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Abstract:
The recent success of bi-objective Branch-and-Bound (B&B) algorithms heavily relies on the efficient
computation of upper and lower bound sets. These bound sets are used as a supplement to the classical
dominance test to improve the computational time by imposing inequalities derived from (partial)
dominance in the objective space. This process is called objective branching since it is mostly applied
when generating child nodes. In this paper, we extend the concept of objective branching to multi-
objective integer optimization problems with three or more objective functions. Several difficulties
arise in this case, as there is no longer a lexicographic order among non-dominated outcome vectors
when there are three or more objectives. We discuss the general concept of objective branching in any
number of dimensions and suggest a merging operation of local upper bounds to avoid the generation
of redundant sub-problems. Finally, results from extensive experimental studies on several classes of
multi-objective optimization problems is reported.

Keywords: multi-objective combinatorial optimization; multi-objective integer programming; branch
& bound; objective branching; bound sets

1 Introduction

In many real-world problems, often more than one objective need to be optimized. Indeed, a decision
maker may be interested in minimizing one objective, e.g., operational costs, while at the same time
maximizing customer satisfaction. These different objectives are often conflicting, and hence, we
cannot realistically expect to find a single solution that optimizes all objectives simultaneously. Thus,
a set of trade-off solutions should be produced and, for this purpose, a multi-objective optimization
problem must be solved. More precisely, we are interested in generating all rational compromises
between the conflicting objectives of multi-objective integer optimization (MOIP) problems, where all
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variables are integer. In this paper we will consider multi-objective optimization problems with three
or more objective functions that must be optimized simultaneously. A particular type of MOIP, called
multi-objective combinatorial optimization (MOCO) problem, has received a specific attention in the
literature. Also, although most research has focused on bi-objective MOIP problems, the interest in
MOIP problems with more objectives has risen during the last 10-20 years.

The methodology for solving multi-objective optimization problems can be roughly divided into
two main groups: objective space and decision space search algorithms. As the names suggest, the
two methodologies work in the space of the objective functions and the space of the decision variables,
respectively. A rather large body of literature exists on objective space search algorithms. The objective
space search algorithms work by scalarizing the MOIP problem and then solving a series of single
objective optimization problems, thus utilizing the power of modern commercial integer programming
(IP) solvers.

A rather straightforward approach for MOIP problems was proposed by Sylva and Crema (2004).
They solve a series of IPs that becomes more and more constrained as non-dominated outcomes are
generated. The procedure leads to the solution of exactly |Y𝑁 | + 1 single objective IPs where Y𝑁

is the set of non-dominated outcome vectors. Despite its simplicity and low number of IPs solved,
the disjunctive nature of the added constraints makes the IPs excessively hard to solve, even after
generating only a small subset of the non-dominated outcomes.

During the last 10 years, more advanced objective space search algorithms solving more but
easier IPs have been proposed. The interested reader is referred to Ozlen, Burton, and MacRae
(2014) for an algorithm based on recursion that can handle an arbitrary number of objectives; to
Dächert and Klamroth (2015) and Klamroth, Lacour, and Vanderpooten (2015) for a decomposition
into pairwise non-redundant search zones in three and in arbitrary dimensions, respectively. Tamby
and Vanderpooten (2021) developed an efficient strategy to enumerate these search zones using 𝜀-
constraint scalarizations. Finally, Kirlik and Sayın (2014) and Boland, Charkhgard, and Savelsbergh
(2017) proposed methods based on 𝜀-constraint scalarizations in combination with dimension reduction
for the multi and tri-objective cases, respectively, and Boland and Savelsbergh (2016) proposed the
L-shaped search method for problems with three objectives.

One of the main drawbacks of the objective space search algorithms is that an immense amount
of information about the search is lost every time a new IP is solved by the black-box solver, as the
branching trees created by the solver cannot be directly reused after adding constraints on the objective
functions. This problem can be circumvented if the search procedure employs a “one-tree” search
strategy where the method searches for efficient solutions in the decision space instead of searching
for non-dominated outcomes in the objective space.

One of the first Branch-and-Bound (B&B) based algorithms for multi-objective integer program-
ming problems was developed by Klein and Hannan (1982). The algorithm uses post optimality
techniques to solve a series of integer problems all in one tree structure. In the 1980s and 1990s, only a
few papers on multi-objective B&B algorithms were published, and the authors have only been able to
identify the paper by Kiziltan and Yucaoğlu (1983), in which a general B&B framework is developed.
For problem specific procedures based on decision space search algorithms, we refer the reader to
Ramos, Alonso, Sicilia, and González (1998); Ulungu and Teghem (1997, 1995), and Visée, Teghem,
Pirlot, and Ulungu (1998).

During the last 20 years, increasing attention has been given to decision space search methods:
Mavrotas and Diakoulaki (1998) developed a B&B methodology that even allows for some of the
variables to be continuous, and they later refine some parts of the algorithm in Mavrotas and Diakoulaki
(2005). The algorithm is applied to the multi-objective, multi-dimensional knapsack problem in
Florios, Mavrotas, and Diakoulaki (2010). It was later shown by Vincent (2013) that the algorithm by
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Mavrotas and Diakoulaki (1998) is incorrect as it might return dominated solutions that are considered
non-dominated by the algorithm. This problem is remedied for the bi-objective case by Vincent, Seipp,
Ruzika, Przybylski, and Gandibleux (2013). The mixed-integer case was also explored by Belotti,
Soylu, and Wiecek (2013) and Adelgren and Gupte (2021) for the bi-objective case.

The contributions on decision search space algorithms mentioned above all solely rely on variable
branching and use a single ideal/utopian point as the lower bound for pruning nodes in the branching
tree, except Vincent et al. (2013) who test additional lower bound sets, such as the linear and convex
relaxations, and Belotti et al. (2013) and Adelgren and Gupte (2021) who also rely on the use of the
linear relaxation. Sourd and Spanjaard (2008) continue to use branching on single variables as well,
but introduce a bounding procedure that is based on a set of points instead of a single ideal point of
the branching node: the branching node under scrutiny can be fathomed if a hypersurface separates
the set of feasible outcomes in the subproblem from the incumbent set.

This idea is further developed in Stidsen, Andersen, and Dammann (2014) for the bi-objective
case where hyperplanes obtained from solving a weighted sum scalarization of the LP relaxation are
used as a lower bound set. Furthermore, Stidsen et al. propose what they call Pareto branching, which
essentially uses some of the ideas from objective space search algorithms but embed them in a decision
space search strategy. The algorithm is further developed in Stidsen and Andersen (2018) where the
objective space is partitioned in so-called slices that make parallelization possible in completely
non-overlapping subproblems leading to no information sharing between parallel processes.

The concept of Pareto branching is further developed by Parragh and Tricoire (2019) and by
Gadegaard, Nielsen, and Ehrgott (2019) who, independently, propose to partition the outcome space
into disjoint areas defined by local nadir points dominated by a lower bound set. Parragh and Tricoire
propose to generate the extreme supported outcomes of each node and use those outcomes to generate a
lower bound set, whereas Gadegaard et al. use the efficient outcomes of the bi-objective LP relaxation
with additional cutting planes as a lower bound set. Parragh and Tricoire (2019) show that their
algorithm is particularly efficient compared to objective space search algorithms when the polyhedral
description can be significantly improved since in this case, “problem specific” knowledge can be used
throughout the algorithm, whereas objective space methods repeatedly call standard IP-solvers that
solve the IPs from scratch over and over again. For a recent survey on the components of multi-objective
B&B, the reader is referred to Przybylski and Gandibleux (2017).

Recently, attention was given to multi-objective branch-and-bound frameworks. Santis, Eichfelder,
Niebling, and Rocktäschel (2020) and Forget, Gadegaard, and Nielsen (2021) independently developed
a generic linear-relaxation based multi-objective branch-and-bound framework that can handle three
or more objective functions. The main difference lies in the computation of the lower bound set and the
problem class solved. In Santis et al. (2020), they aim at solving mixed-integer convex optimization
problems. In their framework, they solve a single-objective linear program for each local upper bound
for which it is not known whether it is dominated by the linear relaxation. In case they conclude that
the local upper bound is dominated by the lower bound set, the dominance test stops. Otherwise, they
generate a cutting plane that may allow them to detect other not dominated local upper bounds without
solving a linear program. This is an improved version of the implicit lower bound set computation
proposed for the bi-objective case by Gadegaard et al. (2019). In Forget et al. (2021), the focus is on
multi-objective integer linear optimization problems. They explicitly compute the linear relaxation
by using an outer approximation method (see Benson (1998), and Hamel, Löhne, and Rudloff (2013),
Csirmaz (2015), and Löhne and Weißing (2020) for improvements), and accelerate its computation by
warm-starting the outer approximation algorithm using the lower bound set from the father node.

However, none of these methods utilize the information from the objective space in order to speed
up the algorithm, as it is done in most state-of-the-art bi-objective branch-and-bound frameworks.
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Hence, in this paper, we aim at extending Pareto branching to problems with three or more objective
functions. The main contributions of this paper is fourfold:

1. We highlight difficulties and differences that arise when applying objective branching to prob-
lems with an arbitrary number of objective functions, in contrast to the bi-objective case.

2. We introduce the concept of super local upper bounds in order to limit the computation of
redundant LP relaxations and propose an algorithm that computes a uniquely defined set of such
super local upper bounds.

3. A set of useful properties for objective space branching is established, and we show that the
suggested branching scheme satisfies these properties. Hence, we generalize objective space
branching to an arbitrary number of objective functions.

4. The proposed algorithm is evaluated by an extensive computational study based on sets of multi-
objective integer linear optimization problems that exhibit a variety of structural properties.

The remainder of the paper is organized as follows. Preliminary definitions and notation for
multi-objective optimization are given in Section 2. Our multi-objective B&B framework is described
in Section 3. Section 4 outlines the principle of objective branching, presents the difficulties that arise
with three objectives and develops a strategy to compute objective branching in the multi-objective
case. Finally, experiments are provided in Section 5, and a conclusion as well as proposals for further
research are given in Section 6.

