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Abstract: This paper considers a family of bi–objective discrete facility location problems
with a cost objective and a bottleneck objective. A special case is, for instance, a bi-objective
version of the (vertex) p-centdian problem. We show that bi-objective facility location
problems of this type can be solved efficiently by means of an ε-constraint method that solves
at most (n− 1) ·m minisum problems, where n is the number of customer points and m the
number of potential facility sites. Additionally, we compare the approach to a lexicographic
ε-constrained method that only returns efficient solutions and to a two–phase method
relying on the perpendicular search method. We report extensive computational results
obtained from several classes of facility location problems. The proposed algorithm compares
very favorably to both the lexicographic ε-constrained method and to the two phase method.

Keywords: discrete facility location; bi-objective optimization; ε-constrained method;
lexicographic optimization.

1 Introduction

Single objective location analysis usually distinguishes between two major types of objective
functions. Whilst the objective of a minisum location problem consists in minimizing
average (weighted) costs, a solution to a minimax location problem aims at minimizing
the maximal (weighted) distance between customer points and facilities. We will refer to
the two objectives as a cost objective and a bottleneck objective, respectively. On networks,
the prototype cost and bottleneck location models are the p-median (Hakimi, 1965) and
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p-center problem (Hakimi, 1964), respectively. The survey papers by Reese (2006) and
Revelle, Eiselt, and Daskin (2008) review the extensive literature on these two important
network location problems. Within the subject of discrete facility location, the simplest
and also most studied problem with cost–objective is the uncapacitated facility location
problem proposed by Balinski (1965). For discrete facility location the bottleneck–objective
has not received as much attention as the cost–objective, but Dearing and Newruck (1979)
study a capacitated facility location problem with such a bottleneck–objective.

As the cost–objective focuses on minimizing the total/average cost of supplying demand
points from supply points, it often provides solutions in which remote and sparsely populated
areas are discriminated in terms of accessibility compared to centrally situated and highly
populated areas. On the other hand, locating facilities according to the bottleneck objective
(focussing on equity rather than efficiency) may cause a large increase in the total cost, thus
generating a substantial loss in cost efficiency. This fact was recognized by Halpern (1976)
who minimized a convex combination of the two objectives such that both efficiency and
equity were expressed in the resulting solution. On a network, this model is known as the
centdian problem. Halpern (1978) showed that when placing one facility on an undirected
graph so as to minimize the centdian objective, only a finite set composed of the set of
vertices and the set of so–called local centers need to be examined. For the case where
multiple facilities should be placed, this finite set needs to be expanded to the (still finite)
set presented in Pérez-Brito, Moreno-Pérez, and Rodŕıguez-Mart́ın (1997).

Recognizing the fact that only supported efficient solutions can be found using convex
combinations of the objectives, it seems obvious to apply a bi-objective approach to the
cost–bottleneck problem. Instead of only considering a fixed convex combination of the
two objectives, the entire set of non-dominated outcomes will then be generated. The
need to balance efficiency and equity does, however, also arise in the case of other, similar
problems. In case of the transportation problem, the literature distinguishes between the
classical Hitchcock-type and the bottleneck transportation problem (Garfinkel and Rao,
1971; Hammer, 1969). Whilst the objective of the former is to minimize total transportation
cost, the latter aims at minimizing the maximum time required to transport all supplies
to the destinations. In this case it seems relevant to find a balance between these two
objectives, leading to the bi-objective “bottleneck-cost” transportation problem studied
by Pandian and Nataraja (2011). This problem can in fact be solved in polynomial time.
Combining a cost and a bottleneck objective is also highly relevant in the context of discrete
facility location problems such as, for instance, the uncapacitated and capacitated facility
location problems. The bottleneck objective may then, in particular, refer to a customer
service objective that aims at keeping maximum delivery times small. Facility location
models also play a role in the area of supplier selection (Current and Weber, 1994). In this
case, the cost objective may refer to the total procurement cost, whereas the bottleneck
objective is to minimize the (largest) lead time.

In the literature on planar and network multi–objective facility location problems, most
papers concentrate on specific problems and on methodological and theoretical results
(see e.g. Hamacher and Nickel (1996) for planar and Hamacher, Labbé, and Nickel (1999)
for network location problems). The opposite is true for discrete multi–objective facility
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location, where the attention has primarily been on applications (see e.g. the survey in Nickel,
Puerto, and Rodŕıguez-Ch́ıa (2005)). However, a few contributions with a methodological
perspective on multi–criteria discrete location problem exists. In Ross and Soland (1980)
the set of Pareto optimal solutions is characterized by rewriting the location problem as
a generalized assignment problem with an additional constraint. However, the authors
argue not to generate all efficient solutions, and propose an interactive approach instead.
Fernández and Puerto (2003) consider a multi–objective version of the uncapacitated facility
location problem (UFLP). A multi–objective dynamic programming approach is proposed
based on a decomposition of the UFLP into a facility selection problem and a demand
allocation problem. We have, however, not been able to find any papers investigating, in
a discrete bi–objective setting, the combination of a cost objective and a bottleneck. For
surveys on multi–objective facility location problems we refer the reader to Nickel et al.
(2005) and Farahani, SteadieSeifi, and Asgari (2010).

In this paper we, therefore, suggest a bi-objective approach to balance cost minimization
and maximum transportation times for a family of discrete facility location problems
comprising many well studied location problems as special cases. We establish the compu-
tational complexity of the problem and prove the problem to be tractable. Furthermore,
we propose a scheme for solving the problem by means of an ε–constrained method. We
suggest two ways to accommodate the issue of generating weakly efficient solutions: First, a
simple change of the cost matrix that imposes the non–linear ε–constraint on the bottleneck
objective. Second, we outline a scheme based on lexicographic branch–and–bound which
generates no weakly efficient solutions. Last, we compare the ε–constraint algorithm to a
two–phase implementation. The main contributions of the paper can thus be summarized
as follows:

1. We propose a family of discrete bi–objective facility location problems, encompassing
many problems known from the literature.

2. We show that even though the problems are generally NP–hard, they are computa-
tionally tractable in a certain sense.

3. We propose a simple methodology, based on the ε–constraint method, for solving
these problems.

4. Through extensive experiments we show that the methodology is indeed very efficient
compared to other algorithms from the literature.

The remaining of this paper is organized as follows: Section 2 introduces the cost-
bottleneck location problem and Section 3 outlines the preliminaries of bi–objective com-
binatorial optimization and establishes the computational complexity of the problem.
Section 4 outlines the ε–constraint algorithm proposed to solve the problem and finally,
results from extensive computational experiments are reported in Section 5.
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2 The bi–objective cost-bottleneck location problem

A large number of facility location problems are special cases of the general integer program

min
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (1a)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J, (1b)

xij − yi ≤ 0, ∀i ∈ I, j ∈ J, (1c)

(xi, yi) ∈ Xi, ∀i ∈ I, (1d)

y ∈ Y . (1e)

Here J is the set of demand points which need to be served by a set of open facilities
picked among the potential facility sites in I. The cost of servicing all of customer j’s
demand from facility i amounts to cij ≥ 0 while opening a facility i results in a fixed charge
of fi ≥ 0. It is without loss of generality assumed that both cij and fi are non–negative
integers. Constraints (1b) ensure that all demand at customer j is covered by allocating
the demand to at least one open facility while constraints (1c) ensure that demand can
only be allocated to open facilities. Constraints (1d) restrict the possible assignments
xi = (xij)j∈J of demand points to facilities. Possible assignments are single sourced if
demand points are assigned to only one facility, that is Xi ⊆ {0, 1}|J |+1. Otherwise we
have Xi ⊆ [0, 1]|J | × {0, 1}. Finally, Y ⊆ {0, 1}|I| may introduce further restrictions on the
locational decisions yi.

