
An improved cut–and–solve algorithm for the single–

source capacitated facility location problem∗

Sune Lauth Gadegaard† and Lars Relund Nielsen
Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4,

DK-8210 Aarhus V, Denmark.

Andreas Klose
Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Den-

mark.

January, 2017

Abstract: In this paper we present an improved cut–and–solve algorithm for the single–
source capacitated facility location problem. The algorithm consists of three phases. The
first phase strengthens the integer program by a cutting plane algorithm to obtain a tight
lower bound. The second phase uses a two level local branching heuristic to find an upper
bound and, if optimality has not yet been established, the third phase uses the cut-and-
solve framework to close the optimality gap. Extensive computational results are reported,
showing that the proposed algorithm runs 10 to 80 times faster on average compared to
state–of–the–art problem specific algorithms.
Keywords: Facility location; capacitated facility location; single–sourcing; cutting planes;
local branching; cut–and–solve.

1 Introduction

The single–source capacitated facility location problem (SSCFLP) is the problem of opening
a set of facilities and assigning each customer to exactly one open facility while respecting
the capacity of each facility. An optimal solution to the SSCFLP is an allocation which
minimizes fixed opening and allocation costs. The difference between the SSCFLP and the
more widely studied capacitated facility location problem (CFLP) is that each customer
must be serviced by only one facility. The SSCFLP is a significant problem in the area
of location science, as it exhibits many of the challenging aspects and features of general
location problems. Furthermore, the SSCFLP often arises as a subproblem in more complex

∗Preprint of S.L. Gadegaard, A. Klose and L.R. Nielsen, An improved cut–and–solve algorithm for the
single–source capacitated facility location problem in EURO Journal on Computational Optimization 2017,
doi:10.1007/s13675-017-0084-4
†Corresponding author, email: sgadegaard@econ.au.dk.

1

http://dx.doi.org/10.1007/s13675-017-0084-4
sgadegaard@econ.au.dk

problems such as hierarchical location problems with capacities and capacitated facility
problems with piecewise linear costs.

It is well known that the SSCFLP can be formulated as an integer linear program (ILP)
with a set of demand constraints and a set of capacity constraints. Since the SSCFLP is a
strongly NP-hard problem (the SSCFLP polynomially reduces to the node cover problem,
which was one of the original 21 NP–complete problems listed in Karp (1972)), most
research has been focused on heuristic solution approaches.

Since the linear programming (LP) lower bound of the SSCFLP stated above is known
to be weak, most of the existing literature focuses on a Lagrangean relaxation of one
or more sets of the constraints. These Lagrangean based heuristics primarily differ in
the way constraints are relaxed and in the way a primal solution is obtained from the
Lagrangean subproblem. Klincewicz and Luss (1986) relax the capacity constraints in a
Lagrangean manner where the Lagrangean subproblem becomes an uncapacitated facil-
ity location problem. A heuristic primal solution is obtained by an add heuristic and a
refinement heuristic that improves primal feasible solutions to the Lagrangean subproblem.
If the demand constraints are relaxed in a Lagrangean manner instead, Bitran, Chandru,
Sempolinski, and Shapiro (1981) show that the Lagrangean subproblem decomposes into
an independent knapsack problem for each facility site. This is utilized by Barceló and
Casanovas (1984), Pirkul (1987), Sridharan (1993), and Chen and Ting (2008). Barceló,
Fernández, and Jörnsten (1991) propose a Lagrangean decomposition approach that sepa-
rates the demand constraints from all other constraints. The Lagrangean subproblem thus
decomposes into two subproblems; one being identical to the one obtained when relaxing
the demand constraints and one being a simple semi-assignment problem. Taking a dif-
ferent approach Barceló, Hallefjord, Fernández, and Jörnsten (1990) suggest, to relax the
capacity constraints, including a total demand constraint (stating that the open facilities’
capacity needs to cover the total demand). Other types of heuristics have been developed
as well. Some of the more recent approaches count a repeated matching heuristic proposed
by Rönnqvist, Tragantalerngsak, and Holt (1999), a scatter search strategy developed by
Contreras and Dı́az (2008), and a multi–exchange heuristic presented in Ahuja, Orlin,
Pallottino, Scaparra, and Scutellà (2004).

Less research has been devoted to exact solution methods primarily due to the large
number of integer variables. Neebe and Rao (1983) reformulate the SSCFLP as a set
partitioning problem and column generation is used to solve the resulting model. Holmberg,
Rönnqvist, and Yuan (1999) relax the demand constraints in a Lagrangean manner in
order to obtain lower bounds. Upper bounds are generated using a repeated matching
heuristic. These bounds are used in a branch–and–bound algorithm to find a proven
optimal solution to the SSCFLP. A branch–and–price algorithm is developed by Dı́az and
Fernández (2002). Ceselli and Righini (2005) consider the capacitated p-median problem,
which is closely related to the SSCFLP; instead of including fixed facility costs, the number
of open facilities may not exceed a number p. They also propose a branch–and–price
algorithm based on a set–covering like formulation of the problem. The lower bound
obtained from the LP-relaxation of the reformulated problem is easily shown to be the
same as the one obtainable from the Lagrangean relaxation of the demand constraints.

2

Over the years, various methods have been successfully used to strengthen the lower
bound on general ILPs, e.g. knapsack separation using lifted cover inequalities (Balas
and Zemel (1978) and Kaparis and Letchford (2010)), weight inequalities (Weismantel
(1997)) and exact separation (Boyd (1993)). Avella, Boccia, and Salerno (2011) proposed a
reformulation of the SSCFLP based on dicut inequalities where exact knapsack separation is
used to strengthen the formulation. Furthermore, in Yang, Chu, and Chen (2012) a cutting
plane algorithm based on exact knapsack separation is used to strengthen the formulation of
the SSCFLP and a cut–and–solve framework is used to solve the strengthened formulation.

We propose an improved cut-and-solve algorithm running in three phases and signifi-
cantly faster on known test beds than the best solution methods currently known for this
problem. The four main contributions of this paper are:

1. We characterize the facets of the knapsack structures arising from the capacity
constraints and exploit the result when strengthening the lower bound of the problem.

2. We propose a new simple local branching heuristic that takes advantage of the two
decision levels in the SSCFLP.

3. We suggest a straightforward way of choosing piercing cuts and a number of speed-up
techniques for the cut–and–solve algorithm that significantly improve the performance
of this framework.

4. We carefully combine the three components above in a three–phased algorithm and
compare it to state–of–the–art algorithms.

The paper is organized as follows: Section 2 gives a mathematical programming formu-
lation of the SSCFLP. Section 3 describes the three phases of the algorithm, and Section
4 reports extensive computational results comparing the algorithm to commercial as well
as specialized algorithms. Finally, Section 5 gives conclusions and directions for further
research.

2 Problem formulation

Let I, |I| = n, be a set of potential facility sites and J , |J | = m, be a set of customers.
Each facility, i ∈ I, has a fixed capacity, si > 0, and each customer has a fixed and known
demand, dj > 0. Opening a facility i results in a fixed cost fi ≥ 0 and allocating a customer
j to a facility i involves a cost of cij ≥ 0. Let yi be a binary variable equaling one only if a
facility is opened at site i and similarly let xij be a binary variable that equals one only if
customer j is allocated to facility i. The SSCFLP can then be stated as the following ILP

3

problem:

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (O)

st.:
∑
i∈I

xij = 1 ∀j ∈ J , (D)∑
j∈J

djxij ≤ siyi ∀i ∈ I, (C)∑
i∈I

siyi ≥ D, (T)

0 ≤ xij, yi ≤ 1 ∀i ∈ I, j ∈ J , (N)

yi, xij ∈ {0, 1} ∀i ∈ I, j ∈ J . (I)

The objective function (O) minimizes the total cost. Constraints (D), referred to as the
demand constraints, make sure that each customer is allocated to exactly one facility. The
capacity constraints (C) ensure that the capacities of the facilities are respected. In the total
demand constraint (T), D represents the total demand. This constraint is in fact redundant,
but it will be used later to tighten the LP relaxation of the problem. Constraints (N) state
that all variables should be non-negative and less or equal to one. Finally, constraints (I)
state that all variables should be binary. It will be assumed throughout the paper that all
parameters are integral.

3 Solution methodology

For solving the SSCFLP to optimality, we propose an algorithm running in three phases
(see Algorithm 1). The first phase consists of a cutting plane algorithm that separates
fractional solutions from the knapsack polytopes defined by the capacity constraints (C)
and the total demand constraint (T). In the second phase we implement a local branching
heuristic based on a two level local branching strategy that exploits the two levels of
decisions (location and allocation) in order to produce an initial near optimal solution.
And finally, a third phase based on the cut–and–solve framework is used to solve the
problem to proven optimality.