2 Definitions and notations

Consider a multi-objective combinatorial optimization problem 𝑃

𝑃 : min{𝑧(𝑥) = 𝐶𝑥 | 𝑥 ∈ X}

with feasible set X = {𝑥 ∈ N𝑛 | 𝐴𝑥 ≧ 𝑏} where 𝑛 is the number of variables, 𝐴 ∈ Z𝑚×𝑛 is a matrix
defining the coefficients of the 𝑚 constraints with right hand side 𝑏 ∈ Z𝑚. The 𝑝 linear objectives are
defined using the matrix 𝐶 ∈ Z𝑝×𝑛 of objective function coefficients. The corresponding image in the
objective space is Y = {𝑧(𝑥) | 𝑥 ∈ X} := 𝐶X. Moreover, let 𝑃𝐿𝑃 denote the linear relaxation of 𝑃

𝑃𝐿𝑃 : min{𝑧(𝑥) = 𝐶𝑥 | 𝑥 ∈ X𝐿𝑃}

with feasible set X𝐿𝑃 = {𝑥 ≧ 0 | 𝐴𝑥 ≧ 𝑏}.
Since there are several objective functions, binary relations to compare vectors need to be intro-

duced. Let 𝑦1, 𝑦2 ∈ R𝑝, then 𝑦1 ≦ 𝑦2 (𝑦1 weakly dominates 𝑦2) if 𝑦1
𝑘
≤ 𝑦2

𝑘
, ∀𝑘 {1, ..., 𝑝}. Moreover,

𝑦1 ⩽ 𝑦2 (𝑦1 dominates 𝑦2) if 𝑦1 ≦ 𝑦2 and 𝑦1 ≠ 𝑦2. Finally, 𝑦1 < 𝑦2 (𝑦1 strictly dominates 𝑦2) if
𝑦1
𝑘
< 𝑦2

𝑘
, ∀𝑘 ∈ {1, ..., 𝑝}. Furthermore, for 𝑥 ∈ X, we say that 𝑥 is efficient if there is no 𝑥′ ∈ X such

that 𝑧(𝑥′) ⩽ 𝑧(𝑥), and 𝑥 is weakly efficient if there is no 𝑥′ ∈ X such that 𝑧(𝑥′) < 𝑧(𝑥). The set of
efficient solutions is denoted by X𝐸 = {𝑥 ∈ X | 𝑥 is efficient}, and the set of non-dominated points is
denoted by Y𝑁 := 𝐶X𝐸 . More generally, given a set S ∈ R𝑝, the set of non-dominated points of S
will be denoted by S𝑁 = {𝑠 ∈ S | �𝑠′ ∈ S, 𝑠′ ⩽ 𝑠}.
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2.1 Bound sets

Given a S ⊆ R𝑝, it is possible to define lower and upper bound sets for S𝑁 . For this purpose, we use
the definitions proposed in Ehrgott and Gandibleux (2007). Let R𝑝

≧ B {𝑦 ∈ R𝑝 | 𝑦 ≧ 0} and define
R

𝑝

⩾ and R𝑝
> analogously. Given a set S ⊆ R𝑝, we say that S is R𝑝

≧-closed if the set S + R𝑝

≧ is closed,
and R𝑝

≧-bounded if there exists 𝑠 ∈ R𝑝 such that S ⊂ 𝑠 + R𝑝

≧ . Let cl(.) denote the closure operator.

Definition 1. Consider a set of points S ⊆ R𝑝.

• A lower bound setL ⊆ R𝑝 ofS𝑁 is anR𝑝

≧-closed andR𝑝

≧-bounded set such thatS𝑁 ⊂ (L+R𝑝

≧)
and L = L𝑁 .

• An upper bound setU of S𝑁 is an R𝑝

≧-closed and R𝑝

≧-bounded set such that S𝑁 ⊂ cl[R𝑝\(U +
R

𝑝

≧)] andU = U𝑁 .

One specific lower bound set and one specific upper bound set of Y𝑁 are the ideal point 𝑦𝐼 given
by

𝑦𝐼𝑘 = min
𝑦∈Y
{𝑦𝑘},∀𝑘 ∈ {1, ..., 𝑝},

and the nadir point 𝑦𝑁 defined by

𝑦𝑁𝑘 = max
𝑦∈Y𝑁

{𝑦𝑘},∀𝑘 ∈ {1, ..., 𝑝}.

Given two sets S1 and S2, we say that S1 is fully weakly dominated by S2 if ∀𝑠1 ∈ S1, ∃𝑠2 ∈ S2

such that 𝑠2 ≦ 𝑠1. Furthermore, we say that S1 is partially dominated by S2 if S1 is not fully weakly
dominated by S2 and if there exists at least one pair of points (𝑠1, 𝑠2) such that 𝑠1 ∈ S1, 𝑠2 ∈ S2, and
𝑠2 ⩽ 𝑠1.

For the purpose of readability, in the remainder of this paper, we will consider that a lower bound
set for a problem 𝑃′ is the equivalent of a lower bound set for the set of non-dominated points of 𝑃′.

2.2 Search region and local upper bounds

Given an upper bound setU for 𝑃, i.e., an upper bound set of Y𝑁 and a lower bound set L of 𝑃 or a
subproblem of 𝑃, it is possible to determine the search region. The search region defines the region
of the objective space where feasible (for 𝑃 or a subproblem of 𝑃) non-dominated (for 𝑃) points are
located. For this purpose, the theory from Klamroth et al. (2015) will be used and be applied to our
specific framework.

First, note that due to Definition 1, Y𝑁 ⊂ A(U) := cl(R𝑝\(U + R𝑝

≧)) (closure of the hatched
and yellow areas in Figure 1). This region corresponds to the part of the objective space that is not
dominated by any point of the upper bound set. An alternative description can be used by introducing
the concept of local upper bounds.

Definition 2. Let C(𝑢) = 𝑢 − R𝑝

≧ be the search cone given the point 𝑢 ∈ R𝑝. The set of local upper
bounds with respect toU, N(U) is a unique discrete set of points in R𝑝 satisfying

1. A(U) = ⋃
𝑢∈N(U)

C(𝑢) and

2. N(U) is minimal, i.e., there is no 𝑢1, 𝑢2 ∈ N (U), 𝑢1 ≠ 𝑢2, such that C(𝑢1) ⊆ C(𝑢2).
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A(L,U)
L

𝑧1

𝑧 2

U
N(U)

Figure 1: Given a lower bound set L (the line segments) and an upper bound setU, the search region
A(L,U) is given by the closure of the hatched area.

From Definition 2 it follows thatY𝑁 ⊂ A(U) = N(U)−R𝑝

≧ and due to Definition 1 we haveY𝑁 ⊂
L+R𝑝

≧ (hatched and blue areas in Figure 1). Thus,Y𝑁 ⊂ (L+R𝑝

≧)∩ (N (U)−R
𝑝

≧) (closure of hatched
area in Figure 1). In the remainder of the paper, we assume thatU ⊆ Y, thus the upper boundary of
A(U) is dominated, and hence we define the search region asA(L,U) = (L +R𝑝

≧) ∩ (N (U) −R
𝑝
>).

3 General multi-objective Branch-and-Bound framework

In this section, a multi-objective Branch-and-Bound (B&B) framework will be presented. The aim is
to compute the set of non-dominated pointsY𝑁 and a corresponding minimal complete set of efficient
solutions. The framework is mainly based on the framework of Forget et al. (2021), and a general
outline is recalled in this section for the sake of completeness. The theory and methodology presented
in this paper can be applied to any linear problem whose non-dominated set is made of a finite number
of points. This includes for instance mixed-integer problems where continuous variables are present
in at most one objective. However, we restrict ourselves to problems with only integer variables to
avoid an additional layer of notation.

The basic idea of the B&B algorithm is to divide an initial problem 𝑃 that cannot be solved easily
into less complex disjoint subproblems. The algorithm manages a tree data structure in which each
problem (subproblem) is stored as a node. Given a node 𝜂, its corresponding problem will be 𝑃(𝜂),
and its feasible set will be X(𝜂). The linear relaxation of the problem in question will be denoted
by 𝑃𝐿𝑃 (𝜂), and its feasible set will be X𝐿𝑃 (𝜂). The nodes containing the subproblems created from
𝑃(𝜂) will be stored as child nodes of 𝜂. The tree is initialized by creating the root node, that contains
the initial problem 𝑃. The upper bound set (on the set of non-dominated points of the initial problem
𝑃) U is initialized as an empty set. It may be initialized with feasible solutions if some are known
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Algorithm 1 Multi-objective B&B algorithm
Input: 𝑃: A multi-objective combinatorial optimization problem 𝑃.
Step 0: Initialize the B&B tree with a list of non-explored nodes Γ containing the initial problem 𝑃.

Step 1: If Γ = ∅, go to Step 6. Otherwise, choose a node 𝜂 ∈ Γ, and remove it from Γ.
Step 2: Compute a lower bound set L(𝜂) for 𝑃(𝜂).
Step 3: If 𝜂 can be fathomed, go to Step 1. If possible, update the upper bound setU.
Step 4: Split 𝑃(𝜂) by branching in the objective space. New subproblems are obtained.
Step 5: Split each subproblem by branching in the decision space. Create a node 𝜂′ for each
sub-subproblem and add it to Γ. Go to Step 1.
Step 6: End of the Algorithm. Return the upper bound set.
Output: The set of non-dominated points Y𝑁 .

prior to the executing the algorithm, but this will not be the case in this paper. The outline of the
multi-objective B&B is given in Algorithm 1.

In Step 1, we select a node 𝜂 that will be explored. The depth-first and the breadth-first strategies
are the most frequently used strategies for this purpose in the literature on multi-objective B&B
(see Przybylski and Gandibleux (2017)). In practice, there is no best strategy among the two. In fact,
it appears to be very problem specific. For example, Visée et al. (1998) and Vincent et al. (2013)
show that depth-first performs better on their set of instances, whereas Parragh and Tricoire (2019)
and Forget et al. (2021) show that for some problem classes breadth-first performs the best.