Special cases of the program (1) comprise among others the uncapacitated facility
location problem, the capacitated facility location problem with and without single-sourcing,
and the p–median problem.

When the sum of costs is minimized, the relation to the individual demand point is not
taken into account meaning that in a spacial setting some customers might be located far
from the open facilities. To overcome this issue we introduce yet another objective, namely
to minimize the travel time of the worst assignment, effectively introducing the bottleneck
objective

min max
i∈I,j∈J

{tij : xij > 0}. (2)

It is assumed that tij ≥ 0 for all i ∈ I and all j ∈ J . In this setting, one can consider the
tij as the travel time from demand point j to facility i while cij is the cost incurred by this
assignment. The introduction of this additional objective function leads to the bi–objective
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combinatorial optimization (BOCO) problem

min

(∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi , max
i∈I,j∈J

{tij : xij > 0}

)
(3a)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J, (3b)

xij − yi ≤ 0, ∀i ∈ I, j ∈ J,
(xi, yi) ∈ Xi, ∀i ∈ I, (3c)

y ∈ Y , (3d)

which will be referred to as the bi–objective cost-bottleneck location problem (BO–CBLP).

3 Preliminaries

In the remainder of this paper, we will adopt the notation from Ehrgott (2005) to induce
orderings on R2. Let z1, z2 ∈ R2. Then

z1 ≤ z2 ⇔z1
k ≤ z2

k, k = 1, 2 and z1 6= z2

z1 <lex z
2 ⇔z1 ≤ z2 and z1

q < z2
q , where q = min{k = 1, 2 : z1

k 6= z2
k}

z1 ≤lex z
2 ⇔z1 = z2 or z1 <lex z

2

If z1 ≤ z2 we say that z1 dominates z2. Similarly, if z1 ≤lex z
2 we say that z1 lexicographically

dominates z2. Note the implication that if z1 ≤ z2 then z1 ≤lex z
2.

The focus of this section will be on a generic BOCO problem of the form

min{(f1(x), f2(x)) : x ∈ X}. (4)

The objective functions fi : X → R, i = 1, 2, are defined over the mixed integer set
X ⊆ {0, 1}n1 × [0, 1]n2 , where n1 and n2 are non–negative integers with n1 > 0. The set X
is the set of feasible solutions, also referred to as the feasible set in decision space. The
image of X , Z := f(X ) ⊆ R2, where f(x) := (f1(x), f2(x)), is referred to as the feasible
set in outcome space. It is not obvious what is meant by (4), so to clarify this we use the
concept of Pareto optimality or efficiency (see Ehrgott (2005)):

Definition 1. A feasible solution x̂ ∈ X is called Pareto optimal or efficient if there
does not exist any x̄ ∈ X such that f(x̄) ≤ f(x̂). The image ẑ = f(x̂) is then called
non-dominated.

A feasible solution x̂ ∈ X is called weakly efficient if there is no x ∈ X such that
f1(x) < f1(x̂) and f2(x) < f2(x̂). The corresponding outcome vector ẑ = f(x̂) is then called
weakly non–dominated.
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From Definition 1 we have that a solution x̂ with f(x̂) ≤lex f(x) for all x ∈ X is efficient
(see Ehrgott (2005) for a proof).

Let XE denote the set of efficient solutions and let ZN = f(XE) be the image of this
set. The set of non-dominated solutions ZN will also be referred to as the non–dominated
frontier. We distinguish between efficient solutions which are supported, extreme supported,
and non–supported (see Ehrgott (2005)).

Definition 2. 1. A solution x̂ ∈ X is a supported efficient solution if there exists a
λ ∈ (0, 1) such that x̂ is an optimal solution to

min{(λf1(x) + (1− λ)f2(x) : x ∈ X}

The corresponding outcome vector, ẑ := f(x̂), is called a supported non–dominated
outcome vector. The set of supported non–dominated outcomes is denoted ZsN .

2. A supported efficient solution x̂, with ẑ = f(x̂), is called an extreme supported efficient
solution if ẑ is an extreme point of conv(ZN ). The outcome vector ẑ is then called an
extreme supported non–dominated outcome vector.

3. If x̂ ∈ XE and ẑ := f(x̂) 6∈ ZsN , then x̂ is said to be an unsupported efficient solution
and ẑ is called an unsupported non–dominated outcome.

If two feasible solutions x1, x2 ∈ X map into the same outcome vector, z ∈ Z, that is
f(x1) = f(x2) = z, the solutions x1 and x2 are called equivalent. The literature is not always
precise on the outcome of a proposed algorithm and we therefore employ the following
definition from Hansen (1980):

Definition 3. A complete set C is a set of efficient solutions such that all x ∈ X\C are
either dominated by or equivalent to at least one x̂ ∈ C. Moreover we distinguish between
two types of complete sets:

1. A minimal complete set, Cmin is a complete set without equivalent solutions. Any
complete set contains a minimal complete set.

2. The maximal complete set, Cmax, is the complete set including all efficient solutions,
i.e., Cmax = XE.

In this paper the focus is on generating a set Cmin, i.e., the efficient solutions found for
(4) constitute a minimal complete set. Finally, the concept of computational tractability is
defined:

Definition 4 (Ehrgott (2005)). The BOCO problem (4) is called intractable if the cardi-
nality of ZN can be exponential in the size of the input and tractable otherwise.
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3.1 The complexity of the BO–CBLP problem

Despite the relatively simple nature of the problem, the BO–CBLP (3) is a difficult
BOCO problem. The computational complexity of the BO–CBLP is easily established in
Proposition 1 as the uncapacitated facility location problem is a special case known to be
NP–hard (see e.g. Cornuejols, Nemhauser, and L.A. (1990) for a proof).

Proposition 1. The BO–CBLP (3) is NP–hard.

However, despite the fact that the BO–CBLP is NP–hard, the problem is in fact
tractable in the sense of Definition 4:

Proposition 2. The BO–CBLP is tractable.

Proof. As the travel time matrix (tij)i∈I,j∈J comprises at most |I| × |J | different values,
the bottleneck objective (2) can attain no more than |I| × |J | different values, implying
|ZN | ≤ |I| × |J |, which is polynomial in the input size.

Proposition 2 tells us, that even though the BO–CBLP is NP–hard, we only need to
solve a polynomial number of NP–hard problems in order to generate the non–dominated
frontier, ZN .

