. Moreover, we say that y1 dominates y2 (y1 ⩽ y2) if y1 ≦ y2 and y1 ≠ y2.
These dominance relations can be extended to sets of points as follows: Let A,B ⊆ Rp, we
say that A dominates B if for all b ∈ B, there exists a ∈ A such that a ⩽ b. Furthermore, a
subset A ⊂ Rp is said to be stable if for any a, a′ ∈ A, a ⩽̸ a′.

Consider the Multi-Objective Integer Linear Problem (MOILP) with n variables:

min{z(x) = Cx | x ∈ X} (P)

where X = {x ∈ Nn
0 | Ax ≧ b} is the feasible set in the decision space. We assume that

X is bounded (if this is not the case, it will be detected by our algorithm). The matrix
A ∈ Rm×n defines the coefficients of the m constraints with right-hand side b ∈ Zm. The
p linear objectives are defined using the matrix C ∈ Zp×n of objective function coefficients.
The corresponding set of feasible objective vectors in the objective space is Y = {z(x) | x ∈
X} := CX .

In this paper, we will focus on the computation of the non-dominated set of points,
defined as YN = {y ∈ Y | ∄y′ ∈ Y, y′ ⩽ y}. Note that YN is discrete and bounded since z(x)
is linear and X is discrete and bounded. By extension, the non-dominated part of any set
S ⊆ Rp will be denoted by SN = {s ∈ S | ∄s′ ∈ S, s′ ⩽ s}.

2.2.1 Polyhedral theory

In this section, we recall the theory presented in Nemhauser and Wolsey (1999). Let H+ =
{y ∈ Rp | πy ≥ π0} denote a half-space in Rp and let H = {y ∈ Rp | πy = π0} be the
corresponding hyperplane with normal vector πT . A polyhedron P = {y ∈ Rp | Gy ≧ e} is
the intersection of a finite number of half-spaces and hence a closed convex set. A polyhedron
P ∈ Rp is of full dimension if the dimension of P is p. A half-space is valid if it contains P
and redundant if P is unchanged when removed. A bounded polyhedron is called a polytope.

A face F = {y ∈ P | y ∈ H} of P is the intersection of P and a hyperplane H of a
valid half-space H+. Given that P is of dimension p, a facet is a face of dimension p − 1.
The boundary of a full dimensional polyhedron P can be described using a finite set of
facets. Let PH = {H+

1 , . . . ,H+
k } denote the half-space representation of P (the half-spaces

corresponding to the facets), then P = ∩H+∈PH
H+.

A vertex of P is a face of dimension zero. The vector r ∈ Rp is a ray of P if x + λr ∈ P
for all x ∈ P and λ ≥ 0. A ray r of P is said to be extreme if r = λ1r1 + λ2r2 where

2.2. Preliminaries 31

r1 and r2 are rays of P and λ1, λ2 > 0 implies that r1 = λr2 for some λ > 0. A facet of
a polyhedron P can be described using a finite set of vertices VF and extreme rays RF

satisfying F = conv(VF) + {
∑

r∈RF
λrr, λ ≧ 0} (convex hull of vertices and rays). Since the

boundary of a polyhedron consists of a finite set of facets, a vertex-ray representation of
polytope P is PV = (VP ,RP) satisfying P = conv(VP) + {

∑
r∈RP

λrr, λ ≧ 0}. In general, if
we use a representation of P using (PH ,PV), the sets PH and PV are linked together using
e.g. an adjacency list so it is known which vertices are adjacent, which vertices and rays
belong to which facets, and vice versa. Note that P is a polytope if and only if no extreme
ray exists, i.e. RF = ∅ and rays can be dropped from PV .

The linear relaxation of P can be defined as:

min{z(x) = Cx | x ∈ XLP } (PLP)

where XLP = {x ∈ Rn | Ax ≧ b, x ≧ 0}. Let YLP denote the corresponding feasible objective
vectors and YLP

N the non-dominated set of PLP. Note that YLP is a polytope (Benson, 1998),
and YLP

N corresponds to the non-dominated part of this polytope.
Consider a set S ⊂ Rp and define polyhedra Rp

≧ := {y ∈ Rp | y ≧ 0} and S +Rp
≧ := {y ∈

Rp | ∃s ∈ S, s ≦ y}. For the development of the branch-and-bound algorithm, it is convenient
to have a description of the polyhedron PLP

≧ := YLP
N + Rp

≧ since PLP
≧ is a full dimension

polytope with vertices contained in YLP
N . In addition to these sets, it will be convenient to

define the set Rp
⩾ := {y ∈ Rp | y ⩾ 0}.

2.2.2 Bound sets

Given a set of points S ⊆ Rp, it is possible to define lower and upper bound sets for SN . For
this purpose, the definition from Ehrgott and Gandibleux (2007), recalled in Definition 2.1,
will be used. A subset S is Rp

≧-closed if S + Rp
≧ is closed, and Rp

≧-bounded if there exists
y ∈ Rp such that S ⊂ {y}+ Rp

≧.

Definition 2.1. (Ehrgott and Gandibleux, 2007) Let S ⊆ Rp be a set.

• A lower bound set L for SN is an Rp
≧-closed and Rp

≧-bounded set that satisfies SN ⊂
L+ Rp

≧, and L = LN .

• An upper bound set U for SN is an Rp
≧-closed and Rp

≧-bounded set that satisfies
SN ⊂ cl[Rp\(U + Rp

≧)] and U = UN (U is stable). Here cl(·) denotes the closure
operator.

Ehrgott and Gandibleux (2007) showed that the singleton {yI}, denoted the ideal point
and defined by yI

k = miny∈Y{yk}, is a valid lower bound set for YN . The same holds for the
non-dominated set of the linear relaxation PLP of P. Moreover, the anti-ideal point {yAI},

32 Chapter 2. Warm-starting lower bound set computations

1: Create the root node η0; set T ← {η0} and U ← ∅
2: while T ̸= ∅ do
3: Select a node η from T and set T ← T \ {η}
4: Find a local lower bound set to η
5: Update the upper bound set U
6: if η cannot be fathomed then
7: Branch and split P (η) into disjoint sub-problems (P (η1), . . . , P (ηk))
8: Create child nodes of η and set T ← T ∪ {η1, . . . , ηk}
9: end if

10: end while
11: return U

Algorithm 2.1: Branch-and-bound algorithm for a MOILP.

defined as yAI
k = maxy∈Y{yk}, yields a valid upper bound set for YN . A variant of the

anti-ideal point is the nadir point, defined as yN
k = maxy∈YN

{yk}. The authors also showed
that, in the context of a branch-and-bound algorithm, the incumbent set, which is the current
stable set of solutions found at any point during the algorithm, is a valid upper bound set
for YN .

An upper bound set U can alternatively be described in terms of its corresponding set of
local upper bounds N (U) (sometimes also referred to as local nadir points). This concept was
formally defined by Klamroth et al. (2015), and their definition is recalled in Definition 2.2.
Let C(u) = u− Rp

≧ := {y ∈ Rp | y ≦ u} be the search cone of u ∈ Rp.

Definition 2.2. (Klamroth et al., 2015) The set of local upper bounds of U , N (U), is a set
that satisfies

• cl[Rp\(U + Rp
≧)] =

⋃
u∈N (U)
C(u)

• N (U) is minimal, i.e. there is no u1, u2 ∈ N (U), u1 ̸= u2, such that C(u1) ⊆ C(u2)

2.3 A branch-and-bound framework for MOILP

In this section, we describe a branch-and-bound framework for MOILPs that uses the linear
relaxation to obtain lower bound sets.

A general description of a multi-objective branch-and-bound (MOBB) framework for
solving problem P is given in Algorithm 2.1. The algorithm manages a branching tree, T ,
where each node η contains a sub-problem of P. At each node η, the sub-problem contained
in η is denoted by P (η), and its feasible set and set of feasible objective vectors are X (η) and

2.3. A branch-and-bound framework for MOILP 33

Y(η) respectively. Similarly, the set of non-dominated points of P (η) is given by YN (η). We
define analogously XLP (η), YLP (η) and YLP

N (η) for the linear relaxation P LP (η) of P (η).
A candidate set T is used to store nodes that are not yet explored, and is initialized

with the root node that contains the full MOILP (line 1). Moreover, a global upper bound
(incumbent) set is used to maintain a stable set of feasible solutions to P. The algorithm
terminates when the candidate list, T , becomes empty; that is, when it has been proven that
U = YN .

Implementations of a MOBB algorithm may differ in the node selection rule (line 3),
in the way the lower bound set is calculated (line 4), and in how the upper bound set is
updated (line 5). Moreover, different fathoming rules may be used to remove a node from
the candidate set (line 6). Finally, different variable selection rules may be used to split a
father node into a set of child nodes (lines 7-8).

As node selection rule we use the so-called breadth first search strategy, which follows a
FIFO principle, meaning that we always chose the unprocessed node that was created first.
We use the non-dominated set YLP

N (η) of the linear relaxation P LP (η) as a lower bound set
in each node. We use a revisited state-of-the-art version of Benson’s outer approximation
algorithm using warm-starting (see Section 2.4) where the polyhedron YLP

N (η) + Rp
≧ is

found with both a half-space and vertex and ray representation. Since an integer-feasible
solution to P LP (η) is feasible for P (η), the upper bound set can be updated using the vertex
representation of the lower bound set YLP

N (η) by adding vertices corresponding to integer
solutions to U and removing any dominated points.

Different rules can be used to prune a node as well. If P LP (η) is not feasible (i.e. XLP (η) =
∅), then P (η) is not feasible either since X (η) ⊆ XLP (η) = ∅, and hence the node is fathomed
by infeasibility. In the case where YLP

N (η) +Rp
≧ contains a single vertex y with a feasible pre-

image, the node can be fathomed by optimality since all points in Y(η) are weakly dominated
by y. Finally, if YLP

N (η) +Rp
≧ is dominated by U , the node can be fathomed by dominance. In

practice, the latter rule is checked by applying the methodology used for the bi-objective case
in Sourd and Spanjaard (2008) and in Gadegaard et al. (2019), since it extends naturally to
the multi-objective case. This is recalled in Lemma 2.1.

Lemma 2.1. Let U be an upper bound set for YN . The node η can be fathomed by dominance
if for each u ∈ N (U), u /∈ YLP

N (η) + Rp
≧ holds true.

Proof. First, for any non-dominated point y ∈ YN of the initial problem P , there exists at
least one u ∈ N (U) such that y ≦ u. Indeed, from Definition 2.1 and Definition 2.2, we have
that YN ⊂ cl[Rp\(U +Rp

≧)] and cl[Rp\(U +Rp
≧)] =

⋃
u∈N (U) C(u). Thus, YN ⊂

⋃
u∈N (U) C(u).

This implies that for each y ∈ YN , there exists u ∈ N (U) such that y ∈ C(u) and consequently,
by the definition of C(u), there exists u ∈ N (U) such that y ≦ u. Furthermore, we know that
there is no u ∈ N (U) such that u ∈ YLP

N (η) +Rp
≧. It is not possible that y ∈ YLP

N (η) +Rp
≧ if

34 Chapter 2. Warm-starting lower bound set computations

u /∈ YLP
N (η)+Rp

≧, because by construction of Rp
≧, for any set S ⊂ Rp and for any s ∈ S+Rp

≧,
{s}+Rp

≧ ⊆ S+Rp
≧. Hence, since y ≦ u, we have that u ∈ {y}+Rp

≧ and thus, u ∈ YLP
N (η)+Rp

≧,
which is a contradiction. This implies that necessarily, y /∈ YLP

N (η) + Rp
≧, and as a result, no

new non-dominated point can be found in sub-problem P (η).

If the node cannot be fathomed, P (η) is divided into easier sub-problems. Like in the
single-objective case, two disjoint sub-problems are traditionally created by using a variable
selection rule to choose a variable xi and imposing bounds on this variable. Usually, one
sub-problem will be generated with the feasible set {x ∈ X (η) | xi ≤ t}, and the other with
the feasible set {x ∈ X (η) | xi ≥ t + 1}, where t ∈ N. Choosing the variable and the bound,
t, is a non-trivial task, as the performance of the MOBB highly depends on these choices.
In the single-objective case, the lower bound (set) usually consists of a single solution and
as a result, each variable xi takes a single value. This can be used to make an easy choice
regarding the bound imposed (e.g. t = ⌊xi⌋). In the multi-objective case, multiple points
may exist in the lower bound set, and as a consequence, a variable may take different values
for different points. A trivial choice does not exist anymore, and a rule should be applied
(see Section 2.5).

2.4 Linear relaxation for MOBB

In this section, we provide a strategy for accelerating the computation of the lower bound
set (line 4 in Algorithm 2.1), i.e. the linear relaxation. Our methodology relies on Benson’s
outer approximation algorithm (Benson, 1998) and its recent refinements (see e.g. Hamel,
Löhne, and Rudloff, 2013; Csirmaz, 2015; Löhne and Weißing, 2020). For this purpose, we
need a formal definition of the concept of outer approximation.

Definition 2.3. Let P,Q ⊂ Rp be two polyhedra such that QN ⊆ P. Then P is an outer
approximation of Q.

An outline of a Benson-like algorithm is given in Algorithm 2.2. The algorithm works by
iteratively building tighter outer approximations of PLP

≧ = YLP +Rp
≧ = YLP

N +Rp
≧ and starts

with an initial polyhedron that contains PLP
≧ . Next, half-spaces are iteratively found whose

corresponding hyperplanes define facets of PLP
≧ until all the facets have been enumerated.

The algorithm provides both a vertex-ray representation and a half-space representation of
PLP
≧ , where a pre-image is known for each of the vertices in PLP

≧ .
The initialization step (line 1 of Algorithm 2.2) consists of finding an initial polyhedron

that contains PLP
≧ . At each iteration of Algorithm 2.2, if there exists a vertex v in the vertex-

ray representation PV which is not included in PLP
≧ , a cutting plane should be computed

2.4. Linear relaxation for MOBB 35

1: Input: A polyhedron P represented using PH and PV = (VP ,RP) such that
PLP

≧ ⊆ P

2: while ∃ v ∈ VP such that v /∈ PLP
≧ do

3: Compute a cutting hyperplane H for v
4: (PH ,PV)← updateP(PH,PV ,H)
5: end while
6: return (PV ,PH)

Algorithm 2.2: Benson’s outer approximation algorithm

in order to separate v from the polyhedron. In order to check the inclusion of vertex v on
line 2, the linear program F (v) is solved:

min s

s.t. Ax ≧ b, (2.1)

Cx− s ≦ v, (2.2)

x, s ≧ 0

If the optimal value is 0, then v ∈ PLP
≧ and a pre-image of v is obtained by storing the

optimal values of the x variables of F (v); otherwise, v is not included in PLP
≧ . Let u ∈ Rm

be optimal dual values corresponding to (2.1) and w ∈ Rp dual values corresponding to (2.2).
Hamel et al. (2013) showed that the hyperplane H = {y ∈ Rp | wT y = bT u} defines a facet
of PLP

≧ and that H separates v from PLP
≧ . Hence, the hyperplane H on line 3 can be found

using the dual values of F (v). Once a cutting plane H is computed, the outer approximation
of PLP

≧ is updated using function updateP on line 4 of Algorithm 2.2. The loop is repeated
until no vertex v can be found, and the algorithm stops (PLP

≧ has been found, line 6).
A description of updateP is given in Algorithm 2.3. As input, the algorithm takes the

current half-space and vertex-ray representation and the cutting hyperplane. First, the vertex-
ray representation is updated by examining adjacent vertices, finding new vertices of the
facet of the hyperplane Ĥ and removing old vertices not part of the polyhedron (line 3).
Updating the vertex-ray representation using function updateV is known as a sub-procedure
of an online vertex enumeration problem. A well-known technique for solving this problem is
the double description method (see e.g. Fukuda and Prodon (1996)).

Next, redundant faces are removed on lines 4-12. If redundant half-spaces are not removed,
many unnecessary operations will be performed, e.g. when performing dominance tests.
Moreover, having no redundant half-spaces is a necessary condition for finding adjacent
vertices in the vertex enumeration algorithm used (Fukuda and Prodon (1996)). Since PLP

≧

is a full-dimension polyhedron, facets are of dimension p− 1, and all faces with dimensions

36 Chapter 2. Warm-starting lower bound set computations

1: Input: (PH ,PV) and hyperplane Ĥ

2: PH ← PH ∪ {Ĥ}
3: PV ← updateV(PH,PV ,Ĥ)
4: for all H+ ∈ PH (defining face F) do
5: if F have p− 1 vertices and rays or less then
6: PH ← PH \ {H+}
7: else if p > 3 then
8: if all vertices and rays of F lies on Ĥ then
9: PH ← PH \ {H+}

10: end if
11: end if
12: end for
13: PV ← relinkV(PH,PV)
14: return (P t

V ,P t
H)

Algorithm 2.3: Updating the outer approximation (updateP)

below p − 1 are redundant. Consequently, if a facet is defined by p − 1 vertices and rays
or less, then it is redundant. This is checked on lines 5-6. Even though this is a necessary
condition for any p, it is not a sufficient condition when p > 3. Indeed, in this case, a face
of dimension 2 can be defined by more than p − 1 vertices. A face of dimension d can be
described as the intersection of at least p − d hyperplanes (Nemhauser and Wolsey, 1999).
Hence a face of dimension d < p − 1 is the intersection of two or more hyperplanes. Since
the input PH to Algorithm 2.3 only contains facets, the only way for a facet to become a
face is if it gets intersected with the new cutting hyperplane Ĥ such that all of its vertices
and rays are located on Ĥ (lines 8-9).

Finally, since all redundant half-spaces have been removed from PH , we can update the
adjacency list of the vertices in PV using function relinkV on line 13. That is, using the
vertex enumeration algorithm (Fukuda and Prodon (1996)).

Note that in Algorithm 2.2, only facets are generated between lines 2-5. Hence, only
facets of the initial outer approximation may become redundant during the algorithm. In
particular, if the initial outer approximation shares all of its facets with PLP

≧ , no faces become
redundant.

Lemma 2.2. Consider Algorithm 2.2 and let P0 denote the initial polyhedron with half-
space representation P0

H (line 1). Then only half-spaces in P0
H may be redundant for PLP

≧ .
Moreover, if P0 = {yI

LP }+ Rp
≧ then all half-spaces in P0

H are facets of PLP
≧ .

Proof. Hamel et al. (2013) showed that the cutting hyperplane H found on line 3 defines a
facet of PLP

≧ . Hence, only half-spaces in P0
H may be redundant. Let yI

LP = (ŷ1, . . . , ŷp). If

2.4. Linear relaxation for MOBB 37

PLP
≧ (ηc)

PLP
≧ (ηf)

z1

z 2

Figure 2.1: The lower bound set of the father node ηf is an outer approximation of
the lower bound set of the child node ηc.

P0 = {yI
LP } + Rp

≧ then the half-spaces {y ∈ Rp | yi ≥ ŷi}, i = 1, . . . , p define the facets of
P0, which are facets of PLP

≧ too.

2.4.1 Warm-starting Benson-like algorithms in MOBB

We will now study how to improve the performance of the Benson-like algorithm embedded
in a MOBB.

Lemma 2.3. Consider a child node ηc of the father node ηf in the branch-and-bound tree
of Algorithm 2.1. Then PLP

≧ (ηf) := YLP
N (ηf) + Rp

≧ is an outer approximation of PLP
≧ (ηc) :=

YLP
N (ηc) + Rp

≧.

Proof. By construction of the problems P (ηf) and P (ηc), we have that XLP (ηc) ⊆ XLP (ηf),
which implies that YLP (ηc) ⊆ YLP (ηf). Hence PLP

≧ (ηc) ⊆ PLP
≧ (ηf), and since the non-

dominated set of PLP
≧ (ηc) is YLP

N (ηc) ⊆ PLP
≧ (ηc), we have that PLP

≧ (ηf) is an outer approxi-
mation of PLP

≧ (ηc).

Due to Lemma 2.3, polyhedron PLP
≧ (ηf) can be used as the initial outer approximation

when starting Algorithm 2.2 in a child node ηc (see Figure 2.1). That is, at any child node,
it is possible to warm-start the computation of the linear relaxation by using the relaxation
found in the father node. As a result, the total number of linear programs to be solved is
expected to decrease since the only way to obtain a facet is to solve F (v) for a vertex v

and obtain an optimal value strictly larger than zero. Hence a facet that is present both
in PLP

≧ (ηf) and PLP
≧ (ηc) will be enumerated only once, since it is already known when

starting Algorithm 2.2 in child node ηc. However, some half-spaces in PH may have to be

38 Chapter 2. Warm-starting lower bound set computations

removed in Algorithm 2.2 since they define non-facet faces and are therefore redundant. Due
to Lemma 2.2 we have:

Corollary 2.1. Consider Algorithm 2.1 using Algorithm 2.2 to find the lower bound set
on line 4. If we use initial outer approximation P = {yI

LP (ηc)} + Rp
≧ at the root node η0,

then no redundant half-spaces have to be removed from PH during Algorithm 2.2. If we use
initial outer approximation P = PLP

≧ (ηf) at a child node ηc with father node ηf , then only
half-spaces of PLP

≧ (ηf) may be redundant.

Due to Corollary 2.1 we initialize Algorithm 2.2 with outer approximation {yI
LP (ηc)}+Rp

≧

in the root node and hence do not have to check for redundant half-spaces (lines 4-12 in
Algorithm 2.3). Moreover, when using PLP

≧ (ηf) as initial outer approximation in a child
node, only the half-spaces of PLP

≧ (ηf) have to be checked for redundancy.

Additional advantages of warm-starting the lower bound computations

Warm-starting Algorithm 2.2 when solving the linear relaxation in a MOBB brings addi-
tional information that can be utilized to accommodate additional speed-ups by eliminating
redundant work. In the following, we present a number of observations that can help to
speed-up the processing of branching nodes. In what follows, we will assume that branching
is performed by adding simple bounds to variables, i.e. xi ≤ r or xi ≥ r, for r ∈ N. Further,
we will refer to ηc as a child node of the father node ηf .

In Algorithm 2.2, to confirm that a vertex v is feasible, the linear program F (v) has to
be solved and have an optimal value of 0. However, this is not always necessary when using
the polyhedron PLP

≧ (ηf) as a starting outer approximation when computing PLP
≧ (ηc):

Observation 2.1. After solving the linear relaxation in ηf , a pre-image for each vertex of
PLP
≧ (ηf) is known. Hence, when solving the linear relaxation P LP (ηc) using PLP

≧ (ηf) as an
initial outer approximation, it is known that F (v) = 0 for all v ∈ PLP

≧ (ηf) with a feasible
pre-image in ηc.

This significantly reduces the number of single-objective linear programs that needs to
be solved in Algorithm 2.2. In addition, when branching as stated in Section 2.3, we know
that from ηf to ηc, only one constraint in the form xi ≤ t or xi ≥ t + 1 is added, t ∈ N.
Hence, verifying the feasibility of a pre-image of a vertex reduces to simply comparing the
value of a variable to a constant. Note that if more involved branching constraints are used,
it is necessary to check that the pre-image satisfies all of them.

Observation 2.1 only holds in ηc for the vertices that belong to PLP
≧ (ηf). A vertex v,

generated during the execution of Algorithm 2.2 for ηc, has to be checked for feasibility by
solving F (v), because we do not know a pre-image for it yet. Furthermore, we still need to

2.5. Computational experiments 39

solve F (v) for any vertex v ∈ (PLP
≧ (ηf))V that does not have a feasible pre-image for ηc in

order to generate the cutting plane that cuts off v in line 3 of Algorithm 2.2.
Regarding the update of the upper bound set, here the incumbent set, there is also

an easily achievable speed-up available: for any integer feasible vertex v ∈ ((PLP
≧ (ηc))V ∩

(PLP
≧ (ηf))V it has already been checked whether it improves the current upper bound set or

not when processing ηf . Thus, only newly generated pre-images of vertices should be used
when updating the upper bound set in line 5 of Algorithm 2.1 at node ηc.

Similarly, by keeping track of the cutting planes generated in node ηc, one can reduce the
number of comparisons done when performing the dominance test in line 9 of Algorithm 2.1.
Let u ∈ N (U) be a local upper bound dominated by the lower bound set in the father node
ηf of ηc. This implies that u ∈ PLP

≧ (ηf), which, by using the definition of a polyhedron in
terms of half-spaces, is equivalent to u ∈

⋂
h∈(PLP

≧
(ηf))H

h+. Hence, we already know that

in ηc, for all the old supporting hyperplanes h ∈ (YLP
N (ηc) + Rp

≧)H ∩ (PLP
≧ (ηf))H , we have

u ∈ h+. As a result, the only way for u to become non-dominated is to be located outside
the half-space corresponding to one of the new facets generated in ηc. Otherwise, it remains
dominated. Hence, the status of u can be determined by looking at the facets generated in η

only.
To conclude, it is possible to derive additional information using Algorithm 2.2 because

its starting point is exactly its ending point in its father node. Hence, we can easily keep track
of how the lower bound set was modified by the new constraints generated from the father
to the child node, and use this information to reduce the number of redundant operations.

2.5 Computational experiments

In this section, we present the results from our experiments conducted on MOCOs and
MOILPs. The purpose of the computational study is to answer the following questions:

1. How do the different algorithm configurations perform, and which configurations per-
form the best?

2. How do the different variable-selection configurations perform? In particular, what is
the best way to choose the bound for branching?

3. How well do the different algorithm parts perform? Especially, how much does warm-
starting improve Algorithm 2.2?

4. How are leaf nodes in the branching tree fathomed?

5. How are the geometrical properties of the lower bound set evolving during the algo-
rithm?

6. How fast can the algorithm prove optimality given a good initial upper bound set?

40 Chapter 2. Warm-starting lower bound set computations

7. How is the performance of the MOBB algorithm compared to an objective space search
algorithm?

All experiments are conducted with a time limit of one hour for solving an instance.

2.5.1 Implementation details and algorithm configurations

All algorithms are implemented in C++17 and compiled using the MSVC compiler with default
options. Experiments are carried out on a personal computer with an Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz processor and 8GB of RAM memory, using Windows 10. The
algorithms are available at https://github.com/NicolasJForget/LinearRelaxationBa

sedMultiObjectiveBranchAndBound/tree/v1.0. Different configurations of Algorithm 2.1
will be tested:

Node selection: A breadth-first strategy is used on line 3 of Algorithm 2.1. Preliminary
experiments showed that there is no clear winner between using a depth-first or a
breadth-first strategy. On the set of instances we considered, breadth-first performed
slightly better on average, and we will stick to that choice for the rest of the experiments.

Calculation of lower bound set: The lower bound set on line 4 of Algorithm 2.1 is computed
using two different configurations:

• LP: At each node η in the branching tree, {yI
LP (η)} + Rp

≧ is used as the initial
outer approximation.

• WLP: At each node η in the branching tree with father node ηf , the lower bound
set PLP

≧ (ηf) of the father node is used to warm-start the computation of the
linear relaxation. In the root node, {yI

LP }+ Rp
≧ is used.

Calls to the single-objective linear programming solver in Algorithm 2.2 are performed
with CPLEX 12.10, using and modifying a single model for the whole branching tree.
When the model is modified, the solution process is initialized using the optimal basis
of the previous model solved. The lower bound polyhedron is stored using a data
structure with a linked vertex-ray and a half-space representation, and updated using
Algorithm 2.3.

Updating the upper bound set: The upper bound set is updated by searching for vertices
in the lower bound set of a node with an integer-feasible pre-image (line 5 of Algo-
rithm 2.1). Each time a new point is added to the upper bound set, the set of local
upper bounds is also updated using the algorithm developed by Klamroth et al. (2015).

Fathoming nodes: A node is checked for fathoming (line 6 of Algorithm 2.1) by first checking
if the node can be fathomed by infeasibility, then by optimality, and finally by dom-
inance using Lemma 2.1. The dominance test terminates when one dominated local

https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound/tree/v1.0
https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound/tree/v1.0

2.5. Computational experiments 41

upper bound is found, or when all local upper bounds have been checked. Moreover, a
non-dominated local upper bound in the father node will remain non-dominated in all
of its child nodes. Hence, it is not necessary to check it again. However, this requires
to keep track locally of the status of each local upper bound in N (U), which evolves
globally. Preliminary experiments showed that if that resulted in minor improvements
when p = 3 (a reduction of a few percentage points of total CPU time), the compu-
tational cost was greater than recomputing the dominance test from scratch in each
node for larger p, due to the larger number of local upper bounds. Consequently, no
information is kept from the father node to the children node, and the dominance test
is performed from scratch at each node.

Variable selection: The variable chosen for branching on line 7 of Algorithm 2.1 is the variable
that is the most often fractional among the vertex solutions in the lower bound set. If
no fractional variable exists, we select the free binary variable with the average value
closest to 0.5. If there is no free binary variable, a general integer variable with different
maximum and minimum values is chosen. If there are ties, the variable with the lowest
index is chosen. Given branching variable xi, two child nodes are created using bound
t. If xi is binary, bound t = 0 is used, i.e. a rule denoted BINARY that branches on
xi = t and xi = t + 1. Given an integer branching variable xi, a bound t ∈ N has to
be chosen, and we branch using constraints xi ≤ t and xi ≥ t + 1. Let {x1

i , . . . , xk
i }

denote the sorted k values in the pre-images of all the vertices of the lower bound set.
We test the configurations:

• MED: Choose z as the floor of the median value of {x1
i , . . . , xk

i }. That is, if the
values are 2.4, 3.3 and 100 then z = ⌊3.3⌋, and if the values are 2.4, 3.3, 50
and 100 then z = ⌊26.65⌋ (average of the two "middle" values). This is expected
to result in more balanced trees, since we are more likely to discard the same
number of vertices in both sub-problems.