At each node 𝜂, the linear relaxation 𝑃𝐿𝑃 (𝜂) will be solved and yields a lower bound set L(𝜂)
for 𝑃(𝜂), the problem included in node 𝜂 (Step 2). In the multi-objective case, this corresponds to
the non-dominated part of a convex polytope of dimension at most 𝑝. In order to compute the linear
relaxation, the algorithm of Forget et al. (2021) will be used. A description ofL(𝜂) +R𝑝

≧ as a collection
of hyperplanes and extreme points is then obtained, which will be of interest for Steps 3, 4, and 5.

In Section 4, we show that it is necessary to compute the dominance test for each local upper
bound, i.e., we cannot stop when we find one local upper bound dominated by the lower bound set.
Furthermore, in Section 4.2, many dominance tests will be performed in order to compute objective
branching. The framework from Santis et al. (2020) involves solving exactly one linear program per
point dominated by the lower bound set, and at most one for the ones that are not dominated, which
would result in a very expensive procedure. Similar tests were performed in Gadegaard et al. (2019)
for the bi-objective case, and the authors show that computing what they called an explicit lower bound
set was significantly more efficient when coupled with objective branching, which is in line with the
results in Forget et al. (2021).

Step 3 uses three procedures to fathom 𝜂. First, if 𝑃𝐿𝑃 (𝜂) is infeasible, 𝑃(𝜂) is also infeasible
(because X(𝜂) ⊆ X𝐿𝑃 (𝜂)). In this case, the node is fathomed by infeasibility. Second, if the lower
bound set consists of a unique extreme point 𝑦 with a pre-image feasible for 𝑃(𝜂), it can be concluded
that any solution found in a subproblem of 𝑃(𝜂) will have an objective vector (weakly) dominated
by 𝑦. Consequently, the subproblem requires no further examination, and the corresponding node
𝜂 is fathomed by optimality. The point 𝑦 is eventually added to the upper bound set U, if it is not
dominated by any point of the upper bound set. In this case, the points of the upper bound set that are
dominated by 𝑦 are deleted as well.

Finally, if none of the two mentioned cases occur, a third fathoming test is used: the dominance
test. The purpose of this step is to detect whether the search region at node 𝜂, denoted byA(L(𝜂),U),
is empty. Indeed, if this is true, this implies that no non-dominated point feasible for the initial problem
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𝑃 can be found in the subproblem 𝑃(𝜂) and thus, it requires no further examination. In this case, 𝜂 is
fathomed by dominance. In order to check that, the dominance test from Forget et al. (2021) will be
used, and it is recalled in Proposition 1 and Lemma 1 (we refer the reader to this paper for the proofs).
Note that as both the variables in feasible solutions and the objective coefficients only take integer
values, the feasible objective vectors will always have integer components as well. Furthermore, since
a local upper bound 𝑢 ∈ N (U) by definition is dominated by some points in the upper bound set,
there is no need to search for a new point that has the same components as 𝑢. Hence, each local upper
bound 𝑢 ∈ N (U) is replaced by a shifted local upper bound 𝑢′ − 𝑒, where 𝑒 = (1, ..., 1) ∈ R𝑝.

Proposition 1. The search region A(L(𝜂),U) is empty if (L(𝜂) + R𝑝

≧) ∩ N (U) = ∅.

By using Proposition 1, it can be concluded that 𝜂 can be fathomed by dominance if there is no
𝑢 ∈ N (U) such that 𝑢 ∈ L(𝜂) +R𝑝

≧ . In order to check the condition, the hyperplane representation of
L(𝜂) +R𝑝

≧ will be used. LetH1, ...,H𝐹 be these hyperplanes. We then haveH 𝑖 = {𝑦 ∈ R𝑝 | 𝑛𝑖𝑇 · 𝑦 =

𝑑𝑖}, where 𝑛𝑖 ∈ R𝑝 is the normal vector of H 𝑖 and 𝑑𝑖 ∈ R. The polytope L(𝜂) + R𝑝

≧ can be defined
as an intersection of closed half-spaces defined byH1, ...,H𝐹 , i.e., we have

L(𝜂) + R𝑝

≧ =

𝐹⋂
𝑖=1
{𝑦 ∈ R𝑝 | 𝑛𝑖𝑇 · 𝑦 ≥ 𝑑𝑖}.

Hence, a point �̃� ∈ R𝑝 is located in L(𝜂) + R𝑝

≧ if for each 𝑖 ∈ {1, ..., 𝐹}, 𝑛𝑖𝑇 · �̃� ≥ 𝑑𝑖 holds true. This
leads to Lemma 1.

Lemma 1. Let H1, ...,H𝐹 be the hyperplane representation of L(𝜂) + R𝑝

≧ , where H 𝑖 = {𝑦 ∈
R𝑝 | 𝑛𝑖𝑇 · 𝑦 = 𝑑𝑖}, 𝑛𝑖 ∈ R𝑝 is the normal vector of H 𝑖 , and 𝑑𝑖 ∈ R. The node 𝜂 can be fathomed by
dominance if for each 𝑢 ∈ N (U), there exists 𝑖 ∈ {1, ..., 𝐹} such that 𝑛𝑖𝑇 · 𝑢 < 𝑑𝑖 .

If 𝜂 could not be fathomed by any of the three procedures described above, the upper bound set
U is updated by considering the extreme points of the lower bound set with a pre-image feasible for
𝑃(𝜂), if any such exists. Let 𝑦 be such a point, 𝑦 is added toU if there is no 𝑢 ∈ U such that 𝑢 ⩽ 𝑦.
Furthermore, all points 𝑢 ∈ U such that 𝑦 ⩽ 𝑢 are deleted from U. Each time the upper bound
set is updated, the set of local upper bounds N(U) is also updated using the procedure proposed in
Klamroth et al. (2015).

Finally, if the node 𝜂 cannot be fathomed, 𝑃(𝜂) will be divided into disjoint subproblems. There
are two ways to create subproblems: in the objective space and in the decision space. The creation
of subproblems in the objective space (Step 4) for an arbitrary number of objectives 𝑝 is the main
contribution of this paper. It has been shown to be very efficient for 𝑝 = 2 (see, e.g., Parragh
and Tricoire (2019), Gadegaard et al. (2019), Stidsen and Andersen (2018)). Its extension to more
objectives is discussed in Section 4, and its impact on a multi-objective B&B algorithm is discussed
in Section 5.

In decision space, the subproblems are created by selecting a free variable 𝑥𝑖 , 𝑖 ∈ {1, ..., 𝑛}, and if
relevant, a branching value 𝑣 ∈ N (Step 5). Then, either constraint 𝑥𝑖 ≤ 𝑣 or constraint 𝑥𝑖 ≥ 𝑣 + 1 is
added to the subproblem. Note that in case 𝑥𝑖 is binary, i.e. 𝑥𝑖 ∈ {0, 1}, this is equivalent to fixing 𝑥𝑖
to 0 or 1. Hence, at a node 𝜂, the problem 𝑃(𝜂) will be split into subproblems 𝑃(𝜂0) and 𝑃(𝜂1) such
that X(𝜂0) = {𝑥 ∈ X(𝜂) | 𝑥𝑖 ≤ 𝑣} and X(𝜂1) = {𝑥 ∈ X(𝜂) | 𝑥𝑖 ≥ 𝑣 + 1}. Consequently, a variable 𝑥𝑖
is said to be free at node 𝜂 if it is not fixed to any specific value due to the branching constraints. The
choice of the free variable to branch on and, if relevant, of the branching value 𝑣 at a given node is
discussed in Section 5.

8



𝑦1

𝑦2

𝑦3

𝑧1

𝑧 2

U
N(U)

Figure 2: A lower bound set (solid and dashed lines) partially dominated by the upper bound set. The
dominated area of the lower bound set is represented by the dashed lines. Three disjoint subproblems
are created in the objective space by applying objective branching on 𝑦1, 𝑦2 and 𝑦3, represented by the
red circles. The constraints added when applying objective branching are represented by the dotted
lines. A new non-dominated point feasible for the corresponding problem can only be found in one of
these subproblems (dotted areas).

4 Objective branching

The principle of objective branching is to apply a branching rule in the objective space in addition to
branching in the decision space. In the bi-objective case, there are several ways to perform objective
branching, for instance slicing (Stidsen and Andersen, 2018; Stidsen et al., 2014). In this study, the
focus will be on objective branching as defined in Stidsen et al. (2014), Gadegaard et al. (2019), and
Parragh and Tricoire (2019) (alternatively called Pareto branching or Extended Pareto branching in
some of these references). The reason for this choice is that the way it is defined naturally extends to
an arbitrary number of objectives 𝑝. The definition is given in Definition 3.

Definition 3. Let 𝑃(𝜂) be the problem at a node 𝜂 of the Branch-and-Bound (B&B) tree and �̄� ∈ R𝑝. It
is said that objective branching is applied on �̄� if the subproblem 𝑃(𝜂, �̄�) B min{𝐶𝑥 | 𝑥 ∈ X(𝜂), 𝑧(𝑥) ≦
�̄�} is created.

Note that in this definition of objective branching, no constraint in the form 𝑧𝑘 (𝑥) ≧ 𝑧𝑘 is used
because such a constraint may result in increasing cpu time.

Now consider the situation depicted in Figure 2 for a node 𝜂 in the branching tree that cannot be
fathomed. One can observe that even though the lower bound set L(𝜂) is not fully dominated by the
upper bound set U, it is still partially dominated, i.e., there exist some 𝑙 ∈ L(𝜂) such that 𝑢 ⩽ 𝑙,
with 𝑢 ∈ U. Hence, there is no need to spend computational efforts (e.g., computing lower bound
sets, searching for new integer points and so forth) to explore the objective space where the lower
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bound set is already dominated. The purpose of objective branching is to discard these regions by
creating subproblems in the objective space. For example, in Figure 2, three subproblems are created
by applying objective branching on the points 𝑦1, 𝑦2 and 𝑦3, resulting in the subproblems 𝑃(𝜂, 𝑦1),
𝑃(𝜂, 𝑦2), and 𝑃(𝜂, 𝑦3) respectively. The corresponding constraints are depicted with dotted lines in
Figure 2. One can observe that by creating these three subproblems, the parts of the objective space
that are already known to be dominated are not included in any of those subproblems and thus they
will not be explored in the sub-tree starting from node 𝜂.