4 Solution methodologies

One of the most well–known approaches for establishing the complete set of Pareto optimal
solutions to a bi–objective optimization problem is probably the ε-constrained method. This
method turns one of the objectives into a constraint. The scalar ε represents the upper bound
on the objective, and by varying this scalar in an appropriate way, the complete efficient
frontier can be generated. Recently, Bérubé, Gendreau, and Potvin (2009) successfully
applied this method to the traveling salesman problem with profits. The literature also
suggests a number of variations of this method. Two recent versions are: Filippi and
Stevanato (2013) combine the weighted sum scalarization technique with the ε-constrained
method and show that exactly 2|ZN | − 1 single objective optimization problems have to be
solved in order to produce the entire set of non-dominated outcomes. Two box algorithms
based on a combination of lexicographic optimization and the ε-constrained method (the
lexicographic ε-constrained method) are proposed by Hamacher, Pedersen, and Ruzika
(2007). The proposed algorithm also solves at most 2|ZN | − 1 lexicographic optimization
problems.

In this section we describe an ε–constrained method for finding a minimal complete set
for the BO–CBLP. The two ε–constrained problems arising in terms of the general BOCO
(4) are

min{fi(x) : x ∈ X , fj(x) ≤ εj}, (P i
j )

where i, j = 1, 2 and i 6= j. Furthermore, εj = f̂j − γ > 0 where f̂j is the solution value in
the second objective of a feasible solution and γ > 0 is small number that guarantees an
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Input: Functions f1 and f2 and a feasible set X .
Output: A solution (Cmin,ZN) ⊆ X × Z to (4) or a proof that XE = ∅.

Step 0: (Initialization) Set Cmin = ∅, ZN = ∅, ε =∞ and k = 1.

Step 1: (Subproblem) If min{f1(x) : x ∈ X , f2(x) ≤ ε} is feasible let xk be an optimal
solution. Else go to Step 3.

Step 2: (Update) Set Cmin = Cmin ∪ {xk}, ZN = ZN ∪ {f(xk)}, ε = f2(x
k) − γ and

k = k + 1. Return to Step 1.

Step 3: Remove dominated solutions from Cmin and their outcome vectors from ZN and
return (Cmin,ZN) as an optimal solution.

Algorithm 1: Summary of the ε–constraint based algorithm.

improvement of the second objective. It is well known that all non–dominated solutions
can be found by varying the ε–parameter in an appropriate manner (see e.g. Ehrgott
(2005)). BOCO problems yield a straightforward variation scheme for the ε parameter. One
simply constructs a sequence where ε is initially set equal to a substantially large value and
progressively lowered. An outline of a generic ε–constrained method is given in Algorithm 1.
Note that one needs a method for defining the parameter γ in the program (P i

j ) such that no
efficient solutions are missed. If the objective moved to the constraints, fj , is guaranteed to
map to the integers, γ takes the value of 1. In Section 4.1 we propose a straightforward way
to handle this for the BO–CBLP where we have not made the assumption that f2 : X → Z.

A major drawback of the ε–constrained method is that the set of solutions produced
by Steps 1 and 2 in Algorithm 1 usually contains (weakly) dominated solutions, such that
the method presumably solves far more ε–constrained programs than actually required.
One way of preventing this is to obtain a lexicographically optimal solution to the ε–
constrained subproblem in Step 1 in Algorithm 1. This way the solution obtained in this
step is guaranteed to be efficient, and Step 3 can be skipped. We describe how such a
lexicographically optimal solution can be obtained in Section 4.2. Another weak point
of the ε–constrained algorithm is that the ε–constraint might ruin the structure of the
underlying problem. This issue is addressed in Section 4.1. Another approach would be to
apply the augmented ε–constraint approach (see Mavrotas (2009)), but as this requires a
weighting of the two objectives we did not do so as the computational results showed that
this slows down the computations significantly (see Section 5.5).
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4.1 The ε–constrained method for BO–CBLP

In the ε–constrained method for BO–CBLP we choose to move the non–linear bottleneck–
objective into the constraints and obtain the problem

min
∑
i∈I

∑
j∈V

cijxij +
∑
i∈I

fiyi (5a)

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J (5b)

xij − yi ≤ 0, ∀i ∈ I, j ∈ J, (5c)

max
i∈I,j∈J

{tij : xij > 0} ≤ ε, (5d)

(xi, yi) ∈ Xi, ∀i ∈ I (5e)

y ∈ Y . (5f)

The program (5a)–(5f) differentiates from the general facility location problem (1) only in
the non–linear constraint (5d). The presence of this constraint might ruin the structure of
the problem and, furthermore, the program cannot be handed directly to a MILP–solver.

Fortunately, for the BO–CBLP the ε–constraint (5d) can be taken into account by
simple variable elimination:

Lemma 1. The constraints

xij = 0, ∀i ∈ I, j ∈ J : tij > ε (6)

are equivalent to the constraint maxi∈I,j∈J{tij : xij > 0} ≤ ε.

This variable elimination, constraints (6), can easily be implemented while maintaining
the structure of the general facility location problem, simply by changing the cost matrix
as follows

cij =

{
cij, if tij ≤ ε

M, otherwise,

where M is a sufficiently large number. With this transformation of the cost matrix, the
ε–constrained facility location problem, (5a)–(5f), can be solved as an ordinary facility
location problem as links (i, j) will not be used unless the travel time on the arc is less than
or equal to ε. This leads to the ε–constrained algorithm for the BO-CBLP problem given
in Algorithm 2. The adaptation of the generic ε–constrained algorithm to the BO–CBLP
happens in Step 1 and Step 2 of Algorithm 2. Instead of solving an ε–constrained problem
in Step 1, we simply solve the single objective cost modified facility location problem which
preserves its structure. In Step 2 the ε–constraint is “added” to the model by changing
the cost matrix. Note that we do not need to explicitly define the parameter γ as strict
improvement is ensured by eliminating all xij–variables which does lead to an improvement
of the bottleneck objective.
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Input: Cost matrix cij and travel time matrix tij.
Output: A solution (Cmin,ZN) to the BO-CBLP problem (3).

Step 0: (Initialization) Set Cmin = ∅, ZN = ∅, ε =∞, k = 1, and M =∞.

Step 1: (Subproblem) Solve the facility location problem (1) with assignment cost matrix

c. Let (xk, yk) be an optimal solution and set zk1 =
∑

i∈I
∑

j∈J cijx
k
ij +

∑
i∈I fiy

k
i

and zk2 = maxi∈I,j∈J{tij : xkij > 0}. If zk2 = M go to Step 3 else go to Step 2.

Step 2 (Update) Set Cmin = Cmin ∪ {(xk, yk)}, ZN = ZN ∪ {(zk1 , zk2 )} and

ε = max
i∈I,j∈J

{tij : tij < z2
k}.

Update the cost matrix according to

cij =

{
cij, if tij ≤ ε

M, otherwise,

and set k = k + 1. Return to Step 1.

Step 3 Remove dominated solutions from Cmin and their outcome vectors from ZN and
return (Cmin,ZN) as an optimal solution.

Algorithm 2: Summary of the ε–constrained method applied to the BO–CBLP.
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Rather intriguingly, this implies that a specialized algorithm for the single objective
minisum facility location problem (1) can be used to solve the subproblems arising in Step
1 of Algorithm 2, often resulting in quite large problem instances solved relatively fast.

Furthermore, as the bottleneck objective maxi∈I,j∈J{tij : xij > 0} attains at most
|I| × |J | different values, we have Proposition 3:

Proposition 3. The ε–constraint algorithm in Algorithm 2 solves at most (|I| − 1)× |J |
single objective facility location problems.