• MOFV: Choose bound z such that most pre-images of vertices have xi ∈]z, z + 1[.
The reasoning behind this rule is to discard as many vertices with a non-integer
value on xi as possible in both sub-problems created. If there is no decimal value
for xi the bound is chosen randomly in the range [

⌊
x1

i

⌋
,
⌈
xk

i

⌉
].

• RAND: Choose the bound randomly in the range [
⌊
x1

i

⌋
,
⌈
xk

i

⌉
].

In principle, using LP vs WLP should not affect the branching tree given all other configu-
rations fixed. However, when the pre-image of a vertex is in fact feasible, the LP-configuration
might produce an alternative optimum when solving F (v) whereby a different pre-image
of the vertex v is found. This will, potentially, lead to faster updates of the upper bound
set and different search paths being followed as the pre-images are used to decide on the

42 Chapter 2. Warm-starting lower bound set computations

Table 2.1: Instances used (480 instances in total).

Class pa nb Range Cc %Cd %Ae #f

ILP 3 10, 20, 30, 40 [-100,100] 35 80 40
ILP 4 10, 20, 30 [-100,100] 56 81 30
ILP 5 10, 20 [-100,100] 78 78 20
KP 3 10, 20, 30, 40, 50 [1,1000] 31 100 50
KP 4 10, 20, 30, 40 [1,1000] 54 100 40
KP 5 10, 20 [2,1000] 75 100 20
PPP 3 33, 39, 45, 54, 63 [1,2499] 14 3 50
PPP 4 24, 27, 33, 39, 48, 57 [1,2500] 21 4 60
PPP 5 15, 18, 24, 30, 36 [1,2500] 27 6 50
UFLP 3 42, 56, 72, 90 [1,1000] 88 3 40
UFLP 4 20, 30, 42, 56 [2,1000] 84 5 40
UFLP 5 12, 20, 30, 42 [2,1000] 81 8 40
a Number of objectives.
b Variable sizes.
c Range of the objective function coefficients C.
d Percentage of objective coefficient vectors (one vector of size p per variable) not dominated by other coefficient vectors.
e Percentage of non-zeros in the constraint matrix A.
f Number of instances.

branching variable as well as on the bound. Our test showed, however, that these differences
only affect very few instances, and that the effect is negligible. As a result we only test the
most promising rule (MOFV) for finding the bound (variable selection) for LP.

2.5.2 Test instances

Different problem classes are considered with 3, 4, and 5 objective functions. An overview
is given in Table 2.1. For each problem class, size (number of variables), and number of
objectives, 10 instances are generated. All instances can be obtained from https://github

.com/MCDMSociety/MOrepo-Forget21 and https://github.com/MCDMSociety/MOrepo-

Kirlik14.
The problem class, denoted by ILP, consists of randomly generated MOILPs with up

to 40 variables. These instances were proposed and solved in Kirlik and Sayın (2014). Note
that in general, the constraint matrix for integer models modeling real-life applications is
sparse and structured. We use these instances to investigate how the algorithm performs on
dense and unstructured integer models. Class PPP consists of Production Planning Problems
with up to 63 variables. Both integer and binary variables are included in the model, as
well as “big M” constraints. We refer the reader to Appendix B.1 for a model description
and more details regarding the ranges of the coefficients. Class KP are binary Knapsack
problems with up to 50 variables/items. These instances were proposed and solved in Kirlik
and Sayın (2014). Finally, class UFLP are Uncapacitated Facility Location Problems with
up to 90 variables. It is a combinatorial problem (only binary variables), and the objective
coefficients were generated such that the percentage of objective coefficients not dominated

https://github.com/MCDMSociety/MOrepo-Forget21
https://github.com/MCDMSociety/MOrepo-Forget21
https://github.com/MCDMSociety/MOrepo-Kirlik14
https://github.com/MCDMSociety/MOrepo-Kirlik14

2.5. Computational experiments 43

PPP UFLP

ILP KP

20 30 40 50 60 25 50 75

10 20 30 40 10 20 30 40 50
0

200

400

600

0

5000

10000

15000

20000

0

300

600

900

0

10000

20000

Variable size (n)

|Y
N
|

p = 3 p = 4 p = 5 reached time limit solved

Figure 2.2: Number of non-dominated points. One point for each instance and average
lines are given. Instances that have not been solved to optimality are illustrated with
a transparent point.

by other coefficients is high (approx. 80%). This results in many non-dominated points. We
refer the reader to Appendix B.2 for more details regarding the model and the generation of
coefficients. Note that PPP and UFLP have a sparse constraint matrix compared to ILP.

In Figure 2.2 the number of non-dominated points are given for each instance. We have
increased the variable size for each problem class until the size becomes so large that some
instances cannot be solved within the time limit. The instances which have not been solved
to optimality (19%) are illustrated with transparent points. In general the number of non-
dominated points grows with variable size (n) and number of objectives (p). Note though
that there may be a high variation for fixed n and p. Moreover, the variation grows with
n and p. The number of non-dominated points seems to be correlated with the density of
the constraint matrix (%A in Table 2.1). A dense constraint matrix may in some cases
result in a small feasible solution space corresponding to few non-dominated points. However,
more important factors is the range of the objective coefficients and the percentage of non-
dominated objective coefficients (consider PPP and UFLP). Given a problem class, increasing
these factors will result in a higher number of non-dominated points (Forget, Nielsen, and
Gadegaard, 2020a). Moreover, for UFLP the number of non-dominated points grows rapidly

44 Chapter 2. Warm-starting lower bound set computations

as a function of the number of variables, which is due to the high percentage of objective
coefficients not dominated by other coefficients.

2.5.3 Performance of the different algorithm configurations

First, we rank the configurations with respect to the average CPU time for all solved instances.
The sequence from best to worst for the integer problems with non-binary variables (ILP and
PPP) becomes WLP-MOFV (0%), WLP-RAND (8%), LP-MOFV (10%), and WLP-MED (11%), where
the increase in percentages compared to the best configuration is given in parentheses. For the
combinatorial problems (KP and UFLP), WLP performed on average 44% faster compared
to LP.

A plot of the CPU time for each instance is given in Figure 2.3. Note the variation in CPU
time for the 10 instances given each class and variable size. Warm-starting the computation
(WLP) in general performs better than LP. On average WLP (using the best variable selection
configuration) performed 29% faster compared to LP. This can also be seen in Figure 2.4
illustrating the number of solved instances given a CPU time limit. We have increased the
variable size for each problem class until the size becomes so large that some instances cannot
be solved within the time limit. That is, the number of instances solved before the time limit
is below 100%.

In a few instances LP performed best (fastest in 4% of the instances). We will have a
closer look at the reason for this in Section 2.5.5

2.5.4 Variable selection - Rules for choosing the bound

We are here interested in determining whether one rule for finding the bound (MED, RAND, and
MOFV) is consistently better than the other when considering non-binary integer problems.
Since the effect on the branching tree of using LP vs WLP is negligible, we will consider the
WLP configuration here. By considering the performance profiles in Figure 2.4 we see that
there is no clear winner among MED, RAND, and MOFV.

The MOFV-configuration performed best in 45% of the instances. If we compare with the
second best rule for each instance, the CPU time on average increased with 11 seconds (a
3% increase).

If we take a look at the size of the branching tree in Figure 2.5, then the tree size for MOFV

is not bigger than the one for MED. As a result, we use MOFV in the succeeding experiments,
since MOFV is slightly faster on average and produces the smallest branching tree.

2.5. Computational experiments 45

ILP KP PPP UFLP

p
=

3
p

=
4

p
=

5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

Variable size (n)

C
PU

(s
ec

on
ds

)

LP WLP BINARY MED MOFV RAND

Figure 2.3: CPU times (a point for each instance) with average lines.

ILP KP PPP UFLP

p
=

3
p

=
4

p
=

5

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

CPU (seconds)

%

LP WLP BINARY MED MOFV RAND

Figure 2.4: Number of instances in percent solved given cpu time (seconds). An instance
is considered as unsolved if the cpu time exceed 3600 seconds (time limit). One curve
is depicted for each of the configuration tested.

46 Chapter 2. Warm-starting lower bound set computations

p = 5
ILP

p = 5
PPP

p = 4
ILP

p = 4
PPP

p = 3
ILP

p = 3
PPP

10.0 12.5 15.0 17.5 20.0 15 20 25 30 35

10 15 20 25 30 30 40 50

10 20 30 40 40 50 60
0

500000
1000000
1500000

0
250000
500000
750000

0e+00
2e+05
4e+05
6e+05

0
50000

100000
150000
200000

0
25000
50000
75000

100000
125000

0
10000
20000
30000

Number of variables

N
od

es
in

th
e

br
an

ch
in

g
tr

ee

MED MOFV RAND

Figure 2.5: Tree size for different variable selection rules with average lines.

Table 2.2: Speed-up factor using WLP instead of LP for each problem class and number
of objectives. The rule for choosing the bound is MOFV.

Cpu LPs solved

Class p = 3 p = 4 p = 5 p = 3 p = 4 p = 5

ILP 1.38 1.46 1.22 1.49 1.73 1.80
KP 1.43 1.36 1.12 1.51 1.55 1.50
PPP 1.37 1.69 1.74 1.55 2.15 2.61
UFLP 1.93 1.74 1.17 2.20 2.18 1.95

2.5. Computational experiments 47

2.5.5 Detailed performance of different algorithm parts

In this section, we take a closer look at different parts of Algorithm 2.1. Different speed-up
factors by using WLP instead of LP are given in Table 2.2. The factor is obtained by dividing
the LP value with the WLP value. Only instances with both configurations solved are recorded.
WLP are on average 1.47 times faster than LP with significant differences among the problem
classes, e.g. for problem class UFLP, WLP is on average 1.61 times faster while for class ILP
the speed-up is 1.35.

Most of the CPU time (95% for LP and 91% for WLP) is used on calculating the lower
bound set (Algorithm 2.2) and the speed-up is mainly due to a reduction in the number
of times the linear programming solver has to be called on line 2 in Algorithm 2.2. This
can be seen in Table 2.2. For example, for UFLP WLP is 1.61 times faster and solves 2.11
times fewerlinear programs on average than LP. However, when using WLP the initial outer
approximation has to be copied from the father node into the child node and managing the
polyhedron is harder since we have to check for redundant half-spaces in Algorithm 2.3 (lines
4-12). As a result we have a smaller reduction in CPU times than the reduction in number
of LPs solved.

Since most of the time is used for calculating the lower bound set, let us have a closer
look at the relative usage of the different parts of Algorithm 2.2. An overview is given in
Figure 2.6 where the different parts are:

Initialization Proportion of time used to calculate the outer approximation with polyhedron
({yI

LP } + Rp
≧ for LP, and time to copy the lower bound set from the father node for

WLP. That is, time used to find the input on line 1 of Algorithm 2.2.

Solve LPs Proportion of time used to solve linear programs in CPLEX (line 2 of Algo-
rithm 2.2).

Update polyhedron Proportion of time used for updating the polyhedron using Algorithm 2.3.

Other Proportion of time used on other parts of Figure 2.6, such as picking a vertex in
the polyhedron (line 2), retrieving pre-images from CPLEX’s ouput, checking the
pre-image of a point from the father node...

First, note that the proportion of time for initialization is much higher for LP compared to
WLP. For WLP the time for copying the lower bound set from the father is negligible. Second,
note that the cost of updating the polyhedron increases with the number of objectives.
This is an observation that was also made by Csirmaz (2015), who showed that in higher
dimensions (p = 10 in their paper), updating the polyhedron was actually the bottleneck
of the Benson-like algorithm. This also explains why the speed-up factors in Algorithm 2.1
in general decrease with the number of objectives while the reduction of linear programs

48 Chapter 2. Warm-starting lower bound set computations

83.8

4.2

9.82.2

90.8

6.4

1.61.2

79.6

4.2

13.52.7

90

6.5

1.52

70.2

2.2

21.6
6

87.5

4.1

1.17.3

86.1

3.1

8.32.5

91.1

4.8

1.13

78.8

12.4

7.31.5

78.3

19.8

2.3

-0.4

76.6

10.3

11.21.9

80.9

16.8

1.90.5

64.7

3.7

27.1
4.5

84.2

7.7

1.86.3

74

10.1

13.72.1

78.2

18.5

2.11.1

56.3

36.3

6.41
46.7

52.1

1.9

-0.7

63.9

23.6

111.5
59.5

38.7

1.8

-0.1

61.1

5.3

30.5
3.2

80.8

12.8

2.73.7

51.7

37.2

9.91.1
40.1

58.6

1.4

-0.1

3 4 5
ILP

K
P

PPP
U

FLP

LP WLP LP WLP LP WLP

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

pe
rc

en
t

of
to

ta
lC

PU
tim

e

Initialization Other Solve LPs Update polyhedron

Figure 2.6: Proportion of the cpu time spent in the different components of Algo-
rithm 2.2.

solved in general increase. Even though we solve relatively fewerlinear programs for increasing
p, we have to use more time on updating the polyhedron containing the lower bound set.
Hence alternative lower bound sets that does not require to manage a polyhedron, or at least
fewerpolyhedral operations, may be preferred in higher dimensions. Next, note that updating
the polyhedron takes a higher proportion of time for WLP. This is because we have to check
for redundant half-spaces (lines 4-12 in Algorithm 2.3). Finally, observe that even though we
have a high reduction in the number of linear programs solved for WLP the proportion of time
used for solving linear programs is still the most predominant (except for UFLP, p = 5).

2.5.6 Fathoming nodes

In this section we take a closer look at how nodes are fathomed. Recall that a node is checked
for fathoming by first checking if the node can be fathomed by infeasibility, next optimality,
and finally by dominance. The results are illustrated in Figure 2.7 where the proportion of

2.5. Computational experiments 49

58.7

3.2

38.1

7

16.8

76.2

16.4

10.2

73.3

0

42.4

57.6

66.5

7.1

26.4

10.8

30.1

59.1

20.7

20.4

58.9
0

77.4

22.6

65.8

15.3

18.9

17.5

34.6

47.8

13.8

37.3

48.9

0

93.5

6.5

3 4 5

ILP KP PPP UFLP ILP KP PPP UFLP ILP KP PPP UFLP

0

25

50

75

100
pe

rc
en

t
of

le
af

no
de

s

Dominance Infeasibility Optimality

Figure 2.7: Proportion of leaf nodes fathomed by infeasibility, optimality and domi-
nance.

leaf nodes fathomed by infeasibility, optimality and dominance are given.
It appears from Figure 2.7 that different behaviors are observed for the different problem

classes. However, for all problem classes, the proportion of leaf nodes fathomed by dominance
decreases as the number of objectives increases. The reason for this is that the likelihood
of a point is non-dominated increases as we add dimensions to the objective space, which
makes the nodes harder to prune by dominance.

Similarly, the proportion of nodes fathomed by optimality increases, which means that
nodes with a unique integer vertex in the lower bound set are less rare for higher dimensional
problems. Since these nodes are more likely to appear deep in the tree where many variables
are fixed, it suggests that the branch-and-bound algorithm develops deeper trees when
more objective functions are considered - again this is consistent with the fact that as the
number of objectives increases, generating all non-dominated outcomes comes closer to a
total enumeration of the decision space.

2.5.7 Geometric properties of the lower bound set during
the algorithm

In this section, we take a closer look at the polyhedral properties of the lower bound sets
found at each node in the branching tree during the algorithm. In Figure 2.8 statistics about
the number of facets and vertices in YLP

N (η) and facets with rays in PLP
≧ (η), i.e. extra facets

50 Chapter 2. Warm-starting lower bound set computations

Vertices in YLP
N (η)

ILP
Vertices in YLP

N (η)
KP

Vertices in YLP
N (η)

PPP
Vertices in YLP

N (η)
UFLP

Facets with rays in PLP
≧ (η)

ILP
Facets with rays in PLP

≧ (η)
KP

Facets with rays in PLP
≧ (η)

PPP
Facets with rays in PLP

≧ (η)
UFLP

Facets in YLP
N (η)

ILP
Facets in YLP

N (η)
KP

Facets in YLP
N (η)

PPP
Facets in YLP

N (η)
UFLP

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40
0

2000

4000

0

1000

2000

0

400

800

1200

0

2

4

6

0

20

40

60

80

0

10

20

30

0

100

200

300

0

200

400

600

0

200

400

600

0

50

100

150

0

200

400

0

100

200

branching tree depth

p = 3 p = 4 p = 5
n

10
12
15

18
20
21

24
27
30

33
36
39

40
42
45

48
50
54

56
57
63

72
90

Figure 2.8: Average number of facets and vertices in the lower bound set and polyhedron
calculated using Algorithm 2.2.

needed for the full-dimensional polyhedron PLP
≧ (η) is given. The numbers are given as a

function of the depth of the branching tree with a line for each p and n.
First, note that the numbers decrease as a function of the depth of the branching tree,

e.g. as we branch deeper the lower bound set has fewer facets and vertices.
Second, consider a problem class and a fixed number of variables n. As the number

of objectives grows, the lower bound sets contain more facets and vertices. That is, more
objectives generate more complex lower bound sets, which is mainly due to the dimension
increase of the lower bound set. The same holds for fixed number of objectives p. As n grows
the lower bound sets contain more facets and vertices. That is, larger problem sizes generate
more complex lower bound sets.

Third, consider the decrease in the numbers as the depth grows for each problem class.
For ILP and KP the numbers decrease slower compared to PPP and UFLP. This is probably
due to the fact that when we branch in PPP and UFLP the subproblems become more
restricted resulting in smaller lower bound sets faster (fixing a y variable in these problem
classes implicitly fixes some x variables). This is not the case for ILP and KP, which do not
have these implication relations between the variables and hence fixing a variable does not

2.5. Computational experiments 51

restrict the objective space as much.
Next, compare the number of vertices among problem classes. The number of vertices

for PPP is lowest and highest for UFLP. That is, the lower bound sets in PPP are relatively
simple compared to the UFLP and hence much faster to calculate and update (see Figure 2.6).
Indeed, the proportion of cpu time spent in finding the initial polyhedron is very large
compared to other problem classes, which suggests that only a few iterations are required to
solve the linear relaxation once the initial polyhedron is found. That is particularly beneficial
to WLP since, as we observe in Figure 2.6, warm-starting Algorithm 2.2 significantly reduces
the initialization part of the algorithm.

If we consider the number of facets including rays in the polyhedron we can see that
it increases rapidly with increasing p and for p = 5 it is higher than the number of facets
(without rays) in the lower bound set (except for UFLP). That is, managing and updating
the full-dimensional polyhedron instead of just the lower bound set seems to come at a higher
cost as p increases.

Finally, recall the size of the non-dominated sets in Figure 2.2. Here the size of the
non-dominated set for PPP is high. However, the number of vertices in the lower bound set is
low. That is, problems with large non-dominated sets may generate (often weak) lower bound
sets with few vertices. The opposite is also true. For ILP and KP the number of vertices is
relatively higher compared to the size of the non-dominated set. That is, the relationship
between the number of vertices and number of non-dominated points (i.e. the upper bound
set) is problem specific.

2.5.8 Proving optimality

It is well known that it is crucial in single objective integer linear optimization to obtain
a strong upper bound early during the branch-and-bound algorithm. This is to increase
the potential for fathoming nodes based on the bound. Generalizing to MOILP, obtaining
a strong upper bound set might also increase the potential for fathoming nodes based on
dominance, thus leading to smaller trees and consequently lower CPU times.

In order to investigate the potential of such a strong upper bound set found early, we
have run the algorithm where the upper bound set is initialized by YN (using WLP with
MOFV or BINARY). That is, on line 1 of Algorithm 2.1 we replace U ← ∅ with U ← YN . This
corresponds to having a very fast and effective heuristic.

As can be seen from Figure 2.9 the reduction in CPU time is significant. On average
over all the instances the speed-up factor is 2.06 meaning that on average, not providing an
optimal solution at the root node, makes the cpu time increase with 106%.

As there is no significant computation time involved in generating solutions in our branch-
and-bound algorithm (feasible solutions are simply harvested from integer feasible vertices

52 Chapter 2. Warm-starting lower bound set computations

ILP KP PPP UFLP
p

=
3

p
=

4
p

=
5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0
1000
2000
3000

0
1000
2000
3000

Variable size (n)

C
PU

(s
ec

on
ds

)

WLP-UB WLP

Figure 2.9: CPU times (with average lines) for WLP and WLP with the non-dominated
set used as initial upper bound set in the root node (WLP-UB).

of the lower bound sets), the speed-up must come from the increased fathoming potential.
The number of nodes in the branching tree on average decrease with 30% for WLP-UB. Note
also, that in the WLP-UB configuration, the algorithm still check whether each integer feasible
vertex of the lower bound sets found should enter the upper bound set, which underlines the
fact that the reduction in computation time comes from the increased fathoming potential.

Concluding, it seems that, just as is the case for single objective integer programming,
generating a strong upper bound set in the early stages of the algorithm may have a significant
positive impact on the performance on the algorithm,

2.5.9 Performance of the MOBB algorithm compared to an
objective space search algorithm

The performance of the MOBB algorithm was compared to the Objective Space Search
(OSS) algorithm by Kirlik and Sayın (2014). A C++ implementation of the algorithm was
obtained from Kirlik (2014). We are aware that there exist more recent OSS algorithms that
outperform Kirlik (2014), in particular for p ≥ 4 (such as Tamby and Vanderpooten (2021));
however, since no C++ implementation is available and the implementation of existing OSS
algorithms is not the purpose of this paper, the algorithm by Kirlik and Sayın (2014) was
used.

The current development of OSS algorithms is more mature and the algorithms may
outperform MOBB algorithms. Moreover, OSS algorithms benefit from the power of single-
objective MIP solvers, which have been improved over decades. Having this in mind, the

2.5. Computational experiments 53

ILP KP PPP UFLP
p

=
3

p
=

4
p

=
5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0
1000
2000
3000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

Variable size (n)

C
PU

(s
ec

on
ds

)

OSS WLP

Figure 2.10: CPU times for OSS and WLP (using MOFV) with average lines.

purpose of this study is not necessarily to outperform the OSS algorithm, but rather to
discuss and thoroughly analyse the concept of objective branching in a MOBB algorithm
against an OSS algorithm. Indeed, we do believe that it will take further research before
reaching a competitive MOBB algorithm, and we propose here a first step towards an efficient
implementation. Moreover, our research may result in an advancement of the development
of promising methods that hybridize decision space and objective space search methods.

The code by Kirlik and Sayın (2014) was updated to work with CPLEX 12.10 and com-
piled using the MSVC compiler with default options. The results are shown in Figure 2.10.
The OSS algorithm is tested against the best configuration of our branch-and-bound frame-
work (WLP with MOFV or BINARY). Different winners with respect to CPU time are observed.
First, it appears that this OSS algorithm performs better on instances with three objective
functions. However, as the number of objective functions increase, the trend is reversing and
the MOBB algorithm becomes better than the OSS algorithm for all problem classes when
p = 5.

When looking more closely at the case p = 3, note that the gap in terms of CPU time
between the MOBB algorithm and the OSS algorithm is lowest for problem classes with
many non-dominated points, namely PPP and UFLP. The OSS algorithm is sensitive to
increasing number of non-dominated points since one single-objective ILP is solved for each
non-dominated point during the OSS algorithm. Contrary, many non-dominated points may
be found at the same time in some of the nodes of the branch-and-bound tree. This supports
a better performance of the MOBB algorithm when handling more objectives, as more

54 Chapter 2. Warm-starting lower bound set computations

Table 2.3: Some instances solved with a time limit increased to 4 hours. KP for p = 5
were not added since all instances are solved in less than one hour. ILP for p = 5 are
not added since all instances resolved resulted in more than 4 hours CPU time for WLP
and OSS.

Class pa nb |YN |c WLP d OSS e Speedupf Proportiong ϵh ϵ̄i

PPP

3 63 1309 4421.91 82.63 0.02 39.7 4.3 0.5
8093 2827.16 1213.28 0.43 100 0.0 0.0

4 33 33453 4620.17 > 14400 > 3.12 89.6 0.4 0.0
12844 1120.48 > 14400 > 12.50 100 0.0 0.0

5 36 25041j > 14400 > 14400 - - - -
25409 8623.28 > 14400 > 1.69 60.6 2.4 0.1

UFLP

3 90 10623 4935.04 3687.22 0.54 96.5 0.8 0.0
8557 3661.84 2934.19 0.80 99.4 0.4 0.0

4 56 15797 3640.48 > 14400 > 3.99 100 0.5 0.0
20088 5748.01 > 14400 > 2.50 98.7 1.8 0.0

5 42 12968 4258.93 > 14400 > 3.32 100 0.0 0.0
10441 3796.83 > 14400 > 3.84 100 0.0 0.0

ILP
3 40 187 > 14400 399.88 < 0.03 3.7 11.9 4.3

253 10176.10 127.55 0.01 7.5 10.9 2.8

4 30 572 > 14400 772.08 < 0.06 9.3 14.7 3.7
920 > 14400 1979.75 < 0.14 9.4 12.1 2.9

KP
3 50 557 5523.37 45.22 0.01 53.9 7.0 0.8

383 3610.06 29.99 0.01 62.4 6.0 0.5

4 40 901 7378.62 2672.89 0.36 10.2 10.8 2.7
1435 5966.67 > 14400 > 2.44 22.4 11.1 2.3

a Number of objectives.
b Number of variables.
c Number of non-dominated points.
d CPU time when solving using WLP.
e CPU time when solving using OSS.
f Speedup ratio obtained by dividing the CPU time of OSS by the CPU time of WLP.
g Proportion of non-dominated points found after one hour of running WLP, in percentage.
h The upper bound set obtained after one hour is an ϵ-approximation of YN .The number reported is 100ϵ, and

can be interpreted as a percentage of the distance between yI and yN .
i The number reported is 100ϵ̄, and can be interpreted as a percentage of the distance between yI and yN .
j As the instance was solved by none of the algorithm, the size of the upper bound set at the 4 hours time

limit using WLP is reported instead.

non-dominated points are expected when considering more objectives.
To test the algorithms with longer running time, we extended the time limit to 4 hours,

and considered two unsolved instances (either for WLP or OSS) for each problem class and
number of objectives. The two instances with the lowest and highest upper bound set was
picked among the unsolved instances. If only one instance was unsolved, we chose the instance
solved with the largest cpu time for WLP for the second instance. The results are given in
Table 2.3 containing CPU times, speedup ratios and approximation measures.

An ϵ-approximation of YN is a set Ȳ such that for each y ∈ YN , there exists ȳ ∈ Ȳ such
that ȳ − ϵ∆ ≦ y, where ∆ = yN − yI . This can be interpreted as the maximal proportion of
the distance between the ideal and the nadir point one need to shift the points in Ȳ to satisfy

2.6. Conclusion 55

this condition. To find ϵ, we extracted the the upper bound set after one hour (denoted by
Ū), and calculated the ϵ needed such that Ū is an ϵ-approximation of YN . We also reported
the average value ϵ̄ of ϵ needed for for each non-dominated point, i.e. ϵ̄ = 1

|YN |
∑

y∈YN
ϵy,

where ϵy is the minimal value ϵ̂ such that there exists ȳ ∈ Ū such that ȳ − ϵ̂∆ ≦ y.
Consider Table 2.3. First, observe even beyond the one hour time limit, the MOBB

algorithm exhibit the same behavior as when given the limit. The OSS algorithm performs
better on instances with three objective functions and as the number of objective functions
increase, the trend is reversing and the MOBB algorithm becomes better than the OSS
algorithm. Indeed, MOBB is most competitive compared to the OSS algorithm on problems
that exhibit a large number of non-dominated points.

Second, for UFLP, the proportion of non-dominated points obtained within one hour is
very high even though the total computation time is not necessarily that close to one hour.
This shows that for this problem class, the MOBB algorithm spend a lot of time obtaining a
few missing non-dominated points and trying to prove optimality. This observation confirms
the results from Figure 2.9, where having YN as upper bound set did not significantly reduce
the total CPU time for UFLP. Also, it implies that in some cases, stopping the MOBB
prematurely is likely to provide a good approximation of YN . This is not necessarily the case
if an OSS algorithm is stopped early, since at most one non-dominated point is generated
at each iteration whereas multiple solutions can be harvested at a single node in a MOBB
algorithm.

Next, the approximation found is of good quality for UFLP and PPP. The value of ϵ̄ is
very close to 0, which implies that on average, Ū is very close to YN . For KP and in particular
ILP the approximation is of lower quality but still relatively good.

Finally, observe that ϵ̄ is significantly lower than ϵ. This suggest that in some part of the
objective space, the approximation is of good quality, but there are may be a few regions in
which no good feasible solution is found yet. Identifying such regions and intensifying the
search in those may be beneficial in case of an early stop of the MOBB algorithm.

