
Bi-objective branch–and–cut algorithms based on LP relaxation
and bound sets∗

Sune Lauth Gadegaard† and Lars Relund Nielsen
Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210

Aarhus V, Denmark.

Matthias Ehrgott
Department of Management Science, Lancaster University, Lancaster LA1 4YX, United Kingdom.

January, 2018

Abstract: Most real–world optimization problems are multi–objective by nature, with
conflicting and incomparable objectives. Solving a multi–objective optimization problem
requires a method which can generate all rational compromises between the objectives. This
paper proposes two distinct bound set based branch–and–cut algorithms for general bi–
objective combinatorial optimization problems, based on implicit and explicit lower bound
sets, respectively. The algorithm based on explicit lower bound sets computes, for each
branching node, a lower bound set and compares it to an upper bound set. The other fathoms
branching nodes by generating a single point on the lower bound set for each local nadir point.
We outline several approaches for fathoming branching nodes and we propose an updating
scheme for the lower bound sets that prevents us from solving the bi–objective LP–relaxation
of each branching node. To strengthen the lower bound sets, we propose a bi–objective cutting
plane algorithm that adjusts the weights of the objective functions such that different parts
of the feasible set are strengthened by cutting planes. In addition, we suggest an extension
of the branching strategy “Pareto branching”. We prove the effectiveness of the algorithms
through extensive computational results.

Keywords: bi–objective branch–and–cut; bi–objective optimization; combinatorial optimiza-
tion; branch–and–cut.

1 Introduction

A general definition of a multi–objective decision problem with p objectives can be given
as follows: Given a set of possible or feasible decisions and a set of p objective functions
quantifying these decisions, find all solutions which constitute rational compromises between
the objectives (the set of Pareto optimal solutions).

When the set of decisions are implicitly given by a set of constraints, the problem belongs
to the class of multi–objective programming problems, and if the objective functions and
the constraints are all linear, the problem is denoted a multi–objective linear programming
problem. In this paper, we will limit the scope to problems where all variables are restricted

∗Preprint of S.L. Gadegaard, L.R. Nielsen and M. Ehrgott, Bi-objective branch–and–cut algorithms based
on LP relaxation and bound sets in INFORMS journal on computing (2019), doi:10.1287/ijoc.2018.0846
†Corresponding author, email: sgadegaard@econ.au.dk.

1

http://dx.doi.org/10.1287/ijoc.2018.0846
sgadegaard@econ.au.dk

to be either zero or one and for which only two linear objective functions are present. Such a
problem is usually named a bi–objective combinatorial optimization (BOCO) problem.

In the following paragraphs we provide an overview of some of the most important
contributions to the development of branch–and–bound algorithms for general BOCO problems
and mention some extensions to mixed integer BOCO (some variables are allowed to be
continuous). A schematic overview is also given in Table 1. In the column headed “DMx”
we have illustrated the domain of the variables where we use the convention that B = {0, 1}.
Furthermore, when the problem is a bi–objective mixed–integer linear programming (BOMILP)
problems, we write MI(S) where (S) is the discrete domain for the integer restricted variables.
The “DMf” column shows the domain of the objective functions, that is, “(R,Z)” means
that the first objective maps to the real numbers and the second is restricted to map into the
integers. If all objective functions map to the same set S, then we simply write Sp.

Surprisingly little research has been devoted to branch–and–bound algorithms for general
BOCO problems although many problems can be fitted into this framework, for example
the bi-objective knapsack problem (Ulungu and Teghem, 1997), the bi–objective assignment
problem (Pedersen, Nielsen, and Andersen, 2008; Przybylski, Gandibleux, and Ehrgott, 2008),
bi–objective facility location problems (Fernandez and Puerto, 2003), and the bi–objective
traveling salesman problem (TSP) (Bérubé, Gendreau, and Potvin, 2009).

However, some effort has been put into the development of branch–and–bound algorithms
for BOCO problems. Klein and Hannan (1982) propose what is probably the first branch–
and–bound algorithm for BOCO problems. During the eighties and nineties, only very
few researchers followed up on this idea, as examples we mention Kiziltan and Yucaoğlu
(1983), Ulungu and Teghem (1997), Ramos, Alonso, Sicilia, and González (1998) and Visée,
Teghem, Pirlot, and Ulungu (1998) (although the latter three are problem specific). Since
the turn of the millennium more attention has been brought to this solution approach and
even generalizations where both integer and continuous variables are allowed (BOMILP)
were considered. Mavrotas and Diakoulaki (1998) are among those who develop a branch–
and–bound algorithm for BOCO problems. They develop a depth first branch–and–bound
algorithm capable of finding all non–dominated outcome vectors of a mixed integer BOCO
problem. Whenever a leaf node is reached (that is, when all integer variables have been fixed),
the resulting bi–objective linear program is solved. A node is fathomed in the branching
tree if it is infeasible or if the ideal point of the node is dominated by a point in the set of
yet non–dominated points. Later, Mavrotas and Diakoulaki (2005) published a number of
improvements. The algorithm was adapted to pure BOCO problems (all variables are either
zero or one) and was applied to multi–objective, multi–dimensional knapsack problems in
Florios, Mavrotas, and Diakoulaki (2010).

Unfortunately the algorithm proposed in the two papers by Mavrotas and Diakoulaki
(1998, 2005) might return dominated solutions. The issue originates in the fact that not
only the extreme points of the non–dominated frontier found at the leaf nodes might be
non–dominated. Also the line segments joining these need to be considered. This issue is
addressed in Vincent (2013) and corrected for the bi–objective case by Vincent, Seipp, Ruzika,
Przybylski, and Gandibleux (2013). In the latter paper a number of lower bound sets are
introduced and promising results are reported with up to 60 constraints and 60 variables, of
which 30 are binary.

Sourd and Spanjaard (2008) develop a branch–and–bound framework where the branching
part is identical to a single objective branch–and–bound algorithm. However, the bounding
part is performed via a set of points rather than the single ideal point. The current node

2

Table 1: Overview of the multi–objective branch–and–bound algorithms proposed in the
literature. All approaches have been converted to the minimization case for better comparison.
In all papers the incumbent set have been used to obtain the upper bound.

Reference NS1 LB2 Cuts Branching3 DMx DMf Notes

Klein et al. (1982) — UP No VF N0 Zp p > 2. Propose to use post–
optimality techniques to solve
a series of integer programs.

Kiziltan et al (1983) DF UP No VF B Rp p > 2. Probing on variables
is applied in each node of the
branching tree.

Ulungu et al. (1997) DF UP No VF B Z2 Adapt the methods presented
in Martello and Toth (1990) to
a multi–objective framework.

Ramos et al. (1998) DF UP No VF B R2 Pure branch–and–bound. Fea-
sible solutions are found as
leaf nodes, no heuristics.

Visée et al. (1998) DF UP No VF B Z2 Use the two phase method
and employ the method of
Ulungu and Teghem (1997) in
the resulting triangles.

Mavrotas et al. (1998) DF UP No VF MI(B) Rp p > 2. Allow continuous vari-
ables. Problematic, as some
dominated solutions might be
considered non–dominated.

Mavrotas et al. (2005) DF UP No VF MI(B) Rp p > 2. Computationally im-
prove the solution of the LP–
relaxation. Add a final domi-
nance test. Still problematic.

Sourd et al. (2008) DF HS No VF B R2 Propose to use hypersurfaces
as lower bound set.

Florios et al. (2010) DF UP No VF B R2 Application of the algorithm
proposed in Mavrotas and Di-
akoulaki (1998, 2005).

Jozefowiez et al. (2012) — UP4 Yes Parallel Z (R,Z) Generates utopian points for
each possible integer value of
the second objective. Thus, a
lower bound set is generated
by an embedded ε–constraint
method.

Vincent et al. (2013) DF UP No VF MI(B) R2 Correct and improve the al-
gorithm of Mavrotas and Di-
akoulaki (1998). Characterize
the non–dominated frontier of
a mixed integer BOCO prob-
lem.

Stidsen et al. (2014) — S–LP No VF, PB,
SL

MI(B) (Z,R) Introduce Pareto branching
and slicing of the outcome
space. One objective must be
integer valued.

Parragh et al. (2015) BF BO-LP,
SP-IP

No VF, EPB Z Z2 Propose an idea similar to
extended Pareto branching.
Generate lower bound sets us-
ing column generation.

This paper BB S–LP,
BO–LP

Yes VF, EPB B Z2 Introduces cutting plane algo-
rithm. Proposes updating of
lower bound sets. Extends
PB.