Proof. The maximum number of problems solved is reached if the algorithm fixes only
one xij–variable in each iteration. However, each customer point j ∈ J must have at least
one possible assignment for the problem to be feasible. This implies that the algorithm
performs at most (|I| − 1)× |J | iterations.

Corollary 1. The BO–CBLP is NP–hard if and only if the single objective facility location
problem (1a)–(1e) is NP–hard.

Proof. The ⇐ direction of the bi–implication follows immediately. The converse follows
from the fact that if the single objective facility location problem (1a)–(1e) can be solved
in polynomial time, then so can the BO–CBLP by Proposition 3.

4.2 Solving a lexicographic BOCO problem

In this section we describe how a lexicographic optimization problem can be dealt with (the
problem is also discussed by Ralphs, Saltzman, and Wiecek (2006) who apply a weighted
Chebyshev norm approach). To make the exposition as general as possible, we use the
terminology of the general BOCO problem (4).

One simple possibility is to employ a scalarization of the BOCO that only puts little
weight on the second objective, obtaining the scalarized problem

min{λf1(x) + (1− λ)f2(x) : x ∈ X , f2(x) ≤ ε}

where λ is very close to one. This approach does, however, suffer from “bad scaling” of the
objective function coefficients which often leads to problems that are very hard to solve
and numerically unstable.

Another approach is to implicitly enumerate all optimal solutions to the ε–constrained
problem

min{f1(x) : x ∈ X , f2(x) ≤ ε}. (7)

This can be done by modifying the branch–and–cut algorithm used to solve the ε–constraint
problem. To that end, let x∗ be the current incumbent of the ε–constrained problem and
let z∗1 = f1(x∗) be the corresponding solution value. A node in the branching tree is then
pruned only if it is infeasible or if it shows a lower bound strictly greater than z∗1 . Conversely,
if the lower bound of the node equals z∗1 then the first objective cannot strictly improve
in subsequent subproblems. However, there might exist solutions improving the second
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objective. Solutions in the subsequent subproblems need to strictly improve the second
objective in order to improve the solution and therefore the constraint f2(x) ≤ f2(x∗)− γ
can be used as a local cutting plane (or branching constraint).

The incumbent is updated during the modified branch–and–cut algorithm whenever a
feasible solution, x̄, is found such that f1(x̄) < z∗1 or (non–exclusively) such that f1(x̄) ≤ z∗1
and f2(x̄) < f2(x∗).

This way, all optimal solutions to (7) are implicitly enumerated and the lexicographically
best solution is found. This guarantees that the solution returned is efficient.

4.2.1 Lexicographic branch–and–bound applied to the BO–CBLP problem

The lexicographic combinatorial optimization problem that needs to be solved in each
iteration of the ε–constrained algorithm in Algorithm 2 is

lex min

(∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi , max{tij : xij > 0}

)
s.t.:

∑
i∈I

xij = 1, ∀j ∈ J,

xij − yi ≤ 0, ∀i ∈ I, j ∈ J,
max{tij : xij > 0} ≤ ε,

(xi, yi) ∈ Xi, ∀i ∈ I,
y ∈ Y .

The branch–and–cut algorithm used to solve this problem is implemented as a best first
search. A node in the branching tree is pruned if the node is LP–infeasible or if a lower
bound, say LB, is strictly greater than the incumbent, z∗1 (tolerances are used to ensure
numerical stability). If, on the other hand, LB ≤ z∗1 , it is necessary to distinguish between
two different cases.. In the first case, when the node is integer feasible, a single child
node is created by adding the branching constraints xij = 0 for all i ∈ I and j ∈ J where
tij ≥ maxi∈I,j∈J{tij : x∗ij > 0}. In the second case, when the node shows a fractional LP
solution, the node is separated using a variable dichotomy by selecting an integer infeasible
variable and creating two child nodes: one forcing the variable to zero, the other to one.
The constraints described above that force xij to zero in order to improve the bottleneck
objective are added to both child nodes as well. To determine the branching variable, we
adopt the Pseudocost branching rule described in the excellent paper by Achterberg, Koch,
and Martin (2005).

5 Computational results

The purpose of the computational tests is fourfold: first, we examine whether it is worthwhile
to compute a lexicographically optimal solution to the subproblems arising in the ε–
constraint algorithm. Secondly, we examine the extent to which the proposed ε–constrained
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algorithm is efficient for solving different BO–CBLP problems. Next, we test if the
methodology is appropriate for solving these problems. This, is done by comparing the
ε–constrained method to an implementation of the two–phase method. And finally, a
customized solver for the single source capacitated facility location problem is used to test
to which extent such a solver can be used to speed up the computation of the non–dominated
set. In total, 1398 different problems have been solved and four algorithmic approaches
have been tested.

All algorithms have been coded in C++11 and compiled using the GNU GCC compiler
with optimization option O3. All the experiments were carried out on a Fujitsu Esprimo
Q920 desktop with 16GB RAM and a 2.20 GHz Intel Core i7-4785T processor running a 64
bit version of Linux Ubuntu. The lexicographic branch–and–cut algorithm described in
Sections 4.2 and 4.2.1 was coded using the branch– and incumbent callbacks of the C++

API of CPLEX concert technology. The integer feasible solutions are kept in an external
data-structure and CPLEX is then told to reject all solutions such that it does not terminate
when a zero gap is obtained. The ParallelMode switch in CPLEX is set to deterministic.
The absolute and the relative optimality gaps are set to 0.0. All other parameters are at
their default values. The code, instances, and detailed results for each instance are all
publicly available (Gadegaard, Klose, and Nielsen, 2016).

To ease the reading, we summarize our test statistics in Table 1. For all tests except
the ones carried out with the lexicographic branch–and–bound algorithm, we used a time
limit of one hour for the generation of the non–dominated frontier.

5.1 Test classes

We report the results of tests conducted on three different classes of facility location problems
known from the literature. The problem classes are the uncapacitated facility location
problem, and the capacitated facility location problem with and without single-source
constraints. In the following, we give a short description of the three problem classes.

5.1.1 The capacitated facility location problem

The capacitated facility location problem (CFLP) is a widely studied combinatorial opti-
mization problem. It consists of opening a set of facilities and assigning demand points
to these facilities in such a way that all capacities are respected and the cost of assigning
demand points and opening facilities is minimized. The CFLP assumes that

1. Each demand point has a fixed and known demand, dj > 0.

2. Each facility has a fixed and known capacity, si > 0, which must be respected.

3. Each customer does not need to be assigned to a single facility; its demand can be
split between several open facilities.

4. The cost of assigning a customer j to facility i depends linearly on the fraction of the
demand dj transported on the link (i, j).
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Table 1: Description of the column headings

Heading Description

# Number of instances over which the averages are taken
in the corresponding row.

Size Displays the size of the instances of the corresponding
row as |I| × |J |.

Time Reports the average time consumption in CPU sec-
onds for calculating the entire frontier.

% times Average of the percentage CPU time[ε−alg]
CPU time [two-phase method]

100.

∆z2 Reports the average difference in the second co-
ordinate of the lexicographic minima. Note that
∆z2 + 1 gives an upper bound on the number of
non–dominated outcomes.

|ZN | Reports the average number of non–dominated solu-
tions for the instances of the corresponding row.

N Contains the average number of dominated solutions
generated by the algorithm. That is, the number of
unnecessary iterations of the ε–constrained algorithm.

|ZN |P2/|ZN |P1 Reports the average ratio between the points found in
phase two of the two–phase method and those found
in phase one.