We need to identify a set of desirable properties to find the points of the objective space that are
interesting candidates for objective branching.

Property 1. LetA(L(𝜂, 𝑠),U) denote the search area in problem 𝑃(𝜂, 𝑠) (L(𝜂, 𝑠) is the lower bound
set of problem 𝑃(𝜂, 𝑠)) and 𝜌 be the number of subproblems created in the objective space at node 𝜂.
Desirable properties for objective branching:

1a) inclusiveness: A(L(𝜂),U) ⊆
𝜌⋃
𝑖=1
A(L(𝜂, 𝑠𝑖),U)

1b) sparsity:
𝜌⋂
𝑖=1
A(L(𝜂, 𝑠𝑖),U) = ∅

1c) tightness: as much dominated area as possible is discarded

Property 1a states that each point of the search area at node 𝜂 should be included in at least one of
the subproblems created. In this sense, objective branching should be inclusive. If this is not satisfied,
then a non-dominated feasible point might not be found, as it is not included in any of the subproblems,
and therefore the output of the B&B algorithm (Y𝑁 ) may not be correct. Hence, this is a necessary
condition, and it cannot be relaxed.

Property 1b states that the subproblems created in the objective space should be disjoint. This
property ensures that a non-dominated feasible point cannot be found several times in the tree,
effectively avoiding redundancies.

Property 1c states that as many subproblems as possible should be created. This property implies
that it is preferable to create two small subproblems instead of one large one, if possible. In other
words, as much dominated area as possible should be discarded.

Property 1a and Property 1b are the main focus in the paper, but Property 1c will be briefly
discussed in the rest of this section and in Section 5.

4.1 Complications of going from two to three objectives

Several approaches have been developed in the literature for identifying the subproblems in the
objective space. Stidsen et al. (2014) were the first to propose an approach, which was later improved
in Gadegaard et al. (2019). Since they compute a relaxation of the weighted sum scalarization at
each node (and obtain a point 𝑦, resulting from the single-objective linear program solved in the
scalarization), the authors propose to compute objective branching only when there already exists an
integer solution dominating 𝑦. Such a situation is depicted in Figure 3a. The lower bound set consists
of a unique hyperplane, and the upper bound set contains a single point that partially dominates the
lower bound set. It is possible to create two subproblems that satisfy Property 1 by applying objective
branching on its local upper bounds.

Exactly the same situation is depicted with three objectives in Figure 3b. The lower bound set is
given by the blue hyperplane, and the upper bound set is defined by a unique point (in black). The
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dominated part of the lower bound set is the blue area in the middle. If objective branching is applied
on the local upper bounds (red points) as in the bi-objective case, the subproblems created will have
redundancies (each subproblem defines a grey search area). Every point in the brown areas is included
in the search area of more than one subproblem and thus, it will not satisfy Property 1b.

One might infer from Figure 3a that objective branching can be applied whenever the lower bound
set is split into several connected components, an inference made by Parragh and Tricoire (2019).
They keep track of these connected components and apply objective branching such that each one of
them is included in exactly one subproblem. For example, in Figure 2, there are three non-dominated
connected components in the lower bound set, and objective branching is applied on each one.

However, having the lower bound set split is not a sufficient condition for applying objective
branching with the desirable properties in the three-objective case. For example, in Figure 4, the
lower bound set consists of a unique facet. It is partially dominated by the upper bound set (points
in black). In the bi-objective case, depicted in Figure 4a, it can be observed that there are two
non-dominated connected components. However, as seen in Figure 4b, applying objective branching
on each component like in the bi-objective case will lead to redundancies. In the figure, the two
points on which objective branching is applied are represented by the two squares, and the objective
branching constraints are given by the two cones starting from these points, and we note that one of
the sub-problems is fully included in the other sub-problem.

It is, however, still possible to apply objective branching in some cases, and a way to detect such
cases and to compute the corresponding subproblems is discussed in the next section.

4.2 Objective branching in the multi-objective case

The approach developed in this paper identifies points of the objective space such that if objective
branching is applied on those points, the subproblems obtained satisfy Property 1.

The strategy is based on a merging operation of redundant subproblems, which are defined by
the local upper bounds dominated by the lower bound set L(𝜂). Only the dominated local upper
bounds are considered since the cone C(𝑢) of a local upper bound 𝑢 that is not dominated by L(𝜂)
cannot contain any new point feasible for the subproblem 𝑃(𝜂). Thus, there is no need to search for
any feasible point in this area. Hence, these cones are discarded and only the dominated local upper
bounds are kept for the merging operation.

Thus, at node 𝜂, a set of dominated local upper bounds

D(𝜂) = {𝑢 ∈ N (𝑈) | ∃ 𝑙 ∈ L(𝜂), 𝑙 ⩽ 𝑢}

is obtained, and the subproblems will be computed with this set as input. Note that in order to obtain
D(𝜂), the algorithm has to check whether each local upper bound is dominated at each node or not.

4.2.1 Merging operations on local upper bounds

As explained in Section 4.1, one of the most challenging difficulties of objective branching in the
multi-objective case is to create subproblems that are pairwise disjoint. Let 𝑠1, 𝑠2 ∈ R𝑝 denote two
points on which objective branching will be applied. In order to detect whether the subproblems
𝑃(𝜂, 𝑠1) and 𝑃(𝜂, 𝑠2) have redundancies, the notion of an intersection point, defined in Definition 4,
will be used.

Definition 4. Let 𝑠1, 𝑠2 ∈ R𝑝 be two points of the objective space. The intersection point 𝑠𝐼 of 𝑠1

and 𝑠2 is the point that yields 𝑠𝐼
𝑘
= min(𝑠1

𝑘
, 𝑠2

𝑘
), ∀𝑘 ∈ {1, ..., 𝑝}. The cone C(𝑠𝐼 ) will be called the

intersection cone.
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𝑧1

𝑧 2

(a) Bi-objective case: The dominated part of the lower
bound set is represented by the dashed line. When ob-
jective branching is applied on each local upper bound,
the hatched search areas satisfy Property 1.

(b) Three-objective case: The dominated part of the
lower bound set is the blue area in the middle (view
from above). When objective branching is applied on
each local upper bound, there are redundancies be-
tween the subproblems (each subproblem defines a grey
search area). Every point in the brown areas is included
in the search area of more than one subproblem.

Figure 3: Objective branching given a single point in the upper bound set (black) and a lower bound
set consisting of a single hyperplane. Objective branching is applied on each local upper bound point
(red). An interactive plot of Figure 3b can be seen in Forget et al. (2020a).

In particular, C(𝑠𝐼 ) = C(𝑠1) ∩ C(𝑠2). Hence, the intersection cone contains all the points of the
objective space that are contained in both 𝑃(𝜂, 𝑠1) and 𝑃(𝜂, 𝑠2). Thus, if the intersection point 𝑠𝐼 is
dominated by L(𝜂), there may exist feasible points that are in C(𝑠𝐼 ), i.e., included in both 𝐶 (𝑠1) and
𝐶 (𝑠2) and consequently, the subproblems created from 𝑠1 and 𝑠2 are not disjoint.

In this case, the subproblems will be merged. For this purpose, the concept of super local upper
bounds is now introduced and defined in Definition 5. They can be seen as merged local upper bounds.

Definition 5. Consider a set of local upper bounds 𝑢1, ..., 𝑢ℎ ∈ D(𝜂), with ℎ ∈ N\{0}. The point
𝑠 ∈ R𝑝 is a super local upper bound of the local upper bounds 𝑢1, ..., 𝑢ℎ if 𝑠𝑘 = max

𝑖∈{1,...,ℎ}
𝑢𝑖
𝑘
,

∀𝑘 ∈ {1, ..., 𝑝}. Furthermore, if a local upper bound 𝑢 ∈ D(𝜂) satisfies 𝑢 ⊂ C(𝑠), it is said that 𝑢 is
contained in 𝑠.

A super local upper bound can be seen as the nadir point of the set of points {𝑢1, ..., 𝑢ℎ} as well.
For each super local upper bound 𝑠, we define a set D(𝜂, 𝑠) = {𝑢 ∈ D(𝜂) | 𝑢 ≦ 𝑠} of local upper
bounds contained in 𝑠 at node 𝜂.

To conclude, given two local upper bounds 𝑢1, 𝑢2 ∈ D(𝜂), the goal is to know whether it is
possible to apply objective branching on 𝑢1 and 𝑢2 with the desirable properties, or if only one large
subproblem should be considered by applying objective branching on a super local upper bound 𝑠 that
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(a) Lower bound set (hyperplane) partially dominated
by the upper bound set (black points with red domi-
nance cones). Note the two disjoint search areas above
the hyperplane.

(b) Objective branching applied to 𝑦1 and 𝑦2. One
subproblem is fully included in the other subproblem.

Figure 4: An example of applying objective branching on two disjoint search areas (view from below).
Interactive plots of Figures 4a and 4b can be seen in Forget et al. (2020a)

contains 𝑢1 and 𝑢2. As explained previously, 𝑢1 and 𝑢2 will be merged if their intersection point 𝑢𝐼 is
dominated by the current lower bound set L(𝜂). The corresponding super local upper bound obtained,
𝑠 ∈ R𝑝, is defined by 𝑠𝑘 = max(𝑢1

𝑘
, 𝑢2

𝑘
). All the reasoning presented here can also be used to merge

two super local upper bounds, or a local upper bound and a super local upper bound.

