
Warm-starting lower bound set computations for branch-and-bound algorithms

for multi objective integer linear programs∗

Nicolas Forget†, Sune Lauth Gadegaard, Lars Relund Nielsen

Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus University,

Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark

August, 2021

Abstract: In this paper we propose a generic branch-and-bound algorithm for solving multi-objective integer

linear programming problems. In the recent literature, competitive frameworks has been proposed for bi-

objective 0-1 problems, and many of these frameworks rely on the use of the linear relaxation to obtain lower

bound sets. When increasing the number of objective functions, however, the polyhedral structure of the linear

relaxation becomes more complex, and consequently requires more computational effort to obtain. In this

paper we overcome this obstacle by speeding up the computations. To do so, in each branching node we use

information available from its father node to warm-start a Bensons-like algorithm. We show that the proposed

algorithm significantly reduces the CPU time of the framework on several different problem classes with three,

four and five objective functions. Moreover, we point out difficulties that arise when non-binary integer variables

are introduced in the models, and test our algorithm on problem that contains non-binary integer variables too.

Keywords: multiple objective programming; branch and bound; combinatorial optimization; linear relaxation;

warm-starting.

1 Introduction

In many real-life problems, it is usually possible to define multiple relevant objectives to optimize simultane-

ously. For example, one could be interested in minimizing costs, distances, traveling time, the impact on the

environment, and so forth. Sometimes, it is not enough to consider only one of these objectives to obtain a

satisfactory solution to a real-life problem. Instead, several possibly conflicting objectives should be considered
∗Preprint of N. Forget, S.L. Gadegaard and L.R. Nielsen, Warm-starting lower bound set computations for branch-and-bound algo-

rithms for multi objective integer linear programs in European Journal of Operational Research (2022), doi:10.1016/j.ejor.2022.01.047
†Corresponding author (nforget@econ.au.dk).

1

https://doi.org/10.1016/j.ejor.2022.01.047
nforget@econ.au.dk

simultaneously. Multi-objective optimization is the field that addresses such optimization problems and as a

result, produces desirable trade-offs between the conflicting objectives.

In this paper, we consider Multi-Objective Integer Linear Problems (MOILP) with 𝑝 linear objectives. It

is assumed that all variables in the decision space are integer. A special class of MOILP consists of Multi-

objective Combinatorial Optimization Problems (MOCOP) with only binary variables and well-structured

constraints (Nemhauser and Wolsey, 1999).

Over the past decades, various methodologies have been proposed in the literature to solve MOILPs. These

methodologies can be roughly divided into two main categories: Objective Space Search (OSS) algorithms

and Decision Space Search (DSS) algorithms. The principle of an OSS algorithm is to search the objective

space by solving a series of single-objective problems, obtained by scalarizing the objective functions (Ehrgott,

2005). Hence, the power of single-objective solvers can be used to generate the optimal set of solutions (see

Section 2 for a formal definition). Consequently, much attention has been paid to OSS methods over the years

(see e.g. Ulungu and Teghem (1995); Visée, Teghem, Pirlot, and Ulungu (1998); Sylva and Crema (2004);

Ozlen, Burton, and MacRae (2014); Kirlik and Sayın (2014); Boland, Charkhgard, and Savelsbergh (2017);

Boland and Savelsbergh (2016); Tamby and Vanderpooten (2021)).

In contrast, a DSS algorithm searches the decision space. To the best of our knowledge, Klein and Hannan

(1982) were the first to suggest a solution approach for the MOILP using a DSS algorithm. They used a unique

branching tree to solve a series of single-objective integer programs, resulting in the computation of all desirable

solutions. A year later, Kiziltan and Yucaoğlu (1983) proposed another general branch-and-bound framework.

In particular, they used minimal completion, providing a lower approximation of the ideal point as a lower

bound. Both of these frameworks were designed for the multi-objective case where 𝑝 > 2.

In the following years, attention was paid to problem-specific methods, for example in Ulungu and Teghem

(1997) and Ramos, Alonso, Sicilia, and González (1998). In Visée et al. (1998), the authors used a multi-

objective DSS algorithm embedded in an OSS algorithm, the so-called two-phase method. The next general

branch-and-bound framework was developed by Mavrotas and Diakoulaki (1998), and improved in Mavrotas

and Diakoulaki (2005). Their algorithm solves MOILPs with binary variables, but can also handle continuous

variables in addition to binary ones. Furthermore, whereas previous branch-and-bound frameworks rely on the

use of the ideal point (or an approximation hereof) as lower bound set, the authors propose to consider both the

ideal point for dominance tests, and a finite set of points, namely the extreme points of the multi-objective linear

relaxation, to update the upper bound set. However, Vincent (2013) showed that dominated solutions may be

returned. The approach of Mavrotas and Diakoulaki (2005) was corrected for the bi-objective case in Vincent,

Seipp, Ruzika, Przybylski, and Gandibleux (2013). The use of a finite set of points as a lower bound set was

further explored for specific problems in Jozefowiez, Laporte, and Semet (2012) for the bi-objective case and

2

in Florios, Mavrotas, and Diakoulaki (2010) for the multi-objective case.

Sourd and Spanjaard (2008) were the first to use more complex lower bound sets for the bi-objective case.

They proposed to use a surface (i.e. an infinite set of points) as a lower bound set instead of a finite set of points,

as was the traditional method used in the literature at that time. Due to the novel nature of their lower bound set,

their approach came with a new dominance test. In their framework, the lower bound set is obtained by solving

the convex relaxation, which provides the convex hull of the non-dominated points contained in a specific node.