Superscript Indicates the number of instances of that particu-
lar (row,column)–combination could be solved within
one hour of computation time. If no superscript, all
instances were solved.

— Indicates that none of the instances of that particular
(row,column)–combination could be solved within one
hour of computation time.
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This leads to the set of possible assignments, Xi, being defined as

Xi = {(xi, yi) ∈ [0, 1]|J | × {0, 1} :
∑
j∈J

djxij ≤ siyi}

The set Y is equal to {y ∈ {0, 1}|I| :
∑

i∈I siyi ≥
∑

j∈J dj}. The constraints xij − yi ≤ 0
and

∑
i∈I siyi ≥

∑
j∈J dj are implied by the other constraints, but they often strengthen

the LP relaxation. We denote the BO–CBLP arising from the CFLP the capacitated
bi–objective cost-bottleneck location problem (capacitated BO–CBLP). The instances for
the capacitated BO–CBLP are a subset of the test bed created for the paper Klose and
Görtz (2007) consisting of 45 instances ranging from 100 customers and 100 facility sites to
200 customers and 200 facility sites.

5.1.2 The uncapacitated facility location problem

The uncapacitated facility location problem (UFLP) is very similar to the CFLP. As the
name suggests it is a version of the CFLP where all facilities have sufficient capacity to
potentially serve all demand points. Therefore, no additional restrictions on the assignments
are needed and the UFLP can be defined by the sets Xi given by

Xi = R|J |+1.

As there is no restriction on the number of facilities to be open in a feasible solution
either, we have Y = {0, 1}|I|. We denote the BO–CBLP arising from the UFLP the
uncapacitated bi–objective cost–bottleneck location problem (uncapacitated BO–CBLP).
For the uncapacitated BO–CBLP we use a slightly larger subset of the instances created by
Klose and Görtz (2007) consisting of 60 instances ranging in size from 100 customers and
100 facilities to 100 customers and 500 facility sites.

5.1.3 The single source capacitated facility location problem

The single source capacitated facility location problem (SSCFLP) is also a variant of the
CFLP where each demand point has to be assigned to exactly one open facility. The
SSCFLP can be described in terms of the general facility location problem (1) by setting

Xi = {(xi, yi) ∈ {0, 1}|J |+1 :
∑
j∈J

djxij ≤ siyi},

and the extra requirement on the y-variables is given by

Y = {y ∈ {0, 1}|I| :
∑
i∈I

siyi ≥
∑
j∈J

dj}.

Note that the constraint defining the set Y and the constraints xij − yi ≤ 0 are redundant
as was the case for the capacitated BO–CBLP. Note that even the feasibility problem for
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the SSCFLP is NP–hard, and that the constraint
∑

i∈I siyi ≥
∑

j∈J dj is not a sufficient
condition for a feasible solution to exist. We denote the resulting bi–objective location
problem the single source capacitated bi–objective cost–bottleneck location problem (single
source capacitated BO–CBLP).

In order to test the algorithms, we include the test bed proposed in Holmberg, Rönnqvist,
and Yuan (1999) that consists of 71 instances as well as 57 instances from the testbed used
in Dı́az and Fernández (2002).

5.2 Cost structures

We use the cost matrix and cost vector provided by the instances for the travel costs and
the fixed opening costs, respectively. Regarding the travel times we generate three new
instances for each instance with travel costs defined as follows:

1. tij = cij. This suggests that travel time is equivalent to travel distance/cost. A plot
of this cost structure, here referred to as C1, is provided in Figure 1(a).

2. tij = max{0, cij + U(−d, d)}. Here U(k1, k2) denotes a discrete uniform distribution
on the interval [k1, k2]. This implies that travel times are positively correlated with
the travel cost, but that there is some noise which increases (decreases) the travel
time for some distances. This is, for example, the case in geographically challenging
countries like Denmark. A plot of cost structure C2 is given in Figure 1(b).

3. Finally, we generate the tij’s such that corr(tij, cij) < 0, suggesting that large values
of cij lead to small values of tij and vice versa. Such instances occur in e.g. supplier
selection problems (see Current and Weber (1994) for more on location problems
used in supplier selection problems). One can think of cij as the cost of procuring the
required amount per period of product j from supplier i, where fi is a fixed cost of
placing an order, whilst tij is the delivery time. This model then minimizes total cost
and the time until the last order arrives. We have generated the travel times in the
following way: let Cmax and Cmin be the largest and the smallest assignment costs,
respectively. Then

cij <
Cmax − Cmin

2
⇒ tij = U(Cmax + Cmin − cij, Cmax)

cij ≥
Cmax − Cmin

2
⇒ tij = U(Cmin, Cmax + Cmin − cij)

The cost structure C3 is illustrated in Figure 1(c).

5.3 Performance of the lexicographic branch–and–bound approach

We carried out the experiments for the lexicographic branch–and–bound procedure only
for the capacitated BO–CBLP as this problem exhibits characteristics of all three problem
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cij

tij

(a) Cost structure C1.

cij

tij

(b) Cost structure C2.

cij

tij

(c) Cost structure C3.

Figure 1: A plot of the three different cost structures for the assignment of customers to
facilities.

Table 2: Results obtained using the lexicographic branch–and–bound algorithm.

Time

# Size C1 C2 C3

R = 3
5 100x100 1101.34 1865.48 —
5 100x200 1945.25 — —

R = 5
5 100x100 5242.64 — 5817.79

R = 10
5 100x100 7274.67 — 6137.56

R =
∑

i∈I si/
∑

j∈J dj
Ci = cost structure i = 1, 2, 3

classes, and only the locational decisions, the y–variables, need to be integer. We found
that only some of the smaller problems could be solved directly using the lexicographic
branch–and–bound algorithm. As can be seen in Table 2 we succeeded in solving some
problems with 100 facility sites and up to 200 customers. It is quite obvious that when
the ratio between the total capacity and total demand becomes larger, the lexicographic
branch–and–bound algorithm becomes more time consuming and less effective. This seems
to be due to the larger number of feasible solutions to the problems, as the algorithm has a
very hard time fathoming branching nodes after branching on integer feasible nodes. When
we increase the size of the instances, the time consumption increases drastically. We were
not able to solve larger instances as the branching tree became too large to fit in memory.
The implemented lexicographic branch–and–bound algorithm thus seems unsuitable as
a solution procedure for these problem types. Even though no weakly efficient solutions
are generated, enumerating all optimal solutions of the subproblems of the ε–constrained
algorithm becomes prohibitive even for smaller problems. Therefore, we did not perform
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Table 3: Summary of the results obtained for the capacitated BO–CBLP.