4.2.2 Desirable properties of the set of super local upper bounds

At each node 𝜂, a set of super local upper bounds S will be constructed. Then, for each 𝑠 ∈ S, the
subproblem 𝑃(𝜂, 𝑠) will be created. In order for these problems to satisfy Property 1, a set of desirable
properties for S will be defined here.

Property 2. The desirable properties of a set of super local upper bounds are the following:

2a) ∀𝑢 ∈ D(𝜂), ∃𝑠 ∈ S such that 𝑢 is contained in 𝑠, i.e., 𝑢 ∈ D(𝜂, 𝑠).

2b) If |S| ≥ 2, ∀𝑠1, 𝑠2 ∈ S, 𝑠1 ≠ 𝑠2, the intersection point 𝑠𝐼 of 𝑠1 and 𝑠2 is not dominated by the
lower bound set L(𝜂).

2c) ∀𝑠 ∈ S, ∀𝜖 ⩾ 0, ∃𝑢 ∈ D(𝜂, 𝑠) such that 𝑢 ∉ D(𝜂, 𝑠 − 𝜖).

2d) The size of S is maximal, i.e., we have the maximum number of super local upper bounds in S
that satisfy Property 1a, Property 1b, and Property 1c.

Property 2a implies that each dominated local upper bound is merged in at least one super local
upper bound, or is a super local upper bound itself. For the objective branching, this implies that no
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Algorithm 2 Computation of the set of super local upper bounds
1: Input :
2: L(𝜂) : a lower bound set for node 𝜂
3: D(𝜂) : set of local upper bounds dominated by L(𝜂)
4: Algorithm :
5: S ← D(𝜂)
6: while ∃𝑠1, 𝑠2 ∈ S such that their intersection point 𝑠𝐼 is dominated by L(𝜂) do
7: S ← S\{𝑠1, 𝑠2}
8: 𝑠← Merge(𝑠1, 𝑠2)
9: S ← S ∪ {𝑠}

10: end while
11: return S
12: Output :
13: S : set of super local upper bounds

solution is overlooked. Indeed, all the areas in which non-dominated points can be found are included
in a super local upper bound and thus, Property 1a is satisfied.

Property 2b states that it is not possible to merge two or more super local upper bounds of S with
respect to the rule used. If two super local upper bounds do not respect this property, this means that
the two corresponding subproblems have an intersection point dominated by the lower bound set and
therefore have redundancies, which is the situation that should be avoided. This property ensures that
Property 1b is satisfied.

Property 2c guarantees that the super local upper bounds are as tight as possible and cannot be
moved down, i.e., moved in a direction −𝜖𝑇 = (−𝜖1, ...,−𝜖𝑝) where 𝜖 ⩾ 0 is arbitrarily small, without
losing at least one of the local upper bounds 𝑢 it contains. This ensures that as much of the dominated
region as possible is discarded in the sub-problems created with objective branching. Hence, this
ensures that Property 1c is satisfied.

Property 2d says that it is not possible to split a super local upper bound 𝑠 ∈ S into several smaller
super local upper bounds (i.e., contained in C(𝑠)) without losing one of the previous properties.
Without this property, two subproblems could be created instead of one and thus, more of the dominated
region could be discarded. Hence, this property has to be verified to ensure, once again, that as much
of the dominated region as possible is discarded, and that it maintains Property 1c.

Consequently, obtaining a set S of super local upper bounds that satisfies Property 2 ensures that
as much dominated region as possible is discarded while still satisfying the conditions established in
Property 1.

4.2.3 An algorithm to compute a set of super local upper bounds

In this paragraph we describe the algorithm used to compute the set of super local upper bounds S and
show its correctness. In order to work, the algorithm needs the lower bound set L(𝜂) of the node 𝜂

and the corresponding set of dominated local upper boundsD(𝜂) as input. The algorithm is described
in Algorithm 2. The function Merge(𝑠1, 𝑠2) simply merges 𝑠1 and 𝑠2 as presented in Section 4.2.1.

Theorem 1. Algorithm 2 computes the set of super local upper bounds.

Proof. It will be shown that the output S of this algorithm satisfies Property 2.

14



The set S is initialized with the setD(𝜂). Furthermore, each time a local upper bound 𝑢 is deleted
from S, a super local upper bound that contains 𝑢 is created. Ultimately, each dominated local upper
bound is included in a super local upper bound, and thus Property 2a is satisfied.

Algorithm 2 stops when there is no 𝑠1, 𝑠2 ∈ S such that their intersection point is dominated by
the lower bound set L(𝜂). Hence, by construction, Property 2b is satisfied.

A super local upper bound can be defined as a nadir point of some dominated local upper bounds
(Definition 5). This means that each component (i.e., the value for each objective) of a super local
upper bound has the same value as one of the local upper bounds contained in the super local upper
bound. This implies that it is not possible to reduce the value of a super local upper bound by 𝜖 ⩾ 0.
Otherwise, it would lose one of the local upper bounds it contains. Hence, by construction of the
function Merge, Property 2c is satisfied.

In order to violate the Property 2d, two super local upper bounds that should not be merged would
have been merged during the computation. However, this never happens since two super local upper
bounds are merged only when their intersection point is dominated by the lower bound set. In other
words, they are only merged when the merge respects the rule used. □

In Theorem 2, we establish the complexity of Algorithm 2. To that end, let 𝑓 (L(𝜂)) be the
complexity of checking whether a point is dominated by the lower bound set L(𝜂).

Theorem 2. Algorithm 2 runs in 𝑂 ( |D(𝜂) |3 · 𝑓 (L(𝜂))).

Proof. If no pair of super local upper bounds is merged during the main loop, then the algorithm stops.
When two super local upper bounds are merged, they are deleted, and a single super local upper bound
is constructed instead. At each step, the size of S is therefore reduced by 1. Thus, at most |D(𝜂) | − 1
iterations of the main loop occur.

Each time the algorithm enters its main loop, it needs to identify a pair to merge. For this purpose,
a simple pairwise comparison of each element of S𝑡 can be done, where S𝑡 is the set S at iteration 𝑡

of Algorithm 2. This can be achieved in 𝑂 ( |S𝑡 |2). However, at each step, the size of S𝑡 is reduced.
Since S0 is initialized to D(𝜂), the complexity of this operation becomes 𝑂 ( |D(𝜂) |2), and this is an
upper bound on the computational complexity.

To conclude, we need at most |D(𝜂) |3 pairwise comparisons (this bound is not tight), and each
pairwise comparison involves a dominance test. Algorithm 2 consequently runs in 𝑂 ( |D(𝜂) |3 ·
𝑓 (L(𝜂))), and this bound is not tight either. □

4.2.4 Implications of Property 2

Let S denote a set of super local upper bounds satisfying Property 2.

Proposition 2. Suppose that |S| ≥ 2 and let 𝑠1, 𝑠2 ∈ S, 𝑠1 ≠ 𝑠2, be two super local upper bounds.
For any pair 𝑢1 ∈ D(𝜂, 𝑠1), 𝑢2 ∈ D(𝜂, 𝑠2), the intersection point 𝑢𝐼 of 𝑢1 and 𝑢2 is not dominated by
the lower bound set L(𝜂).

Proof. The point 𝑠𝐼 (intersection point of 𝑠1 and 𝑠2) is not dominated by the lower bound set since
𝑠1, 𝑠2 ∈ S and S satisfies Property 2b. Furthermore, by Definition 5, 𝑠1

𝑘
≥ 𝑢1

𝑘
and 𝑠2

𝑘
≥ 𝑢2

𝑘
,

∀𝑘 ∈ {1, ..., 𝑝}. Hence, 𝑢𝐼
𝑘
= min{𝑢1

𝑘
, 𝑢2

𝑘
} ≤ min{𝑠1

𝑘
, 𝑠2

𝑘
} = 𝑠𝐼

𝑘
, ∀𝑘 ∈ {1, ..., 𝑝}. In other words,

𝑢𝐼 ≦ 𝑠𝐼 . Thus, since 𝑠𝐼 is not dominated by the lower bound set, 𝑢𝐼 is not dominated by the lower
bound set either. □
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Lemma 2. Let 𝑠 ∈ S be a super local upper bound such that |D(𝜂, 𝑠) | ≥ 2. For any 𝑢 ∈ D(𝜂, 𝑠),
there exists 𝑢′ ∈ D(𝜂, 𝑠), 𝑢 ≠ 𝑢′, such that the intersection point of 𝑢 and 𝑢′ is dominated by the lower
bound set L(𝜂).

Proof. Suppose that there exists 𝑢 ∈ D(𝜂, 𝑠) such that there exists no distinct 𝑢′ ∈ D(𝜂, 𝑠) such that
their intersection point is dominated by the lower bound set. Then it is possible to split 𝑠 into two super
local upper bounds, 𝑠1 and 𝑠2, such thatD(𝜂, 𝑠1) = {𝑢} andD(𝜂, 𝑠2) = D(𝜂, 𝑠)\{𝑢}. The super local
upper bounds 𝑠1 and 𝑠2 satisfy Property 2a, Property 2b and Property 2c, and therefore Property 2d is
not satisfied. □

Lemma 3. If |S| ≥ 2, there is no 𝑠1, 𝑠2 ∈ S, 𝑠1 ≠ 𝑠2, such that D(𝜂, 𝑠1) ⊆ D(𝜂, 𝑠2).

Proof. Suppose that there exist 𝑠1, 𝑠2 ∈ S such that D(𝜂, 𝑠1) ⊆ D(𝜂, 𝑠2). Let 𝑠𝐼 be the intersection
point of 𝑠1 and 𝑠2. In particular, by Property 2c, the super local upper bounds are as tight as possible,
and therefore 𝑠1 ≦ 𝑠2. Consequently, 𝑠1

𝑘
≤ 𝑠2

𝑘
, ∀𝑘 ∈ {1, ..., 𝑝} and thus 𝑠𝐼 = 𝑠1.