2.6 Conclusion

In Section 2.3, we implemented a branch-and-bound algorithm that can solve any MOILP
with any number of objectives. It was inspired by the recent successful bi-objective frameworks
found in the literature, and then adapted to the multi-objective case. In particular, it was
based on the use of linear relaxations to generate lower bound sets, and used a Benson-like
algorithm to do so. We also pointed out that in case integer variables exists in the problem
solved, we need to chose the bound imposed on the branching variable in the child nodes
in addition the variable to branch on. This decision is not trivial anymore when there exist

56 Chapter 2. Warm-starting lower bound set computations

two points or more in the lower bound set. We tested three different rules in Section 2.5
and showed that despite the fact that they performed quite similarly in practice, there are
instances where the choice has a significant impact in terms of total CPU time.

Moreover, in Section 2.4 we proposed a way to accelerate the computation of the linear
relaxation in the specific context of a multi-objective branch-and-bound algorithm. It relies
on the use of the lower bound set from the father node to warm-start the solution process in
the current node. Our experiments showed that this led to a great reduction in the number
of calls to the single-objective linear programming solver, which resulted in a significant
speed-up for most of our instances. However, warm-starting the lower bound set computation
comes at a greater cost of managing the polyhedra coresponding to the lower bound sets.
A consequence of that is a decrease in the speed-up as the number of objective functions
increases.

This latter observation suggests that for high-dimensional problems, it may be preferred
to use a lower bound set that does not require as many polyhedral operations as the one
used in this paper. An alternative approach could be to use an implicit lower bound set as
defined in Gadegaard et al. (2019) instead of explicitly computing the linear relaxation. In
such an approach, line 4 of Algorithm 2.1 is skipped, and a linear program similar to F (u)
is solved to check whether a local upper bound u is dominated by the lower bound set.

Besides, in the recent bi-objective literature, methods that use information from the
objective space to enhance the DSS algorithm have proven to be very efficient. Extending
these concepts to the case where p ≥ 3 may then be of great interest and may potentially
result in an even more efficient DSS algorithm.

Finally, similar to the single-objective case, the branch-and-bound algorithm could be
stopped early to obtain an approximation of YN . Our computation study showed that
the upper bound set obtained after stopping the MOBB early could provide a very good
approximation of YN , but also that there could be some regions of the objective space in
which the quality of the approximation decreases. We believe that developing a procedure
that intensifies the search in such regions could be beneficial to the MOBB algorithm, in the
sense that approximations of better quality could be obtained if the algorithm is stopped
early. A possible approach would be for example to design an appropriate node selection
rule.

2.A. Notes on the the unbounded case 57

2.A Notes on the the unbounded case

It was assumed in the paper that the MOILP under scrutiny had a bounded feasible set. In
this appendix we will briefly demonstrate how the algorithm developed in this paper is able
to detect unbounded MOILPs.

As oppose to MOCO problems, when introducing a general integer variable xi ∈ N in
the model, there is not necessarily finite bounds given on the value of xi, and, depending
on the other constraints of the problem, xi could take an infinite number of values. In the
single-objective case, an optimization problem min{z(x) | x ∈ X} is said to be unbounded if,
for all l ∈ R there exists an x ∈ X such that z(x) < l. In the single-objective case, detecting
unbounded integer programs was already studied several decades ago. In particular, the
following theorem has been stated:

Theorem 2.2 (Byrd, Goldman, and Heller (1987)). Let P be a single-objective integer
program with a constraint matrix denoted by A. If A has rational entries only and if P LP ,
the linear relaxation of P , is unbounded; then P is either infeasible or unbounded .

For the remainder of the discussion, we will only consider constraint matrices with
rational coefficients. In order to investigate unboundedness in MOILPs we formally define
an unbounded MOILP as follows

Definition 2.4. Given a MOILP min{Cx |x ∈ X}, we say that the MOILP is unbounded
if there exists a vector λ ∈ Rp

≧ such that for all l ∈ R there exists an x̂ ∈ X for which

λCx̂ < l

Thus, we define a MOILP to be unbounded if there exists a weighted sum scalarization
(with non-negative weights), which is unbounded in the single objective sense. From this
definition, in combination with Theorem 2.2, the unboundedness of a MOILP can be detected
by inspecting whether there exists a weighted sum scalarization whose linear relaxation is
unbounded. In that case, the MOILP is either unbounded or infeasible as the MOILP has
the same feasible set as any weighted sum scalarization hereof.

When using Algorithm 2.2 for solving the linear relaxation, no weighted sum scalarization
is solved directly. However, unboundedness can be detected by inspecting the extreme rays
of YLP

N +Rp
≧. Let r be an extreme ray of YLP

N +Rp
≧ such that at least one of its components

is strictly positive, and another is strictly negative. When moving along such an extreme ray,
because of the conditions on r, at least one objective function value will increase, meanwhile at
least another one will decrease. This imply that the weighted sum for which the hypothetical
extreme point located infinitely far at the end of the ray is optimal is unbounded, meaning
that the MOILP is unbounded in the sense of Definition 2.4.

58 Chapter 2. Warm-starting lower bound set computations

2.B Problem classes

2.B.1 Production Planning Problem

At each period, t ∈ T , a fixed demand, dt, for a product is known. This demand must be met
from either production in the period, from the inventory or as a combination of produced
and stored items. The production in period t is given by xt while the number of items in
inventory at the end of period t is given by st. Both xt and st are assumed to be integers.

If at least one unit is produced at period t, a fixed cost is incurred. The variables yt

indicate whether at least one item is produced at time t (yt = 1) or not (yt = 0).
The multi-objective production planning problem (PPP) with p objectives can then be

described as the following MOILP:

min
T∑

t=1
(ck

t xt + hk
t st + fk

t yt) ∀k ∈ {1, ..., p}

s.t. xt + st−1 = st + dt ∀t ∈ {1, . . . , T}

xt ≤Myt, ∀t ∈ {1, . . . , T}

s0 = 0,

xt, st ∈ N ∀t ∈ {1, . . . , T}

yt ∈ {0, 1} ∀t ∈ {1, . . . , T}

The production costs, storage costs, and fixed costs are given by ck
t , hk

t , and fk
t , respec-

tively. Production and storage costs are generated randomly in the interval [1, 100], and fixed
costs in the interval [1, 2500]. The demands, dt, are generated randomly in [1, 50]. The total
number of variables is given by 3T , and the number of constraints is 2T . The parameter M

in the indicator constraints is given by M =
∑T

t=1 dt.

2.B.2 Uncapacitated Facility Location Problem

In this problem, there is a set of l locations where a facility can be opened, and a set of
r customers that each have to be assigned to a location. Two decisions have to be made:
which locations to open and which customers to assign to which facilities. Both opening
a facility and assigning a customer to an open facility induces a cost, and the overall cost
has to be minimized. Let yj = 1 if a facility is opened at location j, and yj = 0 otherwise,
∀j ∈ {1, ..., l}. Furthermore, let xij = 1 if customer i is assigned to location j, and xij = 0
otherwise, ∀i ∈ {1, ..., r},∀j ∈ {1, ..., l}.

The multi-objective uncapacitated facility location problem (UFLP) with p objectives
can be formulated as the following MOCO problem

2.B. Problem classes 59

min
r∑

i=1

l∑
j=1

ck
ijxij +

l∑
j=1

fk
j yj ∀k ∈ {1, ..., p}

s.t.
l∑

j=1
xij = 1 ∀i ∈ {1, . . . , r}

xij ≤ yj ∀i ∈ {1, . . . , r}, j ∈ {1, . . . , l}

xij ∈ {0, 1} ∀i ∈ {1, . . . , r}, j ∈ {1, . . . , l}

yj ∈ {0, 1} ∀j ∈ {1, . . . , l}

The cost for assigning customer i to facility j in objective k is given by ck
ij . The assign-

ment costs belongs to the interval [1, 1000] and is generated on the non-dominated part (in
minimization) of an hypersphere of dimension p (see Nielsen (2020) for further details). The
cost for opening a facility on location j is given by fj . The fixed opening costs are generated
from the interval [1, 100] and, like the assignment costs, these coefficients are generated on
the non-dominated part (in minimization) of an hypersphere of dimension p. The number of
variables in this problem is n = l(r + 1).

; Third Chapter <

Branch-and-bound and objective branching
with three or more objectives

History: This chapter has been prepared in collaboration with Sune Lauth Gadegaard,
Kathrin Klamroth, Anthony Przybylski, and Lars Relund Nielsen. Preliminary results were
obtained prior to the PhD in collaboration with Kathrin Klamroth and Anthony Przybylski,
and presented at an internal seminar in November 2019 at Aarhus University, Denmark. The
work was then further developed, and presented again at the RAMOO workshop in 2020 in
Linz, Austria. The latest version, improved by the results from Chapter 2, has been accepted
for publication in Computers & Operation Research.

62 Chapter 3. Objective branching

Branch-and-bound and objective branching with
three or more objectives

Nicolas Forget*, Sune Lauth Gadegaard*, Kathrin Klamroth**, Lars
Relund Nielsen, Anthony Przybylski***

* Department of Economics and Business Economics, School of Business and Social
Sciences, Aarhus University, Denmark

** School of Mathematics and Natural Sciences, University of Wuppertal, Germany
*** Faculty of Science and Technology, University of Nantes, France

Abstract

The recent success of bi-objective Branch-and-Bound (B&B) algorithms heavily relies
on the efficient computation of upper and lower bound sets. These bound sets are used as a
supplement to the classical dominance test to improve the computational time by imposing
inequalities derived from (partial) dominance in the objective space. This process is called
objective branching since it is mostly applied when generating child nodes. In this paper, we
extend the concept of objective branching to multi-objective integer optimization problems
with three or more objective functions. Several difficulties arise in this case, as there is
no longer a natural order among non-dominated objective vectors when there are three or
more objectives. We discuss the general concept of objective branching in any number of
dimensions and suggest a merging operation of local upper bounds to avoid the generation
of redundant sub-problems. Finally, results from extensive experimental studies on several
classes of multi-objective optimization problems are reported.

Keywords: multi-objective combinatorial optimization; multi-objective integer program-
ming; branch & bound; objective branching; bound sets.

3.1 Introduction

In many real-world problems, often more than one objective need to be optimized. Indeed, a
decision maker may be interested in minimizing one objective, e.g., operational costs, while
at the same time maximizing customer satisfaction. These different objectives are often

3.1. Introduction 63

conflicting, and hence, we cannot realistically expect to find a single solution that optimizes
all objectives simultaneously. Thus, a set of trade-off solutions should be produced and, for
this purpose, a multi-objective optimization problem must be solved. More precisely, we
are interested in generating all rational compromises between the conflicting objectives of
multi-objective integer linear optimization (MOILP) problems, where all variables are integer.
In this paper we will consider multi-objective optimization problems with three or more
objective functions that must be optimized simultaneously. A particular type of MOILP,
called multi-objective combinatorial optimization (MOCO) problem, has received a specific
attention in the literature. Also, although most research has focused on bi-objective MOILP
problems, the interest in MOILP problems with more objectives has risen during the last
10-20 years.

The methodology for solving MOILP can be roughly divided into two main groups:
objective space and decision space search algorithms. As the names suggest, the two method-
ologies work in the space of the objective functions and the space of the decision variables,
respectively. A rather large body of literature exists on objective space search algorithms.
The objective space search algorithms work by scalarizing the MOILP problem and then
solving a series of single objective optimization problems, thus utilizing the power of modern
commercial integer programming (IP) solvers.

A rather straightforward approach for MOILP problems was proposed by Sylva and
Crema (2004). They solve a series of IPs that becomes more and more constrained as non-
dominated points are generated. The procedure leads to the solution of exactly |YN |+1 single
objective IPs where YN is the set of non-dominated objective vectors. Despite its simplicity
and low number of IPs solved, the disjunctive nature of the added constraints makes the IPs
excessively hard to solve, even after generating only a small subset of the non-dominated
points.

During the last 10 years, more advanced objective space search algorithms solving more
but easier IPs have been proposed. The interested reader is referred to Ozlen et al. (2014)
for an algorithm based on recursion that can handle an arbitrary number of objectives; to
Dächert and Klamroth (2015) and Klamroth et al. (2015) for a decomposition into pairwise
non-redundant search zones in three and in arbitrary dimensions, respectively. Tamby and
Vanderpooten (2021) developed an efficient strategy to enumerate these search zones using
ε-constraint scalarizations. Finally, Kirlik and Sayın (2014) and Boland et al. (2017) proposed
methods based on ε-constraint scalarizations in combination with dimension reduction for
the multi and tri-objective cases, respectively, and Boland and Savelsbergh (2016) proposed
the L-shaped search method for problems with three objectives.

One of the main drawbacks of the objective space search algorithms is that an immense
amount of information about the search is lost every time a new IP is solved by the black-box

64 Chapter 3. Objective branching

solver, as the branching trees created by the solver cannot be directly reused after adding
constraints on the objective functions. This problem can be circumvented if the search
procedure employs a “one-tree” search strategy where the method searches for efficient
solutions in the decision space instead of searching for non-dominated points in the objective
space.

One of the first Branch-and-Bound (B&B) based algorithms for multi-objective integer
programming problems was developed by Klein and Hannan (1982). The algorithm uses post
optimality techniques to solve a series of integer problems all in one tree structure. In the
1980s and 1990s, only a few papers on multi-objective B&B algorithms were published, and
the authors have only been able to identify the paper by Kiziltan and Yucaoğlu (1983), in
which a general B&B framework is developed. For problem specific procedures based on
decision space search algorithms, we refer the reader to Ulungu and Teghem (1995, 1997);
Ramos et al. (1998), and Visée et al. (1998).

During the last 20 years, increasing attention has been given to decision space search
methods: Mavrotas and Diakoulaki (1998) developed a B&B methodology that even allows
for some of the variables to be continuous, and they later refine some parts of the algorithm
in Mavrotas and Diakoulaki (2005). The algorithm is applied to the multi-objective, multi-
dimensional knapsack problem in Florios et al. (2010). It was later shown by Vincent et al.
(2013) that the algorithm by Mavrotas and Diakoulaki (1998) is incorrect as it might return
dominated solutions that are considered non-dominated by the algorithm. This problem is
remedied for the bi-objective case by Vincent et al. (2013). The mixed-integer case was also
explored by Belotti et al. (2013) and Adelgren and Gupte (2022) for the bi-objective case.

The contributions on decision search space algorithms mentioned above all solely rely on
variable branching and use a single ideal/utopian point as the lower bound for fathoming
nodes in the branching tree, except Vincent et al. (2013) who test additional lower bound
sets, such as the linear and convex relaxations, and Belotti et al. (2013) and Adelgren and
Gupte (2022) who also rely on the use of the linear relaxation. Sourd and Spanjaard (2008)
continue to use branching on single variables as well, but introduce a bounding procedure
that is based on a set of points instead of a single ideal point of the branching node: the
branching node under scrutiny can be fathomed if a hypersurface separates the set of feasible
points in the subproblem from the incumbent set.

This idea is further developed in Stidsen et al. (2014) for the bi-objective case where
hyperplanes obtained from solving a weighted sum scalarization of the LP relaxation are used
as a lower bound set. Furthermore, Stidsen et al. propose what they call Pareto branching,
which essentially uses some of the ideas from objective space search algorithms but embed
them in a decision space search strategy. The algorithm is further developed in Stidsen
and Andersen (2018) where the objective space is partitioned in so-called slices that make

3.1. Introduction 65

parallelization possible in completely non-overlapping subproblems leading to no information
sharing between parallel processes.

The concept of Pareto branching is further developed by Parragh and Tricoire (2019)
and by Gadegaard et al. (2019) who, independently, propose to partition the objective space
into disjoint areas defined by local upper bounds dominated by a lower bound set. Parragh
and Tricoire propose to generate the extreme supported points of each node and use those
points to generate a lower bound set, whereas Gadegaard et al. use the efficient points of
the bi-objective LP relaxation with additional cutting planes as a lower bound set. Parragh
and Tricoire (2019) show that their algorithm is particularly efficient compared to objective
space search algorithms when the polyhedral description can be significantly improved since
in this case, “problem specific” knowledge can be used throughout the algorithm, whereas
objective space methods repeatedly call standard IP-solvers that solve the IPs from scratch
over and over again. For a recent survey on the components of multi-objective B&B, the
reader is referred to Przybylski and Gandibleux (2017).

Recently, attention was given to multi-objective branch-and-bound frameworks. Santis
et al. (2020) and Forget, Gadegaard, and Nielsen (2022) independently developed a generic
linear-relaxation based multi-objective branch-and-bound framework that can handle three
or more objective functions. The main difference lies in the computation of the lower bound
set and the problem class solved. Santis et al. (2020) aim at solving mixed-integer convex
optimization problems. In their framework, they solve a single-objective linear program for
each local upper bound for which it is not known whether it is dominated by the linear
relaxation. In case they conclude that the local upper bound is dominated by the lower
bound set, the dominance test stops. Otherwise, they generate a cutting plane that may
allow them to detect other non-dominated local upper bounds without solving a linear
program. This is an improved version of the implicit lower bound set computation proposed
for the bi-objective case by Gadegaard et al. (2019). In Forget et al. (2022), the focus is
on multi-objective integer linear optimization problems. They explicitly compute the linear
relaxation by using an outer approximation method (see Benson (1998), and Hamel et al.
(2013), Csirmaz (2015), and Löhne and Weißing (2020) for improvements), and accelerate
its computation by warm-starting the outer approximation algorithm using the lower bound
set from the father node.

However, none of these methods utilize the information from the objective space in order
to speed up the algorithm, as it is done in most state-of-the-art bi-objective branch-and-
bound frameworks. Hence, in this paper, we aim at extending Pareto branching to problems
with three or more objective functions. The main contribution of this paper is fourfold:

1. We highlight difficulties and differences that arise when applying objective branching
to problems with an arbitrary number of objective functions, in contrast to the bi-

66 Chapter 3. Objective branching

objective case.

2. We introduce the concept of super local upper bounds in order to limit the computation
of redundant LP relaxations and propose an algorithm that computes a uniquely defined
set of such super local upper bounds.

3. A set of useful properties for objective space branching is established, and we show
that the suggested branching scheme satisfies these properties. Hence, we generalize
objective space branching to an arbitrary number of objective functions.

4. The proposed algorithm is evaluated by an extensive computational study based on
sets of multi-objective integer linear optimization problems that exhibit a variety of
structural properties.

The remainder of the paper is organized as follows. Preliminary definitions and notation
for multi-objective optimization are given in Section 3.2. Our multi-objective B&B framework
is described in Section 3.3. Section 3.4 outlines the principle of objective branching, presents
the difficulties that arise with three objectives and develops a strategy to compute objective
branching in the multi-objective case. Finally, experiments are provided in Section 3.5, and
a conclusion as well as proposals for further research are given in Section 3.6.

3.2 Definitions and notations

Consider a multi-objective combinatorial optimization problem P

P : min{z(x) = Cx | x ∈ X}

with feasible set X = {x ∈ Nn | Ax ≧ b} where n is the number of variables, A ∈ Zm×n is
a matrix defining the coefficients of the m constraints with right hand side b ∈ Zm. The p

linear objectives are defined using the matrix C ∈ Zp×n of objective function coefficients.
The corresponding image in the objective space is Y = {z(x) | x ∈ X} := CX . Moreover, let
P LP denote the linear relaxation of P

P LP : min{z(x) = Cx | x ∈ XLP }

with feasible set XLP = {x ≧ 0 | Ax ≧ b}.
Since there are several objective functions, binary relations to compare vectors need

to be introduced. Let y1, y2 ∈ Rp, then y1 ≦ y2 (y1 weakly dominates y2) if y1
k ≤ y2

k,
∀k ∈ {1, ..., p}. Moreover, y1 ⩽ y2 (y1 dominates y2) if y1 ≦ y2 and y1 ̸= y2. Finally,
y1 < y2 (y1 strictly dominates y2) if y1

k < y2
k, ∀k ∈ {1, ..., p}. Furthermore, for x ∈ X , we

say that x is efficient if there is no x′ ∈ X such that z(x′) ⩽ z(x), and x is weakly efficient
if there is no x′ ∈ X such that z(x′) < z(x). The set of efficient solutions is denoted by

3.2. Definitions and notations 67

XE = {x ∈ X | x is efficient}, and the set of non-dominated points is denoted by YN := CXE .
More generally, given a set S ∈ Rp, the set of non-dominated points of S will be denoted by
SN = {s ∈ S | ∄s′ ∈ S, s′ ⩽ s}.

3.2.1 Bound sets

Given a S ⊆ Rp, it is possible to define lower and upper bound sets for SN . For this purpose,
we use the definitions proposed in Ehrgott and Gandibleux (2007). Let Rp

≧ := {y ∈ Rp | y ≧ 0}
and define Rp

⩾ and Rp
> analogously. Given a set S ⊆ Rp, we say that S is Rp

≧-closed if the
set S + Rp

≧ is closed, and Rp
≧-bounded if there exists s ∈ Rp such that S ⊂ s + Rp

≧. Let cl(.)
denote the closure operator.

Definition 3.1. Consider a set of points S ⊆ Rp.

• A lower bound set L ⊆ Rp of SN is an Rp
≧-closed and Rp

≧-bounded set such that
SN ⊂ (L+ Rp

≧) and L = LN .

• An upper bound set U of SN is an Rp
≧-closed and Rp

≧-bounded set such that SN ⊂
cl[Rp\(U + Rp

≧)] and U = UN .

One specific lower bound set and one specific upper bound set of YN are the ideal point
yI given by

yI
k = min

y∈Y
{yk},∀k ∈ {1, ..., p},

and the nadir point yN defined by

yN
k = max

y∈YN

{yk}, ∀k ∈ {1, ..., p}.

Given two sets S1 and S2, we say that S1 is fully weakly dominated by S2 if ∀s1 ∈ S1,
∃s2 ∈ S2 such that s2 ≦ s1. Furthermore, we say that S1 is partially dominated by S2 if S1

is not fully weakly dominated by S2 and if there exists at least one pair of points (s1, s2)
such that s1 ∈ S1, s2 ∈ S2, and s2 ⩽ s1.

For the purpose of readability, in the remainder of this paper, we will consider that
a lower bound set for a problem P ′ is the equivalent of a lower bound set for the set of
non-dominated points of P ′.

3.2.2 Search region and local upper bounds

Given an upper bound set U for P , i.e., an upper bound set of YN and a lower bound
set L of P or a subproblem of P , it is possible to determine the search region. The search
region defines the region of the objective space where feasible (for P or a subproblem of P)

68 Chapter 3. Objective branching

A(L,U)
L

z1

z 2
U
N (U)

Figure 3.1: Given a lower bound set L (the line segments) and an upper bound set U ,
the search region A(L,U) is given by the closure of the hatched area.

non-dominated (for P) points are located. For this purpose, the theory from Klamroth et al.
(2015) will be used and be applied to our specific framework.

First, note that due to Definition 3.1, YN ⊂ A(U) := cl(Rp\(U + Rp
≧)) (closure of the

hatched and yellow areas in Figure 3.1). This region corresponds to the part of the objective
space that is not dominated by any point of the upper bound set. An alternative description
can be used by introducing the concept of local upper bounds.

Definition 3.2. Let C(u) = u− Rp
≧ be the search cone given the point u ∈ Rp. The set of

local upper bounds with respect to U , N (U) is a unique discrete set of points in Rp satisfying

1. A(U) =
⋃

u∈N (U)
C(u) and

2. N (U) is minimal, i.e., there is no u1, u2 ∈ N (U), u1 ̸= u2, such that C(u1) ⊆ C(u2).

From Definition 3.2 it follows that YN ⊂ A(U) = N (U)−Rp
≧ and due to Definition 3.1 we

have YN ⊂ L+Rp
≧ (hatched and blue areas in Figure 3.1). Thus, YN ⊂ (L+Rp

≧)∩(N (U)−Rp
≧)

(closure of hatched area in Figure 3.1). In the remainder of the paper, we assume that U ⊆ Y,
thus the upper boundary of A(U) is dominated, and hence we define the search region as
A(L,U) = (L+ Rp

≧) ∩ (N (U)− Rp
>).

3.3. General multi-objective Branch-and-Bound framework 69

3.3 General multi-objective Branch-and-Bound
framework

In this section, a multi-objective Branch-and-Bound (B&B) framework will be presented.
The aim is to compute the set of non-dominated points YN and a corresponding minimal
complete set of efficient solutions. The framework is mainly based on the framework of Forget
et al. (2022), and a general outline is recalled in this section for the sake of completeness.
The theory and methodology presented in this paper can be applied to any linear problem
whose non-dominated set is made of a finite number of points. This includes for instance
mixed-integer problems where continuous variables are present in at most one objective.
However, we restrict ourselves to problems with only integer variables to avoid an additional
layer of notation.

The basic idea of the B&B algorithm is to divide an initial problem P that cannot be
solved easily into less complex disjoint subproblems. The algorithm manages a tree data
structure in which each problem (subproblem) is stored as a node. Given a node η, its
corresponding problem will be P (η), and its feasible set will be X (η). The linear relaxation
of the problem in question will be denoted by P LP (η), and its feasible set will be XLP (η).
The nodes containing the subproblems created from P (η) will be stored as child nodes of η.
The tree is initialized by creating the root node, that contains the initial problem P . The
upper bound set (on the set of non-dominated points of the initial problem P) U is initialized
as an empty set. It may be initialized with feasible solutions if some are known prior to
the executing the algorithm, but this will not be the case in this paper. The outline of the
multi-objective B&B is given in Algorithm 3.1.

In Step 1, we select a node η that will be explored. The depth-first and the breadth-
first strategies are the most frequently used strategies for this purpose in the literature on
multi-objective B&B (see Przybylski and Gandibleux (2017)). In practice, there is no best
strategy among the two. In fact, it appears to be very problem specific. For example, Visée
et al. (1998) and Vincent et al. (2013) show that depth-first performs better on their set of
instances, whereas Parragh and Tricoire (2019) and Forget et al. (2022) show that for some
problem classes breadth-first performs the best.

At each node η, the linear relaxation P LP (η) will be solved and yields a lower bound
set L(η) for P (η), the problem included in node η (Step 2). In the multi-objective case, this
corresponds to the non-dominated part of a convex polytope of dimension at most p. In
order to compute the linear relaxation, the algorithm of Forget et al. (2022) will be used. A
description of L(η) + Rp

≧ as a collection of hyperplanes and extreme points is then obtained,
which will be of interest for Steps 3, 4, and 5.

In Section 3.4, we show that it is necessary to compute the dominance test for each local

70 Chapter 3. Objective branching

Input: P : A multi-objective combinatorial optimization problem P .
Step 0: Initialize the B&B tree with a list of non-explored nodes Γ containing the
initial problem P .
Step 1: If Γ = ∅, go to Step 6. Otherwise, choose a node η ∈ Γ, and remove it from
Γ.
Step 2: Compute a lower bound set L(η) for P (η).
Step 3: If η can be fathomed, go to Step 1. If possible, update the upper bound set
U .
Step 4: Split P (η) by branching in the objective space. New subproblems are ob-
tained.
Step 5: Split each subproblem by branching in the decision space. Create a node η′

for each sub-subproblem and add it to Γ. Go to Step 1.
Step 6: End of the Algorithm. Return the upper bound set.
Output: The set of non-dominated points YN .

Algorithm 3.1: Multi-objective B&B algorithm

upper bound, i.e., we cannot stop when we find one local upper bound dominated by the
lower bound set. Furthermore, in Section 3.4.2, many dominance tests will be performed
in order to compute objective branching. The framework from Santis et al. (2020) involves
solving exactly one linear program per point dominated by the lower bound set, and at most
one for the ones that are not dominated, which would result in a very expensive procedure.
Similar tests were performed in Gadegaard et al. (2019) for the bi-objective case, and the
authors show that computing what they called an explicit lower bound set was significantly
more efficient when coupled with objective branching, which is in line with the results in
Forget et al. (2022).

Step 3 uses three procedures to fathom η. First, if P LP (η) is infeasible, P (η) is also
infeasible (because X (η) ⊆ XLP (η)). In this case, the node is fathomed by infeasibility.
Second, if the lower bound set consists of a unique extreme point y with a pre-image feasible
for P (η), it can be concluded that any solution found in a subproblem of P (η) will have
an objective vector (weakly) dominated by y. Consequently, the subproblem requires no
further examination, and the corresponding node η is fathomed by optimality. The point y

is eventually added to the upper bound set U , if it is not dominated by any point of the
upper bound set. In this case, the points of the upper bound set that are dominated by y

are deleted as well.
Finally, if none of the two mentioned cases occur, a third fathoming test is used: the

dominance test. The purpose of this step is to detect whether the search region at node η,
denoted by A(L(η),U), is empty. Indeed, if this is true, this implies that no non-dominated
point feasible for the initial problem P can be found in the subproblem P (η) and thus,

3.3. General multi-objective Branch-and-Bound framework 71

it requires no further examination. In this case, η is fathomed by dominance. In order to
check that, the dominance test from Forget et al. (2022) will be used, and it is recalled in
Proposition 3.1 and Lemma 3.1 (we refer the reader to this paper for the proofs). Note that as
both the variables in feasible solutions and the objective coefficients only take integer values,
the feasible objective vectors will always have integer components as well. Furthermore, since
a local upper bound u ∈ N (U) by definition is dominated by some points in the upper bound
set, there is no need to search for a new point that has the same components as u. Hence,
each local upper bound u ∈ N (U) is replaced by a shifted local upper bound ū = u − e,
where e = (1, ..., 1) ∈ Rp.