Time ∆z2 |ZN | N

# Size C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

R = 3
5 100× 100 17.91 81.24 45.35 34.80 117.20 32.60 8.20 43.00 33.60 0.00 0.00 0.00
5 100× 200 68.92 243.62 130.02 29.40 74.40 31.00 13.40 44.80 32.00 0.00 0.00 0.00
5 200× 200 291.73 775.31 285.59 37.00 91.60 34.80 18.80 53.40 35.80 0.00 0.00 0.00
R = 5
5 100× 100 52.24 150.11 85.05 53.00 90.40 36.40 20.80 50.60 35.40 0.00 0.00 0.00
5 100× 200 122.42 569.50 353.63 39.80 117.00 33.80 19.40 64.80 34.80 0.00 0.00 0.00
5 200× 200 437.54 1163.85 425.62 39.60 82.60 32.40 21.20 60.80 33.40 0.00 0.00 0.00
R = 10
5 100× 100 67.89 166.90 213.00 53.00 82.60 37.20 23.80 38.20 38.00 0.00 0.00 0.00
5 100× 200 231.57 893.594 2521.073 67.60 82.60 32.20 34.00 51.80 33.20 0.00 0.00 0.00
5 200× 200 384.43 1070.58 584.13 55.80 111.20 27.60 22.00 64.20 36.00 0.00 0.80 0.00

R =
∑

i∈I si/
∑

j∈J dj
Ci = cost structure i = 1, 2, 3

further tests with the lexicographic branch–and–bound algorithm, and the following results
are carried out using CPLEX as a single objective solver for the subproblems.

5.4 Performance of the ε–constrained algorithm

In this section we report the results obtained with the ε–constrained algorithm using
CPLEX as a single objective solver for the subproblems arising in the ε–algorithm described
in Algorithm 2.

5.4.1 Results for the capacitated BO–CBLP

We report the results obtained when applying the ε-algorithm to the 45 instances in the
capacitated BO-CBLP class that could be solved within one hour of computation time.
Table 3 shows that problems of up to 200 facilities and 200 customers could be solved.
Furthermore, the number of non-dominated solutions does not vary much within each cost
structure, but substantial variations are seen between cost structures: when considering
the cost structure C2 many more non–dominated points are generated compared to C1
and C3. Intuitively, one would expect cost structure C3 to produce more non–dominated
points as the coefficients are negatively correlated. However, when we divide the range of
the coefficients tij into three equal segments, it turns out that for the cost structure C3,
about two thirds of the entries in the travel time matrix lie in the largest third. This means
that many variables are fixed in the first couple of iterations. Thus, producing solutions
improving the center/bottleneck objective quickly becomes infeasible, implying smaller
values of |ZN | for this cost structure. By comparison, for cost structures C1 and C2, about
60 percent of the travel time coefficients lie in the middle third. This explains why the cost
structure C3 produces less efficient solutions than expected.

Another interesting point in relation to cost structure C3 is that in many cases the upper
bound on the number of non–dominated outcomes given by ∆z2 + 1 is strict. That is, there
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Table 4: Summary of the results obtained for the uncapacitated BO–CBLP.

Time ∆z2 |ZN | N

# Size C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

15 100× 100 19.73 55.96 30.18 84.53 137.87 34.73 27.00 57.33 35.20 0.07 0.40 0.00
15 100× 200 74.71 227.93 145.45 77.33 122.20 32.33 27.67 62.87 33.33 0.00 0.33 0.00
15 200× 200 459.46 1190.83 791.66 67.80 117.93 34.07 39.27 82.00 35.07 0.00 0.53 0.00
15 500× 500 402.88 1464.44 1043.93 25.47 76.73 29.33 23.13 69.73 30.33 0.00 0.40 0.00

Ci = cost structure i = 1, 2, 3

is almost always a non–dominated solution for each value between zmin
2 = min{z2 : z ∈ ZN}

and zmax
2 = max{z2 : z ∈ ZN} of the bottleneck objective. This seems to be due to

the antagonistic relationship between the objectives when the coefficients cij and tij are
negatively correlated: The cost objective tries to pick the assignments with small values of
cij resulting in long travel times for that assignment.

Note that strikingly few weakly efficient solutions are generated for all of the three cost
structures. The low numbers of weakly efficient solutions confirm the suitability of the
ε–constraint approach for these cost–bottleneck location problems.

5.4.2 Results for the uncapacitated BO–CBLP

We were able to solve slightly larger problems of the uncapacitated BO–CBLP class compared
to the capacitated version. This means that instances ranging from 100 facilities and 100
customers to instances with 100 facilities and 500 customers were solved to optimality. As
there is no capacity limit on the facilities in this problem type, the instances are grouped
by size only.

In Table 4, we see the same pattern as for the capacitated BO–CBLP, namely that the
cost structure C2 yields larger values of |ZN |. And again, the number of non–dominated
outcomes in cost structure C3 reaches the upper bound ∆z2 + 1 in most of the instances.
Furthermore, a slightly higher number of non–dominated solutions is generated compared
to the capacitated BO–CBLP. This phenomenon was expected as there is no capacity
constraints to conflict with the fixation of assignment variables.

The reader should again note the remarkably small number of weakly efficient solutions
which underpins the appropriateness of the ε–constraint approach.

5.4.3 Results for the single source capacitated BO–CBLP

The 71 problems from Holmberg et al. (1999) are divided into five subsets and the 57
instances of Dı́az and Fernández (2002) are divided into 7 subsets based on the dimensions
of the problems. Table 5 summarizes the results obtained for the single source capacitated
BO–CBLP.

As opposed to the capacitated and the uncapacitated cost-bottleneck location problems,
the size of ZN is significantly larger for the instances with negatively correlated travel costs
and travel times compared to the two other cost structures. The number of weakly efficient
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Table 5: Summary of the results obtained for the single source capacitated BO–CBLP.

Time ∆z2 |ZN | N

# Size C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Intances from (Holmberg et al., 1999)
12 10× 50 0.13 0.42 8.75 60.42 161.83 574.25 3.75 9.92 137.33 0.00 0.08 0.08
12 20× 50 0.45 1.08 44.21 93.17 142.00 571.25 12.08 16.00 172.33 0.00 0.00 0.33
16 10× 90† 0.93 3.50 46.22 53.20 81.27 143.93 10.27 15.40 93.53 0.00 0.07 0.47
15 30× 150 0.80 10.42 16.87 0.00 162.06 42.38 1.00 25.19 43.38 0.00 0.44 0.00
16 30× 200 13.10 41.22 957.8615 88.44 176.00 335.69 23.25 53.00 313.80 0.19 0.13 0.27

Instances from Dı́az and Fernández (2002)
6 10× 20 0.48 0.72 4.01 31.83 43.00 83.33 4.33 7.67 33.67 0.00 0.00 0.17
11 15× 30 2.19 3.02 16.67 32.27 39.36 88.82 10.45 13.45 45.73 0.00 0.09 0.18
8 20× 40 4.93 7.12 51.78 25.38 34.25 93.29 12.00 15.00 59.25 0.00 0.00 0.00
8 20× 50 372.47 353.99 45.526 29.50 40.00 92.33 12.50 18.25 64.33 0.13 0.13 0.67
8 30× 60 27.41 49.62 153.80 33.25 39.88 94.63 17.67 23.78 74.11 0.22 0.44 0.33
8 30× 75 84.557 225.387 1407.97 28.00 44.50 94.60 16.00 28.14 78.43 0.14 0.00 0.57
8 30× 90 492.08 706.926 220.436 25.38 30.50 95.33 15.00 17.00 81.17 0.13 0.17 0.17

† These instances ranges from 10× 90 to 30× 70.
Ci = cost structure i = 1, 2, 3

solutions described in column N is again remarkably small, which suggests that the problem
instances for the single source case also only have a few alternative optimal solutions and
that, therefore, the ε–constraint method is a well–suited approach.