Following the notation used in Cornuejols, Sridharan, and Thizy (1991) we let P (R)
denote the set of solutions satisfying a set of constraints R and conv

(
R
)

:= conv
(
P (R)

)
denotes the convex hull of these solutions. For simplicity, P (RS) := P (R) ∩ P (S) and
conv

(
RS
)

:= conv
(
P (RS)

)
. Furthermore, by P(R) we define the optimization problem

P(R) : min{cx+ fy : (x, y) ∈ P (R)}.

Using this notation, the SSCFLP can be written as PIP := P(DCTI) and its (weak)
linear relaxation PLP := P(DCTN). Furthermore, the conventional notation xi =
(xi1, xi2, . . . , xim) is used. Solutions corresponding to a lower bound on the optimal solution
will be denoted (x, y) and solutions corresponding to upper bounds will be denoted (x, y).

4

Phase 1:

1.1: Apply the cutting plane algorithm described in Algorithm 2.

1.2: If the solution returned is integral, stop as it is an optimal solution. Else go
to Phase 2.

Phase 2:

2.1: Apply the local branching heuristic described in Section 3.2.

2.2: If the solution value of the returned solution equals the lower bound from
Phase 1, stop as the solution is optimal. Else go to Phase 3.

Phase 3:

3.1: Apply the cut–and–solve algorithm described in Algorithm 4 which returns
an optimal solution or a proof of infeasibility.

Algorithm 1: Summary of the complete three–phase algorithm

3.1 Phase 1 – Cutting planes

It is well known that the lower bound obtained by solving PLP is usually very weak.
Therefore, implied variable upper bounds

xij − yi ≤ 0, ∀i ∈ I, j ∈ J ,

are often added to PLP. The resulting LP is, however, very large and consequently hard to
solve, which is why we add these constraints on the fly as needed.

In order to further strengthen the LP bound, we ideally want to solve

min{cx+ fy : (x, y) ∈ P (D) ∩ conv
(
CTI

)
}.

One particular way to do this is to relax the demand constraints (D) in a Lagrangean
manner and to solve the resulting Lagrangean dual. From Geoffrion (1974) we know that
solving the Lagrangean dual implicitly corresponds to building the convex hull of solutions
to the kept constraints. In this paper, however, we want to approximate the convex hull
of integer solutions to the capacity constraints (C) and the total demand constraint (T)
by cutting planes. By doing so, we avoid separating from the entire polytope defined by
conv

(
CTI

)
and instead we need only consider one constraint at a time.

The following observations will be used to further reduce the effort in separating
fractional points from conv

(
CTI

)
. Let

X = {x ∈ {0, 1}m : aTx ≤ a0},
Xy = {(x, y) ∈ {0, 1}m+1 : aTx ≤ a0y},

5

where ak > 0 for k = 0, 1, . . . ,m. Moreover, assume that aj ≤ a0 for all j = 1, . . . ,m as if
this was not the case, the corresponding variables could be removed. Now observe that if
πTx ≤ π0 is a valid inequality for X , then πTx ≤ π0y is valid for Xy. Furthermore, it is
easily seen that if πTx ≤ π0 is facet defining for conv

(
X
)
, then πTx ≤ π0y will be facet

defining for conv
(
Xy
)
, implying that strong cutting planes derived from conv

(
X
)

will be
strong for conv

(
Xy
)
. In fact, Theorem 1 states the relation between facets of conv

(
X
)

and
conv

(
Xy
)
.

Theorem 1. All facet defining inequalities of conv
(
Xy
)
, different from the trivial facets

−xj ≤ 0 and y ≤ 1, are of the form πTx ≤ πyy, where π ≥ 0 and πy > 0 and πTx ≤ πy is
facet defining for conv

(
X
)
.

Proof. First of all, as aj > 0 for j ∈ J ∪ {0}, X is an independence system. Hence, all
valid inequalities of X , except xj ≥ 0, are of the form πTx ≤ π0 with π0 > 0 and πj ≥ 0
for all j ∈ J (cf. (Nemhauser and Wolsey, 1988, p. 237)). Furthermore, substituting
y′ = 1− y results in Xy′ = {(x, y′) ∈ {0, 1}m+1 : aTx+ a0y

′ ≤ a0} being an independence
system as well. Therefore all valid inequalities of Xy′ except xj ≥ 0 and y′ ≥ 0 are
of the form αTx + αyy

′ ≤ α′0 where αj ≥ 0 for all j = 1, . . . ,m, αy ≥ 0 and α′0 > 0.
Hence, all valid inequalities for conv

(
Xy
)

different from xj ≥ 0 and y ≤ 1 are of the form
αTx − αyy ≤ α′0 − αy =: α0, with αj, αy ≥ 0 for all j ∈ J . In addition α0 ≥ 0 since
(x, y) = (0, 0) is feasible.

Secondly we have that πTx ≤ π0 is facet–defining for conv
(
X
)

if and only if πTx ≤ π0y
is facet-defining for conv

(
Xy
)
. To see this, assume that πTx ≤ π0y is facet–defining for

conv
(
Xy
)

and let (x, y)l, l = 1, . . . ,m + 1 be m + 1 affinely independent points from the
facet

{(x, y) ∈ conv
(
Xy
)

: πx = π0y}.

From Proposition 6.6 on page 108 of Nemhauser and Wolsey (1988) these affinely m+ 1
independent points can be assumed to be from Xy. One of the m+ 1 independent points
on the facet is the point (x, y) = (0, 0). Let this point be (x, y)0. For all other points we
have yl = 1. Accordingly the points xl (l = 1, . . . ,m) give m affinely independent points
on the face {x ∈ conv

(
X
)

: πx = π0}. Hence, πx ≤ π0 is facet–defining for conv
(
X
)
.

Conversely, if πx ≤ π0 is facet–defining for conv
(
X
)
, there exists m affinely independent

points xl ∈ conv
(
X
)
, l = 1, . . . ,m such that πTxl = π. The m + 1 points defined by

(x, y)0 = (0, 0) and (x, y)l = (xl, 1) are then affinely independent points all on the face
{(x, y) ∈ conv

(
Xy
)

: πTx = π0y}. Hence πtx ≤ π0y is facet–defining for conv
(
Xy
)
. From

this argument it also naturally follows that if πTx ≤ π0y is facet–defining for conv
(
Xy
)

and different from −xj ≤ 0 and y ≤ 1, then πT ≥ 0 and π0 > 0.
The only thing that remains to be shown is that if αTx − αyy ≤ α0 is facet–defining

for conv
(
Xy
)

and different from −xj ≤ 0 and y ≤ 1 then it is dominated by or equivalent
to αTx ≤ (αy + α0)y. Suppose α0 = 0, then the result follows immediately. If on the other
hand α0 > 0 then we have that for y = 1 the two inequalities are identical, but for y = 0
the first inequality gives αTx ≤ α0 which can be strengthened to αTx ≤ α0y = 0.

6

Step 0: Set Z0 = −∞ and iteration counter k = 0.

Step 1: Set k = k + 1. Solve the program PLP and let (x, y) be an optimal solution and
Zk the solution value.

Step 2: If (x, y) is integral, return (x, y) as it is optimal.

Step 3: If Zk − Zk−1 < ε, return (x, y).

Step 4: For each i = 1 to n do the following

Step 4.1 Add all violated implied bounds of the form xij − yi ≤ 0 to PLP.
Step 4.2 Separate xi from conv

(
{xi ∈ {0, 1}m :

∑m
j=1 djxij ≤ si}

)
using a General

Lifted Cover Inequality or a Fenchel inequality (see Section 3.1.1). If the
resulting inequality πxi ≤ π0 is violated by xi, add the translated cutting
plane πxi ≤ π0yi.

Step 5: Separate y from conv
(
{y ∈ {0, 1}|I| :

∑
i∈I siyi ≥

∑
j∈J dj}

)
using a General

Lifted Cover Inequality or a Fenchel inequality (see Section 3.1.1). If the resulting
inequality πy ≤ π0 is violated by y, add the cutting plane πy ≤ π0.

Step 6: If k < K go to Step 1, else return (x, y).

Algorithm 2: Summary of the cutting plane algorithm. The parameter ε > 0 is a suitable
number used to check if the improvement in the lower bound is below a predefined limit.
The parameter K defines the maximum number of iterations of the cutting plane algorithm.

Concluding, any facet–defining inequality of conv
(
Xy
)
, different from the facets xj ≥ 0

and y ≤ 1 are of the form πTx ≤ πyy, where π ≥ 0, πy > 0, and πTx ≤ πy is facet–defining
for conv

(
X
)
.

Theorem 1 states that any facet–defining inequality for conv
(
Xy
)

can be derived by
generating facet–defining inequalities for conv

(
X
)

and then translating these inequalities.
Therefore we will omit the location variable when generating cutting planes from the
capacity constraints (C) and then translate the resulting inequality by multiplying the
right–hand side by y. The cutting plane algorithm developed in this paper is described in
Algorithm 2. Two types of cutting planes are used, namely lifted cover inequalities and
Fenchel cutting planes. All cutting planes are described for the knapsack polytope defined
by the capacity constraints, but it should be obvious that they apply to the total demand
constraint (T) as well (simply complement location variables by zi = 1−yi and an ordinary
knapsack constraint is obtained).