Proposition 3.1. The search region A(L(η),U) is empty if (L(η) + Rp
≧) ∩N (U) = ∅.

By using Proposition 3.1, it can be concluded that η can be fathomed by dominance
if there is no u ∈ N (U) such that u ∈ L(η) + Rp

≧. In order to check the condition, the
hyperplane representation of L(η) + Rp

≧ will be used. Let H1, ...,HF be these hyperplanes.
We then have Hi = {y ∈ Rp | niT · y = di}, where ni ∈ Rp is the normal vector of Hi and
di ∈ R. The polytope L(η)+Rp

≧ can be defined as an intersection of closed half-spaces defined
by H1, ...,HF , i.e., we have

L(η) + Rp
≧ =

F⋂
i=1
{y ∈ Rp | niT · y ≥ di}.

Hence, a point ỹ ∈ Rp is located in L(η) + Rp
≧ if for each i ∈ {1, ..., F}, niT · ỹ ≥ di holds

true. This leads to Lemma 3.1.

Lemma 3.1. Let H1, ...,HF be the hyperplane representation of L(η) + Rp
≧, where Hi =

{y ∈ Rp | niT · y = di}, ni ∈ Rp is the normal vector of Hi, and di ∈ R. The node η can be
fathomed by dominance if for each ū ∈ N (U), there exists i ∈ {1, ..., F} such that niT · ū ≤ di.

If η could not be fathomed by any of the three procedures described above, the upper
bound set U is updated by considering the extreme points of the lower bound set with a
pre-image feasible for P (η), if any such exists. Let y be such a point, y is added to U if there
is no u ∈ U such that u ⩽ y. Furthermore, all points u ∈ U such that y ⩽ u are deleted from
U . Each time the upper bound set is updated, the set of local upper bounds N (U) is also
updated using the procedure proposed in Klamroth et al. (2015).

Finally, if the node η cannot be fathomed, P (η) will be divided into disjoint subproblems.
There are two ways to create subproblems: in the objective space and in the decision space.
The creation of subproblems in the objective space (Step 4) for an arbitrary number of
objectives p is the main contribution of this paper. It has been shown to be very efficient for
p = 2 (see, e.g., Parragh and Tricoire (2019), Gadegaard et al. (2019), Stidsen and Andersen

72 Chapter 3. Objective branching

(2018)). Its extension to more objectives is discussed in Section 3.4, and its impact on a
multi-objective B&B algorithm is discussed in Section 3.5.

In decision space, the subproblems are created by selecting a free variable xi, i ∈ {1, ..., n},
and if relevant, a branching value t ∈ N (Step 5). Then, either constraint xi ≤ t or constraint
xi ≥ t + 1 is added to the subproblem. Note that in case xi is binary, i.e. xi ∈ {0, 1},
this is equivalent to fixing xi to 0 or 1. Hence, at a node η, the problem P (η) will be
split into subproblems P (η0) and P (η1) such that X (η0) = {x ∈ X (η) | xi ≤ t} and
X (η1) = {x ∈ X (η) | xi ≥ t + 1}. Consequently, a variable xi is said to be free at node η if
it is not fixed to any specific value due to the branching constraints. The choice of the free
variable to branch on and, if relevant, of the branching value v at a given node is discussed
in Section 3.5.

3.4 Objective branching

The principle of objective branching is to apply a branching rule in the objective space in
addition to branching in the decision space. In the bi-objective case, there are several ways to
perform objective branching, for instance slicing (Stidsen et al., 2014; Stidsen and Andersen,
2018). In this study, the focus will be on objective branching as defined in Stidsen et al.
(2014), Gadegaard et al. (2019), and Parragh and Tricoire (2019) (alternatively called Pareto
branching or Extended Pareto branching in some of these references). The reason for this
choice is that the way it is defined naturally extends to an arbitrary number of objectives p.
The definition is given in Definition 3.3.

Definition 3.3. Let P (η) be the problem at a node η of the Branch-and-Bound (B&B)
tree and ȳ ∈ Rp. It is said that objective branching is applied on ȳ if the subproblem
P (η, ȳ) := min{Cx | x ∈ X (η), z(x) ≦ ȳ} is created.

Note that in this definition of objective branching, no constraint in the form zk(x) ≧ z̄k

is used because such a constraint may result in increasing cpu time (Stidsen et al., 2014).
Now consider the situation depicted in Figure 3.2 for a node η in the branching tree

that cannot be fathomed. One can observe that even though the lower bound set L(η) is not
fully dominated by the upper bound set U , it is still partially dominated, i.e., there exist
some l ∈ L(η) such that u ⩽ l, with u ∈ U . Hence, there is no need to spend computational
efforts (e.g., computing lower bound sets, searching for new integer points and so forth) to
explore the objective space where the lower bound set is already dominated. The purpose of
objective branching is to discard these regions by creating subproblems in the objective space.
For example, in Figure 3.2, three subproblems are created by applying objective branching
on the points y1, y2 and y3, resulting in the subproblems P (η, y1), P (η, y2), and P (η, y3)

3.4. Objective branching 73

y1

y2

y3

z1

z 2

U
N (U)

Figure 3.2: A lower bound set (solid and dashed lines) partially dominated by the
upper bound set. The dominated area of the lower bound set is represented by the
dashed lines. Three disjoint subproblems are created in the objective space by applying
objective branching on y1, y2 and y3, represented by the red circles. The constraints
added when applying objective branching are represented by the dotted lines. A new
non-dominated point feasible for the corresponding problem can only be found in one
of these subproblems (dotted areas).

respectively. The corresponding constraints are depicted with dotted lines in Figure 3.2. One
can observe that by creating these three subproblems, the parts of the objective space that
are already known to be dominated are not included in any of those subproblems and thus
they will not be explored in the sub-tree starting from node η.

We need to identify a set of desirable properties to find the points of the objective space
that are interesting candidates for objective branching.

Property 3.1. Let A(L(η, s),U) denote the search area in problem P (η, s) (L(η, s) is the
lower bound set of problem P (η, s)) and ρ be the number of subproblems created in the
objective space at node η. Desirable properties for objective branching:

3.1a) inclusiveness: A(L(η),U) ⊆
ρ⋃

i=1
A(L(η, si),U)

3.1b) sparsity:
ρ⋂

i=1
A(L(η, si),U) = ∅

3.1c) tightness: as much dominated area as possible is discarded

Property 3.1a states that each point of the search area at node η should be included in at
least one of the subproblems created. In this sense, objective branching should be inclusive.

74 Chapter 3. Objective branching

If this is not satisfied, then a non-dominated feasible point might not be found, as it is not
included in any of the subproblems, and therefore the output of the B&B algorithm (YN)
may not be correct.

Property 3.1b states that the subproblems created in the objective space should be
disjoint. This property ensures that a non-dominated feasible point cannot be found several
times in the tree, effectively avoiding redundancies.

Property 3.1c states that as many subproblems as possible should be created. This
property implies that it is preferable to create two small subproblems instead of one large
one, if possible. In other words, as much dominated area as possible should be discarded.

Note that Property 3.1a is crucial for the exactness of the algorithm, whereas Prop-
erty 3.1b and Property 3.1c are not. Instead, they are here to control the behavior of the
algorithm by avoiding redundancies and ensuring tight bounds. Property 3.1a and Prop-
erty 3.1b are the main focus in the paper, but Property 3.1c will be briefly discussed in the
rest of this section and in Section 5.

3.4.1 Complications of going from two to three objectives

Several approaches have been developed in the literature for identifying the subproblems in
the objective space. Stidsen et al. (2014) were the first to propose an approach, which was
later improved in Gadegaard et al. (2019). Since they compute a relaxation of the weighted
sum scalarization at each node (and obtain a point y, resulting from the single-objective linear
program solved in the scalarization), the authors propose to compute objective branching
only when there already exists an integer solution dominating y. Such a situation is depicted
in Figure 3.3a. The lower bound set consists of a unique hyperplane, and the upper bound
set contains a single point that partially dominates the lower bound set. It is possible to
create two subproblems that satisfy Property 3.1 by applying objective branching on its local
upper bounds.

Exactly the same situation is depicted with three objectives in Figure 3.3b. The lower
bound set is given by the blue hyperplane, and the upper bound set is defined by a unique
point (in black). The dominated part of the lower bound set is the blue area in the middle. If
objective branching is applied on the local upper bounds (red points) as in the bi-objective
case, the subproblems created will have redundancies (each subproblem defines a grey search
area). Every point in the brown areas is included in the search area of more than one
subproblem and thus, it will not satisfy Property 3.1b.

One might infer from Figure 3a that objective branching can be applied whenever the
lower bound set is split into several connected components, an inference made by Parragh
and Tricoire (2019). They keep track of these connected components and apply objective
branching such that each one of them is included in exactly one subproblem. For example,

3.4. Objective branching 75

z1

z 2

(a) Bi-objective case: The dominated part of
the lower bound set is represented by the
dashed line. When objective branching is ap-
plied on each local upper bound, the hatched
search areas satisfy Property 3.1.

(b) Three-objective case: The dominated part
of the lower bound set is the blue area in
the middle (view from above). When objec-
tive branching is applied on each local upper
bound, there are redundancies between the
subproblems (each subproblem defines a grey
search area). Every point in the brown areas
is included in the search area of more than
one subproblem.

Figure 3.3: Objective branching given a single point in the upper bound set (black)
and a lower bound set consisting of a single hyperplane. Objective branching is applied
on each local upper bound point (red). An interactive plot of Figure 3.3b can be seen
in Forget et al. (2020b).

in Figure 3.2, there are three non-dominated connected components in the lower bound set,
and objective branching is applied on each one.

However, having the lower bound set split is not a sufficient condition for applying
objective branching with the desirable properties in the three-objective case. For example,
in Figure 3.4, the lower bound set consists of a unique facet. It is partially dominated by the
upper bound set (points in black). In the bi-objective case, depicted in Figure 3.3a, it can
be observed that there are two non-dominated connected components. However, as seen in
Figure 3.3b, applying objective branching on each component like in the bi-objective case will
lead to redundancies. In the figure, the two points on which objective branching is applied
are represented by the two squares, and the objective branching constraints are given by
the two cones starting from these points, and we note that one of the sub-problems is fully
included in the other sub-problem.

76 Chapter 3. Objective branching

(a) Lower bound set (hyperplane) partially
dominated by the upper bound set (black
points with red dominance cones). Note the
two disjoint search areas above the hyper-
plane.

(b) Objective branching applied to y1 and y2.
One subproblem is fully included in the other
subproblem.

Figure 3.4: An example of applying objective branching on two disjoint search areas
(view from below). Interactive plots of Figures 3.4a and 3.4b can be seen in Forget
et al. (2020b)

It is, however, still possible to apply objective branching in some cases, and a way to
detect such cases and to compute the corresponding subproblems is discussed in the next
section.

3.4.2 Objective branching in the multi-objective case

The approach developed in this paper identifies points of the objective space such that if
objective branching is applied on those points, the subproblems obtained satisfy Property 3.1.

The strategy is based on a merging operation of redundant subproblems, which are defined
by the local upper bounds dominated by the lower bound set L(η). Only the dominated
local upper bounds are considered since the cone C(u) of a local upper bound u that is not
dominated by L(η) cannot contain any new point feasible for the subproblem P (η). Thus,
there is no need to search for any feasible point in this area. Hence, these cones are discarded
and only the dominated local upper bounds are kept for the merging operation.

Thus, at node η, a set of dominated local upper bounds

D(η) = {u ∈ N (U) | ∃ l ∈ L(η), l ⩽ u}

3.4. Objective branching 77

is obtained, and the subproblems will be computed with this set as input. Note that in order
to obtain D(η), the algorithm has to check whether each local upper bound is dominated at
each node or not, as it requires to know the status of each local upper bound to compute
the sub-problems. This is a difference with the classical branch-and-bound framework, where
the dominance test can be stopped as soon as a dominated local upper bound is found.

Merging operations on local upper bounds

As explained in Section 3.4.1, one of the most challenging difficulties of objective branching
in the multi-objective case is to create subproblems that are pairwise disjoint. Let s1, s2 ∈ Rp

denote two points on which objective branching will be applied. In order to detect whether
the subproblems P (η, s1) and P (η, s2) have redundancies, the notion of an intersection point,
defined in Definition 3.4, will be used.

Definition 3.4. Let s1, s2 ∈ Rp be two points of the objective space. The intersection point
sI of s1 and s2 is the point that yields sI

k = min(s1
k, s2

k), ∀k ∈ {1, ..., p}. The cone C(sI) will
be called the intersection cone.

In particular, C(sI) = C(s1)∩C(s2). Hence, the intersection cone contains all the points of
the objective space that are contained in both P (η, s1) and P (η, s2). Thus, if the intersection
point sI is dominated by L(η), there may exist feasible points that are in C(sI), i.e., included
in both C(s1) and C(s2) and consequently, the subproblems created from s1 and s2 are not
disjoint.

In this case, the subproblems will be merged. For this purpose, the concept of super local
upper bounds is now introduced and defined in Definition 3.5. They can be seen as merged
local upper bounds.

Definition 3.5. Consider a set of local upper bounds u1, ..., uh ∈ D(η), with h ∈ N\{0}.
The point s ∈ Rp is a super local upper bound of the local upper bounds u1, ..., uh if
sk = max

i∈{1,...,h}
ui

k, ∀k ∈ {1, ..., p}. Furthermore, if a local upper bound u ∈ D(η) satisfies

u ⊂ C(s), it is said that u is contained in s.

A super local upper bound can be seen as the nadir point of the set of points {u1, ..., uh}
as well. For each super local upper bound s, we define a set D(η, s) = {u ∈ D(η) | u ≦ s} of
local upper bounds contained in s at node η.

To conclude, given two local upper bounds u1, u2 ∈ D(η), the goal is to know whether
it is possible to apply objective branching on u1 and u2 with the desirable properties, or if
only one large subproblem should be considered by applying objective branching on a super
local upper bound s that contains u1 and u2. As explained previously, u1 and u2 will be
merged if their intersection point uI is dominated by the current lower bound set L(η). The

78 Chapter 3. Objective branching

corresponding super local upper bound obtained, s ∈ Rp, is defined by sk = max(u1
k, u2

k). All
the reasoning presented here can also be used to merge two super local upper bounds, or a
local upper bound and a super local upper bound.

Desirable properties of the set of super local upper bounds

At each node η, a set of super local upper bounds S with particular properties will be
constructed. Then, for each s ∈ S, the subproblem P (η, s) will be created. In order for these
problems to satisfy Property 3.1, a set of desirable properties for S is defined here.

Property 3.2. The desirable properties of a set of super local upper bounds are the following:

3.2a) ∀u ∈ D(η), ∃s ∈ S such that u is contained in s, i.e., u ∈ D(η, s).

3.2b) If |S| ≥ 2, ∀s1, s2 ∈ S, s1 ̸= s2, the intersection point sI of s1 and s2 is not dominated
by the lower bound set L(η).

3.2c) ∀s ∈ S, ∀ϵ ⩾ 0, ∃u ∈ D(η, s) such that u /∈ D(η, s− ϵ).

3.2d) The size of S is maximal, i.e., we have the maximum number of super local upper
bounds in S that satisfy Property 3.1a, Property 3.1b, and Property 3.1c.

Property 3.2a implies that each dominated local upper bound is merged in at least one
super local upper bound, or is a super local upper bound itself. For the objective branching,
this implies that no solution is overlooked. Indeed, all the areas in which non-dominated
points can be found are included in a super local upper bound and thus, Property 3.1a is
satisfied.

Property 3.2b states that it is not possible to merge two or more super local upper
bounds of S with respect to the rule used. If two super local upper bounds do not respect
this property, this means that the two corresponding subproblems have an intersection point
dominated by the lower bound set and therefore have redundancies, which is the situation
that should be avoided. This property ensures that Property 3.1b is satisfied.

Property 3.2c guarantees that the super local upper bounds are as tight as possible
and cannot be moved down, i.e., moved in a direction −ϵT = (−ϵ1, ...,−ϵp) where ϵ ⩾ 0 is
arbitrarily small, without losing at least one of the local upper bounds u it contains. This
ensures that as much of the dominated region as possible is discarded in the sub-problems
created with objective branching. Hence, this ensures that Property 3.1c is satisfied.

Property 3.2d says that it is not possible to split a super local upper bound s ∈ S into
several smaller super local upper bounds (i.e., contained in C(s)) without losing one of the
previous properties. Without this property, two subproblems could be created instead of one
and thus, more of the dominated region could be discarded. Hence, this property has to be

3.4. Objective branching 79

1: Input :
2: L(η) : a lower bound set for node η
3: D(η) : set of local upper bounds dominated by L(η)
4: Algorithm :
5: S ← D(η)
6: while ∃s1, s2 ∈ S such that their intersection point sI is dominated by L(η) do
7: S ← S\{s1, s2}
8: s← Merge(s1, s2)
9: S ← S ∪ {s}

10: end while
11: return S
12: Output :
13: S : set of super local upper bounds

Algorithm 3.2: Computation of the set of super local upper bounds

verified to ensure, once again, that as much of the dominated region as possible is discarded,
and that it maintains Property 3.1c.

Consequently, obtaining a set S of super local upper bounds that satisfies Property 3.2
ensures that as much dominated region as possible is discarded while still satisfying the
conditions established in Property 3.1.

An algorithm to compute a set of super local upper bounds

In this paragraph we describe the algorithm used to compute a set of super local upper
bounds S satisfying Property 3.2 and show its correctness. In order to work, the algorithm
needs the lower bound set L(η) of the node η and the corresponding set of dominated local
upper bounds D(η) as input. The algorithm is described in Algorithm 3.2. The function
Merge(s1, s2) simply merges s1 and s2 as presented in Section 3.4.2.

Theorem 3.1. Algorithm 3.2 computes the set of super local upper bounds.

Proof. It will be shown that the output S of this algorithm satisfies Property 3.2.
First, it is important to note that the order in which the (super) local upper bounds

are merged does not affect the result. Let s1, s2 be two (super) local upper bounds which
have to be merged due to Property Property 3.2b. All distinct super local upper bounds
s′1, s′2 containing s1 and s2 respectively have to be merged as their intersection point is, by
construction, dominated by the intersection point of s1 and s2, itself dominated by the lower
bound set.

80 Chapter 3. Objective branching

The set S is initialized with the set D(η). Furthermore, each time a local upper bound
u is deleted from S, a super local upper bound that contains u is created. Ultimately, each
dominated local upper bound is included in a super local upper bound, and thus Property 3.2a
is satisfied.

Algorithm 3.2 stops when there is no s1, s2 ∈ S such that their intersection point is
dominated by the lower bound set L(η). Hence, by construction, Property 3.2b is satisfied.

A super local upper bound can be defined as a nadir point of some dominated local upper
bounds (Definition 3.5). This means that each component (i.e., the value for each objective)
of a super local upper bound has the same value as one of the local upper bounds contained
in the super local upper bound. This implies that it is not possible to reduce the value of a
super local upper bound by ϵ ⩾ 0. Otherwise, it would lose one of the local upper bounds it
contains. Hence, by construction of the function Merge, Property 3.2c is satisfied.

In order to violate the Property 3.2d, two super local upper bounds that should not be
merged would have been merged during the computation. However, this never happens since
two super local upper bounds are merged only when their intersection point is dominated
by the lower bound set. In other words, they are only merged when the merge respects the
rule used.

In Theorem 3.2, we establish the complexity of Algorithm 3.2. To that end, let f(L(η))
be the complexity of checking whether a point is dominated by the lower bound set L(η).

Theorem 3.2. Algorithm 3.2 runs in O(|D(η)|3 · f(L(η))).

Proof. If no pair of super local upper bounds is merged during the main loop, then the
algorithm stops. When two super local upper bounds are merged, they are deleted, and a
single super local upper bound is constructed instead. At each step, the size of S is therefore
reduced by 1. Thus, at most |D(η)| − 1 iterations of the main loop occur.

Each time the algorithm enters its main loop, it needs to identify a pair to merge. For
this purpose, a simple pairwise comparison of each element of St can be done, where St is
the set S at iteration t of Algorithm 3.2. This can be achieved in O(|St|2). However, at each
step, the size of St is reduced. Since S0 is initialized to D(η), the complexity of this operation
becomes O(|D(η)|2), and this is an upper bound on the computational complexity.

To conclude, we need at most |D(η)|3 pairwise comparisons (this bound is not tight),
and each pairwise comparison involves a dominance test. Algorithm 3.2 consequently runs
in O(|D(η)|3 · f(L(η))), and this bound is not tight either.

Implications of Property 3.2

Let S denote a set of super local upper bounds satisfying Property 3.2.

3.4. Objective branching 81

Proposition 3.2. Suppose that |S| ≥ 2 and let s1, s2 ∈ S, s1 ̸= s2, be two super local upper
bounds. For any pair u1 ∈ D(η, s1), u2 ∈ D(η, s2), the intersection point uI of u1 and u2 is
not dominated by the lower bound set L(η).

Proof. The point sI (intersection point of s1 and s2) is not dominated by the lower bound
set since s1, s2 ∈ S and S satisfies Property 3.2b. Furthermore, by Definition 3.5, s1

k ≥ u1
k

and s2
k ≥ u2

k, ∀k ∈ {1, ..., p}. Hence, uI
k = min{u1

k, u2
k} ≤ min{s1

k, s2
k} = sI

k, ∀k ∈ {1, ..., p}.
In other words, uI ≦ sI . Thus, since sI is not dominated by the lower bound set, uI is not
dominated by the lower bound set either.

Lemma 3.2. Let s ∈ S be a super local upper bound such that |D(η, s)| ≥ 2. For any
u ∈ D(η, s), there exists u′ ∈ D(η, s), u ̸= u′, such that the intersection point of u and u′ is
dominated by the lower bound set L(η).

Proof. Suppose that there exists u ∈ D(η, s) such that there exists no distinct u′ ∈ D(η, s)
such that their intersection point is dominated by the lower bound set. Then it is possible
to split s into two super local upper bounds, s1 and s2, such that D(η, s1) = {u} and
D(η, s2) = D(η, s)\{u}. The super local upper bounds s1 and s2 satisfy Property 3.2a,
Property 3.2b and Property 3.2c, and therefore Property 3.2d is not satisfied.

Lemma 3.3. If |S| ≥ 2, there is no s1, s2 ∈ S, s1 ̸= s2, such that D(η, s1) ⊆ D(η, s2).

Proof. Suppose that there exist s1, s2 ∈ S such that D(η, s1) ⊆ D(η, s2). Let sI be the
intersection point of s1 and s2. In particular, by Property 3.2c, the super local upper bounds
are as tight as possible, and therefore s1 ≦ s2. Consequently, s1

k ≤ s2
k, ∀k ∈ {1, ..., p} and

thus sI = s1.
Now, the fact that sI is dominated by the lower bound set has to be shown. By construc-

tion of the super local upper bounds, s1 ≧ u, ∀u ∈ D(η, s1). Furthermore, by construction
again, each local upper bound in D(η, s) is dominated by the lower bound set. Thus, sI = s1

is dominated by the lower bound set, and Property 3.2b is not satisfied.

Lemma 3.4. Let S = {s1, ..., st} be a set of super local upper bounds. The sets D(η, s1), ...,D(η, st)
form a partition of D(η).

Proof. If |S| = 1, each local upper bound will be included in the unique super local upper
bound s ∈ S. In particular, D(η, s) = D(η) in this case and thus, S is a partition of D(η).

If |S| ≥ 2, and since S satisfies Property 3.2 and in particular Property 3.2a, it can
immediately be concluded that each u ∈ D(η) is included in at least one D(η, si), for
i ∈ {1, ..., t}.

We now have to prove the following statement: each u ∈ D(η) is included in at most one
set D(η, si), for i ∈ {1, ..., t}. Suppose that there exists u ∈ D(η) such that u ∈ D(η, s1) and
u ∈ D(η, s2), s1, s2 ∈ S, s1 ̸= s2.

82 Chapter 3. Objective branching

Lemma 3.2 says that there exists u′ ∈ D(η, s1) such that the intersection point of u and
u′ is dominated by the lower bound set, which means that they have to be merged. Similarly,
there exists u′′ ∈ D(η, s2) such that the intersection point of u and u′′ is dominated by the
lower bound set and they have to be merged. It can be noticed that u′ has to be merged with
u, that has to be merged with u′′. Consequently, u, u′ and u′′ have to be put in a common
super local upper bound.

If u′, u′′ /∈ D(η, s1) ∩ D(η, s2), the conclusion is that s1 and s2 have to be merged, which
contradicts Property 3.2b. If this is not the case, the same principle applies to u′ and u′′. As
both Lemma 3.2, Lemma 3.3, and s1 ≠ s2 hold true, the situation where s1 and s2 have to
be merged will always be reached, and this will contradict Property 3.2b.

Theorem 3.3. The set S is unique.

Proof. If |S| = 1, then by Lemma 3.4, S is unique. Now we study the case where |S| ≥ 2.
Let S and S ′ be two sets of super local upper bounds satisfying Property 3.2 and such

that S ≠ S ′. Hence, there exist at least two sets D(η, s) and D(η, s′), respectively, from S
and S ′ that are different. Furthermore, it is always possible to find D(η, s) and D(η, s′) such
that they have at least one common element. Otherwise, by re-indexing the sets, the same
partition would be obtained, leading to S = S ′, which is a contradiction.

Note that since S and S ′ are different, then necessarily |D(η, s)| ≥ 2 and |D(η, s′)| ≥ 2.
Otherwise, because of this common element u, we would have D(η, s) ⊂ D(η, s′) or D(η, s′) ⊂
D(η, s), which is not possible because of Lemma 3.2. Indeed, if D(η, s) ⊂ D(η, s′), then there
exists v ∈ D(η, s′) such that v /∈ D(η, s), and it has an intersection point with another local
upper bound in D(η, s) that is dominated by the lower bound set (Lemma 3.2), which leads
to the conclusion that s has to be merged with another super local upper bound in S (the
one that contains v), which contradicts the fact that S satisfies Property 3.2b. Equivalently,
the same reasoning can be applied to the case where D(η, s′) ⊂ D(η, s).

This means that there exists u ∈ D(η) such that u ∈ D(η, s) and u ∈ D(η, s′) with
D(η, s) ̸= D(η, s′) and such that:

• ∃v ∈ D(η, s) such that v /∈ D(η, s′) and the intersection point of u and v is dominated
by the lower bound set (because of Lemma 3.2);

• ∃v′ ∈ D(η, s′) such that v′ /∈ D(η, s) and the intersection point of u and v′ is dominated
by the lower bound set (because of Lemma 3.2).

By definition, v and u then have to be merged in the same super local upper bound. Since
v /∈ D(η, s′) and S ′ is a partition of D(η) (Lemma 3.4), then there exists D(η, ŝ′) such that
ŝ′ ∈ S ′ and v ∈ D(η, ŝ′). By construction, D(η, s′) and D(η, ŝ′) have to be merged, and this

3.5. Computational experiments 83

contradicts the fact that S ′ satisfies Property 3.2b. The same reasoning can be applied to v′

and S.

3.4.3 An alternative branching strategy using an upper
bound on the objectives

In the previous section, inequalities were derived from the partial dominance of the lower
bound set by the upper bound set and used to create additional subproblems in the objective
space. We aimed at creating a maximum number of subproblems in order to discard as
much dominated area as possible, thereby satisfying Property 3.1c. More subproblems may
obviously lead to more nodes in the branching tree, and from a practical point of view this
may lead to prolonged computation times if the nodes are not explored sufficiently fast. In
this case, a new question arises: is it possible to derive inequalities from the partial dominance
of the lower bound set without generating a large number of subproblems?

This can be achieved by modifying Algorithm 3.2. At each node η, by choosing to always
merge the dominated local upper bounds instead of only merging when their intersection
point is dominated by the lower bound set, a unique super local upper bound s is always
obtained. This super local upper bound actually corresponds to the nadir point dN (η) of all
the super local upper bounds D(η). Hence Step 4 of Algorithm 3.1 becomes add constraints
Cx ≦ dN (η) to the sub-problem, and a single unique child node is created in the branching
tree. Next, two child nodes are created due to variable splitting in the decision space (Step 5).
That is, we obtain two disjoint sub-problems with an upper bound on the objectives.

3.5 Computational experiments

In this section, we report the results of the computational experiments conducted with the
multi-objective Branch-and-Bound (B&B) algorithm. All algorithms were implemented in
C++17. The experiments were carried out on a computer with an Intel(R) Core(TM) i7-
4800MQ CPU @ 2.70GHz processor and 32GM of RAM memory, on Windows 10 with a
time a limit of one hour (3600 seconds). The implementation is available at Forget (2021).
No parallelization was used in the branch-and-bound algorithm itself, and Cplex’s default
parameters were used.

When selecting a node to explore (Step 1 of Algorithm 3.1), a breadth-first strategy is
adopted. Preliminary experiments showed that there was no clear winner between breadth-
first and depth-first strategies for the problem classes that we considered. Breadth-first was
chosen as it had the best average performance over all instances.