1: Node selection (DF: Depth first, BB: Best bound, BF: Breadth first, —: Not described), 2 Lower bound (HS: Hyper
surface, UP: Utopian or ideal point, S–LP: LP–relaxation of scalarized problem, BO–LP: Bi–Objective LP–relaxation,
SP–IP: Supported points of Bi–Objective integer program (IP)), 3: Branching (VF: Variable fixing, PB: Pareto branching,
EPB: Extended Pareto branching, SL: Slicing) 4: Jozefowiez, Laporte, and Semet (2012) uses an utopian point for each
integer value of the second objective. 3

can be discarded if a hypersurface separates the set of feasible solutions in the subproblem
from the incumbent set (the set of non–dominated points). Sourd and Spanjaard use a rather
sophisticated problem–specific hypersurface and obtain promising experimental results for
the bi–objective spanning tree problem.

In Jozefowiez et al. (2012) a branch–and–bound procedure is proposed which generates
a lower bound set of each node using an embedded ε–constraint method that generates an
optimal solution for the first objective given the second objective takes integer values. The
procedure is used to solve the multi–label traveling salesman problem.

More recently Stidsen, Andersen, and Dammann (2014) introduce the concept of Pareto
branching where branching is performed in outcome space. Also, they propose slicing the
outcome space and thereby obtain better upper bounds for fathoming nodes in the branching
tree. Thus, effectively decision and outcome space search strategies are combined. In Parragh
and Tricoire (2015) a column generation based algorithm is used to generate tight lower bound
sets for the bi–objective team orienteering problem with time windows and the combination of
decision and search space search strategies is further explored. Promising results are reported
by both Stidsen et al. (2014) and Parragh and Tricoire (2015).

Lastly we want to mention Przybylski and Gandibleux (2017) who review the state–of–the–
art of multi–objective branch and bound and give an overview of concepts and methodologies
used within this research field.

Although several novel and efficient approaches have been proposed in the past, none of
these take advantage of the lower bound set available from the bi–objective LP–relaxation.
Furthermore, none of the previously mentioned algorithms incorporates cutting planes in a
bi–objective setting, even though effective separation routines have resulted in a significant
speedup for single objective problems. Therefore, we propose two novel bound set based branch–
and–cut algorithms for general bi–objective linear combinatorial optimization problems. The
algorithms rely on either explicitly or implicitly given lower bound sets obtained from the
bi–objective LP–relaxation. To summarize, the main contributions of this paper are as follows

1. We propose the first algorithm that generalizes an LP–based branch–and–cut algorithm
to general linear combinatorial optimization problems with two objectives.

2. We propose a bi–objective cutting plane algorithm which dynamically changes weights
of the objectives in order to approximate the best possible lower bound set obtainable
from the LP–relaxation.

3. We develop a simple updating scheme for explicit lower bound sets that reduces the
number of bi–objective LPs that need to be solved.

4. We introduce a simple method for implicitly describing the lower bound set obtained
from the bi–objective LP–relaxation.

5. The Pareto branching strategy is strengthened to what we call extended Pareto branch-
ing.

6. In order to test the efficiency of the methodology we test a total of 8 different imple-
mentations on the NP–hard bi–objective single–source capacitated facility location
problem.

The remainder of this paper is organized as follows: Section 2 gives the basic definitions
of bi–objective optimization. Section 3 starts with a short theoretical description of a

4

generic bi–objective branch–and–cut algorithm for general BOCO problems and afterwards
we describe the main components of the branch–and–cut algorithm in detail. Finally, different
implementations of the algorithm developed in the paper are tested in Section 4.

2 Preliminaries

The focus of this section will be on a generic linear bi-objective combinatorial optimization
(BOCO) problem of the form

min{Cx : x ∈ X} (1)

where C = (c1, c2) is a 2×n dimensional matrix with all entries being integral and the feasible
set is defined by X = {x ∈ x ∈ {0, 1}n : Ax 5 b}. The set X of feasible solutions is also
referred to as the feasible set in decision space and the image of X under the linear mapping
C is called the feasible set in objective space and is here denoted Z. In the remainder of the
paper it will be assumed that X 6= ∅.

To compare vectors in R2 we adopt the notation from Ehrgott (2005). Let z1, z2 ∈ R2,
then

z1 5 z2 ⇔ z1
k ≤ z2

k, for k = 1, 2,

z1 ≤ z2 ⇔ z1 5 z2 and z1 6= z2,

z1 < z2 ⇔ z1
k < z2

k, for k = 1, 2.

We define the set R2
= = {z ∈ R2 : z = 0} and analogously R2

≥ and R2
>. Furthermore, given a

set S ⊆ R2 let SN = {s ∈ S : ({s} − R2
=) ∩ S = {s}}, where ({s} − R2

=) = {z ∈ R2 : z =

s− r, r ∈ R2
=}. The set SN is called the non–dominated set of S.

The problem (1) does not immediately reveal what an “optimal solution” should be. To
clarify this we use the concept of Pareto optimality or efficiency:

Definition 1. A feasible solution x̂ ∈ X is called Pareto optimal or efficient if there does not
exist any x ∈ X such that Cx ≤ Cx̂. The image Cx̂ is then called non-dominated.

A feasible solution x̂ ∈ X is called weakly efficient if there does not exist any x ∈ X such
that Cx < Cx̂.

Let XE denote the set of all efficient solutions. Then the image of XE under the linear
mapping C is exactly ZN , that is, ZN = CXE . The set ZN is referred to as the set of
non–dominated outcomes. A subset X ∗ ⊆ XE where CX ∗ = ZN and Cx 6= Cx′ for all
x, x′ ∈ X ∗ will be considered an optimal solution to (1). Note that an optimal solution X ∗ is
a set of efficient solutions.

The sets XE and ZN need to be further divided into two subsets. An efficient solution
x̂ ∈ XE is said to be a supported efficient solution if there exists a weight λ ∈ (0, 1) such
that λc1x̂ + (1 − λ)c2x̂ ≤ λc1x + (1 − λ)c2x for all x ∈ X . The set of supported efficient
solutions is denoted XSE . The elements in XnE = XE \XSE are called non–supported efficient
solutions. Analogously, the set ZN is partitioned into two subsets, namely ZSN = CXSE and
ZnN = CXNE .

5

3 Bi–objective bound set based branch–and–cut

The branch–and–cut framework provides a very successful standard method for solving single
objective combinatorial optimization problems (see e.g. Nemhauser and Wolsey (1988) or
Martin (1999) for a detailed description). Here, the set of feasible solutions to the optimization
problem is partitioned into disjoint subproblems which can be displayed in a tree–structure
where each node represents a subproblem. We say that a branching node is fathomed if it
has been proven that the subproblem corresponding to that branching node cannot contain
solutions improving the current best solution or if the corresponding subproblem is infeasible.
The algorithm keeps a set H of active nodes, that have not been fathomed. A specific
active branching node is denoted η. Let X (η) denote the set of feasible solutions of the
subproblem corresponding to branching node η. That is, the solutions in X satisfying all
branching constraints added on the unique path from the root node to the branching node
η. Furthermore, we let X̄ (X̄ (η)) denote the set X (X (η)) with all integrality constraints
removed.

For single objective optimization problems only a single optimal solution value exists,
say z∗ ∈ R. Thus, upper and lower bounds on z∗ are given by numbers u, l ∈ R satisfying
l ≤ z∗ ≤ u. To adapt a branch–and–cut framework to BOCO problems we need to consider
bounds on the set ZN of non–dominated solution values, hence we naturally need to extend
the concept of bounds to bound sets. We use the definition of bound sets given in Ehrgott
and Gandibleux (2007), stated for the bi–objective case below.

Definition 2 (Bound sets). Lower and upper bound sets are defined as follows:

1. A lower bound set on ZN is a subset L ⊆ R2 such that L is an R2
=–closed and R2

=–
bounded set with L = LN such that

ZN ⊆ (L+ R2
=).

Given two lower bound sets L1 and L2 we say that L1 dominates L2 if L1+R2
= ⊆ L2+R2

=.

If furthermore L1 + R2
= 6= L2 + R2

= we say that L1 strictly dominates L2.

2. An upper bound set on ZN is a subset U ⊆ R2 such that U is an R2
=–closed and

R2
=–bounded set with U = UN such that

ZN ⊆ cl
(
R2 \ (U + R2

=)
)
,

where cl(S) denotes the closure of a set S ⊆ R2.

The lower bound set L is called R2
=–convex if the set (L+ R2

=) is convex. In this paper

we will focus on the R2
=–convex lower bound set available from the non–dominated frontier of

the LP-relaxation of the BOCO, that is

(CX̄)N = {z ∈ R2 : z = Cx, Ax 5 b, x ∈ [0, 1]n}N .

From Definition 2 it is also readily seen that any set of feasible solutions filtered by dominance
gives rise to an upper bound set. A R2

=–convex lower bound set and an upper bound set are

illustrated in Figure 1(a).