Regarding the generation of violated lifted cover inequalities, we use a slight modification
of the procedure described by Gu, Nemhauser, and Savelsbergh (1998). The procedure

7

sorts the variables according to non–increasing value of the LP–value. An initial minimal
cover is generated by picking the variables with largest LP–value until a cover is reached.
The variables with LP–value one define an initial cover inequality, and the remaining
variables are lifted to reach a valid, strong cutting plane.

As Fenchel cutting planes are less known than lifted cover inequalities, we go into more
depth with these inequalities in the next section.

3.1.1 Fenchel cutting planes

Let X ′iy = {(xi, yi) ∈ {0, 1}|J |+1 :
∑

j∈J djxij ≤ si} and projx(X ′iy) be the projection of

conv
(
X ′iy
)

on the space of the x variables. As the set of all integer solutions to projx
(
X ′iy
)

is an independence system, all non-dominated valid inequalities for projx
(
X ′iy
)

different
from −xij ≤ 0 are of the form λTxi ≤ 1 (Nemhauser and Wolsey, 1988, p.237). A Fenchel
cutting plane is in this case a cutting plane of the form λTxi ≤ 1 that cuts as deep as
possible into the relaxed polytope. Generating a Fenchel cutting plane for projx

(
X ′iy
)

can
be seen as a proof of the existence of a hyperplane, that separates a fractional solution
xi from projx

(
X ′iy
)
. Boyd (1993) states the separation problem for the knapsack polytope

projx
(
X ′iy
)

as

ν = max xTi λ

st.: xTi λ ≤ 1, ∀xi ∈ projx
(
X ′iy
)
,

0 ≤ λj ≤ 1, ∀j ∈ J .
(1)

If ν > 1, then there exists a hyperplane that separates xi from projx
(
X ′iy
)
, and this

hyperplane is given by
∑

j∈J λ
∗
jxij ≤ 1, where λ∗ is an optimal solution to (1). In fact,

Boyd (1993) proves a reduction result stating that there exists a hyperplane separating xi
from projx

(
X ′iy
)

if and only if there exists a hyperplane separating xi from

projx
(
X ′iy
)
∩
{
xi ∈ R|J | : xij = 0 ∀j ∈ J 0, xij = 1 ∀j ∈ J 1

}
,

where J 0 = {j ∈ J : xij = 0} and J 1 = {j ∈ J : xij = 1}. We can therefore exclude these
variables from the separation problem and thereby reduce the effort quite substantially.

The separation problem (1) obviously has too many constraints to be taken directly into
account. For that reason, Boccia, Sforza, Sterle, and Vasilyev (2008) propose a generic row-
generation procedure. We do, however, propose an equivalent column generation procedure
which is summarized in Algorithm 3 (Step 0–Step 8). We have chosen to implement the
method as a column generation procedure instead of a row generation procedure as the basis
matrix of the problem (2) only has the dimension of the number of variables included in
the separation problem, where the basis matrix of the equivalent row generation procedure
has the dimension of H (or the dimension of linear independent rows in H). As rows are
generated, the dimension of the basis matrix increases, and the simplex iterations become
computationally more demanding. This is avoided when solving problem (1) by column
generation. When solving the binary knapsack problems in Step 5 of Algorithm 3 one

8

Step 0: Input a capacity constraint
∑

j∈J djxij ≤ si and a fractional solution xi.

Step 1: Let J 1, J 0 and J f be the set of indices where xij = 1, xij = 0, and 0 < xij < 1,
respectively. Define the residual capacity, s, as s = si −

∑
j∈J 1 dj. Set the

iteration counter l = 0 and initialize the set of solutions to the knapsack problem
H = {ej}j∈J f , where ej is the j’th column vector of the |J f | × |J f | identity
matrix.

Step 2: Set up the linear column generation master problem

min
∑
h∈H

γh

st.:
∑
h∈H

xhi γh ≥ xij, ∀j ∈ J f

γh ≥ 0

(2)

where H is a set of solutions satisfying the knapsack constraint
∑

j∈J f djxij ≤ s
generated in step 5. If l = 0, then H = ∅.

Step 3: Solve the linear column generation master problem and denote an optimal
primal–dual pair (γl, λl).

Step 4: If
∑

j∈J f xijλ
l
j ≤ 1, no violated cutting plane exists. Therefore stop.

Step 5: Solve the binary knapsack problem

Zkp = max{
∑
j∈J f

λljxj :
∑
j∈J f

djxj ≤ s, xj ∈ {0, 1}}

and denote an optimal solution xl.

Step 6: If Zkp ≤ 1 go to step 7. Otherwise, the inequality
∑

j∈J f λ
l
jxij ≤ 1 is not valid

for
projx

(
X ′iy
)
∩ {xi ∈ R|J | : xij = 1, ∀j ∈ J1, and xij = 0, ∀j ∈ J 0}

Therefore add the solution xl to H, set l := l + 1 and go to step 2.

Step 7: Down–lift all variables in J 1 and up–lift all variables in J 0.

Step 8: Output the violated cutting plane πxi ≤ π0yi.

Algorithm 3: Column generation procedure for separating a Fenchel inequality for capacity
constraint i in Step 4.2 of Algorithm 2.

9

should note, that the cost coefficients λk are fractional, whereby numerical problems can
arise. In order to overcome this, we simply multiply the coefficients with a large scalar
and then round the coefficients to the nearest integer, which allows to use the highly
efficient COMBO algorithm (Martello, Pisinger, and Toth, 1999) for solving the binary
knapsack problems. When it is no longer possible to find violated inequalities this way, we
submit the generated cutting plane to the rounding procedure proposed by Kaparis and
Letchford (2010) and check the result for validity. If this is the case, the cutting plane is
returned, otherwise a weakened inequality is returned. The cutting plane separated by the
column generation procedure described in Algorithm 3 is, after lifting the fixed variables,
of the form πTx ≤ π0. Again we translate the resulting cutting plane by multiplying the
right–hand side by yi and obtain πTx ≤ π0yi in Step 8.

3.2 Phase 2 – Local branching

Local branching (LB) is in principle a technique for finding exact solutions to mixed integer
programs (MIP). It can, however, easily be converted into a heuristic, e.g. by setting a
limit on the time used for solving a given instance or a limit on the number of improving
solutions. The technique uses a general purpose MIP–solver to solve restricted subproblems
of the original problem instance defined by linear local branching constraints, which in
turn are derived from a feasible solution. For a detailed introduction to LB, the reader is
referred to Fischetti and Lodi (2003) and Fischetti, Polo, and Scantamburlo (2004). The
two level LB heuristic developed in this paper is summarized as follows; First, an initial
feasible solution is found by exploiting the LP-solution, second, the locational decisions are
refined by local branching, and finally the allocation of customers is determined, likewise
by local branching.

3.2.1 Initial feasible solution

We utilize the information available from the cutting plane algorithm to find an initial
solution. Let (x, y) be the fractional solution from the last iteration of the cutting plane
algorithm (Algorithm 2). Assuming that it is more likely that a facility i is open in an
optimal solution if yi > 0 than when yi = 0, we add a constraint of the form∑

i:yi=0

yi ≤ h1,

for a small integer value of h1. This way at most h1 of the facilities not used in the
fractional solution can be used in a heuristic solution to the SSCFLP. The general purpose
MIP–solver is then used to solve the resulting problem. The MIP-solver stops if a heuristic
stop criterion is met (see Section 3.2.4). The solution returned is denoted (x0, y0).

10

3.2.2 Refining the locational decision

Next, based on the initial solution (x0, y0), we add a local branching constraint for the
location variables of the form∑

i∈I

|y0
i − yi| ≤ h2 ⇔

∑
i:y0i=0

yi +
∑
i:y0i=1

(1− yi) ≤ h2,

where h2 is a small integer. The problem is now solved with the additional requirement
that only improving solutions are accepted. Again, a heuristic stop criterion is used to end
the optimization (see Section 3.2.4). The resulting solution is denoted (x1, y1). After this
refinement of the locational decision, all location variables where y1

i = 0 are fixed to zero.

3.2.3 Refining the allocation decision

Having almost fixed the location variables (it is still possible to close open facilities), the
allocation variables are considered next. Summing up the assignment constraints over
j ∈ J any feasible solution satisfies ∑

j∈J

∑
i∈I

xij = |J |.

We can therefore define a k-opt neighborhood around the allocation corresponding to x1

by means of a local branching constraint:

N(x1, k) = {x ∈ {0, 1}n×m :
∑

(i,j):x1ij=1

xij ≥ |J | − k}, (3)

for a given positive integer k. Adding this constraint will significantly reduce the solution
space, but the problem can still be too hard to solve to optimality. Therefore the search is
stopped prematurely if a heuristic stop criterion is met. If an improving solution is found,
say (x2, y2), the constraint (3) is removed and a reversed local branching constraint of the
form ∑

(i,j):x1ij=1

xij ≤ |J | − k − 1,

is added to the problem. This constraint removes the neighbourhood N(x1, k) from further
consideration. The procedure is repeated and the feasible set in iteration n is given by

P (DCTI,N(xn, k)) \ P (N(x1, k), . . . , N(xn−1, k))

If an iteration does not lead to any improvement, the best solution found so far is returned.