The algorithm from Forget et al. (2022) was used for the computation of the linear

84 Chapter 3. Objective branching

relaxation at each node (Step 2 of Algorithm 3.1). In particular, this algorithm is based
on Benson’s outer approximation algorithm (see Benson (1998), and further improvements
in Hamel et al. (2013), Csirmaz (2015), Löhne and Weißing (2020)). Forget et al. (2022)
accelerate the solution process in the specific context of the B&B by warmstarting the
algorithm using the lower bound set from the father node. Only in the root node, the linear
relaxation was computed from scratch as no father node is available. All single-objective
linear programs are solved using CPLEX 12.10.

Preliminary tests were performed to understand if the full lower bound set (i.e. the
relaxation) should be computed at each node. The tests revealed that many potentially non-
dominated points are gathered from the extreme points of the lower bound set. Computations
that did not completely compute the linear relaxation led to many vertices for which the
pre-image was missing and thus, to upper bound sets of much worse quality. Ultimately, this
resulted in worse performances with respect to CPU time.

The branching variable selected in Step 5 of Algorithm 3.1 differs depending on whether
objective branching is applied or not. If no objective branching is performed, the algorithm
will branch on the free variable that is the most often fractional among the extreme points
of the lower bound set, given that at least one of the variables takes a fractional value. If
no variable takes a fractional value in any of the extreme points, the variable that differs in
value most often (i.e., with the average value closest to 0.5) is chosen. If objective branching
is enabled, the rule is the same, except that a different variable may be chosen in each
subproblem. In the case where objective branching is applied on s ∈ Rp, only the extreme
points of the lower bound set included in C(s) will be considered. If multiple choices are
possible or if no extreme point is located in C(s), the free variable with the smallest index is
chosen.

To test different algorithm configurations, three objective-space-related rules are consid-
ered:

• noOB: no objective branching is performed. This is equivalent to skipping Step 4 of
Algorithm 3.1;

• fullOB: as many sub-problems as possible are created in the objective space, but no
redundancies are allowed. This is full objective branching as described using super
local upper bounds in Algorithm 3.2;

• coneB: no branching is performed in the objective space, but an upper bound on the
objectives is derived from the dominance test. The upper bound is the nadir point of
the local upper bounds dominated by the lower bound set (see Section 3.4.3). This is
referred as cone bounding. A single node is created in the branching tree.

The purpose of the computational study is to answer the following questions:

3.5. Computational experiments 85

• How do the different algorithm configurations perform, and which configurations per-
form the best? In particular, is objective branching worthwhile (Section 3.5.2)?

• Why does objective branching perform the way it does (Section 3.5.3)? This includes
an analysis of how an increasing number of objectives affect objective branching.

• What does the structure of the search tree look like when full objective branching is
used (Section 3.5.4)?

• How does the B&B algorithm perform compared to an objective space search algorithm
(Section 3.5.5)?

We emphasize that the purpose of this study is to lay the ground for efficient and strong
bounding strategies in multi-objective branch and bound algorithms and hence to initialize
a new line of research in this direction. As a consequence, the focus of our work and of the
computational study is on bound computations rather than on the generation of cutting
planes and efficient preprocessing strategies in the overall branch and bound framework.
Nevertheless, we report comparisons with state-of-the-art objective space search algorithms.
These comparisons have to be carefully evaluated. Indeed, objective space search methods
benefit from the great efficiency of MIP solvers like, for example, CPLEX, that rely on
extensive and long-standing algorithmic developments. Depending on the considered problem
class, this can be expected to outplay the potential advantage of multi-objective branch and
bound methods that perform the search in the decision space and thus avoid the repeated
solution of independent ε-constraint IPs.

3.5.1 Test instances

A total of 600 instances (see Table 3.1) taken from the multi-objective literature have been
used. Four problem classes are considered: Assignment Problems (AP) from Bektaş (2018),
randomly generated Integer Linear Programs (ILP) and Knapsack Problems (KP) from Kirlik
(2014) (online at Forget, Nielsen, and Gadegaard (2020d)), Uncapacitated Facility Location
Problems (UFLP), and Production Planning Problems (PPP) (online at Forget, Nielsen, and
Gadegaard (2020c)). A total of 10 instances are solved for each number of objectives and
number of variables. The number of variables in each problem class was increased until none
of the algorithm configurations were able to compute the non-dominated set within a time
limit of 3600 seconds for several instances. Instances with 3, 4 and 5 objective functions are
considered.

All instances are converted to minimization problems, meaning that if an objective
function z(x) should be maximized, −z(x) is minimized instead. Furthermore, all instances
have integer coefficients only. Hence, integer rounding was used in the dominance test, where
local upper bounds were shifted by −1 on each objective; and in the objective branching

86 Chapter 3. Objective branching

Table 3.1: Instances used (600 instances in total).

Class pa nb #c

AP 3 100, 225, 400, 625, 900 50
AP 4 25, 100, 144, 225 40
AP 5 25, 36, 49, 64 40
ILP 3 10, 20, 30, 40 40
ILP 4 10, 20, 30 30
ILP 5 10, 20 20
KP 3 10, 20, 30, 40, 50 50
KP 4 10, 20, 30, 40 40
KP 5 10, 20 20
PPP 3 33, 45, 54, 63, 72 50
PPP 4 24, 27, 33, 39, 48, 57 60
PPP 5 15, 18, 24, 36 40
UFLP 3 42, 56, 72, 90 40
UFLP 4 20, 30, 42, 56 40
UFLP 5 12, 20, 30, 42 40
a Number of objectives.
b Variable sizes.
c Number of instances.

AP (p = 5) ILP (p = 5) KP (p = 5) PPP (p = 5) UFLP (p = 5)

AP (p = 4) ILP (p = 4) KP (p = 4) PPP (p = 4) UFLP (p = 4)

AP (p = 3) ILP (p = 3) KP (p = 3) PPP (p = 3) UFLP (p = 3)

30 40 50 60 10 12 14 16 18 20 10 12 14 16 18 20 15 20 25 30 35 20 30 40

50 100150200 10 15 20 25 30 10 20 30 40 30 40 50 20 30 40 50

200400600800 10 20 30 40 10 20 30 40 50 40 50 60 70 40 50 60 70 80 90

2500

5000

7500

10000

0

5000

10000

15000

0

1000

2000

3000

4000

5000

0

2000

4000

6000

8000

0

5000

10000

15000

0

2500

5000

7500

0

200

400

0

200

400

600

0

100

200

300

400

0

100

200

300

0

200

400

600

0

100

200

300

400

0

2000

4000

6000

0

2000

4000

6000

8000

0

300

600

900

Variable size (n)

|Y
N
|

reached time limit solved

Figure 3.5: Number of non-dominated points. One point for each instance is given.
Instances that have not been solved to optimality are illustrated with a different shape.
Note that the scale for each sub-plot is different.

3.5. Computational experiments 87

constraints when computing the linear relaxation, where Cx ≦ s − 1 was used instead of
Cx ≦ s when objective branching was applied on the super local upper bound s ∈ Rp.
Note that all configurations were tested both with and without integer rounding. For ILP,
KP, UFLP, and PPP, the benefit of integer rounding was very low (between 0 and 3% of
speed-up), whereas it had a larger impact for AP (22% of speed-up on average). This seems
to be correlated with the ranges of the coefficients of the objective functions. Indeed, the
coefficients are in the interval [1, 20] for AP whereas they are in the range [1, 100] or [1, 1000]
for the other problem classes. Moreover, there was no correlation between the percentage of
speed-up and the configuration used for the branch-and-bound.

In Figure 3.5 the number of non-dominated points are given for each instance. We have
increased the variable size for each problem class until the size becomes so large that some
or all instances cannot be solved within the time limit. The instances which have not been
solved to optimality (18%) are illustrated with a different shape. In general, the number
of non-dominated points grows with variable size (n) and number of objectives (p). Note
though that there may be a high variation for fixed n and p. Moreover, the variation grows
with n and p. For UFLP, the number of non-dominated points grows rapidly as a function
of variable size which is due to the high percentage of objective coefficients not dominated
by other coefficients.

3.5.2 Performance of the different algorithm configurations

A comparison of the different algorithm configurations is given in Figure 3.6 where the ratio
with noOB as benchmark is plotted. We limit the analysis to the set of instances that were
solved to optimality for all algorithm configurations (75% of the instances). First, observe
that the performance of objective branching (coneB and fullOB) is problem dependent. Full
objective branching and cone bounding perform well for AP, ILP, KP, okay for PPP and
poorly for UFLP. Moreover, the variation in performance is higher for PPP and UFLP.
Second, the performance is highly affected by the number of objectives. For p = 3 the CPU
time of coneB and fullOB decreases with 22% and 9% compared to noOB, respectively. But
the performance deteriorates as p increases: for p = 5 the decrease using coneB and fullOB

in the CPU compared to noOB is -4% and -10%, respectively. That is, noOB performs overall
best for p = 5. Finally, note that in general, fullOB and coneB perform very similarly. The
exception is for UFLP (and partly PPP), where coneB performs systematically better than
fullOB.

Possible reasons for these observations will be elaborated upon in the next sections.

88 Chapter 3. Objective branching

AP ILP KP PPP UFLP
p

=
3

p
=

4
p

=
5

100 200 300 400 10 20 30 40 10 20 30 40 50 20 30 40 50 60 20 40 60

0.5

1.0

1.5

2.0

0

1

2

3

1

2

Number of variables (n)

R
at

io

coneB fullOB noOB coneB fullOB noOB

Figure 3.6: CPU time ratio (CPU time divided with the CPU using noOB) for each
test instance (points) together with averages (lines).

3.5.3 Objective branching: a closer look

To take a closer look at the different objective branching configurations, we limit the analysis
to the set of instances that were solved to optimality for all algorithm configurations (75% of
the instances). In this section, we aim at understanding the reasons why objective branching
performs the way it does.

The node ratio of the branching tree is depicted in Figure 3.7. First, observe that using
coneB systematically leads to smaller (or similar) trees compared to noOB. The only impact
coneB has on the sequence of branching decisions compared to noOB, is on which extreme
points are considered when deciding on the next branching variable. This highlights the fact
that choosing the next branching variable based on parts of the objective space where LB
set is not dominated by the UB set is a good strategy for obtaining smaller trees.

Second, observe that fullOB often leads to larger (or similar) trees than noOB for ILP,
KP, and PPP, but instances are solved faster with fullOB. This implies that there are other
benefits to objective branching than just smarter branching decisions when using coneB. Two
reasons may be pointed out:

• When using objective branching, we restrict the computation of the lower bound set

3.5. Computational experiments 89

AP (p = 5) ILP (p = 5) KP (p = 5) PPP (p = 5) UFLP (p = 5)

AP (p = 4) ILP (p = 4) KP (p = 4) PPP (p = 4) UFLP (p = 4)

AP (p = 3) ILP (p = 3) KP (p = 3) PPP (p = 3) UFLP (p = 3)

30 40 50 60 10 12 14 16 18 20 10 12 14 16 18 20 15 20 25 30 35 15 20 25 30

50 100 10 15 20 25 30 10 15 20 25 30 30 40 50 20 25 30 35 40

100 200 300 400 10 20 30 40 10 20 30 40 50 40 50 60 50 60 70
1
2
3
4

1.0
1.5
2.0
2.5

1.00
1.25
1.50
1.75
2.00

0.0

0.4

0.8

1.2

1.6

0
1
2
3
4

0.5

1.0

1.5

2.0

0.8
1.0
1.2
1.4
1.6

0.8

0.9

1.0

1.1

0.8

0.9

1.0

0.85
0.95
1.05
1.15
1.25

1.0

1.1

0.9
1.0
1.1
1.2
1.3

0.6

0.8

1.0

0.8

1.0

1.2

0.9

1.0

1.1

1.2

Number of variables (n)

R
at

io

ConeB fullOB noOB ConeB fullOB noOB

Figure 3.7: Nodes in the branching tree ratio (number of nodes divided with the number
of nodes using noOB) for each test instance (points) together with averages (lines).

to a specific part of the objective space. Hence, contrary to noOB, the computation of
lower bound sets is avoided in areas of the objective space already known as dominated.
This leads to smaller lower bound sets, which is beneficial since computing the linear
relaxation is the most time consuming part (see Forget et al. (2022)).

• The way nodes are fathomed in the tree is significantly impacted by objective branching
(either coneB or fullOB). Figure 3.8 shows how the nodes are fathomed in proportion
to the total number of leaf nodes. Note that the proportion of nodes fathomed by
infeasibility tends to become much larger when objective branching is used. Fathoming
a node by infeasibility is the fastest way to fathom a node since it occurs in the start
when processing a node while fathoming by dominance or optimality requires to have
the lower bound set computed. Hence, leaf nodes can be fathomed faster when using
objective branching.

Although these two reasons may improve performance, there are other mechanisms that
may have a negative impact on performance when using objective branching:

• As presented in Section 4, when using objective branching, it is necessary to check for
the dominance status of every single local upper bound during the dominance test,

90 Chapter 3. Objective branching

0.3

0.68

0.01

0.2

0.79

0.01

0.93

00.07

0.2

0.66

0.14

0.14

0.75

0.11

0.62

0
0.38

0.13

0.56

0.31

0.09

0.65

0.25

0.4
0

0.6

0.16

0.83

0.01

0.14

0.85

0.01

0.38

0.58

0.03

0.12

0.84

0.04

0.11

0.86

0.03

0.24

0.68

0.08

0.09

0.81

0.1

0.08

0.83

0.09

0.16

0.65

0.19

0.35

0.56

0.09

0.29

0.63

0.08

0.74

0.08
0.18

0.24

0.59

0.17

0.2

0.65

0.15

0.57

0.12

0.31

0.19

0.56

0.25

0.16

0.6

0.23

0.48

0.18

0.35

0.46

0.51

0.03

0.41

0.56

0.03

0.74

0.16
0.1

0.2

0.71

0.09

0.18

0.74

0.08

0.59

0.2

0.21

0.15

0.63

0.22

0.14

0.66

0.2

0.47

0.12

0.41

0.22

0.69

0.09

0.08

0.91

0.01

0.57

0

0.43

0.07

0.58

0.35

0.03

0.81

0.17

0.2
0

0.8

0.02
0.33

0.65

0.01

0.48

0.51

0.050

0.95

AP ILP KP PPP UFLP
3

4
5

co
ne

B

fu
ll

OB
no

OB
co

ne
B

fu
ll

OB
no

OB
co

ne
B

fu
ll

OB
no

OB
co

ne
B

fu
ll

OB
no

OB
co

ne
B

fu
ll

OB
no

OB

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

%

Dominance Infeasibility Optimality

Figure 3.8: Proportion of leaf nodes fathomed by dominance, infeasibility, and opti-
mality.

while it can be stopped when a dominated one is found with noOB.

• Due to Theorem 3.2, the cost of computing the super local upper bounds when using
fullOB is O(|D(η)|3) where D(η) denote the local upper bounds. That is, the CPU
time may increase if the number of local upper bounds increases. For p = 3, the number
of local upper bounds per non-dominated point is bounded (Dächert and Klamroth,
2015). However, no bound is known when p ≥ 4. Even worse, the computational study
of Klamroth et al. (2015) showed that the number of local upper bounds seems to
grow exponentially as a function of the number of objectives for a given number of
non-dominated points (approx. 7 local upper bounds per non-dominated point for
p = 4 and 32 when p = 5).

• Many super local upper bounds may result in a too large number of child nodes when
applying fullOB. For example, fullOB tends to develop significantly larger trees than
noOB for UFLP, and it appears that the previously enumerated benefits are not enough
to compensate for the higher number of nodes created.

Hence, a high number of non-dominated points may result in a high number of local upper
bounds that are costly to check for dominance and may result in too many child nodes.

3.5. Computational experiments 91

pa % of nodesb Min depthc Avg-. # nodesd Max # nodese

AP
p = 3 5.01 3.64 2.66 27
p = 4 4.08 4.8 2.41 16
p = 5 3.38 5.3 2.25 8

ILP
p = 3 2.52 10.41 2.17 11
p = 4 2.42 9.96 2.27 11
p = 5 2.09 9.31 2.19 14

KP
p = 3 4.21 6.52 2.26 16
p = 4 3.09 6.66 2.24 12
p = 5 1.76 6.20 2.14 7

PPP
p = 3 2.25 12.43 2.27 32
p = 4 2.39 9.67 2.25 50
p = 5 2.15 6.85 2.33 39

UFLP
p = 3 5.44 3.59 4.51 157
p = 4 4.85 5.25 3.52 144
p = 5 2.58 6.59 2.97 51

a Number of objectives.
b Percentage of nodes where objective branching resulted in two or more child nodes.
c Average minimum depth at which objective branching resulted in two or more child nodes.
d Average number of child nodes created when objective branching resulted in two or more child
nodes.
e Maximum number of child nodes created when objective branching resulted in two or more child
nodes.

Table 3.2: Average percentage of nodes, average minimal depth and average and maxi-
mum number of child nodes created when at least two or more child nodes are created
due to objective branching.

Moreover, these negative effects on CPU increase with increasing number of objectives as
can be seen in Figure 3.6 for PPP and UFLP which indeed are instances with a high number
of non-dominated points.

3.5.4 Branching tree structure when using fullOB

In this section, we investigate the structure of the tree when fullOB is used and we restrict
the analysis to instances for which fullOB was solved to optimality. Branching tree statistics
are given in Table 3.2.

First, observe that on average fullOB separates the problem into two or more disjoint
sub-problems in a very small proportion of the nodes (between 1.8% and 5.4% of the nodes
on average). This suggests that it is often not possible to perform disjoint separation of
the objective space using objective branching. Moreover, given a problem class this propor-
tion tends to decrease as p increases. This suggest that the difficulty of applying objective

92 Chapter 3. Objective branching

Ratio cpu (p = 5) Ratio nodes (p = 5)

Ratio cpu (p = 4) Ratio nodes (p = 4)

Ratio cpu (p = 3) Ratio nodes (p = 3)

15 20 25 30 15 20 25 30

20 25 30 35 40 20 25 30 35 40

40 50 60 70 80 90 40 50 60 70 80 90
0.7

0.8

0.9

1.0

0.80
0.85
0.90
0.95
1.00

0.90
0.95
1.00
1.05
1.10

0.80
0.85
0.90
0.95
1.00

0.90
0.95
1.00
1.05

0.96

0.99

1.02

1.05

Number of variables (n)

R
at

io

fullOB limitedOB fullOB limitedOB

Figure 3.9: Ratios of comparing CPU and nodes in the tree using fullOB as benchmark
(in the denominator when dividing the numbers) for UFLP instances.

branching keeps increasing with the number of dimensions.
Second, an interesting fact is that, unlike in the bi-objective case, objective branching

cannot be applied early in the tree (Parragh and Tricoire, 2019). In general, it requires a
higher depth in the tree before objective branching can be applied. Moreover, this result
holds even though preliminary experiments showed that for some problem classes (AP, PPP,
and UFLP), non-dominated points were found very early in the tree, and even at the root
node. This supports the observation of the difficulties of applying objective branching with
an increasing number of objective functions as presented in Section 3.4.1.

Finally, consider the average and maximum number of child nodes created when applying
objective branching. Observe that the average number is very close to the minimum number
of nodes created when applying objective branching (two nodes). That is, often only a few
nodes are created when applying objective branching. However, in a few cases a larger number
of child nodes are created (up to 157 for UFLP). These cases may result in a wide and big
tree. Indeed, a possible reason for fullOB to perform so poorly for UFLP may be that a
large number of subproblems are created early in the tree, resulting in larger sub-trees.

To test how a large number of child nodes affect the branching tree, a new configuration
denoted limitedOB is considered. Here, an upper limit of 5 is used on the number of child

3.5. Computational experiments 93

nodes created when applying objective branching. The child nodes are created using Algo-
rithm 3.2, which upon termination, merge the super local upper bounds until the number is
at most five. The merging operation merges the two closest super local upper bounds, merges
all the super local upper bounds with an intersection point dominated by the lower bound
set, and repeats the process until at most five super local upper bounds remain.

The performance of limitedOB is shown in Figure 3.9, where ratios are obtained by
dividing the numbers for limitedOB with fullOB. Note that using limitedOB reduces the
tree size with up to 32% and in general performs better than fullOB. This indicates that
having an upper bound on the number of child nodes created may help reducing the tree
size and improve performance for instances where a high number of child nodes are created.

Any separation in the objective space obtained with Algorithm 3.2 at a given node is also
valid for any of its child nodes. That is, both fullOB and limitedOB separate the objective
space. However, due to the upper limit on the number of child nodes, the separation for
limitedOB is not as tight as for fullOB. Moreover the separations applied when using fullOB

remain valid and may be applied later in the sub-tree when using limitedOB, i.e. limitedOB

may “delay” objective branching to deeper levels of the tree by applying the separations in
smaller steps.

3.5.5 Comparison with an Objective Space Search algorithm

We now compare the performance of the branch-and-bound algorithm using objective branch-
ing to several Objective Space Search algorithms (OSS). In doing so, we emphasize that this
comparison serves as a proof of concept rather than as a validation of the superiority of our
approach. Indeed, OSS methods are based on the iterative solution of single-objective IPs,
for which excellent solvers are available. Even though our branch-and-bound implementation
avoids the repeated consideration of the same - or very similar - (partial) solutions in the
decision space, implementing state-of-the art preprocessing and cut-generation strategies as
used within standard IP-solvers was beyond the scope of this work, so that OSS methods
have a large advantage in this regard.

We base our comparison on two exemplary OSS methods: The C++ implementation of
Kirlik and Sayın (2014), available at Kirlik (2014), and denoted by configuration OSS-KS.
In addition, a C++ implementation of the redundancy avoidance method introduced in
Klamroth et al. (2015) and implemented in Dächert, Fleuren, and Klamroth (2021) is used
for comparison, and denoted by configuration OSS-DFK. The authors are aware of other and
more recent OSS algorithms, such as Bektaş (2018); Holzmann and Smith (2018); Tamby
and Vanderpooten (2021). The above methods were selected for two reasons: OSS-KS is used
in almost all comparative studies involving OSS methods and can thus be seen as a general
reference. OSS-DFK implements the idea of redundancy avoidance while keeping the IPs

94 Chapter 3. Objective branching

AP (p = 5) ILP (p = 5) KP (p = 5) PPP (p = 5) UFLP (p = 5)

AP (p = 4) ILP (p = 4) KP (p = 4) PPP (p = 4) UFLP (p = 4)

AP (p = 3) ILP (p = 3) KP (p = 3) PPP (p = 3) UFLP (p = 3)

30 40 50 60 10 12 14 16 18 20 10 12 14 16 18 20 15 20 25 30 35 20 30 40

50 100 10 15 20 25 30 10 20 30 40 30 40 50 20 30 40 50

0 200400600800 10 20 30 40 10 20 30 40 50 40 50 60 70 40 50 60 70 80 90
0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0
500

1000
1500
2000

0

1000

2000

3000

0

500

1000

1500

0
500

1000
1500
2000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0
500

1000
1500
2000

0

1000

2000

Number of variables (n)

Av
er

ag
e

C
PU

tim
e

(in
se

co
nd

s)

Configuration coneB fullOB OSS-DFK OSS-KS

Figure 3.10: Average cpu times, expressed in seconds, in function of the number of
variables for each number of objectives and problem classes. Unsolved instances are
included here. Four configurations are depicted: fullOB, coneB, OSS-DFK, and OSS-KS.

simple and can thus be seen as a good compromise between IP complexity and the number of
required solver-calls. Tamby and Vanderpooten (2021) present an improved implementation
of the same method that uses additional, partially problem and solver specific features like
providing starting solutions to CPLEX and re-ordering the subproblems in a clever way. The
improvements are thus rather in the details than in the overall concept. Holzmann and Smith
(2018) use weighted Tchebychev scalarizations rather than e-constraint scalarizations and
present promising results, particularly when using again a re-implementation of Klamroth
et al. (2015), i.e., the same method used here for comparison. Bektaş (2018) reduces the
number of IPs, however, at the price of solving more complicated IPs that involve disjunctive
programming formulations. Their reported improvements over Kirlik and Sayın (2014) are,
however, lower than those reported in Tamby and Vanderpooten (2021), a method that we
mimic here.

The results are given in Figure 3.10. In general, the OSS algorithm performs better than
the B&B algorithm for p = 3. For ILP, KP and PPP, the gap is significant. For UFLP,
although OSS is still better on average, the gap is smaller. For p = 4, OSS-DFK is the best
configuration. For PPP, a smaller gap compared to p = 3 is observed. This is also observed

3.6. Conclusion 95

for p = 5, where in fact the branch-and-bound method appears to be slightly faster than
OSS-DFK.

It does not come as a surprise that the OSS algorithm is highly competitive and outper-
forms current state-of-art multi-objective B&B algorithms in most cases. It benefits from
the power of single-objective MIP solvers, which have improved over decades. Having this
in mind, the purpose of this study is not necessarily to outperform the OSS algorithm,
but rather to discuss and thoroughly analyze the concept of objective branching in a B&B
algorithm (that has proven successful for bi-objective problems) in the multi-objective case.
Our aim is that these efforts will result in an advancement of the development of promising
methods that hybridize decision space and objective space search methods.

For increasing number of objectives and number of non-dominated points the B&B
algorithm becomes more competitive. Indeed, UFLP is the problem class with the largest
size of the non-dominated set (2298 on average for p = 3 over all instances solved by the
branch-and-bound), and this is where the gap is the smallest. Moreover, PPP records one
of the largest number of non-dominated points (1290 on average) and B&B outperform
the OSS algorithms for p = 5. This is also visible for AP with p = 3, for which a large
number of non-dominated points as well as a smaller gap is recorded. As a comparison, ILP
and KP have 67 and 148 non-dominated points on average, respectively. This suggests that
the branch-and-bound is more likely to be efficient on instances with a large number of
non-dominated points and objectives.

3.6 Conclusion

This paper proposes an extension of objective branching, a successful feature of bi-objective
B&B, to the case with more than two objectives (p ≥ 3), and studies its impact on a B&B
algorithm for multi-objective linear integer programming problems.

First, we highlighted a set of difficulties when extending objective branching from the
bi-objective case to the case with more than two objectives.

Second, in order to overcome these difficulties, a number of desirable properties of objec-
tive branching was exposed, and the concept of super local upper bounds was introduced.
The super local upper bounds were built by merging local upper bounds and were used to
define subproblems satisfying the desirable properties previously established.

Next, the experiments in Section 3.5 showed that in general, except for UFLP, either full
objective branching or cone bounding performed better, or at least as well as the reference
framework without objective branching. In these cases, full objective branching and cone
bounding resulted in similar cpu times. The largest benefits were recorded for p = 3.

Finally, the experiments showed that there was a positive impact on the variable selection

96 Chapter 3. Objective branching

when objective branching or cone bounding was applied, i.e. the algorithm tends to make
better branching decisions. Indeed, solutions that are in the same part of the objective space
are more likely to be similar, and some variables may not be able to take particular values.

Directions for future research include identifying a reduced set of candidates for variable
branching, and to understand what constitutes a good variable to branch on. Moreover,
preliminary tests showed that there is no clear winner between depth and breadth first
strategies when selecting a node, and the difference can be significant. We believe that it
would be beneficial for multi-objective branch-and-bound frameworks to be able to either
detect which rule is the best given the instance provided (without knowing the problem
class), or to design an alternative rule that works efficiently for all problem classes. Objective
branching could also benefit from parallelization since sub-problems are made in a way such
that they are independent. Indeed, when objective branching is applied, there is no point
of the search area that is included in more than one sub-problem and the sub-problems are
defined by different points of the upper bound set. Hence, in each sub-problem, the upper
bound set can be improved in the region defined by the objective branching constraints,
without influencing the other sub-problems. At last, it is well-known that OSS algorithms
benefit from the power of single-objective MIP solvers. A potential line of future research,
inspired by what is done in the single-objective case, is to improve the branch-and-bound
framework by, for example, exploring cutting planes.

; Fourth Chapter <

Enhancing branch-and-bound for
multi-objective 0-1 programming

History: This chapter has been prepared in collaboration with Sophie Parragh, and initiated
during my stay abroad in Linz during the fall semester of 2021. Preliminary results were
presented at an internal seminar in Linz in November 2021. After some improvements, the
work was presented again at an internal seminar in April 2022 at Aarhus University, Denmark;
and a second time at the 26th International Conference on Multiple Criteria Decision Making
in June 2022, in Portsmouth, United Kingdom.

98 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

Enhancing branch-and-bound for multi-objective
0-1 programming

Nicolas Forget*, Sophie Parragh**

* Department of Economics and Business Economics, School of Business and Social
Sciences, Aarhus University, Denmark

** Institute of Production and Logistics Management, Johannes Kepler University,
Linz, Austria

Abstract

In bi-objective branch-and-bound literature, a classic way to speed-up the resolution is to
perform objective branching, i.e. to create smaller and disjoint sub-problems in the objective
space, obtained from the partial dominance of the lower bound set by the upper bound set.
When considering three or more objective functions, however, applying objective branching
becomes more complex, and the benefit gets unclear. Hence, we investigate whether the
objective branching constraints can be further exploited. To do so, we extend the idea of
probing to multiple objectives, enhance it in several ways, and show that when coupled
with objective branching, it results in significant speed-ups in terms of CPU times. We
also investigate cut generation based on the objective branching constraints. Besides, we
propose simple node selection rules based on the best-bound principle derived from single-
objective literature. We show that the proposed rules outperform the traditional depth-first
and breadth-first strategies. All experiments are carried out on a set of both Capacitated
and Uncapacitated Facility Location Problems, and on the Knapsack Problem, with three
and four objectives.