6

c2x

c1x

L

L + R2
=

(a) Upper and lower bound sets. The hatched area
is L+ R2

=.

c2x

c1xc1x

L

S1

(b) Search area S1 defined in (2) (hatched area).

c2x

c1x

zul

zlr

(c) Search area S2 defined in (3) (hatched and cross-
hatched area). Note that if the lexicographic minima
are not part of the upper bound set, then the cross-
hatched areas are missing.

c2x

c1x

zul

zlr

L(η2) L(η1)

(d) The node η1 can be fathomed, since no local
nadir point is positioned “above” the lower bound
set. The node η2 can not be fathomed.

Figure 1: Illustrations of the search area. Lower bound sets are illustrated with solid black
lines, upper bound sets with circles, and local nadir points with squares.

7

For single objective optimization problems an active node in the branching tree can be
fathomed if the subproblem corresponding to the branching node is infeasible or if the lower
bound of the subproblem is greater than or equal to the global upper bound. To extend this
result to a multi–objective branch–and–cut algorithm, we need the following definition.

Definition 3 (Local nadir point). Let U = {z1, . . . , z|U |} ⊆ Z be an upper bound set of
feasible points ordered such that zu1 < zu+1

1 , for all zu, zu+1 ∈ U . Then the set of local nadir
points is given by

N (U) =

|U |−1⋃
u=1

{(zu+1
1 , zu2)}.

In a multi–objective branch–and–cut algorithm an active node η in the branching tree,
can be fathomed if the subproblem corresponding to the branching node is infeasible or if
every solution in the subproblem corresponding to η is dominated by at least one solution
in the upper bound set U . That is, the search area between the lower and upper bound sets
must be empty.

The search area may be defined in different ways. As noted by Przybylski, Gandibleux, and
Ehrgott (2010), given a branching node η, its feasible points in objective space Z(η) := CX (η),
a lower bound set L(η) of Z(η), and an upper bound set U we have

(Z(η) ∩ ZN) ⊆
(
L(η) + R2

=

)
\
(
U + R2

>

)
=: S1. (2)

That is, the search area is defined as S1 (see Figure 1(b) for an illustration). This representation
is, however, not that useful in an algorithmic sense. By assuming that the lexicographic
minima are part of the upper bound set U , we get the inclusion

(Z(η) ∩ ZN) ⊆
(
L(η) + R2

=

)
∩
(
N (U)− R2

=

)
=: S2. (3)

The search area S2 is illustrated in Figure 1(c) (hatched and cross-hatched area). Note
that if the lexicographic minima are not part of the upper bound set, then (3) does not hold
(the cross-hatched areas are missing). Given an upper bound set U including the lexicographic
minima and a lower bound set L(η) on Z(η), the search for non–dominated points can be
restricted to the search area S2 and a sufficient condition for fathoming a branching node η is(

L(η) + R2
=

)
∩
(
N (U)− R2

=

)
= ∅ (4)

Moreover, the result can be strengthened further.

Proposition 1. Given an active branching node η, a lower bound set L(η), and an upper
bound set U including the lexicographic minima, the branching node η can be fathomed if(

L(η) + R2
=

)
∩N (U) = ∅. (5)

Proof. We show that (5) implies (4). Assume that (5) holds true and that z̄ ∈
(
L(η) + R2

=

)
∩(

N (U)− R2
=

)
6= ∅. Then z̄ ∈ (N (U)−R2

=)\N (U) implying there exists a z̃ ∈ N (U) such that

z̃ ∈ {z̄}+R2
=. Since z̄ ∈ L(η) +R2

= then so is z̃. This contradicts the starting assumption.

8

Step 0 Initialize the upper bound set U and set H equal to the root node.

Step 1 If H = ∅, then return U = ZN and stop; otherwise select an active branching node
η ∈ H.

Step 2 Add cutting planes.

Step 3 Obtain a lower bound set L(η) of node η.

Step 4 Update the upper bound set U .

Step 5 If the node η can be fathomed, go to Step 1.

Step 6 Perform branching on η. Go to Step 1.

Algorithm 1: Generic multi–objective branch–and–cut algorithm based on bound sets.

An illustration of Proposition 1 is given in Figure 1(d). Here the branching node η1 can
be fathomed whereas node η2 cannot.

Based on the above results a general bi–objective branch–and–cut framework can now be
described as given in Algorithm 1. The algorithm is initialized by setting the upper bound
set equal to the lexicographic minima of both orders of objectives in Step 0 and an active
node is chosen in Step 1. At each node, cuts can be added (Step 2) in order to strengthen the
lower bound set obtained in Step 3. If a feasible solution can be obtained from the node it
might be a non–dominated solution, and the upper bound set is therefore updated in Step 4.
After obtaining a lower bound set and updating the upper bound set, Step 5 is used to test
whether the branching node can be fathomed. If not, the branching node is split into several
new disjoint child nodes (Step 6). Note that Algorithm 1 implicitly enumerates all solutions
to the BOCO problem 1 implying that when H = ∅, the set of non–dominated outcomes
has been found. Furthermore, as the number of solutions to the BOCO problem is finite,
Algorithm 1 terminates in finite time if the individual steps can be performed in finite time.
In the following subsections we elaborate on Steps 2 through 6.

3.1 Step 2 - Adding cutting planes

A major challenge when designing algorithms for BOCO problems is to find a way to efficiently
utilize the numerous methods and strategies available for the single objective versions of the
BOCO problems. In this section, we propose a way to utilize cutting planes to reduce the
“gap” between the lower bound set provided by the bi–objective LP–relaxation and the set of
non–dominated outcomes to the BOCO problem (1).

In a single objective branch–and–cut algorithm, cutting planes can be identified before a
branch–and–bound algorithm is started, as a way to improve the lower bound. Or seen from
another perspective cuts are added to generate a tighter representation of the convex hull of
integer solutions in the direction of the objective function. In case of a BOCO problem there
is not a single direction of the objective function, and it is not obvious in which part of the
polyhedron corresponding to the LP-relaxation, cutting planes would be most beneficial.

Therefore, we solve the LP–relaxation of a weighted sum scalarization of the BOCO

9

Step 2.0 Choose weight λ ∈ (0, 1).

Step 2.1 Solve the weighted sum scalarization of the BOCO problem

min{(λc1 + (1− λ)c2)x : x ∈ X̄},

and let x∗ be an optimal solution.

Step 2.2 If possible, separate x∗ using cutting planes and append the cutting planes to the
description of X̄ .

Step 2.3 If we should add further cuts (e.g. if new cuts were added in Step 2.2), go to Step
2.1.

Step 2.4 If we should apply a new search direction λ, go to Step 2.0; otherwise stop.

Algorithm 2: Step 2 of Algorithm 1.

problem and add cutting planes (in decision space) for different weights. The goal is to
generate a relaxation of the BOCO problem which provides a lower bound set as close to
conv(ZN)N as possible. Note, that the strongest R2

=–convex lower bound set is

conv(ZN)N = {z ∈ R2 : z = Cx, x ∈ conv(X)}N ,

as no convex lower bound set can strictly dominate it. From this description, we see that by
approximating conv(X) using cutting planes, we also approximate the strongest possible R2

=–
convex lower bound set without having to solve a series of integer programming problems. In
contrast to single objective optimization, it is important to note that an explicit description of
conv(X) does not reduce the problem to a bi–objective LP problem, as not all nondominated
points lie on conv(ZN)N ; notably all non–supported non–dominated points are in the interior
of this set.

An overview of the cutting plane algorithm is given in Algorithm 2. The algorithm starts
by choosing a search direction (or weight) in Step 2.0. When the weight has been chosen,
an ordinary cutting plane algorithm is used to separate cutting planes in the part of the
decision space identified by the search direction λ (Step 2.1 and Step 2.2). In Step 2.3 a
stopping criterion for the cutting plane algorithm is checked, allowing for multiple rounds of
cuts. Finally, in Step 2.4, we check if a new search direction should be chosen or not. The
algorithm described in Algorithm 2 distinguishes itself from a single objective cutting plane
algorithm only by the outer loop where different search directions are used. This means that
problem specific cutting planes can be used in Step 2.2, if effective separation algorithms are
known.

The algorithmic framework in Algorithm 2 leaves two obvious ways of choosing the search
direction in Step 2.0: An a priori and a dynamic approach. An example of an a priori
approach would be to pick the values for λ in the set { 1

k ,
2
k , . . . ,

k−1
k }, for some number

k > 0, whereas a dynamic strategy would be to chose λ based on the previous iteration of
the algorithm. In this paper we have implemented a dynamic updating scheme based on a

10

modification of the so–called Non–Inferior Set Estimation framework proposed by Cohon
(1978), Aneja and Nair (1979), and Dial (1979).