3.2.4 Heuristic stop criteria

Although the local branching constraints significantly reduce the size of the problem, solving
every subproblem to optimality is usually too time consuming. Instead we set a limit on

11

the time and an upper bound for the number of improving solutions for the MIP-solver.
Ideally, these limits should depend on the problem data, but fixed limits seem to work well
in practice.

We do, however, distinguish between local branching on the location variables and
on the allocation variables. As the neighborhoods searched when refining the location
decisions are much larger than those examined for the allocation variables, we set a time
limit of ty seconds for those subproblems and a time limit of 0 < tx < ty for the allocation
refinement.

When refining the locational decisions, we do not impose any upper bound on the
number of improved solutions, because the MIP-solver usually finds a large number of
improving solutions for the locational decisions in short computation times. For the
allocation variables, we set a limit of 1 < kx < ∞ improving solutions, because in most
cases only a few improving solutions exist in the much smaller neighborhoods of the current
allocation.

3.3 Phase 3 – Cut–and–solve

The cut–and–solve framework is essentially a branch–and–bound algorithm which branches
on a set of variables instead of branching on single fractional variables. At each level in
the search tree (see Figure 1) there are only two nodes. The left node is associated with
the linear constraint that the sum of the variables in a set Ω is less than or equal to an
integer γ. This subproblem is called the sparse problem (SP). The right node is associated
with the sum being larger than or equal to γ + 1 and this problem is called the dense
problem (DP). The constraint associated with the DP is called a piercing cut and these
cuts are accumulated. An obvious choice for binary programs is to set the parameter γ
equal to zero, as this completely fixes the variables in the set Ω to zero in the SP. Doing
this will often allow the use of a general purpose MIP–solver to solve the sparse problems.
The optimal solution to the SP provides an upper bound on the optimal solution value
to SSCFLP (as far as the SP shows a feasible solution). If this upper bound improves
the incumbent, it is updated. Concurrently, a lower bound, Z, for DP is obtained from a
relaxation of the DP. If the lower bound for the DP is not smaller than the value of the
incumbent, we know that no improving solutions can exist in the yet unexplored solution
space defined by the DP, and the incumbent is proven optimal. This procedure is repeated
until an optimal solution is found (using the convention that a lower bound on an infeasible
DP is equal to infinity, this procedure will return an optimal solution). For a more detailed
introduction to the cut–and–solve framework, the reader is referred to Climer and Zhang
(2006).

3.3.1 Relaxation and piercing cuts

The way the DP is relaxed and piercing cuts are derived is of utmost importance for the
efficiency of the cut–and–solve approach. First of all, we want to use a relaxation that
gives strong lower bounds. The lower bound should also increase rapidly as piercing cuts

12

Step 0 Obtain a lower bound of the dense
problem.

Step 1 Select a piercing cut.

Step 2 Find optimal solution in space re-
moved by the piercing cut (sparse
problem).
Update the incumbent if necessary.

Step 3 If lower bound ≥ incumbent, re-
turn the incumbent.

Step 4 Add piercing cut to dense prob-
lem and go to Step 0.

SP1

DP0

SP2

DP1

SP3

DP2

DP3

Algorithm 4: Generic cut–and–solve al-
gorithm.

Figure 1: Cut–and–solve search tree.

are added. Climer and Zhang (2006) suggest to use the linear programming relaxation and
to use reduced costs to define the piercing cuts. The problem is, however, that the linear
programming relaxation of the SSCFLP is often highly degenerate and adding piercing cuts
does not improve the lower bound fast enough to obtain an efficient algorithm. We therefore
adopt the partial integrality strategy proposed by Yang et al. (2012). This strategy means
that we preserve the integrality of the location variables and relax the allocation variables
to be continuous variables, leading to a CFLP as a relaxation of the SSCFLP. That is, the
relaxation keeps the 0–1 requirement on the yi–variables but relaxes the xij–variables to be
continuous, effectively allowing a customer’s demand to be split between two or more open
facilities. Defining the set Ω can therefore be done in a straightforward way, by letting

Ω = {i ∈ I : yi = 0}, (4)

where y is an integer solution to the location variables in the DP and the piercing cut
becomes

∑
i∈Ω yi ≥ 1. This definition is mainly motivated by the assumption that an

optimal solution to the CFLP should have a number of attributes in common with an
optimal solution to the SSCFLP. This assumption is supported by the computational
results reported in Section 4. Furthermore, choosing Ω as in (4), many variables can be
fixed in the SP as

∑
i∈Ω yi = 0 implies that xij = 0 for all i ∈ Ω and j ∈ J .

3.3.2 Termination

When proving finiteness of the cut–and–solve algorithm, Climer and Zhang (2006) assume
finiteness of the problem’s feasible region and that all SPs have at least one feasible solution.

13

The latter is, however, not necessarily true with the choice of Ω given in (4) as it might
be impossible to create a single–source solution using the set of facilities used in the
CFLP–relaxation. Termination is, however, easily proven in Proposition 1.

Lemma 1. Assume that the piercing cuts are defined by the set Ω stated in (4). Then the
algorithm terminates if the algorithms for solving the dense and the sparse problems are
guaranteed to terminate.

Proof. First of all, the set of feasible facility constellations for the CFLP version of the
SSCFLP is finite. There are |{ι ⊆ I :

∑
i∈ι siyi ≥ D}| such solutions. The piercing cut∑

i:yi=0

yi ≥ 1,

removes the current solution to the modified CFLP from further considerations (in fact
it also removes all solutions which consist of a subset of the facilities used in the CFLP
solution). As there is a finite number of solutions to the locational variables of the CFLP,
the cut–and–solve algorithm terminates if the algorithms used to solve the dense and the
sparse problems terminate.

3.3.3 Variable fixing and pruning of nodes

As the open facilities in the solution to the DP often constitute a minimal cover of the
total demand, it is usually possible to fix many of the location variables in the SP to a
value of one in the following way. If ∑

i∈(I\Ω)\{̃i}

si < D,

for some ĩ ∈ I \Ω, the location variable yĩ can be fixed to one as the total demand cannot
be covered otherwise. If all variables in I \ Ω can be fixed to one, the SP reduces to a
generalized assignment problem (GAP). Though GAP is also NP-hard, the only remaining
decisions are to decide on the allocation of customers, whereby the effort for solving the
SP is reduced.

Note that it is not necessary to find an optimal solution to the SP in each iteration.
It suffices to prove that no improving solution exists in the space of solutions to the SP.
The optimization of an SP can then be prematurely terminated if a lower bound of this
SP exceeds or equals the value of the incumbent. For the same reason, the last DP can
be stopped prematurely as soon as it can be proven that its optimal solution does not fall
below that of the incumbent.

3.3.4 Cutting planes for the SP

In order to solve the DPs and SPs efficiently, the cutting planes generated in phase one of
the algorithm are all appended to these programs. Although the cuts generated for the

14

capacity constraints are not valid for the CFLP version of the SSCFLP, they are valid
for the SSCFLP. The modified CFLP is therefore still a relaxation of the SSCFLP. The
variable fixing (4) defined by the solution to the DP may, of course, remove the part of the
solution space for which these cuts were generated. If this is the case, the cuts are only of
limited use in the SP. We thus include additional cutting planes at the root node of each
SP so that these problems can be solved efficiently. The cutting planes are generated in
the same way as in the cutting plane algorithm shown in Figure 2. The implied variable
bounds are not used as they seem to contribute little to improvements in the lower bound
at this stage. The reason for this lack of effect is simply that many location variables can
be fixed to one a priori, making the implied bounds xij ≤ yi redundant.

4 Computational experiments

In this section we test the efficiency of the three–phased algorithm. We do this by first
comparing the efficiency of the improved cut–and–solve algorithm used in Phase 3 to
CPLEX’ branch–and–cut algorithm. Secondly, we compare the three–phased algorithm
to a state–of–the–art algorithm developed by Yang et al. (2012), which to the best of our
knowledge is one of the most efficient algorithms for solving the SSCFLP. Finally, our
algorithm is tested on a set of new instances such that some insight can be obtained into
which parameter settings constitute difficult instances.

4.1 Implementation detail

Our implementation uses the linear programming solver and the branch–and–cut framework
provided by ILOG CPLEX Concert Technology 12.3 (CPLEX). All programs have been
coded in C++ and C languages and compiled using g++ and gcc, respectively, with
optimization option O2. All experiments were carried out on a Dell Vostro 3450 laptop
with 4 GB RAM and a 2.5 GHz Intel R© Core i5-2450M processor running a 32 bit version
of Ubuntu 12.04.