Keywords: multi-objective combinatorial optimization; multi-objective integer program-
ming; branch & bound; probing; node selection.

4.1 Introduction

In many real-world problem situations, decision makers have to consider several different
objectives simultaneously, such as travel times, costs, and CO2 emissions. These objectives
are often conflicting, which means that the optimal solution for one of the objectives is often

4.1. Introduction 99

not optimal for the others. Instead, one may search for all the optimal trade-off solutions.
For this purpose, a multi-objective optimization problem is solved. We focus here on solving
Multi-Objective Integer Linear Problems (MOILP).

A MOILP can be solved using an Objective Space Search (OSS) algorithm, which consists
of solving a series of single-objective problems obtained by scalarizing the objective functions
so that all optimal trade-offs are enumerated (Ehrgott, 2005). The main advantage of this
methodology is that the power of single-objective solvers can be used. Consequently, objective
space search algorithms have received much attention over the past decades (see e.g., Ulungu
and Teghem (1995); Sylva and Crema (2004); Ozlen et al. (2014); Kirlik and Sayın (2014);
Boland et al. (2017); Boland and Savelsbergh (2016); Tamby and Vanderpooten (2021)).

Alternatively, a MOILP can be solved using a Decision Space Search (DSS) algorithm,
typically a Multi-Objective Branch & Bound (MOBB) algorithm. Almost all recent contribu-
tions in this area address the bi-objective case (Stidsen et al., 2014; Gadegaard et al., 2019;
Parragh and Tricoire, 2019; Adelgren and Gupte, 2022), and they all rely on an efficient
branching scheme that creates sub-problems in the objective space. Forget, Gadegaard, Klam-
roth, Nielsen, and Przybylski (2022) have recently generalized this scheme to problems with
more than two objectives. However, in its straightforward form, the speed-ups observed for
the two-objective case did not translate to the three or more objective case. In this paper, we
take Forget et al. (2022)’s work as the starting point and of we propose an enhanced MOBB
framework designed to solve MOILP with three or more objective functions. In order to im-
prove the performance of the MOBB, we generalize the idea of probing to the multi-objective
case, which allows us better exploit the constraints generated by the branching scheme. Prob-
ing is a technique successfully employed in single objective branch-and-bound, which allows
reducing the domains on the decision variables. In a 0-1 integer context, this results in fixing
variables to either 0 or 1 (Savelsbergh, 1994). To the best of our knowledge, probing has not
been generalized to more than two objectives. Moreover, we investigate whether a decrease
in CPU times can be achieved by deriving stronger cuts from the constraints generated by
the objective branching scheme. Then, we investigate new node selection rules based on the
best-bound principle, and compare them to the traditional breadth and depth-first strategies
typically used in MOBB literature. Finally, we show through a computational study that
the suggested improvements led to a significant speed-up for the framework in terms of CPU
time, and that our algorithm is competitive with recent OSS algorithms from the literature
on some of the problem classes considered in this paper.

The paper is organized as follows. In Section 4.2, we present notations and definitions
used throughout the paper. In Section 4.3, we discuss related work, and in Section 4.4,
we describe the basic MOBB framework used here. Sections 4.5 and 4.6 are dedicated to
the main novelties of our framework, namely probing, cut generation, and node selection

100 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

rules. Finally, in Section 4.7, we present the computational study, and our conclusions in
Section 4.8.

4.2 Definitions and notation

A MOILP with n variables, p objectives, and m constraints is written as follows:

P : min{z(x) : x ∈ X}

where the p objective functions z(x) = Cx are defined by a p × n matrix of objective
coefficients C. The feasible set X = {x ∈ {0, 1} : Ax ≧ b} is given by a m × n matrix of
constraint coefficients A, and a right-hand-side vector b of size m. The image of the feasible
set in the objective space is Y := CX = {Cx : x ∈ X}.

Since the objective function is vector-valuated, new operators need to be introduced
to compare solutions. Let y1, y2 ∈ Y, y1 weakly dominates y2 (y1 ≦ y2) if y1

k ≤ y2
k for all

k ∈ {1, ..., p}. Besides, y1 dominates y2 (y1 ⩽ y2) if y1 ≦ y2 and y1 ̸= y2. These relations
also extend to sets of points. Let S1,S2 ⊂ Rp, we say that S1 dominates S2 if for all s2 ∈ S2,
there exists s1 ∈ S1 such that s1 ⩽ s2. The set S1 partially dominates S2 if S1 does not
dominates S2, but there is at least one s2 ∈ S2 such that there exists s1 ∈ S1 such that
s1 ⩽ s2.

Derived from the dominance relations, the set of non-dominated points is defined as
YN = {y ∈ Y : ∄y′ ∈ Y, y′ ⩽ y}. This notation can be extended to any set S ⊂ Rp, i.e.
SN = {y ∈ S : ∄y′ ∈ S, y′ ⩽ y}. Moreover, we define the set Rp

≧ = {y ∈ Rp : y ≧ 0}.
Given a set S ⊂ Rp, Ehrgott and Gandibleux (2007) introduced the notions of lower

and upper bound sets for SN , which extend the concept of lower and upper bound to the
multi-objective case. Let S1,S2 ⊂ Rp, we define the operation S1 + S2 as the Minkowski
sum, i.e., S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. Moreover, S1 is Rp

≧-closed if S1 + Rp
≧ is

closed, and Rp
≧-bounded if there exists s ∈ Rp

≧ such that S1 ⊂ {s}+ Rp
≧. The definition of

Ehrgott and Gandibleux (2007) is recalled in Definition 4.1.

Definition 4.1. (Ehrgott and Gandibleux, 2007) Let S ⊂ Rp.

• A lower bound set L for SN is an Rp
≧-closed and Rp

≧-bounded set such that SN ⊂ L+Rp
≧

and L = LN .

• An upper bound set U for SN is an Rp
≧-closed and Rp

≧-bounded set such that SN ⊂
cl[Rp\(U + Rp

≧)] and U = UN , where cl(.) denote the closure operator.

A particular lower bound set is the singleton {yI} where yI , called the ideal point, is
defined by yI

k = miny∈YN
{yk}. Similarly, one can define the upper bound set {yN} where yN ,

the nadir point, is such that yN
k = maxy∈YN

{yk}.

4.3. Related work 101

The linear relaxation of a MOILP P is the problem P LP : min{z(x) : x ∈ XLP }, where
XLP = {x ∈ [0, 1] : Ax ≧ b}. The problem P LP belongs to the class of Multi-Objective
Continuous Linear Problem (MOCLP). Ehrgott and Gandibleux (2007) showed that solving
the linear relaxation yields a valid lower bound set.

Given an upper bound set U , Klamroth et al. (2015) proposed an alternative description
of the region cl[Rp\(U + Rp

≧)] using the set of local upper bounds N (U). Let u ∈ Rp, we
define C(u) = {z ∈ Rp : z ≦ u}. Using the definition of Klamroth et al. (2015), the set of
local upper bounds N (U) is the set such that

⋃
u∈N (U) C(u) = cl[Rp\(U + Rp

≧)], and for all
u1, u2 ∈ N (U), u1 ̸= u2, C(u1) ⊈ C(u2). The first condition makes sure that N (U) describes
properly cl[Rp\(U +Rp

≧)], whereas the second condition implies that there is no pair of local
upper bounds such that one dominates the other, i.e., N (U) is of minimal size.

Given a lower bound set L and an upper bound set U , we define the search region as
the set L+ Rp

≧ ∩ cl[Rp\(U + Rp
≧)]. The search region can be interpreted as the region of the

objective space where non-dominated points are possibly located.
A weighted-sum scalarization Pλ of a MOILP P is a single-objective optimization problem

where the objective function is a weighted sum of the objective functions of P . Hence, given
a weight vector λ ∈ Rp

⩾, the problem Pλ is written as Pλ : min{λz(x) : x ∈ X}.

Property 4.1. (Ehrgott, 2005) Let P be a MOCLP. Its non-dominated set YN corresponds
to the non-dominated part of a polyhedron, and for any weighted-sum scalarization Pλ with
weight λ ∈ R⩾, there is an extreme point of YN that is optimal for Pλ.

Given a MOILP P , since its linear relaxation P LP is a MOCLP, Property 4.1 implies that
the optimal solution of a weighted-sum scalarization of P LP can be obtained by searching for
the extreme point of the lower bound set that has the minimal weighted-sum of its objective
values. This property will be exploited in Section 4.6.1.

4.3 Related work

To our knowledge, the first MOBB was proposed by Klein and Hannan (1982). In their
algorithm, the authors use a single branching tree to solve a series of single-objective problems
to generate all desired solutions. Later, Kiziltan and Yucaoğlu (1983) proposed a framework
that uses the minimal completion, which consists of setting variables to 0 or 1 depending on
its objective coefficients, to generate lower bounds. The resulting solution is integer but is
not necessarily feasible for the initial problem.

In the following decade, a lot of attention was paid to DSS approaches tailored to specific
problems. We refer the reader to Ramos et al. (1998) and Visée et al. (1998) for studies
on the minimum Spanning Tree problem and the Knapsack problem, respectively. In the

102 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

latter, the novelty lies in the fact that they use a branch-and-bound algorithm in the second
phase of a two-phase method, a well-known OSS algorithm proposed by Ulungu and Teghem
(1995). In other words, they embedded a DSS algorithm into an OSS algorithm, resulting in
the first method that effectively mixes both approaches.

In multi-objective optimization, the ideal point provides a straightforward lower bound
set. The first to introduce more complex lower bounds in a DSS algorithm are Sourd and
Spanjaard (2008). In their paper, the authors use a surface as a lower bound set, namely
the convex relaxation. Thereafter, the linear relaxation, weighted-sum scalarizations, and
the linear relaxations of weighted sum scalarizations have been widely used in a similar
way (see e.g., Vincent et al. (2013), Stidsen et al. (2014), Belotti et al. (2016), Stidsen and
Andersen (2018), Parragh and Tricoire (2019), Gadegaard et al. (2019), Adelgren and Gupte
(2022)). Although all these studies focus on the bi-objective case, the separating hypersurface
principle from Sourd and Spanjaard (2008) is also applicable in higher dimensions. Recently,
Santis et al. (2020) generated hyperplanes to obtain lower bound sets for multi-objective
convex optimization problems (thus including MOILP) with three or more objective functions,
whereas Forget et al. (2022) proposed to solve the linear relaxation for MOILP using more
than two objectives. In the latter, the authors emphasized the difficulties raised by adding a
third objective function. Indeed, if a simple dichotomic search is sufficient to calculate the
linear relaxation with two objectives, things become more difficult when more dimensions are
considered. In their paper, the authors suggest using Benson’s outer approximation algorithm
(Benson, 1998; Hamel et al., 2013; Löhne and Weißing, 2020) to compute the linear relaxation
based lower bound set.

Multi-Objective Mixed-Integer Linear Problems (MOMILP), i.e., problems with both
continuous and integer variables, have also received some attention in the MOBB literature.
Mavrotas and Diakoulaki (1998) proposed a branch-and-bound framework that can handle
MOMILP, as well as an improved version of their algorithm in Mavrotas and Diakoulaki
(2005). Later, Vincent et al. (2013) proposed a refined version of their framework for the
bi-objective 0-1 case. The use of MOBB to solve bi-objective MOMILP was further studied
by Belotti et al. (2016) and Adelgren and Gupte (2022).

In their paper, Vincent et al. (2013) also conducted a study of different node selection
rules. They tested depth-first and breadth-first strategies on randomly generated instances,
and depth-first appeared to be the most efficient. Similarly, Parragh and Tricoire (2019)
tested both approaches on a different set of instances, but breadth-first performed the best.
This suggests that the performance of the two classical node selection rules used in the
literature, namely depth-first and breadth-first, are, in fact, dependent on the problem class.
A similar observation was made in the preliminary study of Forget et al. (2022), where both
rules resulted in very different CPU times depending on the problem class of the instance

4.4. Branch-and-bound framework 103

solved. This issue is addressed in Sections 4.6 and 4.7.
In the past decade, a lot of attention has been paid to methods that hybridize DSS

and OSS algorithms. For the bi-objective case, Stidsen et al. (2014) proposed partitioning
the objective space into multiple slices, leading to stronger upper bound sets. This also
opened the door to parallelization, which was exploited in (Stidsen and Andersen, 2018), and
resulted in promising improvements in performance. The authors also developed the concept
of Pareto branching (or objective (space) branching): when the upper bound set partially
dominates the lower bound set, it is possible to create disjoint sub-problems in the objective
space by adding upper bounds on the objective functions to discard dominated regions from
the search. This principle was further explored and improved independently by Gadegaard
et al. (2019) and Parragh and Tricoire (2019). In both papers, their experiments showed the
great efficiency of this technique for the bi-objective case. Later, Adelgren and Gupte (2022)
also showed promising results using objective branching in MOBB applied to bi-objective
MOMILP.

Forget et al. (2022) extended objective branching to the multi-objective case. In their
paper, the authors highlighted several challenges that arise when three or more objective
functions are considered. In particular, they established that generating sub-problems without
redundancies is a much more complex task compared to the bi-objective case, and they
proposed a new method to overcome these difficulties. As a consequence, although still
beneficial, objective branching did not appear to be as efficient as in the bi-objective case in
their computational study. In this paper, we improve this result by showing that combining
probing with objective branching results in a significant speed-up.

Recently, Adelgren and Gupte (2022) have proposed to use probing, a popular technique
used in the single-objective case, to enhance their bi-objective branch-and-bound framework.
The probing procedure of Adelgren and Gupte (2022) relies on solving the bi-objective linear
relaxation based bound set, and showed promising results in their experiments. However,
the impact of probing for problems with three or more objectives in unclear, as bound sets
are more complex to compute. Furthermore, objective branching cannot be applied as often
and easily as in the bi-objective case, which may also have an impact on the performance of
probing.

4.4 Branch-and-bound framework

The branch-and-bound framework developed in this paper is based on the framework of
Forget et al. (2022), and is presented in this section. Similarly to the single-objective case,
the principle is to divide a problem that is too hard to be solved into easier sub-problems.
Each sub-problem is stored in a node, and the nodes are grouped together into a tree

104 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

1: Create the root node η0; set T ← {η0} and U ← ∅
2: while T ̸= ∅ do
3: Select a node η from T ; Set T ← T \{η}
4: Compute a local lower bound set for P (η)
5: If possible, update the upper bound set U
6: if η cannot be fathomed then
7: Split P (η) into disjoint subproblems P (η1), ..., P (ηh), and store each in a

unique children node of η.
8: end if
9: end while

10: return U

Algorithm 4.1: Branch-and-bound algorithm for MOCOs

data structure. For each node η, the sub-problem contained in η is called P (η), and each
subproblem of P (η) is stored in a child node of η. Instead of single numerical values, lower and
upper bound sets are used to determine whether a given sub-problem potentially contains new
non-dominated solutions, which are feasible for the initial problem. If not, the corresponding
node is fathomed. Otherwise, it is divided into disjoint sub-problems. A general outline of
our framework is presented in Algorithm 4.1.

The branch-and-bound is initialized with an empty upper bound set U , and a list of
non-explored nodes, denoted by T , that contains the initial problem (at the root node of the
tree). At each iteration, a node η is selected and removed from T (Line 3 of Algorithm 4.1).
The classical tree exploration strategies from the literature are depth-first (last in first out)
and breadth-first (first in first out), and are further discussed in Section 4.7. If there is no
non-explored node remaining, the algorithm stops and U = YN .

When a node η is selected, a lower bound set L(η) for P (η) is computed (Line 4 of
Algorithm 4.1). In this framework, the linear relaxation P LP (η) is solved, and the result
yields a valid lower bound set (Ehrgott and Gandibleux, 2007). A Benson-type algorithm is
used for this purpose (see, e.g., Hamel et al. (2013)). As a result, a description of L(η) in
terms of its extreme points is obtained, as well as a description of L(η) + Rp

⩾ in terms of its
hyperplanes.

Once the lower bound set is obtained, if possible, new non-dominated points are harvested
(Line 5 of Algorithm 4.1). Indeed, Benson’s algorithm returns a pre-image for each extreme
point of L(η). Hence, any extreme point l with an integer pre-image that is not dominated
by any existing point in the upper bound set will be added to U ; and all points y ∈ U that
are dominated by l (l ≥ y) are removed from U .

We distinguish three cases in which a node can be fathomed. (i) If P LP (η) is infeasible,

4.5. Enhanced objective branching 105

no new non-dominated points are searched (i.e., Line 5 is skipped), and the node is fathomed
by infeasibility. Indeed, similarly to the single-objective case, if P LP (η) is infeasible, P (η) is
also infeasible.

(ii) If L(η) is made of a unique extreme point l with an integer pre-image, all new points
found in P (η) will be dominated by the integer solution l and consequently, η is fathomed
by optimality.

(iii) Finally, a third way to fathom a node exists: fathoming by dominance. This case
happens when the lower bound set L(η) is dominated by the upper bound set U . From the
definitions, this situation is equivalent to saying that each feasible point of P LP (η), and thus
of P (η), is dominated by at least one already known integer point u ∈ U . Consequently, no
new non-dominated point can be found in P (η). In practice, if there exists no local upper
bound u ∈ N (U) such that u ∈ L(η) + Rp

⩾, then the node is fathomed by dominance. This
dominance test was first introduced by Sourd and Spanjaard (2008), and used multiple times
in the literature (see e.g., Gadegaard et al. (2019); Forget et al. (2022)).

If the node η cannot be fathomed, we resort to branching, and P (η) is split into several
sub-problems (Line 7 of Algorithm 4.1). To do so, objective branching is used first. This
technique was initially introduced for the bi-objective case by Stidsen et al. (2014), further
improved by Gadegaard et al. (2019) and Parragh and Tricoire (2019), and finally extended to
the multi-objective case by Forget et al. (2022). It consists of creating disjoint sub-problems
in the objective space when the lower bound set is partially dominated by the upper bound
set, with the purpose of discarding regions that cannot contain any new non-dominated
points. The subproblems are created by adding constraints in the form z(x) ≦ s, s ∈ Rp, and
the point s is called super local upper bound. Objective branching will be further elaborated
upon in Section 4.5.

Once objective branching is applied, a set of subproblems η1, ..., ηγ is obtained. Note
that only one subproblem is obtained (γ = 1) if it is not possible to create two or more
disjoint subproblems in the objective space. Then, for each of the γ subproblems, decision
space branching is performed. To do so, one variable xi is chosen, and two subproblems with
the constraints xi = 0 or xi = 1 are created. The variable xi has to be a free variable, i.e.,
not fixed to a specific value in the current node by one of the previous branching decisions.

4.5 Enhanced objective branching

In this section, we further explore the concept of objective branching. Figure 4.1 depicts a
situation where the lower bound set L(η) is partially dominated by the upper bound set
U , and the resulting search region is given by the hashed areas. Any part of the objective
space that is not included in one of these areas cannot contain any feasible non-dominated

106 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

0 1 2 3 4 5 6 7 8 9 101112131415
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

U
N (U)
L(η)

Figure 4.1: The lower bound set L(η), depicted by the solid line, is partially dominated
by the upper bound set U , represented by the crosses. In this situation, it is possible
to split the problem into three disjoint sub-problems in the objective space. Each
sub-problem is highlighted by the hatched areas, and its corresponding super local
upper bound is depicted by its closest large circle.

point for P (η). Objective branching consists of generating disjoint subproblems in a way
such that as much of the region of the objective space dominated by U is discarded from all
subproblems, without excluding any point of the search region from the sub-problems. In
the example from Figure 4.1, this resulted in three subproblems, defined by three super local
upper bounds depicted by the large circles.

In the bi-objective case, multiple ways to compute the subproblems exist. Stidsen et al.
(2014) and Gadegaard et al. (2019) generated new subproblems when the algorithm detected
that one or several points of the upper bound set partially dominate the lower bound set,
whereas Parragh and Tricoire (2019) kept track of the various non-dominated segments of
the lower bound set and generated a subproblem for each. The two approaches are equivalent
in the sense that exactly the same subproblems are generated with both methods.

Recently, Forget et al. (2022) showed that the computation of the subproblems in the
case where p ≥ 3 was more complex but still possible. However, the increased complexity
resulted in a less significant benefit of using objective branching when p ≥ 3 compared to
the case where p = 2. For some problem classes, it even resulted in worse computation times,
which creates a great contrast with the bi-objective case, where using objective branching
systematically led to lower CPU time. As a result, it appears that when p ≥ 3, the use of
objective branching is not always sufficient by itself, and in this paper, we aim to study
whether objective branching constraints can be further exploited to help reducing the total
CPU time of the branch-and-bound framework.

4.5. Enhanced objective branching 107

Figure 4.2: The first row depicts the set of non-dominated points for a tri-objective
Uncapacitated Facility Location Problem with 4672 non-dominated points. The second
row depicts the set of non-dominated points for a tri-objective Capacitated Facility
Location Problem with 1912 non-dominated points. For each plot, a variable xi was
chosen. A blue point is a non-dominated point where xi = 0 whereas an orange point
is a non-dominated point for which xi = 1.

4.5.1 Probing

In multi-objective optimization, an intuitive belief is that two points that are close to each
other in the objective space are more likely to have similar pre-images than two points
that are far away from each other. Figure 4.2 shows the set of non-dominated points of
two instances of tri-objective MOCO instances (one row for each instance). A blue point
corresponds to a non-dominated point where the chosen variable xi takes value 0, whereas
an orange point corresponds to a non-dominated point such that xi = 1. From these four
pictures, it is clear that some problem classes have variables that take a particular value
in certain parts of the objective space. Moreover, when applying objective branching, the
algorithm reduces the search to particular regions of the objective space. Hence, based on the
previous observation, it is possible that some variables cannot take specific values anymore
in certain subproblems. The process of identifying such values is commonly referred to as
probing. In the following, we present our probing strategies.

A naive strategy

We explore at first a naive strategy. At node η, we define the set of variables fixed to 0 and
1 as I0(η) = {i ∈ {1, ..., n} : xi = 0} and I1(η) = {i ∈ {1, ..., n} : xi = 1} respectively. The

108 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

set of free variables is If (η) = {1, ..., n}\(I0(η) ∪ I1(η)}. With a little abuse of notation, we
will consider that writing xi ∈ I0(η) is equivalent to i ∈ I0(η). We will consider analogous
statements for I1(η) and If (η) as well.

Let xi ∈ If (η) be a free variable at node η. Since we consider problems with binary
variables only, the possible values for xi are 0 or 1. A first approach in order to check whether
xi can take value t ∈ {0, 1} in P (η) is to solve the linear program F (i, t) : min{0 | x ∈
XLP (η), xi = t}. If F (i, t) is not feasible, then xi cannot take value t. When both F (i, 0)
and F (i, 1) are solved for xi, there are four possible scenarios:

• Both F (i, 0) and F (i, 1) are feasible: nothing can be concluded about xi, and thus, the
variable remains a free variable;

• F (i, 0) is feasible and F (i, 1) is infeasible: xi is fixed to 0;

• F (i, 0) is infeasible and F (i, 1) is feasible: xi is fixed to 1;

• Both F (i, 0) and F (i, 1) are infeasible: there is no possible integer value for xi. Thus,
the node η is fathomed by infeasibility.

When xi is fixed to 0, the set of free variables If (η) is updated to If (η)\{i} since xi is
not free anymore, and I0(η) becomes I0(η) ∪ {i}. Similarly, if xi is fixed to 1, then If (η)
and I1(η) become If (η)\{i} and I1(η) ∪ {i} respectively. If all free variables are fixed to
a particular value, the node is fathomed by optimality. Indeed, this situation implies that
there is only one integer solution in P (η), and no new non-dominated point can be reached
in P (η). The upper bound set is updated with the new point obtained by fixing all variables.

A first naive strategy is to solve F (i, t) at each node η, for each free variable xi ∈ If (η),
and for each possible value t ∈ {0, 1}. The approach is similar to Adelgren and Gupte (2022)
in the sense that they also perform probing at each node. In their paper, the authors suggest
to perform probing both before the computation of the linear relaxation, and when creating
sub-problems. In the latter case, they apply probing after selecting a free variable to branch
on, and change the branching variable if they conclude that the decision led to an infeasible
problem. In this paper, we adopted a slightly different approach: we perform probing only
after objective branching and before variable branching. In this way, we aim to reduce the
set of branching candidates at each node, while still benefiting from the objective branching
constraints. Indeed, we expect these to be the most constraining to the problem, since they
restrict the search to a particular region of the objective space and thus, hopefully, reduce
the possible values taken by the variables and help the algorithm to make an appropriate
branching decision.

Another difference with Adelgren and Gupte (2022) is that when performing probing,
they solve the bi-objective linear relaxation of the corresponding problem instead of solving
a simple feasibility problem as we do. However, as we consider more objective functions, the

4.5. Enhanced objective branching 109

linear relaxation becomes significantly more expensive to compute. Consequently, considering
that we only check each variable once, our approach requires at most one single-objective
linear program to be solved for each variable and value, which, in the binary case, limits the
maximum number of linear programs to be solved to 2If (η) at each node.

An advanced strategy

The naive strategy can be improved. Indeed, it is possible in some cases to detect if F (i, t)
is feasible without actually solving the linear program. For instance, if a solution that is
feasible for F (i, t) is already known, there is no need to solve F (i, t). Such solutions can be
collected, for example, from the extreme points of the lower bound set, or by keeping track
of the solutions obtained from previously solved linear programs (F (j, t′), j ̸= i, t′ ∈ {0, 1})
in the current node.

Moreover, variables can be fixed by inspection. Let xj ∈ If (η) be a free variable, and∑n
l=1 ailxl ≤ bi a constraint of the problem. By comparing aij to the maximal possible

value of the right-hand side of the constraint, one may be able to conclude that xi cannot
take value 1. First, all variables fixed to 1 are considered as constants and will be used
to adjust the right-hand side. Then, all free variables xl ∈ If (η) such that ail ≤ 0 will
be temporarily fixed to 0 meanwhile, those where ail < 0 will be temporarily fixed to
1. The constraint then becomes aijxj ≤ b −

∑
l∈I1(η) ail +

∑
l∈If (η),ail<0,l ̸=j ail. Then, if

aij > b−
∑

l∈I1(η) ail −
∑

l∈If (η),ail<0,l ̸=j ail, the variable xj can be fixed to 0. Similar rules
can be used for constraints in the form

∑n
l=1 ailxl ≥ bi and

∑n
l=1−ailxl ≤ −bi. More complex

preprocessing rules could be used as well, but this is out-of-scope of this paper and thus, we
will stick to these simple rules here.

We note that probing may be applied after variable branching as well as after objective
branching. However, our experiments showed that it is most effective when used in conjunction
with objective branching. A possible explanation relates to the example given in Figure 4.2:
some variables may only take certain values in certain regions of the objective space and
objective branching induces such regions. Hence, at node η, we propose to apply probing only
if an improvement in the objective branching constraints is observed compared to its parent
node η̂. In other words, we perform probing only if s ⩽ ŝ, where s and ŝ are the super local
upper bounds defining the objective branching constraints in nodes η and η̂, respectively.

This advanced strategy is new compared to Adelgren and Gupte (2022), as we first aim at
achieving the same results by solving fewerlinear programs, and then suggest using probing
only when it is expected to be the most relevant.

110 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

Combining probing and bounding

Finally, the linear program F (i, t) solved when applying the naive strategy does not have
any objective function. However, using an objective function may provide us with additional
information. For this purpose, we rely on adding a weighted sum objective function. Given
a weight vector λ ∈ Rp, the linear program F (i, t, λ) : min{λz(x) | x ∈ XLP (η), xi = v}
is solved, and the optimal value z∗t is obtained. By definition, when xi is fixed to t in this
sub-problem, all feasible solutions x ∈ X (η) ∩ {xi = t} are such that λz(x) ≥ z∗t. Moreover,
because of the objective branching constraints, all feasible solutions x ∈ X (η) ∩ {xi = t} are
such that z(x) ≦ s, s ∈ Rp. Hence, we can conclude that if there is no local upper bound
u ∈ N (U) such that λu ≥ z∗t and u ≦ s, then there is no feasible solution x ∈ X (η)∩{xi = t}
that can generate a new non-dominated point. In this case, xi is fixed to 1 if t = 0, or to 0
if t = 1. Note that the dominance test we employ here has, e.g., also been used by Stidsen
et al. (2014); Stidsen and Andersen (2018) in a bi-objective context.

An example is given in Figure 4.3, where λ = (1, 1) is used, and the programs F (i, 0, λ)
and F (i, 1, λ) are solved. In the rightmost figure, F (i, 0, λ) is feasible, and the weighted-sum
resulted in a non-empty search region. On the contrary, in the leftmost figure, F (i, 1, λ) is
feasible but the weighted-sum is dominated by the upper bound set in the region considered.
This implies that in this sub-problem, all integer solutions in which xi take value 1 are
dominated by at least one existing integer solution. Hence, there is no need to branch on xi,
and the variable can be fixed to 0.