3.2 Step 3 - Obtaining a lower bound set

In this section, we describe how we derive lower bound sets of the current branching node η
in Step 3 of Algorithm 1. Consider an active branching node η and let

LC(η) = (CX̄ (η))N

denote the lower bound set equal to the set of non–dominated outcome vectors of the bi–
objective LP–relaxation of the current node. One approach to obtaining lower bound sets
would then be to solve the bi–objective LP–relaxation in each branching node and use
Proposition 1 to test if the node can be fathomed. However, it may be computationally
expensive to solve a bi–objective LP and to check condition (5) in Proposition 1 at every
branching node. Therefore, we only want to solve the bi–objective LP at branching nodes
where there is a possibility that condition (5) holds (the search area S2 defined in (2) is
empty). Given λ ∈ (0, 1), let

Λλ(η) = min{(λc1 + (1− λ)c2)x : x ∈ X̄ (η)} (6)

denote the optimal solution value of the λ–scalarized LP–relaxation of the node η and

xλ(η) ∈ arg min{(λc1 + (1− λ)c2)x : x ∈ X̄ (η)},

an optimal solution to (6). The following proposition gives sufficient conditions to ensure that
S2 is non-empty.

Proposition 2. Consider upper bound set U and lower bound set L(η) = LC(η) and assume
that the solution xλ(η) satisfies

Cxλ(η) ≤ zn

for some zn ∈ N (U). Then (
L(η) + R2

=

)
∩N (U) 6= ∅.

Proof. Suppose there exists a local nadir point zn ∈ N (U) such that Cxλ(η) ≤ zn. Since

Cxλ(η) ∈ L(η), we have that zn ∈ L(η) + R2
= implying

(
L(η) + R2

=

)
∩N (U) 6= ∅.

Proposition 2 suggests to always solve a λ–scalarized LP before solving the bi–objective
LP relaxation. If Proposition 2 holds, then there is no reason to solve the bi–objective LP,
since the branching node η cannot be fathomed. Furthermore, solving the λ–scalarized LP
provides us with a lower bound set

Lλ(η) = {z ∈ R2 : λz1 + (1− λ)z2 = Λλ(η)},

which may be used to find a lower bound set L(η) at branching node η as described in
Proposition 3.

11

c2x

c1x

zl1

zl1+1

zl2
zl2+1

zI1

zI2

Figure 2: Updating the lower bound set using Proposition 3.

Proposition 3. Given an active branching node η and parent node η0 with lower bound set
L(η0), the set

L(η) =
((
L(η0) + R2

=

)
∩
(
Lλ(η) + R2

=

))
N
,

is a lower bound set of branching node η dominating both L(η0) and Lλ(η).

Proof. Obviously, Lλ(η) is a lower bound set for η, and by relaxation so is L(η0). The rest
follows from Proposition 2 in Ehrgott and Gandibleux (2007).

Determining the set L(η) defined in Proposition 3 is straightforward. Assume that for
branching node η0 the lower bound set L(η0) is represented by an ordered list of extreme
points, {z1, . . . , zL}, with zl1 < zl+1

1 . The updating is then simply done by first finding two
pairs of points (zl1 , zl1+1) and (zl2 , zl2+1) satisfying

λzl11 + (1− λ)zl12 ≥ Λλ(η) > λzl1+1 + (1− λ)zl1+1
2

and
λzl21 + (1− λ)zl22 < Λλ(η) ≤ λzl2+1 + (1− λ)zl2+1

2 ,

as illustrated in Figure 2. Having determined these two pairs of points, we simply calculate the
intersection point between the straight line defined by the two points zl1 and zl1+1 (respectively
zl2 and zl2+1) and the line defined by the lower bound set Lλ(η). The two intersection points,
say zI1 and zI2 , are inserted in the list and we obtain the new lower bound set L(η) defined
by

L(η) = conv({z1, . . . , zl1 , zI1 , zI2 , zl2+1, . . . , zL})N .

Step 3 can now be specified in Algorithm 3. We are interested in solving the bi–objective
LP–relaxation as few times as possible as long as the updated lower bound set is of sufficient
quality. We use the heuristic rule that if the branching performed at the parent node was
done in objective space (see Section 3.5), the bi–objective LP–relaxation is resolved since we
want new lower bound sets for different regions in the objective space (Step 3.0). Otherwise
we solve the λ–scalarized LP (Step 3.1) and if the lower bound set of the parent node is
strictly dominated by L(η) found in Proposition 3 (all the extreme points of L(η0) lie below
Lλ(η)), then we resolve the bi–objective LP–relaxation.

12

Step 3.0 If the branching at the parent node η0 has been performed in objective space,
solve the LP–relaxation and return LC(η). Otherwise go to Step 3.1.

Step 3.1 Solve the λ–scalarized LP and find L(η) defined in Proposition 3.

Step 3.2 If L(η) strictly dominates L(η0), then solve the LP–relaxation and return LC(η);
otherwise return L(η).

Algorithm 3: Step 3 of Algorithm 1.

Step 5.0 If the subproblem corresponding to node η is infeasible, fathom η and go to Step
1.

Step 5.1 If Proposition 2 holds, go to Step 6.

Step 5.2 If Proposition 1 holds, go to Step 1.

Algorithm 4: Step 5 of Algorithm 1.

3.3 Step 4 - Update the upper bound set

Throughout the branch–and–bound process an upper bound set, U , of feasible points in
objective space filtered by dominance is maintained and ordered such that zu1 < zu+1

1 for all
zu, zu+1 ∈ U . In Step 0 of Algorithm 1 U is initialized with the two lexicographic minima.
Whenever a feasible solution is found, the outcome vector of the solution is inserted into the
upper bound set U and the augmented set is filtered by dominance. In this way, the set U is
constantly improving and will at any time form an upper bound set. Note that solutions can
be obtained using heuristics from all active branching nodes even though the node is not a
leaf node.

3.4 Step 5 - Bound fathoming

Algorithm 4 checks if an active node η in the branching tree, can be fathomed. If the
subproblem corresponding to the branching node is infeasible, we fathom η and pick a new
active node (Step 5.0); otherwise Proposition 2 is used as a preliminary check for not fathoming
the node (Step 5.1). Finally, Proposition 1 is checked in Step 5.2. Proposition 1 can be checked
using both an explicit and an implicitly given lower bound set L(η). Below we describe three
ways of testing Proposition 1.

3.4.1 Bound fathoming using an explicit lower bound set and LP

Assume that a lower bound set L(η) is stored as an explicit set using the extreme points
{z1, . . . , zL} of L(η). Note that when L(η) is R2

=–convex, the set L(η)+R2
= forms an unbounded

convex polygonal domain in R2, and the verification of the condition in Proposition 1 amounts
to verifying if any of the points in N (U) lie in this convex polyhedron. A simple, and

13

straightforward way of performing this bound fathoming check is to solve the linear program

Z(zn) = min s1 + s2

s.t.:
L∑
l=1

zl1µl − s1 ≤ zn1

L∑
l=1

zl2µl − s2 ≤ zn2

L∑
l=1

µl = 1

µl, s1, s2 ≥ 0, ∀l = 1, . . . , L

(7)

for all zn ∈ N (U). If Z(zn) > 0 for all zn ∈ N (U), the node η can be fathomed based on
bounding. Note that the linear programs (7) only have three constraints, leading to linear
programs which can be solved very quickly. Furthermore, for two different local nadir points
zn and zn

′
, the linear programs (7) differ in the right hand sides only. This means that very

few dual simplex iterations are usually needed in order to resolve these linear programs.

3.4.2 Bound fathoming using an explicit lower bound set and a point–in–polygon
algorithm

Let {
¯
z1, . . . ,

¯
zL} denote the extreme points of L(η) and note that

ZN ⊆
(
{(zlr1 , zul2)} − R2

=

)
,

where zul = lex min{(c1x, c2x) : x ∈ X} and zlr = lex min{(c2x, c1x) : x ∈ X} are the two
lexicographic minima. Hence Proposition 1 does not hold if a local nadir point is in the
polygon given by

conv({(
¯
z1

1 , z
ul
2),

¯
z1, . . . ,

¯
zL, (zlr1 ,¯

zL2), (zlr1 , z
ul
2)}). (8)

This means that the condition in Proposition 1 can be tested by calling, for each local nadir
point, a point–in–polytope algorithm which tests for inclusion in the polygon (8). As soon as
the algorithm declares that a local nadir point is within the polygon, we know the branching
node cannot be fathomed. Fortunately, much research has gone into point–in–polytope (PIP)
algorithms and we refer the interested reader to the computational study by Schirra (2008) of
the reliability and speed of a number of different algorithmic approaches for the PIP problem.