In CPLEX, the ParallelMode switch is set to deterministic, such that the running
times for different instances can be compared. Moreover, in Phase 1, the default settings
are used to solve the linear programming problems in each iteration of the cutting plane
algorithm. This means that CPLEX is allowed to preprocess the problem instance before
the separation routines are used. The separation routines are called for each knapsack
constraint (capacity or total demand) if the slack is below a certain threshold. A rather
large slack is permitted, as good results were obtained by including separating hyperplanes
even for capacity constraints showing large values of the slack variables at the current LP
solution.

CPLEX is also used as MIP solver for solving the restricted problems in Phase 2. As
mentioned in Section 3.2, the parameters h1, h2 and k that determine the neighborhoods’
sizes are fixed independently of the problem data and attain values of 0, 1 and 5, respectively.

In order to solve the dense problem in Phase 3, CPLEX is applied with the MIPSearch

15

switch set to “traditional branch–and–cut”. The relative and the absolute optimality gaps
are both set to zero. All other settings are at their default values. All cuts generated in
Phase 1 are appended to the dense problem. CPLEX is also used for solving the sparse
problem. Settings are as for the dense problem, except that the absolute optimality gap is
set to 0.99 due to integral data. Furthermore, we branch on the location variables before
branching on the assignment variables. As the SPs often require memory exceeding the
RAM capacity, the NodeFileInd switch is set to 3 to allow for the branching tree to be
written to a file on the disk. All cuts generated in Phase 1 are added to this program as
well, and furthermore, we use a cut callback to separate General Lifted Cover Inequalities
and Fenchel cutting planes in order to strengthen the lower bound of the sparse problem.
The cut generation is limited to the root node of the SP as experience has shown that
cutting planes are more effective at nodes in the top of the branching tree. The codes are
publicly available (see Gadegaard, Klose, and Nielsen (2016)).

4.2 Test instances

The three–phased algorithm has been evaluated on four different test beds, denoted TBi,
i = 1, . . . , 4. TB1 consists of 57 instances from Dı́az and Fernández (2002) ranging from
small instances with 10 potential facility sites and 20 customers to larger instances with
30 potential facility sites and 90 customers. These instances are publically available at
http://www-eio.upc.es/~elena/sscplp/index.html. TB2 consists of 71 instances used
by Holmberg et al. (1999) with problems consisting of 10 facility sites and 50 customers
up to problems with 30 facility sites and 200 customers. These instances are available at
http://www.mai.liu.se/~kahol/problemdata/cloc/. The third test bed, TB3, consists
of relatively large problem instances reported in Yang et al. (2012). The sizes of these
problems range from 30 facility sites and 200 customers to 80 facility sites and 400 customers.

TB4 is a new set of problem instances generated for this paper. It tries to mimic the
situation where large fixed opening costs lead to small production costs (e.g. more efficient
and therefore expensive machinery leads to lower production costs). The problem instances
have been generated so as to be similar to instances in the literature on the CFLP and
the SSCFLP (see for example Cornuejols et al. (1991), Klose and Görtz (2007) and Yang
et al. (2012)). That is, demands and capacities are uniformly distributed in the intervals
[5, 35] and [10, 160], respectively. Then the capacities are scaled so as to obtain a specific
ratio between total capacity and total demand. Fixed opening costs are generated using
the formula

fi = U(0, 90) +
√
siU(100, 110)

where U(a, b) denotes the uniform distribution of the set {a, a+ 1, . . . , b− 1, b}. Finally the
assignment costs cij are usually determined as follows: generate facility sites and customers
as uniformly distributed points in the unit square and set cij = b 10 δ(i, j) c, where δ(i, j)
denotes the Euclidean distance between facility point i and customer point j and bδ(i, j)c
denotes the largest integer no greater than δ(i, j). For the problems in TB4, however, we
will let this number denote the transportation cost of delivering customer j’s demand from

16

http://www-eio.upc.es/~elena/sscplp/index.html
http://www.mai.liu.se/~kahol/problemdata/cloc/

facility i. That is tij = b 10 δ(i, j) c. The production cost of producing dj units of the
desired product at facility i is then calculated as

pij =

⌊
2 maxi∈I fi

fi

⌉
dj

where b·e means rounded to nearest integer. This specification has been made in order to
reflect the idea that items may be produced at a lower unit price in an expensive facility.
Another implication is that low opening costs for a facility will lead to high supply costs,
thus making it harder to determine the “right” set of facilities. The assignment cost is
then set to be cij = tij + pij, that is transportation plus production costs. In order to make
the percentage optimality gap, given by

gap =
best integer− best lower bound

best lower bound
100

more “honest”, the assignment costs are scaled as follows

cij = cij −min
i∈I

cij

which will decrease the magnitude of the solution values. The assignment cost cij can
then be interpreted as the cost that should be paid if customer j is assigned to facility i
instead of the cheapest alternative. Both TB3 and TB4 are publicly available at https:

//github.com/SuneGadegaard/SSCFLPsolver.
These four test beds range from small over medium–sized to large–sized problems. In

the instances of TB2, the assignment costs dominate the fixed opening costs whereby an
optimal solution tends to include more facilities. In the rest of the test beds, the fixed
opening costs dominate the assignment costs, and the optimal solution will therefore often
open as few facilities as possible. Furthermore, a new cost structure for the allocation costs
is used in TB4. As a result, the instances in TB1-TB4 cover many different scenarios and
it should be possible to evaluate the effectiveness of our three–phase algorithm.

Table 1 simplifies the reading of succeeding tables by summarizing the column headings.

4.3 The efficiency of the cut–and–solve algorithm used in Phase 3

In order to test the efficiency of the cut–and–solve algorithm in Phase 3, we have imple-
mented a solution procedure that first uses our cutting plane algorithm (Phase 1), then
the optimal solution value of the instance is used as an upper cut-off value in CPLEX in
order to mimic a very strong and fast heuristic. Finally, CPLEX with all settings at their
default values is used to solve the instances to proven optimality.

Table 2 presents the aggregated results obtained using the combination of our cutting
plane algorithm and the branch–and–cut algorithm provided by CPLEX. The branch–
and–cut algorithm does a good job on the small test instances of TB1 and TB2. The

17

https://github.com/SuneGadegaard/SSCFLPsolver
https://github.com/SuneGadegaard/SSCFLPsolver

Table 1: Abbreviations used in the column headings of the result tables

Description of abbreviations

ID The ID of the problem under consideration.
|I| × |J | Number of facilities and customers in the instances.
r Ratio between total capacity and total demand.
%-time in phase Displays the percentage of the total cpu time used

in Phase 1, 2, and 3.
Z, Z, Z∗ Denotes the lower bound produced by the first

dense problem, best upper bound found using the
local branching heuristic and the optimal solution
value, respectively.

LBgap
Z∗−Z
Z
·100. That is, a measure of the quality of the

lower bound.

UBgap
Z−Z
Z
· 100. That is, a measure of the quality of the

heuristic.
cpu The average cpu time used by our algorithm to

solve the instances in seconds.
CPU The cpu time, in seconds, used to solve a single

instance using our algorithm.
ρ The ratio between the cpu time used by another

algorithm and the cpu time used by the algorithm
of this paper.

Table 2: Results obtained using branch–and–cut instead of cut–and–solve in Phase 3.

ρ

TB |I| × |J | r cpu min mean max

1 10× 20− 30× 90 1.27-5.17 10.04 0.29 5.28 133.20

2 10× 50− 30× 200 1.37-8.28 1.92 0.23 0.78 2.44

3 30× 200− 80× 400 1.73-7.30 401.62 1.38 136.47 1652.70

4 50× 100− 60× 300 2.00-5.00 6,442.88 0.56 10.52 140.42

18

ρ-value shows that for TB2 the branch–and—cut algorithm generally outperforms the
cut–and–solve algorithm over the entire test bed. This is due to the small size of these
problems; it is less time consuming to solve one integer program than it is to alternate
between solving a MIP corresponding to the DP and the restricted MIP defined by the SP.
The reason why the branch–and–cut algorithm performs worse relative to our algorithm in
TB1 than in TB2 is that the integrality gap between the value of the LP relaxation and
the optimal solution value to SSCFLP is larger in TB1 than in TB2. As the cutting plane
in conjunction with the partial integrality strategy provides better lower bounds than the
LP relaxation, the gap is closed faster.

When we look at TB3 and TB4, it is apparent that the size of the problems in TB3
and the tight capacity to demand ratios of TB4 make the branch–and–cut algorithm much
more time consuming than the cut–and–solve. On average, the branch–and–cut algorithm
requires about 135 times more cpu time than the cut–and–solve to solve the instances in
TB3. Even though the instances in TB4 exhibit a relatively small capacity to demand
ratio, implying larger SPs, our algorithm runs 10 times faster than the branch–and–cut
algorithm on average. Furthermore, the branch–and–cut algorithm was not able to solve a
number of instances (instances n16, n19, n20, n31, n32, n34, and n35) within a time limit
of 50,000 cpu seconds. Instances n16, n19, n20, and n35 were all solved by the improved
cut–and–solve algorithm within half that time.