This strategy is closer to the one proposed by Adelgren and Gupte (2022) for the bi-
objective case in the sense that we also compute a lower bound set, namely the linear
relaxation of a weighted-sum scalarization. However, our lower bound set is weaker than
theirs (linear relaxation), but requires only one linear program to be solved.

4.5.2 Objective branching based cover inequalities

For an objective k that is minimized, an objective branching constraint has the form wT x ≤ b,
where w is given by the objective coefficients of zk(x), and b is derived from the bound on
objective k in the sub-problem at hand. One can observe that this constraint is in fact a
Knapsack constraint, from which cover inequalities can be derived (see, e.g., Gu, Nemhauser,
and Savelsbergh (1998)).

By nature, objective branching constraints are often expected to be binding constraints,
as they are included to create disjoint sub-problems. Hence, for an objective k such that the
objective branching constraint zk ≤ sk is binding, there will be extreme points in the lower
bound set whose kth component will be equal to sk. Thus, in case such an extreme point is
fractional, cover cuts can be generated to cut it from the lower bound set, with the aim to

4.5. Enhanced objective branching 111

0 2 4 6 8 10 12 14 16 18 20 22 24
0
2
4
6
8

10
12
14
16

z1(x)

z 2
(x

)
N (U)
U

OB
xi = 0

(a) The linear program F (i, 0, λ) was solved,
and the optimal value z∗0 was obtained.
All points of the objective space satisfy-
ing the objective branching constraints and
λz(x) = z∗0 are depicted by the dash-
dotted line (weighted sum value). All feasi-
ble points are located both in the gray area
(objective branching constraints) and above
the dashdotted line. Since some local upper
bounds are located in this region, xi = 0 is
a possible candidate for new non-dominated
points in this region of the objective space.

0 2 4 6 8 10 12 14 16 18 20 22 24
0
2
4
6
8

10
12
14
16

z1(x)

z 2
(x

)

N (U)
U

OB
xi = 1

(b) The linear program F (i, 1, λ) was solved,
and the optimal value z∗1 was obtained.
All points of the objective space satisfy-
ing the objective branching constraints and
λz(x) = z∗1 are depicted by the dash-
dotted line. All feasible points are located
both in the gray area (objective branch-
ing constraints) and above the dashdotted
line(weighted sum value). Since no local
upper bounds are located in this region,
xi = 1 is not a possible value for new non-
dominated points in this region of the ob-
jective space.

Figure 4.3: Both F (i, 0, λ) and F (i, 1, λ) are solved with λ = (1, 1), resulting in
the situations depicted in the left and right figures respectively. Given the objective
branching constraints, it is concluded that xi cannot take value 1 and thus, xi is fixed
to 0.

move it closer to an integer point.
Let l ∈ L(η) be an extreme point such that lk = sk, and xl ∈ XLP (η) its pre-image. We

define Ĵ (l) = {j ∈ {0, ..., n} : xl
j = 1} as the set of indices of the variables that take value

1 in xl, and J̄ (l) = {j ∈ {0, ..., n} : 0 < xl
j < 1} as the set of indices of the variables that

take a fractional value in xl. By definition,
∑

j∈Ĵ ck
j xj +

∑
j∈J̄ ck

j xj = sk holds true. If xl is
fractional, i.e., J̄ ≠ ∅, then

∑
j∈Ĵ ck

j +
∑

j∈J̄ ck
j < sk also holds true because for all j ∈ J̄ ,

we have xj < 1. Hence, all variables xj such that j ∈ Ĵ ∪ J̄ cannot simultaneously take
value 1. Thus,

∑
j∈Ĵ ∪J̄ xj ≤ |Ĵ ∪ J̄ | − 1 is an example of a cover inequality that can be

generated from xl.
Of course, in many cases, different cover inequalities can be generated. These cuts can

also be strengthened by using any of the available lifting procedures from the literature.

112 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

4.6 Node selection rules

In the MOBB literature, breadth-first and depth-first are the commonly employed node
selection rules. Indeed, the fact that these rules are independent from the nature of the
problem being solved constitutes a good reason to use such rules when expanding branch-
and-bound methods to the multi-objective case, as they do not require additional work to
make the algorithm perform correctly. However, previous studies have shown that depth-first
is significantly better for some problem classes, whereas breadth-first is better for others
(see e.g., Vincent et al. (2013); Parragh and Tricoire (2019); Forget et al. (2022)). This
inconsistency is problematic when building a generic solver as we do here, since it could
easily lead to very poor performances in some cases. Therefore, we aim to explore alternative
node selection rules in the hope of finding rules that are more robust across problem classes,
and that perform better than the classical depth and breadth-first strategies.

In the single objective literature, the so-called best-bound strategy (and variations thereof)
has shown to be of value (Linderoth and Savelsbergh, 1999). Its basic principle consists in
exploring first the node that has the lowest lower bound value, as it constitutes the most
promising area of the decision space. Unfortunately, in the multi-objective case, it is often
not a trivial task to determine which node has the best bound, since one may have a lower
bound set that is better than the others in a particular region of the objective space, but
worse in other regions.

In the remainder of this Section, we propose two rules based on the best-bound principle.
In Section 4.6.1, we present a rule that searches for the best bound in a specific part of the
objective space by using weighted-sum values. In Section 4.6.2, we define a rule that is based
on gap measures between lower and upper bound sets.

4.6.1 Weighted-sum rule

A straightforward way to mimic the best-bound approach in a MOBB is to consider a
weighted-sum scalarization, and to use the value of its linear relaxation as a measure of the
quality of the lower bound set in each node. Let η be a node of the tree, let λ be the weight
vector used for the scalarization Pλ(λ), and z∗ the optimal value of its linear relaxation
P LP

λ (λ). The score s(η) of the node η is then given by s(η) = z∗, and the node with the
lowest score is selected.

Note that this rule is equivalent to a best-bound strategy using a branch-and-bound to
solve the problem Pλ. Hence, translated in the context of MOBB, one can say that this
strategy develops the node that is the most promising in direction λ first.

From a computational point of view, the score of a new node η has to be calculated
at its creation, which, in the present framework, requires solving a single-objective linear

4.6. Node selection rules 113

1: Create the root node η0; set T ← {η0} and U ← ∅
2: while T ̸= ∅ do
3: Select the node η with the best score from T ; Set T ← T \{η}
4: if η cannot be fathomed then
5: Split P (η) into disjoint subproblems P (η1), ..., P (ηh), and store each in a

unique children node of η.
6: for η̂ ∈ {η1, ..., ηh} do
7: Compute a local lower bound set for P (η̂)
8: Update the upper bound set U
9: Compute the score s(η̂) for η̂

10: end for
11: end if
12: end while
13: return U

Algorithm 4.2: An alternative branch-and-bound algorithm for MOILPs using a best-
bound strategy

program, namely P LP
λ (η). However, using a simple re-ordering of the steps of Algorithm 4.1,

it is possible to obtain the score of η without solving a linear program. Indeed, it is well
known that all points of the non-dominated set of a multi-objective continuous linear problem
correspond to an optimal solution of a weighted-sum scalarization Ehrgott (2005). In our
context, this implies that at node η, the score of η can be obtained by searching for the point
l∗ ∈ L(η) such that there is no other l for which λl < λl∗. In other words, we search for the
point of the lower bound set with the minimum weighted-sum value given the weight vector
λ. Fortunately, this point is given by an extreme point of L(η) (see Property 4.1), and only
extreme points have to be checked. Hence, by computing the lower bound set at the creation
of the node instead of when the node is selected, the score can be obtained at a very low cost.
Note that whether the lower bound set is computed at the creation or at the selection of the
node does not make a difference, as P LP (η) does not change. Furthermore, this result also
holds for the update of the upper bound set, that only depends on the solutions found in the
lower bound set. However, this is not true for fathoming, and in particular, fathoming by
dominance. Indeed, new feasible points may be found between the creation and the selection
of a node, which may allow the node to be fathomed by dominance. Hence, Lines 7 and 8
are moved to after the creation of the node, and the computation of the score is performed
as well, which results in the new framework given by Algorithm 4.2.

To conclude, this rule is very cheap and easy to compute. However, the drawback is that
it is very representative in one direction only and neglects other regions of the objective space.
For example, by using the weight vector λ = (1, ..., 1), the rule is likely to find good solutions

114 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

that are well balanced across all objectives more rapidly than good solutions that are very
good in one of the objectives but bad for other objectives. However the actual impact on the
performance is unclear, and is further studied in Section 4.7.

4.6.2 Gap measure rule

Another way to adapt the idea of best-bound strategies to the multi-objective case is to
compute a measure of the gap between the upper and lower bound set in each node. In this
case, the node with the largest gap is explored first, as it describes either a promising area,
or a region where very few feasible points have been discovered, and possibly many more
remain to be discovered.

An intuitive way to compute the gap in a given node is to compute the hypervolume of the
search area. However, it is well known that it is a costly and difficult operation, particularly
when three or more dimensions are considered. Hence, alternative measures are necessary.
When Ehrgott and Gandibleux (2007) introduced the concept of lower and upper bound sets,
they also proposed a number of measures to compare the quality of lower and upper bound
set. One of these measures is similar to the Hausdorff distance, and consists in computing
the minimal distance between the two points from each set respectively that are the furthest
away. Recently, this measure has been used by Adelgren and Gupte (2022) to compute gaps
between bound sets in the context of bi-objective mixed-integer branch-and-bounds.

In our context, at node η, the Hausdorff distance between the upper bound set and the
lower bound set is given by maxu∈N (U) minl∈L(η) d(u, l), where d(u, l) is the distance between
u and l. From an implementation point of view, only local upper bounds that are located
above the lower bound set are considered, as they are the only ones that define the search
region in η. If there is none, we consider that the node has a gap of 0. This approach is, in
fact, analogous to the single objective case: as long as the lower and upper bound sets have
not met entirely, the gap is strictly positive, and the node cannot be fathomed by dominance.

When multiple objectives are considered, a difficulty arises due to the fact that when a
new feasible point u is added to the upper bound set U , the gap in some nodes may change.
In particular, a node η1 with a smaller gap than that of η2 may end up with a gap larger
than that of η2 after the update of U . This implies that in order to identify the node with the
best score, the gap has to be recomputed in all nodes whenever U changes. Unfortunately,
this may be computationally expensive, as it is not rare that many nodes are open at a given
iteration of the MOBB.

To reduce the computational burden, we rely on two simple properties. First, when a
new point is added to the upper bound set, the gap in all nodes can only stay the same or
decrease. The reason is that the lower bound sets remain unchanged and the upper bound
set improves when a new feasible point is found. This implies that the search region shrinks:

4.7. Experiments 115

1: found ← FALSE
2: while !found do
3: Select the node η1 with the largest gap from T ; Set T ← T \{η}
4: Compute gnew(η1)
5: Select the node η2 with the largest gap from T
6: if gnew(η1) ≥ gold(η2) then
7: found ← TRUE
8: else
9: gold(η1)← gnew(η1)

10: T ← T ∪ {η1}
11: end if
12: end while
13: return η1

Algorithm 4.3: Selection of the node with the largest gap

the upper bound set moves closer to the lower bound sets. Second, we are only interested
in the node with the largest gap, as it corresponds to the next node being explored. Let
η1 ∈ T be the node with the largest gap, and η2 ∈ T be the node with the second largest
gap. Let gold(η) be the gap of a node η before re-computation, and gnew(η) be its gap after
re-computation. By construction, we know that gold(η2) ≥ gnew(η2). Furthermore, for all
η ∈ T \{η1, η2}, we have gold(η2) ≥ gold(η) ≥ gnew(η). Hence, if gnew(η1) ≥ gold(η2), only by
re-computing the gap in η1, we know that η1 is the node with the largest gap after update
of the upper bound set. If the condition is not satisfied, η1 is put back in T and the process
is repeated with η2, the new potential node with the largest gap. The selection procedure is
given in Algorithm 4.3.

4.7 Experiments

All algorithms are implemented in C++17, relying on Cplex 20.1 for solving single-objective
linear programs, using a single thread. The experiments are carried out on Linux 10.3, on
a Quad-core X5570 Xeon CPUs @2.93GHz processor and with 48GB of RAM memory. A
time limit of one hour is set when running the algorithms.

Our computational study aims at answering the following research questions: (i) How
does probing perform? In particular, how does it perform in combination with objective
branching, and why? (ii) What is the impact of using an objective function in the linear
programs used for performing probing? (iii) What is the impact of deriving cover cuts from
the objective branching constraints on the performance of the algorithm? (iv) Can node

116 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

selection rules based on the best-bound idea outperform the classical depth and breadth-first
strategies often used in the literature? (v) By fixing variables, the set of potential candidates
for branching is reduced. What is the impact of the chosen variable selection rule? (vi)
Computing lower bound sets in the multi-objective case is expensive. Does resorting to
pure enumeration at certain nodes in the tree improve the performance of the proposed
MOBB? (vii) How does the proposed branch-and-bound framework performs in comparison
to state-of-the-art objective space search algorithms?

We test our algorithms on the following three different types of problems and benchmark
instances:

• Capacitated Facility Location Problems (CFLP). The instances are extracted from
An, Parragh, Sinnl, and Tricoire (2022). Instances with 3 objectives 65, 230, and 495
variables are considered.

• Knapsack Problems (KP). The instances from Kirlik (2014) are used. Instances with
3 objectives and 40, 50, 60, 70, 80 variables are solved, as well as instances with 4
objectives and 20, 30, 40 variables.

• Uncapacitated Facility Location Problems (UFLP). The instances are extracted from
Forget et al. (2022). For 3 objectives, instances with 56, 72, 90, 110 variables are used.
For 4 objectives, instances with 42 and 56 variables are solved.

For each problem class, number of objectives, and number of variables, 10 instances are
solved, leading to a total of 170 instances tested.

Various configurations are tested for the branch-and-bound algorithm in order to address
the different research questions raised (objective branching, variable fixing, generation of
cover cuts inequalities, node selection). The configurations tested will be clearly stated
together with the results of each experiment. Unless specified otherwise, the framework uses
the following parameters and heuristics:

• Lower bound sets: the linear relaxation is used as lower bound set. Its computation
is warm-started by using the algorithm from Forget et al. (2022);

• Local upper bounds: the set of local upper bounds N (U) is updated whenever a new
point is added to the upper bound set U by using the algorithm from Klamroth et al.
(2015). Furthermore, all objective functions are expected to have integer coefficients,
and all variables are binary. This implies that the non-dominated points can take
integer values only. Consequently, when performing the dominance test and computing
sub-problems through objective branching, each component of the local upper bound
is shifted by −1.

• Variable selection rule: At the creation of sub-problems in the decision space, a free
variable is chosen for branching. First, this variable is chosen independently in each

4.7. Experiments 117

sub-problem obtained from objective branching. Let s ∈ Rp be the super local upper
bound defining the sub-problem in which a free variable has to be chosen. The variable
that is the most often fractional among the extreme points l of the lower bound set
L(η) that satisfies l ≦ s is selected. In case of ties, the one whose average value is
closest to 0.5 is selected and in case of equal average values, the one with the smallest
index is chosen.

Furthermore, unless specified otherwise, cover cut generation is disabled. Then, a number
of different configurations are tested. The three main components evaluated in this study
are the following:

• Objective branching: three options are considered: no objective branching (NOB);
cone bounding (CB); and full objective branching (FOB), as presented in Section 4.4.
Cone bounding is an alternative to objective branching proposed by Forget et al.
(2020a). The idea is to derive upper bounds on the objective functions from the partial
dominance of the lower bound set, but without splitting the objective space into
sub-problems, i.e., only decision space branching is performed.

• Probing/variable fixing: three possibilities are considered: no variable fixing (NVF);
variable fixing using the advanced strategy as presented in Section 4.5.1 (VF); and
variable fixing using a weighted-sum objective function to allow for variable fixing by
dominance (VFD) as explained in Section 4.5.1.

• Node selection rule: four configurations are considered: best of depth-first and
breadth-first (DB); best-bound based on weighted sums (BBWS); a normalized version
(BBWSN); and best-bound based on the gap measure presented in Section 4.6.2 (BBGAP).
In the case of (DB), the best strategy per problem class is used. CFLP and UFLP
use breadth-first, whereas KP uses depth-first. BBWS and BBWSN use λ = (1, ..., 1) (see
Section 4.6.1). Normalization may be important for problems for which the coefficients
of the different objective functions take values in very different ranges, such as the
CFLP.

In the remainder of this section, each sub-section is designed to address one of the research
questions raised earlier.

4.7.1 Probing and objective branching

In a first step, we investigate the effect of combining probing with objective branching. We
fix the node selection rule to configuration DB. First, six configurations are tested: the three
objective branching strategies (NOB, CB, and FOB), in combination with two variable fixing
configurations (NVF and VF). For FOB and CB, probing is performed only when an improvement

118 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

CFLP KP UFLP
p

=
3

p
=

4

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CPU (seconds)

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

NVF VF CB FOB NOB

Figure 4.4: Performance curves of the different objective branching and probing con-
figurations. The x-axis represents the CPU time expressed in second, and the y-axis
corresponds to the proportion of instances solved. Each curve represents the propor-
tion of instances solved through time for a given configuration. The line type indicates
the objective branching configuration used, and the line color to the variable fixing
configuration.

is observed in the objective branching constraints, as suggested in Section 4.5.1. However,
probing is performed at every node for NOB.

In Figure 4.4, the performance profiles of the different configurations are given. The
x-axis represents the CPU time expressed in seconds, whereas the y-axis corresponds to the
proportion of instances solved. From this figure, it is clear that for both CFLP and KP, the
winning configuration is FOB-VF. For UFLP and p = 3, however, although FOB-VF is the
best configuration for smaller instances, CB-VF becomes the winning configuration for larger
instances. For UFLP and p = 4, NOB-NVF is slightly faster than the other configurations.

It is interesting to note that enabling probing resulted in the greatest speed-ups for
full objective branching (FOB). This is particularly striking for UFLP, where FOB-NVF is
among the worst configurations, but FOB-VF is competitive with the best configurations. For
CFLP, it is clear that FOB benefits more from probing than CB or NOB, since CB-NVF is faster
than FOB-NVF, but FOB-VF is faster than CB-VF. This suggests that the branch-and-bound

4.7. Experiments 119

CB FOB NOB

p pb n NVF VF NVF VF NVF VF

65 7906.6 (0) 2382.6 (0) 11786.2 (0) 1389.4 (0) 15090.4 (0) 15072.4 (0)
230 198405.7 (6) 65681.8 (4) 405597.4 (7) 49365.9 (1) 78613.1 (10) 32593.7 (10)CFLP
495 6380.6 (10) 4357.9 (10) 33545.9 (10) 4497.9 (10) 4245.2 (10) 2934.4 (10)
40 104268.4 (0) 15918.4 (0) 136980.2 (0) 13023.6 (0) 137544.2 (0) 71502.4 (0)
50 283955 (0) 34498.6 (0) 385177 (0) 27261.8 (0) 385625.2 (0) 174757.2 (0)
60 804121.5 (1) 121213.2 (0) 1128878.7 (2) 95023.4 (0) 623624.4 (9) 428664.6 (7)
70 1310720.2 (7) 289369.3 (3) 1839920.2 (7) 226918 (2) 617265.9 (10) 456791.8 (10)

KP

80 1368612.3 (10) 377936.3 (5) 1812818.1 (10) 303356 (5) 499527.9 (10) 367138.9 (10)
56 49212.2 (0) 20885.2 (0) 216010.6 (0) 14512.6 (0) 63239 (0) 62944.2 (0)
72 111566.6 (0) 47018.2 (0) 531514 (0) 33598.6 (0) 151994.2 (0) 151525.4 (0)
90 229470.8 (0) 97638.6 (0) 1103596 (5) 72544.4 (0) 275612.6 (6) 235776.7 (9)

3

UFLP

110 195819.1 (10) 157547.9 (5) 681660.1 (10) 73505.6 (10) 71013.9 (10) 72963.3 (10)
20 7651.6 (0) 2103.6 (0) 8442.4 (0) 1899.4 (0) 8998 (0) 5043.2 (0)
30 43529.8 (0) 8469.2 (0) 49641 (0) 7589.4 (0) 53294.2 (0) 26693.4 (0)KP
40 330758.7 (2) 82242.8 (2) 430534.1 (2) 72322.6 (1) 340657.3 (7) 221146.5 (3)
42 62617.8 (0) 29925.4 (0) 199163 (0) 22728.8 (0) 68111.2 (0) 68070.2 (0)

4

UFLP 56 71905 (10) 49605.7 (10) 172122.8 (10) 32013.5 (10) 183316.4 (10) 100648.1 (10)

Table 4.1: The average number of nodes explored over 10 instances for each problem
class, number of objectives, number of variables, and configuration. The number in
brackets is the number of instances unsolved. Note that when the number of unsolved
instances is high, the number of nodes explored may be low due to the fact that the
algorithm could not explore a large number of nodes within the time limit of one hour.

algorithm benefits the most from probing when tight objective branching constraints (i.e.,
small sub-problems) are generated.

Finally, it appears from Figure 4.4 that when no objective branching is used (NOB),
probing (VF) can be slightly beneficial (KP) but can also worsen the performance of the
algorithm (CFLP, UFLP). This implies that probing is efficient mainly in combination with
objective branching in MOBB.

The speed-up can be largely explained by looking at the size of the branch-and-bound
tree. In Table 4.1, the average number of nodes explored is given. The first observation is
that the number of nodes explored is positively correlated to the CPU time. Indeed, for NOB,
small differences are observed between NVF and VF in terms of the number of nodes, whereas
larger gaps are observed for CB. Finally, similarly to the CPU time, the most significant
differences between NVF and VF are observed for FOB. Indeed, if we consider all instances
for which both FOB-NVF and FOB-VF are solved, FOB-VF resulted in 12.78 times fewer nodes
than FOB-NVF for p = 3. In many cases, FOB-NVF is the configuration with the largest tree
size, whereas FOB-VF has the smallest. This indicates that probing strongly helps to reduce
the size of the tree, both by improving lower bound sets and helping the algorithm to make
better branching decisions. Note that a similar observation was made by Adelgren and Gupte
(2022) for the bi-objective case.

Finally, one may notice that the speed-up in terms of CPU time is smaller than the gain

120 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

p pb n FOB-VF FOB-VFD

65 10.67 10.41
230 2332.70 2277.70CFLP
495 3601.33 3601.21
40 65.79 64.59
50 172.35 167.68
60 749.72 693.92
70 2201.65 2033.25

KP

80 3140.04 3048.65
56 197.04 183.46
72 677.64 619.65
90 1934.35 1805.70

3

UFLP

110 3600.15 3600.09
20 8.80 8.85
30 53.94 53.68KP
40 1137.97 1138.19
42 489.18 486.94

4

UFLP 56 3600.20 3600.14

Table 4.2: Average CPU time expressed in seconds over 10 instances for each problem
class, number of objectives, and number of variables. Two configurations are tested:
VF and VFD, both in combination with FOB.

in terms of the number of nodes explored. This is due to the fact that probing has a significant
cost: on average, 23.5% and 40.36% of the total CPU time for CB and FOB respectively, over
all instances.

4.7.2 Combining probing and bounding

We are now interested in the impact of introducing a weighted-sum of the objectives as an
objective function when performing probing, as suggested in Section 4.5.1. It is important
to test both cases (VF and VFD) because on the one hand, introducing an objective function
improves the fathoming potential, but, on the other hand, may also result in linear programs
becoming more difficult to solve. For this purpose, we now consider only two configurations:
FOB-VF and FOB-VFD. A weight of (1, ..., 1) is used for the weighted-sum of the objectives in
FOB-VFD.

The performance of the two configurations is given in Table 4.2. On average, it appears
that the objective function has a minimal impact on the CPU time. Except in rare cases
(e.g. KP for p = 4), introducing the objective function is still slightly beneficial. A speed-up
of 4.64% is observed on average across all instances for which both FOB-VF and FOB-VFD are

4.7. Experiments 121

solved.
A potential explanation for the low gain is that the linear relaxation of a weighted-sum

scalarization provides a rather weak lower bound set. This is true in particular in the case
where p ≥ 3, as many local upper bounds can have infinite components. Such local upper
bounds have an infinite weighted-sum value and are thus always dominated by the lower
bound set obtained here. In comparison, at most, two local upper bounds can take infinite
components in the bi-objective case. One could imagine a strategy where if a local upper
bound with an infinite value on component k is discovered in the sub-problem at hand, a
value of 0 is set in component k of the weight vector λ. However, the lower bound set then
becomes rather weak, as it is more difficult to reach the local upper bounds that take a large
value on the remaining objective. This strategy was tested in preliminary experiments, but
similarly to the weight (1, ..., 1), it led to small speed-ups only.

4.7.3 Node selection rules

We now investigate the performance of the node selection rules proposed in Section 4.6.
In this section, we use FOB-VF as the basic configuration, and combine it with four node
selection strategies: DB, BBWS, BBWSN, and BBGAP.

The results are given in Figure 4.5. The x-axis represents the time elapsed in seconds, and
the y-axis corresponds to the proportion of the instances solved. Hence, each curve represents
the proportion of instances solved over time for each configuration. The first observation
is that in most cases, BBWS performs better than DB, and similarly in worst cases. This is,
in fact, a promising result because BBWS both did not require any fine-tuning of the node
selection rule depending on the problem class, and performed better on average. Indeed,
as explained earlier, configuration DB uses depth-first for KP and breadth-first for CFLP
and UFLP, and it is not rare to see either depth-first or breadth-first used in the literature.
However, a problem dependent node selection rule is not desirable in a generic solver such
as MOBB. Hence, the fact that BBWS performs better on average than DB overcomes this
significant drawback, and increases the efficiency of the MOBB framework as well.

For KP and UFLP, BBWS and BBWSN perform similarly. This is expected, since all objective
coefficients take value in the same range for each objective function for both problem classes.
This is, however, not the case for CFLP, and an interesting difference in the performance of
BBWS and BBWSN is observed. In particular, BBWSN is faster than BBWS, which suggests that it
is more beneficial to consider a weight vector that does not favor some of the objectives.

Finally, BBGAP is the worst configuration, despite exploring on average 31% fewer nodes
than BBWSN over all instances solved for both configurations. This is due to the heavy
computational cost of computing the gap measures in each node. Indeed, updating the gap
measure when selecting a node (Algorithm 4.3) uses, on average, 17% of the total CPU time

122 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

CFLP KP UFLP
p

=
3

p
=

4

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CPU (seconds)

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

Configuration BBGAP BBWS BBWSN DB

Figure 4.5: Performance curves of the different node selection configurations in com-
bination with FOB-VF. The x-axis represents the CPU time expressed in second, and
the y-axis corresponds to the proportion of instances solved. Each curve represents the
proportion of instances solved through time for a given configuration.

for p = 3, and 36% for p = 4. Combined with the fact that the gap of each node has to be
computed at its creation as well, the total cost of this node selection rule overwhelms the
gain obtained from the reduction of the number of nodes, leading to worse CPU times. This,
however, suggests that better CPU times could possibly be achieved if a less computationally
heavy gap measure is used.

4.7.4 Objective branching and cover cuts inequalities

In this section, we investigate cover cuts inequalities generated from the objective branching
constraints. We focus on UFLP, as all of its objectives are in minimization. Let s be the super
local upper bound that defines the objective branching constraints, cover cuts are generated
at each node for each objective bounded by a constraint, and on each extreme point l of the
lower bound set that has non-integer pre-images and that satisfies l ≦ s. The cover cuts are
generated after objective branching and before variable fixing, constructed following the idea
presented in Section 4.5.2, and lifted using the procedure from Letchford and Souli (2019).

4.7. Experiments 123

CPU # nodes # unsolved # LP (LP relax)
p n NCC CC NCC CC NCC CC NCC CC

56 177.31 168.35 12282.80 11275.40 0 0 252691.10 249869.10
72 564.35 593.53 26574.40 23447.70 0 0 634866.90 648676.70
90 1590.54 1712.46 52141.60 50846.00 0 0 1395326.90 1487256.303

110 3381.68 3600 80985.70 45316.30 5 10 2530157.00 2124939.10
42 558.93 668.49 22393.80 21351.60 0 0 688906.20 730118.704 56 3600 3600 39079.10 32976.78 10 10 2536207.70 2612500.70

Table 4.3: Only results for UFLP are shown in this table. For each number of objectives
and number of variables, it reports the average cpu time (CPU), the average number
of node explored (# nodes), the number of instances unsolved (# unsolved), and the
average total number of linear programs solved to compute the linear relaxation (#
LP (LP relax)).

Note that it often occurs that no cover cut is generated on an extreme point, for example, if
the point is located too far from any of the objective branching constraints, or if the newly
generated cut is redundant with an already existing one.

In this section, we consider only the best previous configuration, namely FOB-VF-BBWSN.
Then, two configurations are tested: with (CC) and without cover cuts inequalities (NCC).

The results of this experiment are given in Table 4.3. The configuration CC generally
performs slightly worse than NCC. This result can be a surprise when looking at the number
of nodes in Table 4.3, as it is generally slightly lower for CC. This suggests that the cuts come
with a hidden cost that is not compensated enough with the decrease in the size of the tree.