It is interesting to note, that for the Holmberg et al. instances of size 30× 150, only one
efficient solution is found for all of the 15 instances with cost structure C1. This happens,
because the cij ’s are relatively large compared to the fixed opening costs, fi, leading to more
facilities being open in an optimal solution to the minisum problem. As the travel time
coefficients tij = cij in cost structure C1, the cost objective and the bottleneck objectives
are not in conflict at all, and hence, the optimal solution to the cost objective, turns out to
be optimal for the bottleneck objective as well.

5.5 Comparison with the two–phase method

In order to validate the effectiveness of the ε–constrained method proposed in this paper, we
have implemented a two–phase method for solving the BO–CBLP as well. We have chosen
to implement this solution methodology as it is probably the most widely used solution
method for bi–objective combinatorial optimization next to the ε–constrained method (for a
thorough treatment of two–phase methods the reader is referred to Przybylski, Gandibleuz,
and Ehrgott (2011) and references therein).

In the first phase of the two–phase method, the set ZsN is generated by solving weighted
sum scalarized versions of the BO–CBLP for different weight vectors. Phase two consists of
a method capable of generating the remaining non–dominated outcomes, ZnN . We have
implemented the so–called “Perpendicular Search Method” (PSM) suggested by Chalmet,
Lemonidis, and Elzinga (1986) for generating the non–extreme supported non–dominated
outcomes. Contrary to the ε–constrained method, the PSM algorithm computes no weakly
non–dominated solutions. However, similar to the ε–constrained method the implementation
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is straightforward.
To meet the potential critique that the two–phase method is badly implemented, we

here mention that between 99.6% and 100.0% of the running time was spent by CPLEX
solving the subproblems. We also note that a first implementation where the second phase
consisted of ranking solutions using no–good inequalities performed very poorly. Thus, we
chose to implement the PSM method instead.

Using the two–phase method and the PSM method requires the non–linear min–max
objective to be linearized. For the SSCFLP and the UFLP this is easily done by replacing
the objective with a new continuous variable ρ and including the set of constraints:

ρ ≥
∑
i∈I

tijxij, ∀j ∈ J.

For the CFLP, where the xij–variables are continuous, we need to introduce a set of new
binary variables ξij equaling one if and only if xij > 0. The following constraints are then
added to the formulation of the CFLP:

ρ ≥ tijξij, ∀j ∈ J,
ξij ≥ xij, ∀i ∈ I, j ∈ J,
ξij ∈ {0, 1}, ∀i ∈ I, j ∈ J.

The results obtained with the two–phase method has been aggregated in Table 6. If
the algorithm failed to solve all instances corresponding to a row in Table 6 within one
hour of computation time, the number of actually solved instances is indicated in the
“%–time” columns using superscript. It is obvious that the overall performance of the
two-phase method is very poor compared to the ε–constrained method. In fact, the ε–
constrained method is 2 to 160 times faster than the two–phase method on average. For
the uncapacitated as well as for the capacitated BO–CBLP, the relative performance across
the cost structures seems stable. However, for the single source capacitated BO–CBLP,
the ε–constraint algorithm becomes better relative to the two–phase method when the
coefficients cij and tij become negatively correlated. The explanation for this behavior is
easily found in the columns entitled “|ZN |P2/|ZN |P1”. These columns display the ratio
between the number of solutions found in phase one and phase two, respectively. This ratio
increases significantly for most of the instances in cost structure C3 indicating that only
few extreme supported non–dominated outcomes exists for these problems. As this ratio
grows, the two–phase method loses its power as the first phase cannot divide the search
space into sufficiently small regions for the second phase to be effective.

Furthermore, it was only possible to solve the small instances of the capacitated BO–
CBLP and the uncapacitated BO–CBLP. In particular, we cannot solve many of the
capacitated BO–CBLP within one hour of computation time. This is mainly due to the
linearization of the objective function which requires the introduction of |I|× |J | new binary
variables as well as |I| × |J | new constraints. In the linearization of the min–max objective
in the uncapacitated and the single source capacitated BO–CBLP, only one additional
continuous variable and |J | new constraints are needed. Therefore these problems scale
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Table 6: Comparison of the results obtained with the two phase method and the ε–
constrained method.

# Size % time |ZN |P2/|ZN |P1

C1 C2 C3 C1 C2 C3

Capacitated BO–CBLP
R = 3
5 100× 100 0.623 0.471 — 1.16 1.83 —

R = 5
5 100× 100 — — — — — —

R = 10
5 100× 100 1.841 3.831 — 1.22 1.20 —

Uncapacitated BO–CBLP
15 100× 100 3.55 3.56 3.60 2.15 1.96 0.95
15 100× 200 3.33 4.18 2.76 1.61 2.03 0.43

Single source capacitated BO–CBLP
Intances from (Holmberg et al., 1999)
12 10× 50 16.58 18.59 4.75 0.32 1.11 49.72
12 20× 50 11.33 17.07 2.38 0.83 1.67 70.13
16 10× 90† 17.58 12.80 2.07 0.96 1.60 40.15
15 30× 150 38.07 2.91 1.03 0.00 2.46 8.16
16 30× 200 1.19 1.12 — 2.27 4.25 —

Intances from (Dı́az and Fernández, 2002)
6 10× 20 8.51 8.47 10.46 0.25 0.62 5.63
11 15× 30 14.63 15.85 4.72 0.96 1.53 7.61
8 20× 40 0.72 0.84 3.995 0.97 1.03 6.79
8 20× 50 12.016 15.825 8.973 1.20 1.71 6.98
8 30× 60 55.965 22.554 13.123 1.05 1.18 4.90
8 30× 75 — — — — — —
8 30× 90 — — — — — —

† These instances ranges from 10× 90 to 30× 70.
R =

∑
i∈I si/

∑
j∈J dj

Ci = cost structure i = 1, 2, 3
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Table 7: Summary of the results obtained for the single source capacitated BO–CBLP using
a specialized solver.

Time |ZN | N

# Size C1 C2 C3 C1 C2 C3 C1 C2 C3

12 10× 50 0.26 0.74 11.20 3.75 9.50 104.00 0.00 0.00 0.00
12 20× 50 1.44 3.79 92.81 1.44 3.79 92.81 0.00 0.08 0.17
16 10× 90† 0.73 9.95 12.30 1.00 21.44 22.06 0.00 0.38 0.00
15 30× 150 6.45 12.11 36.58 8.40 12.07 53.60 0.00 0.07 0.00
16 30× 200 33.02 93.63 1086.10 17.44 39.19 161.88 0.00 0.13 0.06

6 10× 20 0.81 1.10 4.12 4.00 6.83 22.50 0.00 0.00 0.00
11 15× 30 3.36 4.69 17.75 7.82 9.55 28.45 0.09 0.18 0.18
8 20× 40 5.78 6.89 34.33 8.25 11.00 34.75 0.00 0.00 0.13
8 20× 50 9.77 14.20 73.01 8.50 11.88 37.25 0.00 0.00 0.13
8 30× 60 19.78 202.18 48.49 11.25 13.75 40.88 0.13 0.00 0.25
8 30× 75 17.51 23.71 159.28 10.00 15.75 42.50 0.00 0.00 0.00
8 30× 90 26.80 33.70 408.78 9.38 12.50 44.25 0.00 0.00 0.13

† These instances ranges from 10× 90 to 30× 70.
Ci = cost structure i = 1, 2, 3

slightly better. It should, however, be very clear, that the two–phase method is also less
suited for these problems than the ε–constraint method.