We therefore conclude that for small instances with a small integrality gap the cut–and–
solve approach is comparable to CPLEX’ branch–and–cut algorithm and for large instances
the improved cut–and–solve algorithm clearly outperforms CPLEX. Furthermore, the
authors would like to note that for some of the instances in TB4 the memory requirement
for the branch–and–cut algorithm exceeded 80 GB before the time limit was exceeded; for
the cut–and–solve algorithm it never exceeded 7 GB.

4.4 Comparing the three–phased algorithm to a state–of–the–art
algorithm

This section compares our three–phased algorithm to the one proposed by Yang et al. (2012).
To distinguish the two algorithms, we denote the three–phased algorithm developed in this
paper TP-ALG and the cut–and–solve algorithm developed in Yang et al. (2012) is denoted
Y-CS. As Mr. Zhen Yang kindly provided the implementation of the algorithm proposed
in Yang et al. (2012), and as the two algorithms have been run on the same machine, the
CPU-times are truly comparable. The results obtained for TB1 to TB4 are displayed in
Table 3. It is apparent that the lower and upper bounds, Z and Z, are very close to the
optimal solution in almost all cases. Except for the first subsets of test instances in TB1,
the average deviation of the lower bound Z from the optimal solution never exceeds 0.5
percent. The larger gaps in the two first subsets of TB1 mainly stem from two instances,
namely d1 and d7, respectively. The absolute gaps in these two instances are relatively
small, but as the objective function values are not that large for these instances either, the
percentage gap becomes larger. In 4 and 22 instances of TB1 and TB2, respectively, the

19

Table 3: Aggregated results on the four test beds when TP-ALG is compared to Y-CS.

%-time in phase ρ

TB ID |I| × |J| r LBgap UBgap 1 2 3 cpu min mean max

1 d1-d6 10× 20 1, 32− 1, 54 1.15 1.53 19.0 35.6 45.4 0.90 1.72 4.68 8.53

d7-d17 15× 30 1.33− 3.15 0.51 0.72 45.0 36.7 18.3 1.47 2.00 8.64 37.94

d18-d25 20× 40 1.30− 3.93 0.13 0.46 46.6 27.3 26.1 3.31 1.65 12.27 38.25

d26-d33 20× 50 1.27− 4.06 0.16 0.55 41.9 37.9 20.2 36.58 0.67 10.20 30.21

d34-d41 30× 60 1.64− 5.17 0.16 0.28 43.2 26.8 30.0 5.42 4.00 12.46 35.17

d42-d49 30× 75 1.43− 3.01 0.03 0.13 40.9 28.7 30.3 14.29 2.02 15.25 30.08

d50-d57 30× 90 1.49− 3.47 0.08 0.20 52.8 25.7 21.5 8.88 3.26 25.94 74.42

Avg. 0.30 0.53 40.6 28.5 30.9 9.99 12.84

2 h1-h12 10× 50 1.37− 2.06 0.04 0.05 55.4 35.0 9.6 0.20 2.19 4.60 13.66

h13-h24 20× 50 2.77− 3.50 0.01 0.08 69.7 16.6 13.7 0.34 0.65 2.10 8.06

h25-h40 30× 150 3.03− 6.06 0.11 0.23 58.2 24.5 17.3 2.61 1.23 33.40 122.73

h41-h55 30× 100 1.52− 8.28 0.10 0.20 48.1 31.5 20.4 0.67 0.46 24.40 67.20

h56-h71 30× 200 1.97− 3.95 0.08 0.22 60.8 16.5 22.7 5.29 1.52 21.41 116.44

Avg. 0.07 0.17 60.6 24.7 14.7 2.01 18.64

3 y1-y5 30× 200 1.73− 1.98 0.10 0.78 20.1 40.8 39.1 51.00 4.81 28.11 48.60

y6-y10 60× 200 2.88− 3.49 0.16 0.78 8.5 8.2 83.3 1261.82 0.87 29.54 52.00

y11-y15 60× 300 3.42− 5.78 0.07 1.02 32.0 17.9 50.1 65.63 42.17 114.50 212.97

y16-y20 80× 400 3.50− 7.30 0.05 0.68 27.4 15.0 57.6 228.01 27.49 169.62 370.80

Avg. 0.10 0.82 22.0 20.5 57.5 401.62 85.44

4 n1-n5 50× 100 2 0.02 — 5,8 26,4 67,8 1078.94 0.84 6.12 18.72

n6-n10 3 0.02 0.97 7,2 17,6 75,2 931.25 2.34 6.33 9.69

n11-n15 5 0.02 0.76 45,2 15,2 39,6 16.83 11.77 59.93 127.41

n16-n20 50× 200 2 0.08 — 6,3 7,3 86,4 7871.77 9.72 14.03 18.33

n21-n25 3 0.01 — 12,6 32,8 54,6 4221.90 5.48 12.17 23.74

n26-n30 5 0.01 0.13 73,6 13,0 13,4 14.32 42.88 101.34 150.92

n31-n35 60× 300 2 — — 0,1 0,5 99,4 42938,86 — — —

n36-n40 3 0.01 — 12,4 34,7 52,9 863,94 0.58 20.28 44.14

n41-n45 5 0.02 — 60,8 22,7 16,5 48.11 79.57 138.38 203.69

Avg. 0.03 1.09 24,9 18,9 56,2 6442,88 43.11

20

cutting plane algorithm was able to close the integrality gap and found an integer solution
whereby Phases 2 and 3 were never entered. This never happened for any instances in TB3
and TB4. The main reason seems to be the large number of potential facilities in these
test sets, effectively prohibiting the generation of all needed facets.

The simple local branching heuristic in Phase 2 also seems to work well; for each test
bed it produces solutions deviating less than 1.09 percent from the lower bound on average.
In fact, for test beds TB1, TB2, and TB3 the deviation is less than one percent in each
test bed (see Table 3, the column denoted UBgap). This indicates that even though the
heuristic is relatively simple, it could be used as a stand–alone heuristic with a known
quality of the computed solution. In fact, in 86 of the 193 instances tested here, the local
branching heuristic found the optimal solution. It should be mentioned, however, that in
six instances of TB4 the heuristic failed to find a feasible solution (see Section 4.5 for an
elaboration of the results on TB4).

Regarding the percentage of the time spent in the three phases, one should note that
for the smaller instances of TB1 and TB2 most of the time is spent in the first two phases,
while in TB3 and TB4 the majority of the time is spent in Phase 3. The obvious reason is
that both the cutting plane algorithm and the local branching heuristic performs better
on the small problems of TB1 and TB2 leaving only a small gap to close in Phase 3. Also,
the MIPs that need to be solved in Phase 3 become much larger and consequently harder
to solve in TB3 and TB4 compared to TB1 and TB2.

Comparing the running times obtained using TP-ALG to the ones obtained using Y-CS,
we observe that in all four test beds the average running time of TP-ALG is just a small
fraction of that obtained by Y-CS. In TB1 and TB2, Y-CS runs faster than our algorithm in
one out of 57 and in seven out of 71 instances, respectively. Y-CS usually only outperforms
TP-ALG in cases where the cutting plane algorithm is capable of closing the integrality
gap, thus eliminating the need for evoking phases 2 and 3. This is most likely due to
the Fenchel cuts generated by Yang et al. (2012) being deeper than those generated here.
Even though these deeper cuts come at a price in terms of longer computation times, this
does not make that large an impact on these small instances, and the gap can be closed
faster. Considering TB3 and TB4, the difference between the two algorithms becomes more
apparent. On average, the Y-CS uses about 85 and almost 45 times more computation time
compared to TP-ALG on the instances in TB3 and TB4, respectively. Thus, the improved
cut-and-solve algorithm TP-ALG achieves a very significant decrease in the running times.

We ascribe the large differences in running times to five primary improvements: 1) the
way in which cutting planes are generated and the relaxation is strengthened; 2) the place
where the cutting planes are added in the cut-and-solve tree; 3) the definition of the piercing
cuts; 4) the pruning of sparse problems before an optimal solution has been established;
and 5) the strong upper bounds generated in Phase 2. In Phase 1 of the TP-ALG algorithm,
we generate the Fenchel cuts in a different way than is done by Yang et al. (2012); First of
all, we only consider the fractional support of the LP solution in the separation problem
and we use Theorem 1 to exclude the y-variables from the separation problems. This
significantly reduces the size of the linear master problem in Algorithm 3. In addition to
this, we solve the separation problem for the Fenchel inequalities using column generation

21

instead of the traditional row generation procedure, which reduces the size of the basic
matrix of the linear master problem. We also noticed that the main bottleneck of the
cut–and–solve algorithm was the solution of the sparse problems and not the number of
cut–and–solve nodes created. For that reason, we focused on reducing the effort for solving
the sparse problems by means of additional cutting planes, instead of adding cuts to the
dense problem in order to increase the lower bound. Furthermore, the way we defined the
sparse problems generally results in smaller sparse problems compared to those generated
by Y-CS. Yang et al. (2012) exploit the solution from the dense problem to guide a heuristic
to generate a feasible solution, which then is used for defining the sparse problem. In this
way, they can use the proof of termination given in Climer and Zhang (2006) as each sparse
problem contains at least one feasible solution. We, however, use Proposition 1 and do
this way not need each sparse problem to contain a feasible solution. Furthermore, we use
the observation that if a lower bound of the sparse problem exceeds or equals the best
known solution, no improving solution can be found in that cut–and–solve node, and we
therefore stop the optimization of the sparse problem. This saves a significant amount of
CPU time. Finally, as the sparse problems defined by TP-ALG are small, it is often hard
to find a feasible solution to these problems. Without a good upper bound, solving the
sparse problems would often be impossible as none of the branching nodes can be pruned
before a feasible solution is known. The good upper bounds generated in Phase 2 are thus
very helpful for solving the sparse problems. Actually, in the 86 cases where the local
branching heuristic produced the optimal solution, no sparse problems needed to be solved
to optimality due to the pruning rule.