This cost can be understood by looking at the last column of Table 4.3, where the average
total number of linear programs solved to compute the lower bound sets in an entire tree
is reported. It tends to increase when cover cuts are used, which implies that the lower
bound sets are more complex, and require more linear programs to be solved for CC. This
observation makes sense as new constraints are added to the problem. Furthermore, when
computing the lower bound set, these constraints are expected to often be binding as they cut
an extreme point from the lower bound set in the father node. This possibly results in more
facets to generate and, consequently, more computational effort required. This phenomenon
highlights a difficulty of cut generation in the multi-objective case: even simple cuts can
become a computational burden, because they can easily complexify the lower bound set,
possibly resulting in a huge additional effort to obtain only small improvements.

4.7.5 Investigating variable selection rules: the case of CFLP

By performing probing, the algorithm is able to reduce the set of branching candidates.
This indirectly helps the algorithm to make better branching decisions, as variables that

124 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

CPU # unsolved
n MOF PS MOF PS

65 9.98 6.59 0 0
230 1988.02 506.50 1 0
495 3600 3600 10 10

Table 4.4: Only results for CFLP are shown in this table. For each number of variables,
it reports the average CPU time expressed in seconds (CPU) and the number of
unsolved instances (# unsolved) for two configurations considered, namely MOF and
PS.

lead to redundant branches are discarded. In this section, we study whether having a good
variable selection rule could help further improve the CPU time. For this purpose, we limit
the analysis to CFLP, for which a good branching rule is well known in the single objective
case: branch first on the variables that handle the opening of the facilities. We limit ourselves
to the best known configuration so far, i.e., FOB-VFD-BBWSN. No cover cuts are generated.
Two configurations are tested here: the regular variable selection rule (MOF, for Most Often
Fractional), and the problem specific selection rule (PS, for Problem Specific).

The results presented in Table 4.4 clearly show that the problem specific rule (PS)
systematically outperforms the generic rule (MOF). This implies that there is much room
for improvement in the design of the variable selection rule. This aspect of MOBB has not
received a lot of attention in the literature to this day, and this is left for future research.

4.7.6 Enumeration in MOBB

In the deepest parts of the tree, only a few variables are free. Consequently, the lower bound
sets are also expected to be very simple, i.e., made of a few facets and extreme points only.
According to Forget et al. (2022), each facet and extreme point possibly requires solving one
linear program. Given the fact that the number of free variables is low, one may enumerate all
possible solutions and update the upper bound set accordingly instead of keeping branching
and computing lower bound sets until all nodes are fathomed. Here, after performing probing,
if less than 14 variables are free, all 214 = 16384 solutions are enumerated. This value has
been determined with preliminary experiments on a subset of instances.

Results are reported in Table 4.5. Configuration BB corresponds to the best generic branch-
and-bound so far, i.e., it uses full objective branching (FOB), variable fixing with an objective
function (VFD), and the best-bound node selection rule based on the normalized weighted-
sum idea (BBWSN). Configuration BB-E uses the same parameters, except that enumeration
as described above is enabled.

In general, the enumeration procedure reduces the CPU time, even for larger instances.

4.7. Experiments 125

p pb n BB BB-E OSS

65 9.98 10.04 2.31
230 1988.02 1993.33 144.84CFLP
495 3601.69 3601.48 731.43
40 46.73 42.45 12.09
50 116.50 108.20 24.83
60 457.80 430.96 73.45
70 1414.09 1341.10 191.77

KP

80 2491.45 2388.85 317.10
56 177.31 134.13 197.66
72 564.35 421.29 545.01
90 1590.54 1229.19 1342.05

3

UFLP

110 3381.68 3132.80 2964.97
20 6.99 2.37 8.59
30 42.00 35.99 36.12KP
40 854.79 751.85 320.28
42 558.93 306.41 686.46

4

UFLP 56 3600.20 3513.76 3518.88

Table 4.5: Average CPU time expressed in seconds over 10 instances for each problem
class, number of objectives, and number of variables. Three configurations are tested
here: BB, BB-E, and OSS. The fastest configuration of the three is in bold.

For CFLP, enumeration appears to be slightly slower (e.g., less than 0.5% for n = 230). As
expected, the proportion of CPU time spent in updating the upper bound set is greater in
BB-E, but fewerlinear programs are solved.

4.7.7 Comparison with objective space search algorithms

In this section, we compare our MOBB framework to an objective space search algorithm.
For the comparison, we use a C++ implementation of the redundancy avoidance method
from Klamroth et al. (2015). The implementation was kindly shared with us by Dächert
et al. (2021). The idea is to decompose the objective space based on the local upper bounds,
and to explore each sub-regions independently while avoiding redundant regions. In that
aspect, the algorithm we use is similar to Tamby and Vanderpooten (2021), except that the
implementation we use does not go as far as theirs in the fine-tuning of CPLEX’s parameters.

The OSS algorithm is compared to the best generic configuration of our MOBB, namely
BB-E. No cover cuts are generated, and the generic variable selection rule is used for CFLP
(MOF). Consequently, two configurations are tested here: our branch-and-bound framework
(BB-E) and the objective space search algorithm (OSS). The results are reported in Table 4.5.

126 Chapter 4. Branch-and-bound for multi-objective 0-1 programming

First, BB-E seems to be competitive with OSS for UFLP, meaning that the first step
towards an efficient branch-and-bound framework for the multi-objective case has been
reached. There is, however, a tendency for larger instances to be solved faster by OSS, e.g.,
for UFLP, p = 3, and n = 110. This suggests that there are costs that do not occur for
small and medium sized instances but that become a burden for larger instances. In our
opinion, this constitutes a direction for future research. Indeed, now that the branch-and-
bound algorithm is competitive on medium-sized instances, the next step is to tackle larger
problems.

Regarding CFLP and KP, OSS is significantly faster than BB-E. We have seen in Sec-
tion 4.7.5 that major improvements could be obtained for CFLP by working on variable
selection rules in the future. Gadegaard et al. (2019) showed that cut generation at the root
node is very effective for bi-objective CFLP, and this may apply to any number of objectives
as well as to other problem classes. These two elements constitute other research directions
for the future.

Finally, it is interesting to note that BB-E is the most efficient on problems for which
the number of non-dominated points per variable (|YN |/n) is the highest. Indeed, over all
instances solved by at least one of the configurations, UFLP has 102.84 non-dominated
points per variable, whereas KP and CFLP have 18.74 and 5.13, respectively. The results
from this section confirm the intuition that OSS algorithms are more efficient on problems
with fewer non-dominated points, and benefit a lot from the decades of progress embedded in
single-objective solvers, which are particularly competitive on problems with a high number
of variables.

4.8 Conclusion

In this paper, we first enhanced objective branching for MOBB with three or more objective
functions. The experiments showed that combining probing and objective branching leads
to significantly smaller search trees, resulting in lower CPU times.

Then, we proposed node selection rules based on the best-bound idea. Two variants were
considered, depending on how the quality of a bound is measured: either based on the minimal
value of a weighted-sum scalarization or on the smallest gap between upper and lower bound
sets. The experiments showed that the former is the most efficient, and performs better than
both the traditional depth-first and breadth-first strategies from the literature. Besides, we
have observed that computing gaps during the resolution can be expensive. This opens the
discussion on appropriate gap measures for multi-objective optimization, in particular for
p ≥ 3, and how to efficiently compute these gaps.

Moreover, other developments on additional features were explored. We first tried to

4.8. Conclusion 127

generate cuts based on the objective branching constraints, but this resulted in slower
performances due to the increased complexity of the lower bound sets. Instead, generating
cuts in the root node may be more beneficial, as done by Gadegaard et al. (2019) for the
bi-objective case. This is left for future research. Afterward, we showed in the experiments
that although variable fixing reduces the set of potential branching candidates when doing
decision space branching, there are still possible improvements to be achieved by identifying
appropriate variables to branch on. This constitute another direction for future research.
Then, enumeration techniques were tested and generated a speed-up in most cases.

Finally, our branch-and-bound framework proved to be competitive against an objective
space search algorithm on UFLP. A possible step for future research is to develop techniques
for solving large scale problems.

Acknowledgement

This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [P 31366-
NBL]. For the purpose of open access, the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version arising from this submission.

Bibliography

Achterberg, T., T. Koch, and A. Martin (2005, jan). Branching rules revisited. Operations
Research Letters 33 (1), 42–54.

Adelgren, N. and A. Gupte (2022, mar). Branch-and-bound for biobjective mixed-integer
linear programming. INFORMS Journal on Computing 34 (2), 909–933.

Al-Rabeeah, M., A. Al-Hasani, S. Kumar, and A. Eberhard (2020, mar). Enhancement of
the improved recursive method for multi-objective integer programming problem. Journal
of Physics: Conference Series 1490 (1), 012061.

An, D., S. N. Parragh, M. Sinnl, and F. Tricoire (2022). A matheuristic for tri-objective
binary integer programming. Preprint.

Aneja, Y. P. and K. P. K. Nair (1979). Bicriteria transportation problem. Management
Science 25 (3), 73–78.

Bektaş, T. (2018, nov). Disjunctive programming for multiobjective discrete optimisation.
INFORMS Journal on Computing 30 (4), 625–633.

Belotti, P., B. Soylu, and M. Wiecek (2016, nov). Fathoming rules for biobjective mixed
integer linear programs: Review and extensions. Discrete Optimization 22, 341–363.

Belotti, P., B. Soylu, and M. M. Wiecek (2013). A branch-and-bound algorithm for biojbective
mixed-intger programs. Technical report, Clemson University.

Benson, H. P. (1998). An outer approximation algorithm for genrating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal of
Global Optimization 13, 1–24.

Bérubé, J.-F., M. Gendreau, and J.-Y. Potvin (2009, apr). An exact e-constraint method for
bi-objective combinatorial optimization problems: Application to the traveling salesman
problem with profits. European Journal of Operational Research 194 (1), 39–50.

130 Bibliography

Boland, N., H. Charkhgard, and M. Savelsbergh (2015, nov). A criterion space search
algorithm for biobjective integer programming: The balanced box method. INFORMS
Journal on Computing 27 (4), 735–754.

Boland, N., H. Charkhgard, and M. Savelsbergh (2016). The l-shape search method for
triobjective integer programming. Mathematical Programming Computation 8 (2), 217–
251.

Boland, N., H. Charkhgard, and M. Savelsbergh (2017). The quadrant shrinking method: A
simple and efficient algorithm for solving tri-objective integer programs. European Journal
of Operational Research 260 (3), 873 – 885.

Boland, N. and H. C. M. Savelsbergh (2016, Jun). The l-shape search method for triobjective
integer programming. Mathematical Programming Computation 8 (2), 217–251.

Byrd, R. H., A. J. Goldman, and M. Heller (1987). Technical note—recognizing unbounded
integer programs. Operations Research 35 (1), 140–142.

Chalmet, L., L. Lemonidis, and D. Elzinga (1986, may). An algorithm for the bi-criterion
integer programming problem. European Journal of Operational Research 25 (2), 292–300.

Clímaco, J. C. N. and M. M. B. Pascoal (2016, sep). An approach to determine unsupported
non-dominated solutions in bicriteria integer linear programs. INFOR: Information Sys-
tems and Operational Research 54 (4), 317–343.

Clímaco, J. C. N. and M. M. B. Pascoal (2016). An approach to determine unsupported non-
dominated solutions in bicriteria integer linear programs. INFOR: Information Systems
and Operational Research 54 (4), 317–343.

Csirmaz, L. (2015, jun). Using multiobjective optimization to map the entropy region.
Computational Optimization and Applications 63 (1), 45–67.

Dächert, K., T. Fleuren, and K. Klamroth (2021). A simple, efficient and versatile objective
space algorithm for multiobjective integer programming. working paper.

Dächert, K. and K. Klamroth (2015, Apr). A linear bound on the number of scalarizations
needed to solve discrete tricriteria optimization problems. Journal of Global Optimiza-
tion 61 (4), 643–676.

Dächert, K., J. Gorski, and K. Klamroth (2012, dec). An augmented weighted tchebycheff
method with adaptively chosen parameters for discrete bicriteria optimization problems.
Computers & Operations Research 39 (12), 2929–2943.

Bibliography 131

Dächert, K. and K. Klamroth (2015). A linear bound on the number of scalarizations needed
to solve discrete tricriteria optimization problems. Journal of Global Optimization 61 (4),
643–676.

Dächert, K., K. Klamroth, R. Lacour, and D. Vanderpooten (2017, aug). Efficient computa-
tion of the search region in multi-objective optimization. European Journal of Operational
Research 260 (3), 841–855.

Ehrgott, M. (2005). Multicriteria Optimization (2nd ed.). Springer Berlin, Heidelberg.

Ehrgott, M. and X. Gandibleux (2007). Bound sets for biobjective combinatorial optimization
problems. Computers & Operations Research 34 (9), 2674–2694.

Filho, A. A., A. C. Moretti, M. V. Pato, and W. A. de Oliveira (2019, jul). An exact scalar-
ization method with multiple reference points for bi-objective integer linear optimization
problems. Annals of Operations Research 296 (1-2), 35–69.

Florios, K., G. Mavrotas, and D. Diakoulaki (2010). Solving multiobjective, multiconstraint
knapsack problems using mathematical programming and evolutionary algorithms. Euro-
pean Journal of Operational Research 203 (1), 14 – 21.

Forget, N. (2021). C++ implementation of multi-objective branch-and-bound. https://gi

thub.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound.

Forget, N., S. L. Gadegaard, K. Klamroth, L. R. Nielsen, and A. Przybylski (2022, aug).
Branch-and-bound and objective branching with three or more objectives. Computers &
Operations Research.

Forget, N., S. L. Gadegaard, and L. R. Nielsen (2022, nov). Warm-starting lower bound set
computations for branch-and-bound algorithms for multi objective integer linear programs.
European Journal of Operational Research 302 (3), 909–924.

Forget, N., L. Nielsen, and S. Gadegaard (2020a). Computational results (all instances).
Technical report, Aarhus University. Results for all the instances at the repository MOrepo-
Forget20.

Forget, N., L. R. Nielsen, and S. L. Gadegaard (2020b). Examples of lower and upper bound
sets (morepo-forget20).

Forget, N., L. R. Nielsen, and S. L. Gadegaard (2020c). Instances and results for linear
relaxation based branch-and-bound (morepo-forget21). https://github.com/MCDMSocie

ty/MOrepo-Forget21.

https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound
https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound
https://github.com/MCDMSociety/MOrepo-Forget21
https://github.com/MCDMSociety/MOrepo-Forget21

132 Bibliography

Forget, N., L. R. Nielsen, and S. L. Gadegaard (2020d). Instances and results for linear
relaxation based branch-and-bound (morepo-kirlik14).

Fukuda, K. and A. Prodon (1996). Double description method revisited. In Lecture Notes
in Computer Science, Volume 1120, pp. 91–111. Berlin: Springer.

Gadegaard, S. (2016). Discrete Location Problems–Theory, Algorithms, and Extensions to
Multiple Objectives. Ph. D. thesis, Department of Economics and Business Economics,
Aarhus BSS, Aarhus University.

Gadegaard, S., L. Nielsen, and M. Ehrgott (2019). Bi-objective branch-and-cut algorithms
based on lp relaxation and bound sets. INFORMS Journal on Computing 31 (4), 790–804.

Goeffrion, A. (1968). Proper efficiency and the theory of vector maximization. Journal of
Mathematical Analysis and Applications 22 (3), 618–630.

Gu, Z., G. L. Nemhauser, and M. W. Savelsbergh (1998). Lifted cover inequalities for 0-1
integer programs: Computation. INFORMS Journal on Computing 10 (4), 427–437.

Haimes, Y. Y., L. S. Lasdon, and D. A. Wismer (1971). On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Transactions
on Systems Man and Cybernetics 1 (1), 296–297.

Hamacher, H. W., C. R. Pedersen, and S. Ruzika (2007, may). Finding representative systems
for discrete bicriterion optimization problems. Operations Research Letters 35 (3), 336–344.

Hamel, A. H., A. Löhne, and B. Rudloff (2013, aug). Benson type algorithms for linear vector
optimization and applications. Journal of Global Optimization 59 (4), 811–836.

Holzmann, T. and J. Smith (2018, dec). Solving discrete multi-objective optimization prob-
lems using modified augmented weighted tchebychev scalarizations. European Journal of
Operational Research 271 (2), 436–449.

Jozefowiez, N., G. Laporte, and F. Semet (2012, nov). A generic branch-and-cut algorithm
for multiobjective optimization problems: Application to the multilabel traveling salesman
problem. INFORMS Journal on Computing 24 (4), 554–564.

Kirlik, G. (2014). Test instances for multiobjective discrete optimization problems.

Kirlik, G. and S. Sayın (2014, aug). Computing the nadir point for multiobjective discrete
optimization problems. Journal of Global Optimization 62 (1), 79–99.

Bibliography 133

Kirlik, G. and S. Sayın (2014). A new algorithm for generating all nondominated solu-
tions of multiobjective discrete optimization problems. European Journal of Operational
Research 232 (3), 479 – 488.

Kiziltan, G. and E. Yucaoğlu (1983, December). An algorithm for multiobjective zero-one
linear programming. Management Science 29 (12), 1444–1453.

Klamroth, K., R. Lacour, and D. Vanderpooten (2015). On the representation of the search
region in multi-objective optimization. European Journal of Operational Research 245 (3),
767–778.

Klein, D. and E. Hannan (1982). An algorithm for the multiple objective integer linear
programming problem. European Journal of Operational Research 9 (4), 378 – 385.

Leitner, M., I. Ljubić, M. Sinnl, and A. Werner (2016, aug). ILP heuristics and a new exact
method for bi-objective 0/1 ILPs: Application to FTTx-network design. Computers &
Operations Research 72, 128–146.

Lemesre, J., C. Dhaenens, and E. Talbi (2007, aug). Parallel partitioning method (PPM): A
new exact method to solve bi-objective problems. Computers & Operations Research 34 (8),
2450–2462.

Letchford, A. N. and G. Souli (2019, mar). On lifted cover inequalities: A new lifting
procedure with unusual properties. Operations Research Letters 47 (2), 83–87.

Linderoth, J. T. and M. W. Savelsbergh (1999). A computational study of search strategies
for mixed integer programming. INFORMS Journal on Computing 11 (2), 173–187.

Löhne, A. and B. Weißing (2020). Bensolve - vlp solver, version 2.1.x. http://www.bensol

ve.org.

Lokman, B. and M. Köksalan (2012, jul). Finding all nondominated points of multi-objective
integer programs. Journal of Global Optimization 57 (2), 347–365.

Mavrotas, G. (2009, jul). Effective implementation of the e-constraint method in multi-
objective mathematical programming problems. Applied Mathematics and Computa-
tion 213 (2), 455–465.

Mavrotas, G. and D. Diakoulaki (1998). A branch and bound algorithm for mixed zero-one
multiple objective linear programming. European Journal of Operational Research 107 (3),
530–541.

http://www.bensolve.org
http://www.bensolve.org

134 Bibliography

Mavrotas, G. and D. Diakoulaki (2005). Multi-criteria branch and bound: A vector maximiza-
tion algorithm for mixed 0-1 multiple objective linear programming. Applied Mathematics
and Computation 171 (1), 53–71.

Mavrotas, G. and K. Florios (2013, may). An improved version of the augmented e-constraint
method (AUGMECON2) for finding the exact pareto set in multi-objective integer pro-
gramming problems. Applied Mathematics and Computation 219 (18), 9652–9669.

Nemhauser, G. and L. Wolsey (1999). Integer and Combinatorial Optimization. John Wiley
& Sons.

Nielsen, L. (2020). gMOIP: Tools for 2D and 3D Plots of Single and Multi-Objective Lin-
ear/Integer Programming Models. v1.4.3.

Ozlen, M., B. Burton, and C. MacRae (2014, Feb). Multi-objective integer programming: An
improved recursive algorithm. Journal of Optimization Theory and Applications 160 (2),
470–482.

Parragh, S. and F. Tricoire (2019). Branch-and-bound for bi-objective integer programming.
INFORMS Journal on Computing 31 (4), 805–822.

Pettersson, W. and M. Ozlen (2017, oct). A parallel approach to bi-objective integer pro-
gramming. ANZIAM Journal 58, 69.

Pettersson, W. and M. Ozlen (2019, sep). Multiobjective integer programming: Synergistic
parallel approaches. INFORMS Journal on Computing 32 (2), 461–472.

Przybylski, A. and X. Gandibleux (2017). Multi-objective branch and bound. European
Journal of Operational Research 260 (3), 856 – 872.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2010). A two phase method for multi-
objective integer programming and its application to the assignment problem with three
objectives. Discrete Optimization 7 (3), 149 – 165.

Ralphs, T. K., M. J. Saltzman, and M. M. Wiecek (2006, sep). An improved algorithm for
solving biobjective integer programs. Annals of Operations Research 147 (1), 43–70.

Ramos, R. M., S. Alonso, J. Sicilia, and C. González (1998). The problem of the optimal
biobjective spanning tree. European Journal of Operational Research 111 (3), 617 – 628.

Santis, M. D., G. Eichfelder, J. Niebling, and S. Rocktäschel (2020, jan). Solving multiobjec-
tive mixed integer convex optimization problems. SIAM Journal on Optimization 30 (4),
3122–3145.

Bibliography 135

Santis, M. D., G. Grani, and L. Palagi (2020, may). Branching with hyperplanes in the
criterion space: The frontier partitioner algorithm for biobjective integer programming.
European Journal of Operational Research 283 (1), 57–69.

Savelsbergh, M. W. (1994). Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA Journal on Computing 6 (4), 445–454.

Sayın, S. and P. Kouvelis (2005, oct). The multiobjective discrete optimization problem: A
weighted min-max two-stage optimization approach and a bicriteria algorithm. Manage-
ment Science 51 (10), 1572–1581.

Sourd, F. and O. Spanjaard (2008). A multiobjective branch-and-bound framework: Appli-
cation to the biobjective spanning tree problem. INFORMS Journal on Computing 20 (3),
472–484.

Stidsen, T. and K. A. Andersen (2018). A hybrid approach for biobjective optimization.
Discrete Optimization 28, 89–114.

Stidsen, T., K. A. Andersen, and B. Dammann (2014). A branch and bound algorithm for a
class of biobjective mixed integer programs. Management Science 60 (4), 1009–1032.

Sylva, J. and A. Crema (2004). A method for finding the set of non-dominated vectors for mul-
tiple objective integer linear programs. European Journal of Operational Research 158 (1),
46 – 55.

Sylva, J. and A. Crema (2008, jul). Enumerating the set of non-dominated vectors in multiple
objective integer linear programming. RAIRO - Operations Research 42 (3), 371–387.

Tamby, S. and D. Vanderpooten (2021). Enumeration of the nondominated set of multiob-
jective discrete optimization problems. INFORMS Journal on Computing 33 (1), 72–85.

Ulungu, E. and J. Teghem (1995). The two phases method: An efficient procedure to solve
bi-objective combinatorial optimization problems. Foundations of Computing and Decision
Sciences 20 (2), 149–165.

Ulungu, E. L. and J. Teghem (1997). Solving multi-objective knapsack problem by a branch-
and-bound procedure. In J. Clímaco (Ed.), Multicriteria Analysis, pp. 269–278. Springer
Berlin Heidelberg.

Vincent, T., F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux (2013). Multiple objective
branch and bound for mixed 0-1 linear programming: Corrections and improvements for
the biobjective case. Computers & Operations Research 40 (1), 498–509.

136 Bibliography

Visée, M., J. Teghem, M. Pirlot, and E. Ulungu (1998). Two-phases method and branch
and bound procedures to solve the bi–objective knapsack problem. Journal of Global
Optimization 12, 139–155.

Zhang, W. and M. Reimann (2014, apr). A simple augmented e-constraint method for multi-
objective mathematical integer programming problems. European Journal of Operational
Research 234 (1), 15–24.

Özlen, M. and M. Azizoğlu (2009, nov). Multi-objective integer programming: A general
approach for generating all non-dominated solutions. European Journal of Operational
Research 199 (1), 25–35.

1 of 1

Declaration of co-authorship

Full name of the PhD student: Nicolas Forget

This declaration concerns the following article/manuscript:

Title: Warm-starting lower bound set computation for branch-and-bound algorithms
for multi-objective linear programs

Authors: Nicolas Forget, Sune Lauth Gadegaard, Lars Relund Nielsen

The article/manuscript is: Published Accepted Submitted In preparation

If published, state full reference: Forget, N., Gadegaard, S. L., and Nielsen, L. R. (2022). Warm-
starting lower bound set computation for branch-and-bound algorithms for multi-objective
linear programs. European Journal of Operational Research, 302(3):909-924.

If accepted or submitted, state journal:

Has the article/manuscript previously been used in other PhD or doctoral dissertations?

No Yes If yes, give details:

The PhD student has contributed to the elements of this article/manuscript as follows:
A. Has essentially done all the work
B. Major contribution
C. Equal contribution
D. Minor contribution
E. Not relevant

Element Extent (A-E)
1. Formulation/identification of the scientific problem A
2. Planning of the experiments/methodology design and development B
3. Involvement in the experimental work/clinical studies/data collection B
4. Interpretation of the results B
5. Writing of the first draft of the manuscript A
6. Finalization of the manuscript and submission B

Signatures of the co-authors

Date Name Signature

 Sune Lauth Gadegaard

 Lars Relund Nielsen

In case of further co-authors please attach appendix
Date: 25/08/2022
__
Signature of the PhD student

4/8/22

12/8-22

�

AARHUS SCHOOL OF BUSINESS A D SOC ALSCIE C S
BSS AARHUS U IVERSITY

Declaration of co authorship

Full name of the PhD student: icolas Forget

Th· declaration cone ms the following article/manuscript:

Title: Branch-and-bound and ob"ective branchin with three or more ob"ectives
Authors: icolas Forget, Sune Lauth Gadegaard, Kathrin Klamroth, Lars Relund Nielsen,

Anthon p� b lski

The article/manuscript is: Published D ccepted [8J Submitted D In preparation D

If published, state full reference:

If accepted or subm ·tted, state journal: Computers & Operations Research

Ha the article/manuscript previously ��n u din other PhD or doctoral dis ertations?

o [8l Yes D If yes, give details:

The PhD student has contributed to the elements of this article/manuscript as follow :
A. Has essentially done all the work
B. Major contribution
C. Equal contribution
D. Minor contribution
E. ot relevant

Element Extent(A-E)

3. Involvement in the ex erimental work/clinical studies/data collection
. Inte retation of the results

6. Finalization of the manuscri t and submission

Date ame

12/8-22 Sune Lauth Gadegaard

Kathin Klamroth

Lars Relund ielsen

Anthony Przybylski

Signature

B

B

B

In case of further co-authors lease attach appendix
Date: 25/08/2022

Signature of the PhD student

1 of 1

•

30/08/2022

	Summary
	Abstract
	Resumé
	Acknowledgments
	Notation
	Introduction
	Multi-objective optimization
	Bound sets
	Solution methods for MOILP

	Objective Space Search algorithms
	Decision Space Search algorithms
	Node selection
	Lower bound set computation
	Fathoming rules
	Creation of sub-problems
	Termination of the algorithm

	Contributions and structure of the dissertation

	Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs
	Introduction
	Preliminaries
	Polyhedral theory
	Bound sets

	A branch-and-bound framework for MOILP
	Linear relaxation for MOBB
	Warm-starting Benson-like algorithms in MOBB

	Computational experiments
	Implementation details and algorithm configurations
	Test instances
	Performance of the different algorithm configurations
	Variable selection - Rules for choosing the bound
	Detailed performance of different algorithm parts
	Fathoming nodes
	Geometric properties of the lower bound set during the algorithm
	Proving optimality
	Performance of the MOBB algorithm compared to an objective space search algorithm

	Conclusion
	Notes on the the unbounded case
	Problem classes
	Production Planning Problem
	Uncapacitated Facility Location Problem

	Branch-and-bound and objective branching with three or more objectives
	Introduction
	Definitions and notations
	Bound sets
	Search region and local upper bounds

	General multi-objective Branch-and-Bound framework
	Objective branching
	Complications of going from two to three objectives
	Objective branching in the multi-objective case
	Merging operations on local upper bounds
	Desirable properties of the set of super local upper bounds
	An algorithm to compute a set of super local upper bounds
	Implications of Property 3.2

	An alternative branching strategy using an upper bound on the objectives

	Computational experiments
	Test instances
	Performance of the different algorithm configurations
	Objective branching: a closer look
	Branching tree structure when using fullOB
	Comparison with an Objective Space Search algorithm

	Conclusion

	Enhancing branch-and-bound for multi-objective 0-1 programming
	Introduction
	Definitions and notation
	Related work
	Branch-and-bound framework
	Enhanced objective branching
	Probing
	A naive strategy
	An advanced strategy
	Combining probing and bounding

	Objective branching based cover inequalities

	Node selection rules
	Weighted-sum rule
	Gap measure rule

	Experiments
	Probing and objective branching
	Combining probing and bounding
	Node selection rules
	Objective branching and cover cuts inequalities
	Investigating variable selection rules: the case of CFLP
	Enumeration in MOBB
	Comparison with objective space search algorithms

	Conclusion

	Bibliography