Now, the fact that 𝑠𝐼 is dominated by the lower bound set has to be shown. By construction of
the super local upper bounds, 𝑠1 ≧ 𝑢, ∀𝑢 ∈ D(𝜂, 𝑠1). Furthermore, by construction again, each local
upper bound in D(𝜂, 𝑠) is dominated by the lower bound set. Thus, 𝑠𝐼 = 𝑠1 is dominated by the lower
bound set, and Property 2b is not satisfied. □

Lemma 4. Let S = {𝑠1, ..., 𝑠𝑡 } be a set of super local upper bounds. The sets D(𝜂, 𝑠1), ...,D(𝜂, 𝑠𝑡 )
form a partition of D(𝜂).

Proof. If |S| = 1, each local upper bound will be included in the unique super local upper bound
𝑠 ∈ S. In particular, D(𝜂, 𝑠) = D(𝜂) in this case and thus, S is a partition of D(𝜂).

If |S| ≥ 2, and since S satisfies Property 2 and in particular Property 2a, it can immediately be
concluded that each 𝑢 ∈ D(𝜂) is included in at least one D(𝜂, 𝑠𝑖), for 𝑖 ∈ {1, ..., 𝑡}.

We now have to prove the following statement: each 𝑢 ∈ D(𝜂) is included in at most one
set D(𝜂, 𝑠𝑖), for 𝑖 ∈ {1, ..., 𝑡}. Suppose that there exists 𝑢 ∈ D(𝜂) such that 𝑢 ∈ D(𝜂, 𝑠1) and
𝑢 ∈ D(𝜂, 𝑠2), 𝑠1, 𝑠2 ∈ S, 𝑠1 ≠ 𝑠2.

Lemma 2 says that there exists 𝑢′ ∈ D(𝜂, 𝑠1) such that the intersection point of 𝑢 and 𝑢′ is
dominated by the lower bound set, which means that they have to be merged. Similarly, there exists
𝑢′′ ∈ D(𝜂, 𝑠2) such that the intersection point of 𝑢 and 𝑢′′ is dominated by the lower bound set and
they have to be merged. It can be noticed that 𝑢′ has to be merged with 𝑢, that has to be merged with
𝑢′′. Consequently, 𝑢, 𝑢′ and 𝑢′′ have to be put in a common super local upper bound.

If 𝑢′, 𝑢′′ ∉ D(𝜂, 𝑠1) ∩ D(𝜂, 𝑠2), the conclusion is that 𝑠1 and 𝑠2 have to be merged, which
contradicts Property 2b. If this is not the case, the same principle applies to 𝑢′ and 𝑢′′. As both
Lemma 2, Lemma 3, and 𝑠1 ≠ 𝑠2 hold true, the situation where 𝑠1 and 𝑠2 have to be merged will always
be reached, and this will contradict Property 2b.

□

Theorem 3. The set S is unique.

Proof. If |S| = 1, then by Lemma 4, S is unique. Now we study the case where |S| ≥ 2.
Let S and S′ be two sets of super local upper bounds satisfying Property 2 and such that S ≠ S′.

Hence, there exist at least two setsD(𝜂, 𝑠) andD(𝜂, 𝑠′), respectively, from S and S′ that are different.
Furthermore, it is always possible to findD(𝜂, 𝑠) andD(𝜂, 𝑠′) such that they have at least one common
element. Otherwise, by re-indexing the sets, the same partition would be obtained, leading to S = S′,
which is a contradiction.

16



Note that since S and S′ are different, then necessarily |D(𝜂, 𝑠) | ≥ 2 and |D(𝜂, 𝑠′) | ≥ 2.
Otherwise, because of this common element 𝑢, we would have D(𝜂, 𝑠) ⊂ D(𝜂, 𝑠′) or D(𝜂, 𝑠′) ⊂
D(𝜂, 𝑠), which is not possible because of Lemma 2. Indeed, if D(𝜂, 𝑠) ⊂ D(𝜂, 𝑠′), then there exists
𝑣 ∈ D(𝜂, 𝑠′) such that 𝑣 ∉ D(𝜂, 𝑠), and it has an intersection point with another local upper bound in
D(𝜂, 𝑠) that is dominated by the lower bound set (Lemma 2), which leads to the conclusion that 𝑠 has
to be merged with another super local upper bound in S (the one that contains 𝑣), which contradicts
the fact that S satisfies Property 2b. Equivalently, the same reasoning can be applied to the case where
D(𝜂, 𝑠′) ⊂ D(𝜂, 𝑠).

This means that there exists 𝑢 ∈ D(𝜂) such that 𝑢 ∈ D(𝜂, 𝑠) and 𝑢 ∈ D(𝜂, 𝑠′) with D(𝜂, 𝑠) ≠
D(𝜂, 𝑠′) and such that:

• ∃𝑣 ∈ D(𝜂, 𝑠) such that 𝑣 ∉ D(𝜂, 𝑠′) and the intersection point of 𝑢 and 𝑣 is dominated by the
lower bound set (because of Lemma 2);

• ∃𝑣′ ∈ D(𝜂, 𝑠′) such that 𝑣′ ∉ D(𝜂, 𝑠) and the intersection point of 𝑢 and 𝑣′ is dominated by the
lower bound set (because of Lemma 2).

By definition, 𝑣 and 𝑢 then have to be merged in the same super local upper bound. Since 𝑣 ∉ D(𝜂, 𝑠′)
andS′ is a partition ofD(𝜂) (Lemma 4), then there existsD(𝜂, 𝑠′) such that 𝑠′ ∈ S′ and 𝑣 ∈ D(𝜂, 𝑠′).
By construction,D(𝜂, 𝑠′) andD(𝜂, 𝑠′) have to be merged, and this contradicts the fact that S′ satisfies
Property 2b. The same reasoning can be applied to 𝑣′ and S. □

4.3 An alternative branching strategy using an upper bound on the objectives

In the previous section, inequalities were derived from the partial dominance of the lower bound set
by the upper bound set and used to create additional subproblems in the objective space. We aimed at
creating a maximum number of subproblems in order to discard as much dominated area as possible,
thereby satisfying Property 1c. More subproblems may obviously lead to more nodes in the branching
tree, and from a practical point of view this may lead to prolonged computation times if the nodes are
not explored sufficiently fast. In this case, a new question arises: is it possible to derive inequalities
from the partial dominance of the lower bound set without generating a large number of subproblems?

This can be achieved by modifying Algorithm 2. At each node 𝜂, by choosing to always merge the
dominated local upper bounds instead of only merging when their intersection point is dominated by
the lower bound set, a unique super local upper bound 𝑠 is always obtained this way. This super local
upper bound actually corresponds to the nadir point 𝑑𝑁 (𝜂) of all the super local upper bounds D(𝜂).
Hence Step 4 of Algorithm 1 becomes add constraints 𝐶𝑥 ≦ 𝑑𝑁 (𝜂) to the sub-problem, and a single
unique child node is created in the branching tree. Next, two child nodes are created due to variable
splitting in the decision space (Step 5). That is, we obtain two disjoint sub-problems with an upper
bound on the objectives.

5 Computational experiments

In this section, we report the results of the computational experiments conducted with the multi-
objective Branch-and-Bound (B&B) algorithm. All algorithms were implemented in C++17. The
experiments were carried out on a computer with an Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz
processor and 32GM of RAM memory, on Windows 10 with a time a limit of one hour (3600 seconds).
The implementation is available at Forget (2021). No parallelization was used in the branch-and-bound
algorithm, and for the LP solver, the default parameters were used.
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When selecting a node to explore (Step 1 of Algorithm 1), a breadth-first strategy is adopted.
Preliminary experiments showed that there was no clear winner between breadth-first and depth-first
strategies for the problem classes that we considered. Breadth-first was chosen as it had the best
average performance over all instances.

The algorithm from Forget et al. (2021) was used for the computation of the linear relaxation at each
node (Step 2 of Algorithm 1). In particular, this algorithm is based on Benson’s outer approximation
algorithm (see Benson (1998), and further improvements in Hamel et al. (2013), Csirmaz (2015),
Löhne and Weißing (2020)). Forget et al. (2021) accelerate the solution process in the specific context
of the B&B by warmstarting the algorithm using the lower bound set from the father node. Only in
the root node, the linear relaxation was computed from scratch as no father node is available. All
single-objective linear programs are solved using CPLEX 12.10.

Preliminary tests were performed to understand if the full lower bound set (i.e. the relaxation)
should be computed at each node. The tests reviled that many potentially non-dominated points are
gathered from the extreme points of the lower bound set. Computations that did not completely
compute the linear relaxation led to many pre-images were the these extreme points was missing and
thus, to upper bound sets of much worse quality. Ultimately, this resulted in worse performances with
respect to CPU time.

The branching variable selected in Step 5 of Algorithm 1 differs depending on whether objective
branching is applied or not. If no objective branching is performed, the algorithm will branch on the
free variable that is the most often fractional among the extreme points of the lower bound set, given
that at least one of the variables takes a fractional value. If no variable takes a fractional value in any
of the extreme points, the variable that differs in value most often (i.e., with the average value closest
to 0.5) is chosen. If objective branching is enabled, the rule is the same, except that a different variable
may be chosen in each subproblem. In the case where objective branching is applied on 𝑠 ∈ R𝑝, only
the extreme points of the lower bound set included in C(𝑠) will be considered. If multiple choices are
possible or if no extreme point is located in C(𝑠), the free variable with the smallest index is chosen.

To test different algorithm configurations, three objective-space-related rules are considered:

• noOB: no objective branching is performed. This is equivalent to skipping Step 4 of Algorithm 1;

• fullOB: as many sub-problems as possible are created in the objective space, but no redundancies
are allowed. This is full objective branching as described using super local upper bounds in
Algorithm 2;

• coneB: no branching is performed in the objective space, but an upper bound on the objectives
is derived from the dominance test. The upper bound is the nadir point of the local upper bounds
dominated by the lower bound set (see Section 4.3). This is referred to as cone bounding. A
single node is created in the branching tree.