3.4.3 Bound fathoming using an implicit lower bound set and LP

The bound fathoming can also be done without explicitly maintaining a lower bound set.
Note that the condition in Proposition 1 asks if any point on the lower bound set dominates
a local nadir point and that the lower bound set of the branching node η we are using is
(CX (η))N . Deciding if there exists a point

¯
z ∈ (CX̄ (η))N which (strictly) dominates a local

14

Nadir point zn ∈ N (U) is equivalent to having Z̃(zn) = 0 where

Z̃(zn) = min s1 + s2

s.t.: c1x− s1 ≤ zn1
c2x− s2 ≤ zn2
x ∈ X̄ (η)

s1, s2 ≥ 0.

(9)

Note that an optimal solution (x∗, s∗) to the linear program (9) either has Z̃(zn) = 0 implying
Cx∗ ≤ zn (that is, there is a solution to the LP-relaxation which dominates zn) or we have
Z̃(zn) = s∗1 + s∗2 > 0. This leads to Proposition 4.

Proposition 4. The branching node η can be fathomed if the optimal solution value Z̃(zn)
of the program (9) is strictly positive for all zn ∈ N (U).

This implicit approach eliminates the need for generating the entire efficient frontier of
the LP-relaxation and only one linear program needs to be solved for each local nadir point.
The approach might then have its merits for problems with few non–dominated outcomes
compared to the number of extreme points of [(CX̄ (η))N + R2

=], but this is not a trivial
matter to decide a priori. A possible drawback compared to generating the complete set
(CX̄ (η))N is that the updating scheme described in Proposition 3 no longer applies, implying
that additional linear programming problems need to be solved at each branching node.
Furthermore, the program (9) might be large and solving it may consequently be rather time
consuming. As the program (9) must potentially be solved for several local nadir points, this
might lead to prohibitive computation times.

3.5 Step 6 - Performing branching

As the set of feasible solutions does not differ compared to a single objective combinatorial
optimization problem, the branching rules devised for these problems can be applied. However,
much information can be gained by utilizing the definition of an efficient solution and its
non–dominated outcome vector. As mentioned in Section 3.2, the bi–objective LP–relaxation
is not solved at each branching node. However, the weighted sum scalarization

min{(λc1 + (1− λ)c2)x : x ∈ X̄ (η)} (10)

is solved. Let
¯
x(η) be an optimal solution to problem (10), and let

¯
z(η) = C

¯
x(η) be the

corresponding outcome vector. First, we outline the very effective branching strategy proposed
in Stidsen et al. (2014) called Pareto branching (PB). PB is based on the observation that if
z 5

¯
z(η) for all z in the ordered sublist {z̄u1 , . . . , z̄uK} ⊆ U of the current upper bound set,

then the branching node η can be split by the disjunction

c1x ≤ z̄u11 − 1 ∨ c2x ≤ zuK2 − 1.

We note, that in our implementation we update the upper bound set U before branching. This
means, that if a node results in an integer feasible solution, the outcome vector of this solution
is part of the upper bound set when branching is performed. Therefore, if a branching node

15

results in an integer feasible solution, Pareto branching can always be performed and there is
no need to add the weaker so–called no–good inequalities∑

i:
¯
x(η)i=0

xi +
∑

i:
¯
x(η)i=1

(1− xi) ≥ 1,

used in ranking based two–phase methods.
The idea of PB can be expanded to extended Pareto branching (EPB). From the definition

of the search area S2, given in (3), it is evident that non–dominated outcomes can only exist
in the set ⋃

zn∈(L(η)+R2)∩N (U)

(
zn − R2

=

)
.

Before making a branching decision, we already check whether local nadir points exist in the

set
(
L(η) + R2

=

)
(see Proposition 1 and Proposition 4),and therefore we can simply create

a child node for each local nadir point found. Note that this split of the branching node η
might not separate the current LP–solution as we may have that

Cx(η) ∈
⋃

z∈(L(η)+R2)∩N (U)

(
z − R2

=

)
.

Therefore, we only perform extended Pareto branching when in fact there exists a z̄ ∈ U such
that z̄ ≤

¯
z(η). This guarantees separation of the branching node.

Note that the EPB requires that all local nadir points are checked. If the EPB rule is
not applied, finding a single local nadir point dominated by the lower bound set leads to
the conclusion that branching node η cannot be fathomed. This implies a tradeoff between
stronger branching rules and faster treatment of branching nodes that cannot be fathomed.

If we cannot perform either extended Pareto branching or Pareto branching (note that this
means, that x(η) 6∈ {0, 1}n), the branching node is simply separated by a variable dichotomy.
The branching variable is chosen based on pseudo–cost information provided by the solver
(see for example Achterberg, Koch, and Martin (2005) for a discussion of variable selection
strategies in single objective combinatorial optimization).

4 Computational results

In this section we report on the computational experiments conducted with the bi–objective
branch–and–cut algorithms. We have chosen to test the algorithms on the bi–objective
single–source capacitated facilitity problem (BO–SSCFLP) as this problem exhibits many of
the substructures and features that arise in general combinatorial optimization problems; it
has equality constraints defining special ordered sets of type 1 (SOS1) structures, knapsack
substructures, indicator constraints and fixed costs (see Appendix A). The purpose of the
computational study is to answer the following questions

(i) Which implementations based on explicit or implicit lower bound sets perform the best?

(ii) Given an explicit lower bound set, does node fathoming based on linear programming
or point–in–polytope algorithms perform the best?

(iii) Is it worth performing extended Pareto branching?

16

Table 2: Different implementations of the bi–objective branch–and–cut algorithm.

Abbreviation1
E-PB-PIP E-PB-LP E-EPB-PIP I-PB-LP I-EPB-LP

Node selection Best first Best first Best first Best first Best first

Cuts At root node At root node At root node At root note At root node

Lower bound set Explicit Explicit Explicit Implicit Implicit

Fathoming nodes PIP LP PIP LP LP

Pareto Branching Yes Yes Yes Yes Yes

Extended PB No No Yes No Yes

1: A–B–C. A: Lower bound set (E: explicit, I: implicit). B: Branching strategy (PB: Pareto branching, EPB:
extended Preto branching). C: Method for testing the condition in Proposition 1 (LP: linear programming, PIP:
point–in–polytope).

(iv) Is adding cutting planes effective in improving the running time?

(v) Does the lower bound updating scheme given in Proposition 3 improve the performance?

(vi) Is the bound set based branch–and–cut algorithm competitive with state–of–the art
algorithms?

To answer the first three questions above, we have implemented different versions of
Algorithm 1. An overview is given in Table 2. The algorithms prefixed with an E are all
based on explicitly generated lower bound sets while algorithms prefixed with an I rely on
implicit lower bound sets (see Section 3.4). The branching strategy is indicated using the
abbreviations PB for Pareto branching and EPB for extended Pareto branching (see Section 3.5).
For the explicit lower bounds, we proposed two ways of fathoming nodes; one based on linear
programming (LP) (see Section 3.4.1) and one based on the point–in–polytope (PIP) algorithm
(see Section 3.4.2). For the algorithms with implicitly given lower bound sets, nodes can only
be fathomed using linear programming (see Section 3.4.3). Note that all implementations
use a best first search, where the node having the smallest value of Λλ(η) is chosen as the
next node to be processed. Since computational experience for single objective optimization
problems shows that cutting planes have a larger effect at the root note compared to nodes
deeper in the tree, we call Algorithm 2 only at the root node. We use general lifted cover
inequalities and Fenchel inequalities as cutting planes for the knapsack structures arising from
the capacity constraints of the BO–SSCFLP as they have been shown to be effective for the
SSCFLP (see e.g. Gadegaard, Klose, and Nielsen (2018)). Furthermore, Stidsen et al. (2014)
established that Pareto branching in bi–objective branch–and–bound gives a significant speed
up compared to only branching on variables. We therefore include Pareto branching in all
algorithms.

After testing the five implementations specified in Table 2, we address the remaining three
questions as follows:

• We answer Question (iv) by comparing the best explicit and implicit implementations
with and without cutting planes added.

• We answer Question (v) by comparing the explicit lower bound set based algorithm
with and without the updating strategy.

17

• We finally answer Question (vi) by comparing the overall best implementation of
Algorithm 1 with two different implementations of the two–phase method.