4.5 Elaborated results on TB4

As mentioned previously, TB4 consists of problems where an extra “production cost” is
added to the distance matrix. Three different problem sizes are considered, namely 50×100,
50×200 and 60×400. For each problem size, three sets of five instances showing a capacity
to demand ratio of 2, 3, and 5 were generated. The results are presented in Table 4.

For these instances an extremely small gap between the lower bound and the optimal
solution is observed; in none of the cases does the lower bound deviate more than one third
of a percent. This is a very convincing result as the assignment costs have been scaled
down in order to make the percentage-error measure more independent from the magnitude
of the cost data. The two level local branching does, however, show some weaknesses. In
five of the 45 instances, the heuristic is not able to generate a feasible solution, and for five
other instances, a deviation of more than two percent from the lower bound is observed.
Both the failure of finding a feasible solution and the large deviations are encountered in
problems with a small capacity to demand ratio (r = 2 and 3). The main reason is that we
use a general MIP-solver to find an initial solution, and when the capacity to demand ratio
is small, a branching tree of a certain depth is often needed to find a feasible solution. On
average, however, the local branching heuristic performs well showing an average deviation
between lower bound and heuristic upper bound over the entire bed of about one percent
only.

22

Table 4: Results on test bed TB4.

LB UB %-time in phase

ID size r Z LBgap Z UBgap Z∗ 1 2 3 CPU ρ

n1 50× 100 2 18,291.3 0.01 18,319 0.15 18,294 2.2 4.8 93.0 616.74 0.88
n2 19,684.3 0.06 20,590 4.40 19,688 0.8 4.5 94.7 3705.52 5.32
n3 19,073.2 0.01 — — 19,075 7.2 43.8 49.0 192.32 4.34
n4 18,618.7 0.01 18,620 0.01 18,620 16.0 77.3 6.8 92.10 18.72
n5 18,498.0 0.02 18,871 1.98 18,502 2.5 1.7 95.8 788.01 1.40

n6 3 16,942.6 0.03 17,215 1.61 16,948 0.2 0.2 99.6 3887.94 2.87
n7 15,061.7 0.01 15,065 0.02 15,063 29.8 54.9 15.3 32.37 8.91
n8 15,103.5 0.02 15,372 1.78 15,107 2.8 16.9 80.3 170.56 7.87
n9 14,344.1 0.02 14,452 0.75 14,347 1.8 3.8 94.4 89.11 9.69
n10 14,808.8 0.03 14,912 0.70 14,813 1.1 12.3 86.6 476.28 2.34

n11 5 12,071.0 0.01 12,078 0.06 12,072 60.0 11.6 28.4 10.36 63.09
n12 11,893.9 0.03 12,014 1.01 11,898 7.1 5.6 87.3 46.46 11.77
n13 11,124.5 0.00 11,125 0.00 11,125 47.7 23.3 29.0 8.58 127.41
n14 11,815.8 0.01 12,000 1.56 11,817 69.6 15.8 14.6 10.05 36.67
n15 11,486.3 0.02 11,622 1.18 11,489 41.6 19.4 39.0 8.68 60.68

n16 50× 200 2 25,989.1 0.01 27,272 4.94 25,992 2.6 8.9 88.5 2267.62 22.05
n17 25,866.5 0.01 26,132 1.03 25,868 22.5 17.8 59.7 122.87 9.72
n18 26,928.2 0.01 — — 26,930 6.4 9.2 84.4 869.55 18.33
n19 25,950.4 0.11 26,120 0.65 25,980 0.1 0.2 99.7 14,790.36 3.38
n20 25,323.7 0.26 — — 25,390 0.0 0.4 99.6 21,308.44 2.35

n21 3 20,697.0 0.02 20,787 0.43 20,701 1.3 0.8 97.9 1397.86 5.48
n22 22,018.8 0.01 — — 22,021 0.1 0.4 99.5 19,588.60 2.55
n23 20,036.8 0.01 20,038 0.01 20,038 36.0 58.5 5.5 7.42 23.74
n24 20,594.3 0.00 20,941 1.68 20,595 15.6 14.3 70.1 28.08 8.44
n25 21,167.3 0.00 21,168 0.00 21,168 10.0 90.0 0.0 87.55 11.00

n26 5 16,658.7 0.00 16,659 0.00 16,659 69.8 30.2 0.0 11.54 42.88
n27 16,136.7 0.01 16,140 0.02 16,138 75.0 8.6 16.4 18.92 105.77
n28 17,754.6 0.00 17,804 0.28 17,755 70.1 7.9 22.0 15.37 124.45
n29 15,855.7 0.01 15,914 0.37 15,858 56.0 15.8 28.2 12.08 145.81
n30 16,883.7 0.00 16,884 0.00 16,884 97.3 2.7 0.0 13.68 82.68

n31 60× 300 2 34,858.5 — 34,861 0.01 — 0.1 0.2 99.7 50,000 1
n32 36,543.5 — 36,742 0.54 — 0.1 0.3 99.6 50,000 1
n33 34,876.2 — 34,884 0,02 — 0.1 0.1 99.8 50,000 1
n34 34,817.6 — 36,057 3.27 — 0.1 0.3 99.6 50,000 1
n35 37,136.3 0.16 38,603 3.80 37,196 0.0 1.5 98.5 14,694.31 3.40

n36 3 27,901.2 0.01 — — 27,903 0.6 2.4 97.0 3,492.47 0.58
n37 27,593.5 0.00 27,729 0.49 27,594 30.6 36.7 32.7 83,20 44.14
n38 29,229.5 0.01 31,101 6.02 29,231 5.6 52.3 42.1 393,35 5.02
n39 27,437.6 0.01 27,440 0.01 27,439 20.5 66.6 12.9 62.34 13.58
n40 28,030.3 0.01 28,190 0.57 28,033 4.8 15.4 79.8 288.35 38.10

n41 5 21,043.2 0.01 21,045 0.01 21,045 71.5 22.5 6.0 30.57 174.09
n42 22,587.6 0.01 22,924 1.47 22,589 46.0 7.3 46.7 29.51 203.69
n43 21,447.5 0.01 21,822 1.72 21,449 47.0 49.0 4.0 87.32 102.83
n44 21,464.6 0.01 21,466 0.01 21,466 72.8 21.8 5.4 34.17 79.57
n45 21,859.0 0.00 21,879 0.09 21,860 66.9 12.8 20.3 58.97 131.73

Avg. 0.02 1.17 24.9 18.9 56.2 644.9 39.36

23

In four of the 45 instances (instances n31-n34), the algorithm failed to find the optimal
solution within the time limit. The tendency is that the smaller the r-value, the more
computation time is required for solving the instance. If the capacity to demand ratio
gets smaller, more facilities are needed to cover the demand, implying that the size of the
sparse problems increases. It seems we have reached the limit of the problem size for the
case r = 2 solvable by our algorithm. Note that the larger instances solved to optimality
in TB3 have a significantly larger ratio r than the unsolved instances in TB4. It is worth
noting that our way of generating the allocation costs cij differs from the way traditionally
used in existing literature, but this seems to have almost no impact on the performance
and thus our algorithm proves robust in this respect.

Comparing TP-ALG to Y-CS, we see that in only two out of 45 cases (instances n1 and
n36) our algorithm does not perform as well as that of Yang et al. (2012). In the four
unsolved instances, the time limit of 50,000 seconds was reached for both TP-ALG and
Y-CS. One should note that as the ratio r increases, so does the value of ρ, meaning that
TP-ALG becomes more efficient relative to Y-CS as the cut–and–solve algorithm in Phase 3
becomes more relevant. This underlines the results obtained in Section 4.3, namely that
the improved cut–and–solve algorithm is indeed very fast. Over the entire test bed, TP-ALG
runs about 40 times faster than Y-CS on average, suggesting an efficient solution procedure.