The purpose of the computational study is to answer the following questions:

• How do the different algorithm configurations perform, and which configurations perform the
best? In particular, is objective branching worthwhile (Section 5.2)?

• Why does objective branching perform the way it does (Section 5.3)? This includes an analysis
of how an increasing number of objectives affect objective branching.

• What does the structure of the search tree look like when full objective branching is used
(Section 5.4)?
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Table 1: Instances used (600 instances in total).

Class 𝑝a 𝑛b #c

AP 3 100, 225, 400, 625, 900 50
AP 4 25, 100, 144, 225 40
AP 5 25, 36, 49, 64 40
ILP 3 10, 20, 30, 40 40
ILP 4 10, 20, 30 30
ILP 5 10, 20 20
KP 3 10, 20, 30, 40, 50 50
KP 4 10, 20, 30, 40 40
KP 5 10, 20 20
PPP 3 33, 45, 54, 63, 72 50
PPP 4 24, 27, 33, 39, 48, 57 60
PPP 5 15, 18, 24, 36 40
UFLP 3 42, 56, 72, 90 40
UFLP 4 20, 30, 42, 56 40
UFLP 5 12, 20, 30, 42 40
a Number of objectives.
b Variable sizes.
c Number of instances.

• How does the B&B algorithm perform compared to an objective space search algorithm (Sec-
tion 5.5)?

We emphasize that the purpose of this study is to lay the ground for efficient and strong bounding
strategies in multi-objective branch and bound algorithms and hence to initialize a new line of research
in this direction. As a consequence, the focus of our work and of the computational study is on bound
computations rather than on the generation of cutting planes and efficient preprocessing strategies
in the overall branch and bound framework. Nevertheless, we report comparisons with state-of-the-
art objective space search algorithms. These comparisons have to be carefully evaluated. Indeed,
objective space search methods benefit from the great efficiency of MIP solvers like, for example,
CPLEX, that rely on extensive and long-standing algorithmic developments. Depending on the
considered problem class, this can be expected to outplay the potential advantage of multi-objective
branch and bound methods that perform the search in the decision space and thus avoid the repeated
solution of independent 𝜀-constraint IPs.

5.1 Test instances

A total of 600 instances (see Table 1) taken from the multi-objective literature have been used.
Four problem classes are considered: Assignement Problems (AP) from Bektaş (2018), randomly
generated Integer Linear Programs (ILP) and Knapsack Problems (KP) from Kirlik (2014) (online
at Forget, Nielsen, and Gadegaard (2020c)), Uncapacitated Facility Location Problems (UFLP), and
Production Planning Problems (PPP) (online at Forget, Nielsen, and Gadegaard (2020b)). A total of 10
instances are solved for each number of objectives and number of variables. The number of variables
in each problem class was increased until none of the algorithm configurations were able to compute
the non-dominated set within a time limit of 3600 seconds for several instances. Instances with 3, 4
and 5 objective functions are considered.

All instances are converted to minimization problems, meaning that if an objective function 𝑧(𝑥)
should be maximized, −𝑧(𝑥) is minimized instead. Furthermore, all instances have integer coefficients
only. Hence, integer rounding was used in the dominance test, where local upper bounds were
shifted by −1 on each objective; and in the objective branching constraints when computing the linear
relaxation, where 𝐶𝑥 ≦ 𝑠−1 was used instead of 𝐶𝑥 ≦ 𝑠 when objective branching was applied on the
super local upper bound 𝑠 ∈ R𝑝. Note that all configurations were tested both with and without integer
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Figure 5: Number of non-dominated points. One point for each instance is given. Instances that have
not been solved to optimality are illustrated with a different shape. Note that the scale for each sub-plot
is different.

rounding. For ILP, KP, UFLP, and PPP, the benefit of integer rounding was very low (between 0 and
3% of speed-up), whereas it had a larger impact for AP (22% of speed-up in average). This seems to
be correlated with the ranges of the coefficients of the objective functions. Indeed, the coefficients are
in the interval [1, 20] for AP whereas they are in the range [1, 100] or [1, 1000] for the other problem
classes. Moreover, there was no correlation between the percentage of speed-up and the configuration
used for the branch-and-bound.

In Figure 5 the number of non-dominated points are given for each instance. We have increased the
variable size for each problem class until the size becomes so large that some or all instances cannot
be solved within the time limit. The instances which have not been solved to optimality (18%) are
illustrated with a different shape. In general, the number of non-dominated points grows with variable
size (𝑛) and number of objectives (𝑝). Note though that there may be a high variation for fixed 𝑛 and
𝑝. Moreover, the variation grows with 𝑛 and 𝑝. For UFLP, the number of non-dominated points grows
rapidly as a function of variable size which is due to the high percentage of objective coefficients not
dominated by other coefficients.
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Figure 6: CPU time ratio (CPU time divided with the CPU using noOB) for each test instance (points)
together with averages (lines).

5.2 Performance of the different algorithm configurations

A comparison of the different algorithm configurations is given in Figure 6 where the ratio with noOB
as benchmark is plotted. We limit the analysis to the set of instances that were solved to optimality for
all algorithm configurations (75% of the instances). First, observe that the performance of objective
branching (coneB and fullOB) is problem dependent. Full objective branching and cone bounding
perform well for AP, ILP, KP, okay for PPP and poorly for UFLP. Moreover, the variation in performance
is higher for PPP and UFLP. Second, the performance is highly affected by the number of objectives.
For 𝑝 = 3 the CPU time of coneB and fullOB decreases with 22% and 9% compared to noOB,
respectively. But the performance deteriorates as 𝑝 increases: for 𝑝 = 5 the decrease using coneB and
fullOB in the CPU compared to noOB is -4% and -10%, respectively. That is, noOB performs overall
best for 𝑝 = 5. Finally, note that in general, fullOB and coneB perform very similarly. The exception
is for UFLP (and partly PPP), where coneB performs systematically better than fullOB.

Possible reasons for these observations will be elaborated upon in the next sections.

5.3 Objective branching: a closer look

To take a closer look at the different objective branching configurations, we limit the analysis to the set
of instances that were solved to optimality for all algorithm configurations (75% of the instances). In
this section, we aim at understanding the reasons why objective branching performs the way it does.
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Figure 7: Nodes in the branching tree ratio (number of nodes divided with the number of nodes using
noOB) for each test instance (points) together with averages (lines).

The node ratio of the branching tree is depicted in Figure 7. First, observe that using coneB
systematically leads to smaller (or similar) trees compared to noOB. The only impact coneB has on the
sequence of branching decisions compared to noOB, is on which extreme points are considered when
deciding on the next branching variable. This highlights the fact that choosing the next branching
variable based on parts of the objective space where LB set is not dominated by the UB set is a good
strategy for obtaining smaller trees.

Second, observe that fullOB often leads to larger (or similar) trees than noOB for ILP, KP, and
PPP, but instances are solved faster with fullOB. This implies that there are other benefits to objective
branching than just smarter branching decisions when using coneB. Two reasons may be pointed out:

• When using objective branching, we restrict the computation of the lower bound set to a specific
part of the objective space. Hence, contrary to noOB, the computation of lower bound sets is
avoided in areas of the objective space already known as dominated. This leads to smaller lower
bound sets, which is beneficial since computing the linear relaxation is the most time consuming
part (see Forget et al. (2021)).

• The way nodes are fathomed in the tree is significantly impacted by objective branching (either
coneB or fullOB). Figure 8 shows how the nodes are fathomed in proportion to the total number
of leaf nodes. Note that the proportion of nodes fathomed by infeasibility tends to become much
larger when objective branching is used. Fathoming a node by infeasibility is the fastest way to
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Figure 8: Proportion of leaf nodes fathomed by dominance, infeasibility, and optimality.

fathom a node since it occurs in the start when processing a node while fathoming by dominance
or optimality requires to have the lower bound set computed. Hence, leaf nodes can be fathomed
faster when using objective branching.

Although these two reasons may improve performance, there are other mechanisms that may have
a negative impact on performance when using objective branching:

• As presented in Section 4, when using objective branching, it is necessary to check for the
dominance status of every single local upper bound during the dominance test, while it can be
stopped when a dominated one is found with noOB.

• Due to Theorem 2, the cost of computing the super local upper bounds when using fullOB is
𝑂 ( |D(𝜂) |3) where D(𝜂) denote the local upper bounds. That is, the CPU time may increase
if the number of local upper bounds increases. For 𝑝 = 3, the number of local upper bounds
per non-dominated point is bounded (Dächert and Klamroth, 2015). However, no bound is
known when 𝑝 ≥ 4. Even worse, the computational study of Klamroth et al. (2015) showed
that the number of local upper bounds seems to grow exponentially as a function of the number
of objectives for a given number of non-dominated points (approx. 7 local upper bounds per
non-dominated point for 𝑝 = 4 and 32 when 𝑝 = 5).

• Many super local upper bounds may result in a too large number of child nodes when applying
fullOB. For example, fullOB tends to develop significantly larger trees than noOB for UFLP,
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Table 2: Average percentage of nodes, average minimal depth and average and maximum number of
child nodes created when at least two or more child nodes are created due to objective branching.

𝑝a % of nodesb Min depthc Avg-. # nodesd Max # nodese

AP
𝑝 = 3 5.01 3.64 2.66 27
𝑝 = 4 4.08 4.8 2.41 16
𝑝 = 5 3.38 5.3 2.25 8

ILP
𝑝 = 3 2.52 10.41 2.17 11
𝑝 = 4 2.42 9.96 2.27 11
𝑝 = 5 2.09 9.31 2.19 14

KP
𝑝 = 3 4.21 6.52 2.26 16
𝑝 = 4 3.09 6.66 2.24 12
𝑝 = 5 1.76 6.20 2.14 7

PPP
𝑝 = 3 2.25 12.43 2.27 32
𝑝 = 4 2.39 9.67 2.25 50
𝑝 = 5 2.15 6.85 2.33 39

UFLP
𝑝 = 3 5.44 3.59 4.51 157
𝑝 = 4 4.85 5.25 3.52 144
𝑝 = 5 2.58 6.59 2.97 51

a Number of objectives.
b Percentage of nodes where objective branching resulted in two or more child nodes.
c Average minimum depth at which objective branching resulted in two or more child nodes.
d Average number of child nodes created when objective branching resulted in two or more child nodes.
e Maximum number of child nodes created when objective branching resulted in two or more child nodes.

and it appears that the previously enumerated benefits are not enough to compensate for the
higher number of nodes created.