4.1 Implementation details and test instances

All implementations have been coded in C and C++ and compiled using gcc and g++
with optimization option O3 and C++11 features enabled. They are all publicly available
(see Gadegaard, Nielsen, and Ehrgott (2016a)). All implementations use CPLEX 12.6 with
callbacks as solver. The ParallelMode switch is set to deterministic such that different runs
can be compared, the Reduce switch is set such that neither primal nor dual reduction is
performed, and all internal cuts of CPLEX are turned off. For all instances a fixed time limit
of 3600 CPU seconds (one hour of computation time) is set after which the search is aborted.
As CPLEX 12.6 with callbacks is limited to creating at most two child nodes when branching,
we only perform extended Pareto branching when there are one or two local nadir points in
the set (L(η) + R2

=). If there are more local nadir points in (L(η) + R2
=), we resort to Pareto

branching as explained above. For E-PB-PIP and E-EPB-PIP the point–in–polytope problem is
solved using the PNPOLY algorithm developed by Franklin (2006) while all implementations
using linear programming for node fathoming are solved by CPLEX using its dual simplex
algorithm. Since CPLEX does not allow for changes in the objective function in the callbacks,
we use a fixed value of λ = 0.5 during the branch–and–cut process.

For the computational study we have generated a number of instances of the BO-SSCFLP.
These instances were generated in the same way as was done by Stidsen et al. (2014) for
the uncapacitated version of the BO–SSCFLP. The demands were generated from the set
{5, . . . , 10} and the capacities from the set {10, . . . , 20}, both according to a uniform distri-
bution. The ratio between the total capacity and total demand is then scaled to equal r ∈ R,
where r is uniformly generated from the interval [1.5, 4]. For each instance size, defined by
|I| × |J |, we have generated 10 instances. The instance generator as well as the instances are
all publicly available (see Gadegaard, Nielsen, and Ehrgott (2016b)). The number of facilities
is |I| ∈ {5, 10, 15, . . . , 60} and the number of customers is set to |J | = 2|I|. This leads to 120
instances of the SSCFLP ranging in sizes from 5× 10 to 60× 120, implying the number of
binary variables ranges from 55 to 7,260.

4.2 Questions (i)-(iii) - Comparison of implementations

Figure 3 shows a comparison of the implementations based on explicitly given lower bound
sets. From Figure 3(a) we see that all implementations based on explicit lower bounds perform
equally well. The time in CPU seconds is an average over all instances which could be solved
within an hour. All algorithms are able to solve most of the instances with up to 6,000
variables within an hour. However, when the instances grow beyond this size, the success
ratio begins to decrease, but as shown in Figure 3(b), 50% of the instances having more than
7,000 variables were still solvable within an hour. Note that E-PB-PIP and E-PB-LP both fail
to solve a single instance having 1,275 variables and E-PB-LP also fails to solve one instance
having 1,830 binary variables. The algorithm E-EPB-PIP does, however, solve all these instances
within an hour.

Considering the results obtained for implementations using explicitly given bound sets
there is no clear winner, but as E-EPB-PIP solves slightly more instances within an hour
compared to E-PB-PIP and E-PB-LP, it therefore seems to be more robust.

18

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d
s

E-PB-PIP

E-PB-LP

E-EPB-PIP

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000
0

20

40

60

80

100

Number of binary variables
S

u
cc

es
s

ra
ti

o

E-PB-PIP

E-PB-LP

E-EPB-PIP

(b) Instances solved within the time limit (one hour).

Figure 3: Performance of implementations based on explicit lower bound sets.

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d
s

I-PB-LP

I-EBP-LP

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000

0

20

40

60

80

100

Number of binary variables

S
u

cc
es

s
ra

ti
o

I-PB-LP

I-EBP-LP

(b) Instances solved within the time limit (one hour).

Figure 4: Performance of implementations based on implicit lower bound sets.

19

Now consider the two implementations based on implicit lower bounds. As is shown in
Figure 4(a) the two implementations are comparable for relatively small problem instances,
but as the number of binary variables increases, I-EPB-LP becomes more time consuming than
I-PB-LP. From Figure 4(b) we see that I-EPB-LP was able to solve instances of up to 1,830
binary variables only, while I–PB–LP performed better by solving instances of up to 5,000
binary variables. The reason is that I-EPB-LP has to solve one LP for each local nadir point
whereas I-PB-LP only has to find one local nadir point for which the linear program (9) has a
strictly positive solution value.

When we compare the results against the implementations based on explicit lower bound
sets, we see that only significantly smaller instances could be solved using implicit lower bound
sets. The computational study of the E–implementations showed that in approximately half
of the branching nodes the lower bound set is updated using Proposition 3 (see Section 4.4 for
a computational study of the effect of Proposition 3), whereas the I–implementations need
to solve the rather large LPs in (9) several times for each branching node. Especially the
I-EPB-LP suffers from this problem as more LPs need to be solved in order to perform the
extended Pareto branching.

The above tests clearly show, that the best explicit and implicit implementations are
E-EPB-PIP and I-PB-LP.

The overall best implementation seems to be E-EPB-PIP which is based on explicit lower
bound sets, extended Pareto branching, and a PIP algorithm to solve the fathoming test. It
outperforms the best implementation using implicit lower bound sets, the I-PB-LP. The use of
extended Pareto branching seems to make the algorithm more robust compared to the other
implementations with explicit lower bound sets. Hence in the following, we will only perform
further tests with the best implementations under explicit and implicit lower bound sets
(E-EPB-PIP and I-PB-LP). In the remainder of the paper we denote these two implementations
E* and I*, respectively.

4.3 Question (iv) - Is adding cuts worth the effort?

To test whether adding cuts at the root node as explained in Section 3.1 contributes positively
to the solution time, we compare the performance of E* and I* with implementations where
the cutting plane algorithm is turned off. We denote these two new variants E*-NC and I*-NC,
where NC is an abbreviation for “No Cuts”. Instead we let CPLEX generate cutting planes at
the root node.

Figure 5 clearly shows that we get a positive effect by adding cuts to the bi-objective LP.
The addition of cuts at the root node has a high positive impact on the solution time and
solvability of the instances within the one hour limit. It seems that strong cutting planes are
necessary in order to use the bound set based branch-and-cut algorithm.

In Figure 5(c) we see that the versions without the initial cutting plane algorithm ex-
perience a substantially faster growth in the number of nodes that the algorithms need to
enumerate. A peculiar phenomenon is that I*-NC enumerates more branching nodes than
E*-NC, even though E*-NC updates the lower bound set. This basically means that the lower
bound sets used in E*-NC are not as strong as those used in I*-NC. The explanation seems to
be that the solver chooses different search paths for the two algorithms and that the search
paths used for E*-NC lead to better feasible solutions faster, increasing the fathoming potential.
Overall, however, the addition of cuts at the root node has a high impact on the solution
times and the instance sizes solvable, and we dare conclude, that cutting planes are necessary

20

0 2,000 4,000 6,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d
s

E*

E*-NC

I*

I*-NC

(a) Average CPU time in seconds.

0 2,000 4,000 6,000

0

20

40

60

80

100

Number of binary variables

S
u
cc

es
ra

ti
o

E*

E*-NC

I*

I*-NC

(b) Instances solved within the time
limit (one hour).

0 200 400 600 800

0

1

2

·105

Number of binary variables

N
u

m
b

er
of

n
o
d

es
en

u
m

er
at

ed E*

E*-NC

I*

I*-NC

(c) Number of nodes enumerated.

Figure 5: The effect of cutting planes.

0 2,000 4,000 6,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d
s

E*

E*-NU

(a) Average CPU time in seconds.

0 2,000 4,000 6,000

0

20

40

60

80

100

Number of binary variables

S
u
cc

es
ra

ti
o

E*

E*-NU

(b) Instances solved within the time
limit (one hour).

0 2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

·105

Number of binary variables

N
u
m

b
er

o
f

b
ra

n
ch

in
g

n
o
d
es

E*

E*-NU

(c) Number of nodes enumerated.

Figure 6: Effect of Proposition 3.

in order to solve these instances.

4.4 Question (v) - Effect of using Proposition 3

To check if the lower bound updating strategy of Proposition 3 contributes positively to
the running times, we modified E* such that the bi–objective LP–relaxation is solved in all
branching nodes. That is, we obtain the R2

=–convex lower bound set available form the bi–
objective LP–relaxation and may fathom nodes faster. This may, however, come at the expense
of a higher CPU time needed to solve the bi-objective LP. We name this implementation E*-NU

where NU is an abbreviation for “No Updating”.
In Figure 6(c) it is seen that the E* algorithm produces an order of magnitude more

branching nodes compared to E*-NU. This was expected as the lower bound sets generated by
the updating strategy are weaker than those produced by LC(η). Figure 6(a) shows that the
updating strategy has a positive effect as the instances grow in size. Furthermore, using the
updating strategy makes the procedure more robust as can be seen in Figure 6(b). When we
solve a bi–objective LP at each node, some instances become very time consuming, even for
smaller sizes. The reason is that solving a degenerate bi–objective LP requires the solution
of several degenerate single objective LPs. The updating strategy circumvents this issue by
updating the lower bound set via the solution of a single objective degenerate LP.