5.6 Utilizing a customized solver for the single source capaci-
tated BO–CBLP

As a quite efficient solver for the single source capacitated facility location problem was
available to the authors, we wanted to test the capabilities of the method. The specialized
solver is based on a cut–and–solve framework with upper bounds generated using a local
branching heuristic. The lower bound of the problem is strengthened by exact knapsack
separation (the code is available on request). In Table 7, we report the results obtained
using this specialized solver as a black box engine for solving the subproblems arising in
each iteration of the ε–constraint algorithm.

With this solver as black box engine, we were easily able to solve the largest instances
in both of the testbeds and we saved a significant amount of time on the largest instances.
The smaller instances were often solved in less time using CPLEX (see Table 5), however.
This basically boils down to our implementation: The implementation using CPLEX fixes
the xij–variables and resolves the model. This allows CPLEX to utilize basis, incumbent,
and branching information from previous problems. When we use the specialized solver, the
problem is solved from scratch every time, implying that no information from previously
solved problems is used.
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6 Conclusion

In this paper we investigated the very general bi-objective cost–bottleneck location problem.
We proved that even though the problem is NP–hard, it is in fact tractable, in the sense
that the size of the efficient frontier of the bi–objective problem is always limited by a
polynomial in the input size.

We proposed a scheme for solving the BO-CBLP that relies on an ε–constrained method.
We suggested two ways to accommodate the issues of generating weakly efficient solutions
in the ε–constraint: First, a simple change of the cost matrix which is both a necessary
and sufficient condition in order to impose the non–linear ε–constraint on the bottleneck
objective. This implies, the structure of the underlying location problem is kept, and
specialized solvers can be used as a subroutine reducing the computation time. Secondly,
we outlined a scheme based on lexicographic branch–and–bound leading to no weakly
efficient solutions being generated. Furthermore, the number of iterations performed by the
algorithm is bounded by a polynomial in the input size.

Through extensive computational tests we have shown that the proposed method is
capable of efficiently and exactly solving even large BO–CBLPs. In addition, the tests
showed that remarkably few weakly non–dominated solutions exist for these very large
combinatorial optimization problems. This leads to the lexicographic branch–and–bound
based algorithm being very inferior compared to the ε–constrained algorithm. Furthermore,
the proposed algorithm outperforms a two–phase method by several orders of magnitude as
well.

In the appendix we also linked the BO–CBLP to the p–centdian location problem
studied in the literature. We found that the bi–objective p–centdian problem on a graph
might have an uncountably infinite number of Pareto optimal solutions and noted that
given a computationally efficient way of solving the BO–CBLP, the vertex–p–centdian
problem can be solved efficiently for all values of the scaling parameter λ. As many very
efficient algorithms for the p-median problem exist, and the p–centdian on a graph can be
reduced to a discrete problem, our algorithm may constitute an efficient way of solving the
p–centdian problem.

Directions for further research include the testing of the approach for the p–centdian
problem. That is, to investigate if it is in fact possible to solve large problem instances of
the p–centdian problem using an algorithm tailored for the p–median problem. It would also
be interesting to apply the methodology on other types of more complex facility location
models, such as multi–stage and dynamic models.
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Figure 2: Illustrations of the example used in the proof of Theorem 2.

A A link to the weighted p–centdian problem

The p–centdian problem is a combination of the p–median and the p–center problems where
the objective function is a convex combination of the median/cost and the center/bottleneck
objectives. Given a graph G = (V,E), let P (G) be the set of all points on G and d(l, h) be
the distance of a shortest path between points l and h on G (note that the points l and h
might be interior points on the edges of G). Furthermore, given a set of points S ⊆ P (G)
we define d(S, h) = min{d(l, h) : l ∈ S}. In addition, let wj ≥ 0 and vj ≥ 0 be weights of
the node j ∈ V representing, for example, the number of customers or some other measure
of attractiveness of the node j. For 0 ≤ λ ≤ 1 the p–centdian problem may then be stated
as

min λ
∑
j∈V

wjd(S, j) + (1− λ) max
j∈V

vjd(S, j)

s.t.: S ⊆ P (G)

|S| = p

(8)

It has been shown in Pérez-Brito et al. (1997) that there exists a finite set of points on G
containing an optimal solution to the p–centdian. In what follows, the problem

min{

(∑
j∈V

wjd(S, j),max
j∈V

vjd(S, j)

)
: S ⊆ P (G), |S| = p}

is denoted the bi–objective p–centdian problem. It turns out that there can be infinitely
many Pareto optimal solutions to this problem.

Theorem 2. The set of Pareto optimal solutions to the bi–objective p–centdian problem on
a network can be uncountably infinite even for p = 1 when S ⊆ P (G).

Proof. We show the result by giving an example having this property. Consider the graph
given in Figure 2(a), where the edge lengths are given by d(1, 2) = d(2, 1) = 1 and
d(2, 3) = d(3, 2) = 2. Furthermore, suppose p = 1, that is, we want to place one facility on

25



G. The intersection points on G are denoted by n4, n5, and n6. It is easily verified that
locating a facility at node 2 is an optimal solution to the 1–median problem with outcome
vector (3, 2) whereas placing a facility at n5 is an optimal solution for the 1–center problem,
resulting in the outcome vector (3.5, 1.5). As the solutions are unique optimal solutions
they are efficient. In Figure 2(b) the outcome vectors for all points on the graph G have
been plotted. All points on the edge (1, 2) map into the dashed line, while all solutions
on the edges (n5, n6) and (n6, 3) map into the dotted line. However, all points on the edge
(2, n5) map into the solid line which is non–dominated. As there are an uncountable infinite
number of points on this edge, the result follows.

Note that the bi–objective p–centdian is not covered by the general BO–CBLP as the
set I of potential facility sites has to be finite in the definition of the BO–CBLP. However,
letting the sets I and J equal the set V , the (vertex) p–centdian problem (8) can be stated
as the following scalarized version of the BO–CBLP:

min λ

(∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi

)
+ (1− λ) max

i∈I,j∈J
{tij : xij > 0}

s.t.:
∑
i∈I

xij = 1, ∀j ∈ J,

(xi, yi) ∈ Xi, ∀i ∈ I,
y ∈ Y ,

where Xi = {(xi, yi) ∈ {0, 1}|J |+1 : xij ≤ yi}, Y = {y ∈ Rn :
∑

i∈I yi = p}, fi = 0,
cij = wjd(i, j), and tij = vjd(i, j) for all i ∈ I and j ∈ J . In many practical applications it
will suffice to consider placing facilities only at the nodes of the graph. For 0 < λ < 1 a
solution to the vertex–p–centdian problem corresponds to a supported efficient solution of
the BO–CBLP (3) with the sets I, J , Xi, Y and the coefficients fi, cij, and tij defined as
above. This means that solving the BO–CBLP yields a solution to the vertex–p–centdian
problem for each value of λ > 0. Most literature considers special structured graphs such
as trees when solving the p–centdian problem. This approach offers a means to solve
the vertex–p–centdian problem for all values of 0 < λ < 1 on a general graph with no
assumption other than that facilities should be located on nodes only.
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