5 Conclusions

We have proposed an improved cut–and–solve algorithm for solving the single–source
capacitated facility location problem to optimality. The proposed algorithm works in three
phases: The first phase consists of a cutting plane algorithm based on knapsack separation
used to strengthen the SSCFLP. Secondly, strong upper bounds are generated in Phase 2
by a local branching heuristic that starts by heuristically fixing location variables and then
improves the allocation of customers. Finally, in Phase 3, an accelerated cut–and–solve
algorithm is proposed to search for an optimal solution if one has not been found in the
first two phases.

The computational results show that the lower bounds produced by the cutting plane
algorithm in Phase 1 combined with the partial integrality strategy produces very strong
lower bounds in relatively short computation times. Furthermore, the characterization
of the facets of the integer hull of the capacity constraints facilitates a more efficient
generation of the strong Fenchel cutting planes.

When we combine the strong lower bound with the simple LB heuristic, we get a
provably very good solution in most cases. Although the heuristic is very simple by nature,
combined with Phase 1 it could in fact work as a stand alone heuristic.

The accelerated cut–and–solve algorithm in Phase 3 also proved to be efficient in
searching for an optimal solution. The lower bound of the dense problem increases fast
and only a few time consuming sparse problems need to be solved. Adding cuts in the root
node of every sparse problem did also contribute very positively to the performance of our
algorithm.

24

Compared to the algorithm presented in Yang et al. (2012) our algorithm solves the
problems significantly faster in almost all instances. Our new algorithm far outperforms
their algorithm with running times 10 to 80 times faster, on average. As the algorithm by
Yang et al. (2012) is considered state–of–the–art, this suggests a very efficient algorithm.

Directions for further research include the examination of the effect of generating cutting
planes, not only for the knapsack-like structures, but also for substructures including the
demand constraints. Furthermore, the proposed framework seems appropriate for other
types of location problems as well, for example hierarchical location models with capacity
constraints. Finally, the model for the capacitated facility location problems with modular
distribution costs proposed in Correia, Gouveia, and Saldanha-da Gama (2010) exhibits
many of the same features as the SSCFLP, and therefore an adaptation of the algorithm
presented here might serve as a good solution method.

Acknowledgment

The authors are grateful to Mr. Zhen Yang for providing the code, enabling us to compare
the two algorithms, and to Professor Kim Allan Andersen for insightful comments and
suggestions.

References

Ahuja, R., Orlin, J., Pallottino, S., Scaparra, M., Scutellà, M., 2004. A multi-exchange
heuristic for the single-source capacitated facility location problem. Management Science
50 (6), 749–760.

Avella, P., Boccia, M., Salerno, S., 2011. A computational study of dicut reformulation for
the single source capacitated facility location problem. Studia Informatica Universalis
9 (3), 21–42.

Balas, E., Zemel, E., 1978. Facets of the Knapsack polytope from minimal covers. SIAM
Journal on Applied Mathematics 34 (1), 119–148.

Barceló, J., Casanovas, J., 1984. A heuristic Lagrangean algorithm for the capacitated
plant location problem. European Journal of Operational Research 15 (2), 212–226.

Barceló, J., Fernández, E., Jörnsten, K., 1991. Computational results from a new lagrangean
relaxation algorithm for the capacitated plant location problem. European Journal of
Operational Research 53 (1), 38–45.

Barceló, J., Hallefjord, Å., Fernández, E., Jörnsten, K., 1990. Lagrangean relaxation and
constraint generation procedures for capacitated plant location problems with single
sourcing. Operations-Research-Spektrum 12 (2), 79–88.

25

Bitran, G., Chandru, V., Sempolinski, D., Shapiro, J., 1981. Inverse optimization: An
application to the capacitated plant location problem. Management Science 27 (10), 1120
– 1141.

Boccia, M., Sforza, A., Sterle, C., Vasilyev, I., Mar. 2008. A cut and branch approach for the
capacitated p-median problem based on Fenchel cutting planes. Journal of Mathematical
Modelling and Algorithms 7 (1), 43–58.

Boyd, E. A., 1993. Generating Fenchel cutting planes for Knapsack polyhedra. Siam Journal
on Optimization 3 (4), 734–750.

Ceselli, A., Righini, G., 2005. A branch-and-price algorithm for the capacitated p-median
problem. Networks 45 (3), 125–142.

Chen, C., Ting, C., 2008. Combining Lagrangian heuristic and ant colony system to solve
the single source capacitated facility location problem. Transportation Research Part E:
Logistics and Transportation Review 44 (6), 1099 – 1122.

Climer, S., Zhang, W., 2006. Cut-and-solve: An iterative search strategy for combinatorial
optimization problems. Artificial Intelligence 170 (8), 714–738.

Contreras, I., Dı́az, J., 2008. Scatter search for the single source capacitated facility location
problem. Annals of Operations Research 157 (1), 73–89.

Cornuejols, G., Sridharan, R., Thizy, J., 1991. A comparison of heuristics and relaxations
for the capacitated plant location problem. European Journal of Operational Research
50 (3), 280–297.

Correia, I., Gouveia, L., Saldanha-da Gama, L., 2010. Discretized formulations for capaci-
tated location problems with modular distribution costs. European Journal of Operational
Research 204 (2), 237 – 244.

Dı́az, J., Fernández, E., 2002. A branch-and-price algorithm for the single source capacitated
plant location problem. Journal of the Operational Research Society 53, 728–740.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Programming 98 (1-3), 23–47.

Fischetti, M., Polo, C., Scantamburlo, M., 2004. A local branching heuristic for mixed-
integer programs with 2-level variables, with an application to a telecommunication
network design problem. Networks 44 (2), 61–72.

Gadegaard, S., Klose, A., Nielsen, L., 2016. A “cut–and–solve” solver for the single source
capacitated facility location problem. GitHub, source code (v1.2.0).
URL https://github.com/SuneGadegaard/SSCFLPsolver

Geoffrion, A., 1974. Lagrangean relaxation for integer programming. In: Approaches to
Integer Programming. Vol. 2 of Mathematical Programming Studies. Springer Berlin
Heidelberg, pp. 82–114.

26

https://github.com/SuneGadegaard/SSCFLPsolver

Gu, Z., Nemhauser, G., Savelsbergh, M., 1998. Lifted Cover Inequalities for 0-1 Integer
Programs: Computation. INFORMS Journal on Computing 10 (4), 427–437.

Holmberg, K., Rönnqvist, M., Yuan, D., 1999. An exact algorithm for the capacitated
facility location problems with single sourcing. European Journal of Operational Research
113 (3), 544–559.

Kaparis, K., Letchford, A., 2010. Separation algorithms for 0-1 knapsack polytopes. Math-
ematical Programming 124 (1-2), 69–91.

Karp, R., 1972. Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J., Bohlinger, J. (Eds.), Complexity of Computer Computations. The IBM Research
Symposia Series. Springer US, pp. 85–103.

Klincewicz, J., Luss, H., 1986. A Lagrangian relaxation heuristic for capacitated facility
location with single-source constraints. Journal of the Operational Research Society 37,
495–500.

Klose, A., Görtz, S., 2007. A branch-and-price algorithm for the capacitated facility location
problem. European Journal of Operational Research 179 (3), 1109–1125.

Martello, S., Pisinger, D., Toth, P., 1999. Dynamic programming and strong bounds for
the 0-1 knapsack problem. Management Science 45 (3), 414–424.

Neebe, A., Rao, M., 1983. An algorithm for the fixed-charge assigning users to sources
problem. Journal of the Operational Research Society 34, 1107–1113.

Nemhauser, G., Wolsey, L., 1988. Integer and Combinatorial Optimization. Wiley New
York.

Pirkul, H., 1987. Efficient algorithms for the capacitated concentrator location problem.
Computers & Operations Research 14 (3), 197 – 208.

Rönnqvist, M., Tragantalerngsak, S., Holt, J., 1999. A repeated matching heuristic for
the single-source capacitated facility location problem. European Journal of Operational
Research 116 (1), 51–68.

Sridharan, R., 1993. A Lagrangian heuristic for the capacitated plant location problem
with single source constraints. European Journal of Operational Research 66 (3), 305 –
312.

Weismantel, R., 1997. On the 0/1 knapsack polytope. Mathematical Programming 77 (3),
49–68.

Yang, Z., Chu, F., Chen, H., 2012. A cut-and-solve based algorithm for the single-source
capacitated facility location problem. European Journal of Operational Research 221 (3),
521–532.

27

	Introduction
	Problem formulation
	Solution methodology
	Phase 1 – Cutting planes
	Fenchel cutting planes

	Phase 2 – Local branching
	Initial feasible solution
	Refining the locational decision
	Refining the allocation decision
	Heuristic stop criteria

	Phase 3 – Cut–and–solve
	Relaxation and piercing cuts
	Termination
	Variable fixing and pruning of nodes
	Cutting planes for the SP

	Computational experiments
	Implementation detail
	Test instances
	The efficiency of the cut–and–solve algorithm used in Phase 3
	Comparing the three–phased algorithm to a state–of–the–art algorithm
	Elaborated results on TB4

	Conclusions