21

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

E*

TwoP-R

TwoP-PSM

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000

0

20

40

60

80

100

Number of binary variables

S
u

cc
es

s
ra

ti
o

E*

TwoP-R

TwoP-PSM

(b) Instances solved within the time
limit (one hour).

100 200 300 400 500

0

0.5

1

·104

Number of binary variables

N
o
d

es
en

u
m

er
a
te

d

E*

TwoP-R

TwoP-PSM

(c) Number of nodes enumerated
by the algorithms (only instances
solved by two–phase method).

Figure 7: Comparison with the two–phase method.

In summary, the updating scheme significantly improves the running time and robustness
of the E* algorithm, and we conclude that the updating scheme is necessary for the branch–
and–cut algorithm when solving larger instances.

4.5 Question (vi) - Comparing against the two–phase method

To test the effectiveness of the overall best branch–and–cut approach, we compare E* with
two implementations of the two–phase method. Both implementations are publicly available
(see Gadegaard, Nielsen, and Ehrgott (2016c)).

The first two–phase method is implemented as indicated in Stidsen et al. (2014), namely
with a second phase based on ranking. We use the abbreviation TwoP-R to denote this two-phase
ranking method. The results obtained with the two–phase algorithm seem to be consistent
with the results obtained in Stidsen et al. (2014) where facility location problems having up
to 20 binary variables could be solved within 300 CPU seconds. Here, we can solve instances
of up to 500 binary variables within ten times the computation time. To meet the potential
critique that TwoP-R is badly implemented, we here mention that between 99.3% and 100.0%
of the running time was spent by CPLEX solving the subproblems. Furthermore, we have
implemented TwoP-R such that CPLEX reoptimizes the IPs arising in the subproblems after
adding branching constraints. This gives a significant speedup compared to solving each IP
from scratch.

Figure 7 shows the performance of TwoP-R (dashed line) compared to that of E* (solid line).
It is clear from Figure 7(a) and Figure 7(b) that the ranking based two–phase method is very
inferior to the branch–and–bound algorithm E*. Figure 7(c) gives an explanation of why TwoP-R

performs badly compared to E*; When we look at the instances actually solved by TwoP-R, we
see a much faster increase in the number of branching nodes to be enumerated in order for
the algorithm to solve the instances compared to E*. As TwoP-R ranks the solutions between
the supported non–dominated solutions found in the first phase, it generates many equivalent
solutions leading to a large number of IPs solved redundantly. Furthermore, even though
TwoP-R is implemented such that the IPs are reoptimized after adding no–good constraints, a
new root node has to be solved in each IPs leading to excessive computation times. We do
expect that if an efficient ranking algorithm is known for the problem at hand, a customized
two–phase method could outperform the branch–and–cut algorithms developed here. However,

22

the scope of this study is to develop a generic framework and therefore we have not tested
such customized algorithms.

As the results obtained with this standard ranking based two–phase method were rather
disappointing in terms of computation times, we also implemented a two–phase method where
the second phase is based on the perpendicular search method (PSM) proposed by Chalmet,
Lemonidis, and Elzinga (1986). We denote the two–phase method based on PSM, TwoP-PSM.
The PSM is basically a branch–and–bound algorithm where a IPs is solved in each node,
and where all branching is performed in objective space. The branching strategy in PSM is
equivalent to single solution Pareto branching. This implies, that no equivalent solutions are
generated, and we thereby circumvent this obvious issue with TwoP-R.

Figure 7(a) shows that TwoP-PSM (dotted line) performs much better than TwoP-R and that it
even outperforms E* for smaller instances. Although TwoP-PSM is faster for the smaller instances,
it becomes unstable in the sense that some instances become unsolvable within an hour
whereas others can be solved within a few minutes. This can be seen in Figure 7(b) where
the success ratio for the TwoP-PSM drops much earlier than for the E* algorithm. One of the
main reasons why the TwoP-PSM is faster for small instances is that the preprocessing done
by CPLEX reduces the instances considerably. Also, CPLEX finds strong upper bounds
very quickly which means that the probing techniques implemented in the solver is able to
fix many variables at an early stage of the search. But as the instances grow larger, the
preprocessing and the internal heuristics seem to perform worse and more branching nodes
need to be enumerated. Both two-phase methods are also slowed down by the scaling of the
objective functions performed when searching the triangles created by the first phase; even
though the weights used are integers, the difference in the coefficients becomes very large and
the instances suffer from bad scaling which increases the computation times considerably.

In sum, both two-phase methods in our implementation are outperformed by E* on large
instances. In particular, the ranking based TwoP-R performs very poorly on all instances,
whereas the TwoP-PSM algorithm has its merits in case of smaller instances.

5 Conclusions

In this paper we have developed a novel bound set based branch–and–cut algorithm for
solving general bi–objective combinatorial optimization problems. The algorithm was tested
using both an explicit and implicit representation of lower bound sets, and we have shown
that the best algorithm based on explicit lower bound sets outperforms the best algorithm
based on implicit lower bound sets. We proposed an updating scheme that prevented the
algorithm from solving a bi–objective LP at each node. Computational results have shown
that the cost of weaker lower bound sets was by far outweighed by the improvement in
speed when a branching node is processed. The paper also suggests a simple bi–objective
cutting plane algorithm that significantly improves the performance of both the explicit and
the implicit lower bound based algorithms. Furthermore, we proposed an extension of the
Pareto branching strategy suggested in the literature and showed that it makes the explicit
lower bound set based algorithm more stable. Finally, we proved the effectiveness of the
branch–and–cut algorithm by comparing it to two different implementations of the two–phase
method. Especially for larger instances, did the new branch–and–cut algorithm outperform
the two–phase methods. An interesting area for future research would be to investigate
extensions of the algorithms to multi–objective problems with more than two objectives.

23

Using a generalization of the local nadir points to higher dimensions and the LP based
fathoming approaches, both the explicit and implicit lower bound based algorithms could be
extended to three or more criteria. Another fruitful area could be to extend the reduction
and preprocessing techniques developed for single objective combinatorial optimization to the
multi-objective case. Last, a computational study with problems having a totally unimodular
constraint matrix is interesting as feasible solutions can be “harvested” when solving the
bi–objective LPs arising in the branching nodes.

Acknowledgments

The authors would like to thank Professor Kim Allan Andersen for insightful comments
and literature suggestions. This work was partially supported by a grant from Købmand
Ferdinand Sallings Mindefond.

References

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33(1):
42 – 54, 2005. doi:10.1016/j.orl.2004.04.002 .

Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Management Science, 25(1):73–78,
1979. doi:10.1287/mnsc.25.1.73 .

J. F. Bérubé, M. Gendreau, and J. Y. Potvin. An exact ε-constraint method for bi-objective combina-
torial optimization problems: Application to the traveling salesman problem with profits. European
Journal of Operational Research, 194(1):39–50, 2009. doi:10.1016/j.ejor.2007.12.014 .

L. G. Chalmet, L. Lemonidis, and D. J. Elzinga. An algorithm for the bi-criterion integer pro-
gramming problem. European Journal of Operational Research, 25(2):292 – 300, 1986. doi:
10.1016/0377-2217(86)90093-7 .

J. L. Cohon. Multiobjective Programming and Planning. Academic Presse, London, 1978.

R. B. Dial. A model and algorithm for multicriteria route-mode choice. Transportation Research Part
B: Methodological, 13(4):311–316, 1979. doi:10.1016/0191-2615(79)90024-9 .

M. Ehrgott. Multicriteria Optimization. Springer Berlin, Heidelberg, 2nd edition, 2005.

M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization problems.
Computers & Operations Research, 34(9):2674–2694, 2007. doi:10.1016/j.cor.2005.10.003 .

E. Fernandez and J. Puerto. Multiobjective solution of the uncapacitated plant location problem.
European Journal of Operational Research, 145(3):509–529, 2003. doi:10.1016/S0377-2217(02)
00223-0 .

K. Florios, G. Mavrotas, and D. Diakoulaki. Solving multiobjective, multiconstraint knapsack problems
using mathematical programming and evolutionary algorithms. European Journal of Operational
Research, 203(1):14 – 21, 2010. doi:https://doi.org/ .

W. R. Franklin. PNPOLY - point inclusion in polygon test. Webpage, 2006. URL http://www.ecse.

rpi.edu/~wrf/Research/Short_Notes/pnpoly.html. Source code.

S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. A branch and cut algorithm for bi–objective
combinatorial optimization problems. GitHub, 2016a. URL https://github.com/SuneGadegaard/

BiObjectiveBranchAndCut. source code (v1.0.0).