Hence, a high number of non-dominated points may result in a high number of local upper bounds that
are costly to check for dominance and may result in too many child nodes. Moreover, these negative
effects on CPU increase with increasing number of objectives as can be seen in Figure 6 for PPP and
UFLP which indeed are instances with a high number of non-dominated points.

5.4 Branching tree structure when using fullOB

In this section, we investigate the structure of the tree when fullOB is used and we restrict the analysis
to instances for which fullOB was solved to optimality. Branching tree statistics are given in Table 2.

First, observe that on average fullOB separates the problem into two or more disjoint sub-
problems in a very small proportion of the nodes (between 1.8% and 5.4% of the nodes in average).
This suggests that it is often not possible to perform disjoint separation of the objective space using
objective branching. Moreover, given a problem class this proportion tends to decrease as 𝑝 increases.
This suggest that the difficulty of applying objective branching keeps increasing with the number of
dimensions.

Second, an interesting fact is that, unlike in the bi-objective case, objective branching cannot be
applied early in the tree (Parragh and Tricoire, 2019). In general, it requires a higher depth in the
tree before objective branching can be applied. Moreover, this result holds even though preliminary
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Figure 9: Ratios of comparing CPU and nodes in the tree using fullOB as benchmark (in the
denominator when dividing the numbers) for UFLP instances.

experiments showed that for some problem classes (AP, PPP, and UFLP), non-dominated points were
found very early in the tree, and even at the root node. This supports the observation of the difficulties
of applying objective branching with an increasing number of objective functions as presented in
Section 4.1.

Finally, consider the average and maximum number of child nodes created when applying objective
branching. Observe that the average number is very close to the minimum number of nodes created
when applying objective branching (two nodes). That is, often only a few nodes are created when
applying objective branching. However, in a few cases a larger number of child nodes are created (up
to 157 for UFLP). These cases may result in a wide and big tree. Indeed, a possible reason for fullOB
to perform so poorly for UFLP may be that a large number of subproblems are created early in the tree,
resulting in larger sub-trees.

To test how a large number of child nodes affect the branching tree, a new configuration denoted
limitedOB is considered. Here, an upper limit of 5 is used on the number of child nodes created when
applying objective branching. The child nodes are created using Algorithm 2, which upon termination,
merge the super local upper bounds until the number is at most five. The merging operation merges
the two closest super local upper bounds, merges all the super local upper bounds with an intersection
point dominated by the lower bound set, and repeats the process until at most five super local upper
bounds remain.

The performance of limitedOB is shown in Figure 9, where ratios are obtained by dividing the
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numbers for limitedOB with fullOB. Note that using limitedOB reduces the tree size with up to
32% and in general performs better than fullOB. This indicates that having an upper bound on the
number of child nodes created may help reducing the tree size and improve performance for instances
where a high number of child nodes are created.

Any separation in the objective space obtained with Algorithm 2 at a given node is also valid for
any of its child nodes. That is, both fullOB and limitedOB separate the objective space. However,
due to the upper limit on the number of child nodes, the separation for limitedOB is not as tight as for
fullOB. Moreover the separations applied when using fullOB remain valid and may be applied later
in the sub-tree when using limitedOB, i.e. limitedOB may “delay” objective branching to deeper
levels of the tree by applying the separations in smaller steps.

5.5 Comparison with an Objective Space Search algorithm

We now compare the performance of the branch-and-bound algorithm using objective branching to
several Objective Space Search algorithms (OSS). In doing so, we emphasize that this comparison
serves as a proof of concept rather than as a validation of the superiority of our approach. Indeed,
OSS methods are based on the iterative solution of single-objective IPs, for which excellent solvers
are available. Even though our branch-and-bound implementation avoids the repeated consideration
of the same - or very similar - (partial) solutions in the decision space, implementing state-of-the art
preprocessing and cut-generation strategies as used within standard IP-solvers was beyond the scope
of this work, so that OSS methods have a large advantage in this regard.

We base our comparison on two exemplary OSS methods: The C++ implementation of Kirlik
and Sayın (2014), available at Kirlik (2014), and denoted by configuration OSS-KS. In addition, a
C++ implementation of the redundancy avoidance method introduced in Klamroth et al. (2015) and
implemented in Dächert, Fleuren, and Klamroth (2021) is used for comparison, and denoted by con-
figuration OSS-DFK. The authors are aware of other and more recent OSS algorithms, such as, for
example, Bektaş (2018); Holzmann and Smith (2018); Tamby and Vanderpooten (2021). The above
methods were selected for two reasons: OSS-KS is used in almost all comparative studies involving
OSS methods and can thus be seen as a general reference. OSS-DFK implements the idea of redun-
dancy avoidance while keeping the IPs simple and can thus be seen as a good compromise between
IP complexity and the number of required solver-calls. Tamby and Vanderpooten (2021) present an
improved implementation of the same method that uses additional features like, for example, providing
starting solutions to CPLEX and re-ordering the subproblems in a smart way. This clearly leads to
further improvements in running time, however, the general concept is very similar to that of OSS-DFK.
Holzmann and Smith (2018) use weighted Tchebychev scalarizations rather than e-constraint scalar-
izations and present promising results, particularly when using an analogous subproblem structure
as Klamroth et al. (2015), i.e., the same structure as in OSS-DFK. Bektaş (2018) reduces the number
of IPs, however, at the price of solving more complicated IPs that involve disjunctive programming
formulations. Their reported improvements over Kirlik and Sayın (2014) are, however, lower than
those reported in Tamby and Vanderpooten (2021), a method that we mimic here.

The results are given in Figure 10. In general, the OSS algorithms performs better than the B&B
algorithm for 𝑝 = 3. For ILP, KP and PPP, the gap is significant. For UFLP, although OSS is still better
on average, the gap is smaller. For 𝑝 = 4, OSS-DFK is the best configuration. For PPP, a smaller gap
compared to 𝑝 = 3 is observed. This is also observed for 𝑝 = 5, where in fact the branch-and-bound
method appears to be slightly faster than OSS-DFK.

It does not come as a surprise that the OSS algorithm is highly competitive and outperforms
current state-of-art multi-objective B&B algorithms in most cases. It benefits from the power of single-
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Figure 10: Average cpu times, expressed in seconds, in function of the number of variables for each
number of objectives and problem classes. Unsolved instances are included here. Four configurations
are depicted: fullOB, coneB, OSS-DFK, and OSS-KS.

objective MIP solvers, which have improved over decades. Having this in mind, the purpose of this
study is not necessarily to outperform the OSS algorithm, but rather to discuss and thoroughly analyze
the concept of objective branching in a B&B algorithm (that has proven successful for bi-objective
problems) in the multi-objective case. Our aim is that these efforts will result in an advancement of the
development of promising methods that hybridize decision space and objective space search methods.

For increasing number of objectives and number of non-dominated points the B&B algorithm
becomes more competitive. Indeed, UFLP is the problem class with the largest size of the non-
dominated set (2298 on average for 𝑝 = 3 over all instances solved by the branch-and-bound), and this
is where the gap is the smallest. Moreover, PPP records one of the largest number of non-dominated
points (1290 on average) and B&B outperform the OSS algorithms for 𝑝 = 5. This is also visible for
AP with 𝑝 = 3, for which a large number of non-dominated points as well as a smaller gap is recorded.
As a comparison, ILP and KP have 67 and 148 non-dominated points on average, respectively. This
suggests that the branch-and-bound is more likely to be efficient on instances with a large number of
non-dominated points and objectives.
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6 Conclusion

This paper proposes an extension of objective branching, a successful feature of bi-objective B&B,
to the case with more than two objectives (𝑝 ≥ 3), and studies its impact on a B&B algorithm for
multi-objective linear integer programming problems.

First, we highlighted a set of difficulties when extending objective branching from the bi-objective
case to the case with more than two objectives.

Second, in order to overcome these difficulties, a number of desirable properties of objective
branching was exposed, and the concept of super local upper bounds was introduced. The super
local upper bounds were built by merging local upper bounds and were used to define subproblems
satisfying the desirable properties previously established.

Next, the experiments in Section 5 showed that in general, except for UFLP, either full objective
branching or cone bounding performed better, or at least as well as the reference framework without
objective branching. In these cases, full objective branching and cone bounding resulted in similar
cpu times. The largest benefits were recorded for 𝑝 = 3.

Finally, the experiments showed that there was a positive impact on the variable selection when
objective branching or cone bounding was applied, i.e. the algorithm tends to make better branching
decisions. Indeed, solutions that are in the same part of the objective space are more likely to be
similar, and some variables may not be able to take particular values.

Directions for future research include identifying a reduced set of candidates for variable branching,
and to understand what constitutes a good variable to branch on. Moreover, preliminary tests showed
that there is no clear winner between depth and breadth first strategies when selecting a node, and
the difference can be significant. We believe that it would be beneficial for multi-objective branch-
and-bound frameworks to be able to either detect which rule is the best given the instance provided
(without knowing the problem class), or to design an alternative rule that works efficiently for all
problem classes. Objective branching could also benefit from parallelization since sub-problems are
made in a way such that they are independent. Indeed, when objective branching is applied, there is no
point of the search area that is included in more than one sub-problem and the sub-problems are defined
by different points of the upper bound set. Hence, in each sub-problem, the upper bound set can be
improved in the region defined by the objective branching constraints, without influencing the other
sub-problems. At last, it is well-known that OSS algorithms benefit from the power of single-objective
MIP solvers. A potential line of future research, inspired by what is done in the single-objective case,
is to improve the branch-and-bound framework by, for example, exploring cutting planes.
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