24

http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1287/mnsc.25.1.73
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1016/0377-2217(86)90093-7
http://dx.doi.org/10.1016/0377-2217(86)90093-7
http://dx.doi.org/10.1016/0191-2615(79)90024-9
http://dx.doi.org/10.1016/j.cor.2005.10.003
http://dx.doi.org/10.1016/S0377-2217(02)00223-0
http://dx.doi.org/10.1016/S0377-2217(02)00223-0
http://dx.doi.org/https://doi.org/
http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
https://github.com/SuneGadegaard/BiObjectiveBranchAndCut
https://github.com/SuneGadegaard/BiObjectiveBranchAndCut

S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. An instance generator for the capacitated facility
location problem. GitHub, 2016b. URL https://github.com/SuneGadegaard/SSCFLPgenerator.
Source code (v1.0.0).

S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. A general two–phase method for bi–objective combina-
torial optimization. GitHub, 2016c. URL https://github.com/SuneGadegaard/TwoPhaseMethod.
Source code (v1.0.0).

S.L. Gadegaard, A. Klose, and L.R. Nielsen. An improved cut-and-solve algorithm for the single-source
capacitated facility location problem. EURO Journal on Computational Optimization, 6(1):1–27,
Mar 2018. ISSN 2192-4414. doi:10.1007/s13675-017-0084-4 .

N. Jozefowiez, G. Laporte, and F. Semet. A generic branch-and-cut algorithm for multiobjective
optimization problems: Application to the multilabel traveling salesman problem. INFORMS
Journal on Computing, 24(4):554–564, 2012. doi:10.1287/ijoc.1110.0476 .

G. Kiziltan and E. Yucaoğlu. An algorithm for multiobjective zero-one linear programming. Manage-
ment Science, 29(12):1444–1453, December 1983. doi:10.1287/mnsc.29.12.1444 .

D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming problem.
European Journal of Operational Research, 9(4):378 – 385, 1982. doi:10.1016/0377-2217(82)90182-5
.

S. Martello and P. Toth. Knapsack problems: algorithms and computer implementations. John Wiley
& Sons, New York, 1990.

R. K. Martin. Large scale linear and integer optimization: A unified approach. Kluwer Academic
Publishers, The Netherlands, 1999.

G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective
linear programming. European Journal of Operational Research, 107(3):530–541, 1998. doi:
10.1016/S0377-2217(97)00077-5 .

G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm
for mixed 0-1 multiple objective linear programming. Applied Mathematics and Computation, 171
(1):53–71, 2005. doi:10.1016/j.amc.2005.01.038 .

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
New York, 1988.

S. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming. http://www.

optimization-online.org/DB_HTML/2014/07/4444.html, jan 2015. Preprint.

C. R. Pedersen, L. R. Nielsen, and K. A. Andersen. The bicriterion multimodal assignment problem:
Introduction, analysis, and experimental results. INFORMS Journal on Computing, 20(3):400–411,
2008. doi:10.1287/ijoc.1070.0253 .

A. Przybylski and X. Gandibleux. Multi-objective branch and bound. European Journal of Operational
Research, 260(3):856 – 872, 2017. doi:10.1016/j.ejor.2017.01.032 .

A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for the bi-objective assignment
problem. European Journal of Operational Research, 185(2):509 – 533, 2008. doi:10.1016/j.ejor.
2006.12.054 .

A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-objective integer pro-
gramming and its application to the assignment problem with three objectives. Discrete Optimization,
7(3):149 – 165, 2010. doi:10.1016/j.disopt.2010.03.005 .

25

https://github.com/SuneGadegaard/SSCFLPgenerator
https://github.com/SuneGadegaard/TwoPhaseMethod
http://dx.doi.org/10.1007/s13675-017-0084-4
http://dx.doi.org/10.1287/ijoc.1110.0476
http://dx.doi.org/10.1287/mnsc.29.12.1444
http://dx.doi.org/10.1016/0377-2217(82)90182-5
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/j.amc.2005.01.038
http://www.optimization-online.org/DB_HTML/2014/07/4444.html
http://www.optimization-online.org/DB_HTML/2014/07/4444.html
http://dx.doi.org/10.1287/ijoc.1070.0253
http://dx.doi.org/10.1016/j.ejor.2017.01.032
http://dx.doi.org/10.1016/j.ejor.2006.12.054
http://dx.doi.org/10.1016/j.ejor.2006.12.054
http://dx.doi.org/10.1016/j.disopt.2010.03.005

R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the optimal biobjective spanning
tree. European Journal of Operational Research, 111(3):617 – 628, 1998. doi:10.1016/S0377-2217(97)
00391-3 .

S. Schirra. How reliable are practical point-in-polygon strategies? In D. Halperin and K. Mehlhorn,
editors, Algorithms - ESA 2008, volume 5193 of Lecture Notes in Computer Science, pages 744–755.
Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-87744-8 62 .

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the
biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–484, 2008. doi:
10.1287/ijoc.1070.0260 .

T. Stidsen, K. A. Andersen, and B. Dammann. A branch and bound algorithm for a class of biobjective
mixed integer programs. Management Science, 60(4):1009–1032, 2014. doi:10.1287/mnsc.2013.1802
.

E. L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-bound
procedure. In João Cĺımaco, editor, Multicriteria Analysis, pages 269–278. Springer Berlin Heidelberg,
1997. doi:10.1007/978-3-642-60667-0 26 .

T Vincent. Caractérisation des solutions efficaces et algorithmes d’énumération exacts pour
l’optimisation multiobjectif en variables mixtes binaires. PhD thesis, LINA, Université de Nantes,
France, 2013. URL http://www.theses.fr/2013NANT2065.

T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective branch and
bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case.
Computers & Operations Research, 40(1):498–509, 2013. doi:10.1016/j.cor.2012.08.003 .

M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu. Two-phases method and branch and bound
procedures to solve the bi–objective knapsack problem. Journal of Global Optimization, 12(2):
139–155, 1998. doi:10.1023/A:1008258310679 .

A The single source capacitated facility location problem

We have chosen to test our algorithm on the bi–objective single source capacitated facility location
problem (BO–SSCFLP) which can be described as follows: given is a set I of potential facility sites
and a set J of demand points. Each facility has a fixed opening cost of fi > 0 and a capacity si > 0
while each demand point has a fixed and known demand of dj > 0. Each demand point j must be
serviced by exactly one open facility i, resulting in a cost of cij . It is assumed that all parameters are
non–negative integers. The BO–SSCFLP is then the problem of minimizing the total opening cost
and the total servicing cost. Given binary variables yi equaling one only if facility i is open and binary
variable xij equaling one if and only if customer j is serviced by facility i, the bi–objective SSCFLP
can be stated as the BOCO problem

min

∑
i∈I

∑
j∈J

cijxij ,
∑
i∈I

fiyi

s.t.:

∑
i∈I

xij = 1, ∀j ∈ J ,∑
j∈J

djxij ≤ siyi, ∀i ∈ I,

xij , yi ∈ {0, 1}, ∀j ∈ J , i ∈ I.

26

http://dx.doi.org/10.1016/S0377-2217(97)00391-3
http://dx.doi.org/10.1016/S0377-2217(97)00391-3
http://dx.doi.org/10.1007/978-3-540-87744-8_62
http://dx.doi.org/10.1287/ijoc.1070.0260
http://dx.doi.org/10.1287/ijoc.1070.0260
http://dx.doi.org/10.1287/mnsc.2013.1802
http://dx.doi.org/10.1007/978-3-642-60667-0_26
http://www.theses.fr/2013NANT2065
http://dx.doi.org/10.1016/j.cor.2012.08.003
http://dx.doi.org/10.1023/A:1008258310679

The SSCFLP matches the assumption of both objectives having integral values for all feasible
solutions. In addition, the bi–objective SSCFLP is a very natural BOCO problem as the objectives
are antagonistic by nature: opening an extra facility results in an increase in fixed opening costs and
a decrease in servicing costs.

27

	Introduction
	Preliminaries
	Bi–objective bound set based branch–and–cut
	Step 2 - Adding cutting planes
	Step 3 - Obtaining a lower bound set
	Step 4 - Update the upper bound set
	Step 5 - Bound fathoming
	Bound fathoming using an explicit lower bound set and LP
	Bound fathoming using an explicit lower bound set and a point–in–polygon algorithm
	Bound fathoming using an implicit lower bound set and LP

	Step 6 - Performing branching

	Computational results
	Implementation details and test instances
	Questions (i)-(iii) - Comparison of implementations
	Question (iv) - Is adding cuts worth the effort?
	Question (v) - Effect of using Proposition 3
	Question (vi) - Comparing against the two–phase method

	Conclusions
	The single source capacitated facility location problem