Tested on spanning tree problems, the procedure produces very good lower bound sets efficiently and results in

a major speed-up, but it may be less efficient on problems having a hard single-objective version, as it needs to

solve multiple single-objective integer problems at each node.

Vincent et al. (2013) showed that for bi-objective problemswith computationally demanding single-objective

versions, the linear relaxation is often preferable in terms of computation times, even though it leads to larger

branch-and-bound trees. They also showed that the linear relaxation is preferable to the ideal point and to the

ideal point of the linear relaxation. Moreover, the authors proposed an extension of their branch-and-bound

framework to Bi-Objective Mixed-Integer Problems (BOMIP) along with an alternative dominance test. The

class of BOMIP was also studied by Belotti, Soylu, and Wiecek (2013), and improved in Belotti, Soylu, and

Wiecek (2016) who developed stronger fathoming rules. Finally, Adelgren and Gupte (2021) provided an

extensive study on BOMIP and incorporated the recent knowledge of DSS algorithms in their framework.

In recent years, more attention has been paid to hybridizing decision space search and objective space

search methods for the bi-objective case. A first hybrid algorithm was developed by Stidsen, Andersen, and

Dammann (2014), and later refined by Stidsen and Andersen (2018). The authors used the linear relaxation of a

weighted-sum scalarization as a lower bound set, which provides a weaker but computationally less expensive

surface than the linear or convex relaxation. They also developed slicing, with the purpose of splitting the

search in the objective space into several independent cones (or slices), yielding stronger upper bound sets and

at the same time enabling the possibility of parallelizing the search of each slice. Finally, the authors introduced

the principle of Pareto branching, which consists of creating sub-problems in the objective space by deriving

information from the partial dominance between the lower bound set and the upper bound set.

Gadegaard, Nielsen, and Ehrgott (2019) introduced an improved version of Pareto branching, which they

named extended Pareto branching in their paper), and they coupled the type of branching with the use of both

the linear relaxation of weighted-sum scalarizations and multi-objective linear relaxation. In parallel, Parragh

and Tricoire (2019) also developed further Pareto branching, herein denoted objective branching. They used

it together with linear relaxation, but also with stronger lower bound sets generated using a column generation

approach. In both cases, promising results were shown for the bi-objective case.

It appears that the branch-and-bound frameworks developed over the last decade are competitive when

3

solving bi-objective problems compared to state-of-the-art-OSS algorithms. This is achieved by using more

sophisticated lower bound sets, stronger fathoming rules, and injecting information derived from the objective

space in the method. In this paper, we are interested in developing a branch-and-bound framework that is

inspired by the recent bi-objective frameworks and apply it on problems with three objective functions or more.

We focus on the use of more sophisticated lower bound sets, namely the linear relaxation, and explain how

we can accelerate its computation in a multi-objective branch-and-bound setting. Furthermore, it appears that

although many of the recent bi-objective frameworks can be applied to integer problems, problems with binary

variables (MOCOPs) are mostly studied. We consider the general integer case and devote a section to the

difficulties that may arise when the variables can take arbitrary integer values. To summarize, in this paper, we:

• develop a multi-objective branch-and-bound framework that extends the bi-objective branch-and-bound

literature for both combinatorial and integer problems;

• use the linear relaxation as a lower bound set by extending the work of Gadegaard et al. (2019), and using

upper bound sets from Klamroth, Lacour, and Vanderpooten (2015);

• show how redundant half-spaces from the lower bound set can be removed efficiently;

• propose a procedure to warm-start the computation of lower bound sets;

• study how warm-starting can be beneficial for other parts of the framework;

• unveil new challenges that arise when introducing integer (non-binary) variables;

• use four different problem classes including both binary and integer variables to show that warm-starting

significantly reduces the total computational time.

The remainder of this paper is organized as follows: In Section 2we present the preliminaries and in Section 3

we present a generic branch-and-bound framework for MOILPs. Section 4 describes how lower bound sets

can be generated using a Benson-like algorithm and how such an algorithm can be modified so warm-starting

becomes possible. In Section 5 we conduct an extensive computational study, and finally Section 6 concludes

the paper.

2 Preliminaries

In multi-objective optimization, not only one but several conflicting objectives are considered simultaneously,

and hence it is most often impossible to find one solution optimizing all objectives at the same time. Therefore,

it is necessary to introduce operators for the comparison of points and sets. Given 𝑦1, 𝑦2 ∈ R𝑝, the point 𝑦1

4

weakly dominates 𝑦2 (𝑦1 ≦ 𝑦2) if 𝑦1
𝑘
≤ 𝑦2

𝑘
, ∀𝑘 ∈ {1, ..., 𝑝}. Moreover, we say that 𝑦1 dominates 𝑦2 (𝑦1 ⩽ 𝑦2) if

𝑦1 ≦ 𝑦2 and 𝑦1 ≠ 𝑦2. These dominance relations can be extended to sets of points as follows: Let A,B ⊆ R𝑝,

we say thatA dominates B if for all 𝑏 ∈ B, there exists 𝑎 ∈ A such that 𝑎 ⩽ 𝑏. Furthermore, a subsetA ⊂ R𝑝

is said to be stable if for any 𝑎, 𝑎′ ∈ A, 𝑎 ⩽̸ 𝑎′.

Consider the Multi-Objective Integer Linear Problem (MOILP) with 𝑛 variables:

min{𝑧(𝑥) = 𝐶𝑥 | 𝑥 ∈ X} (P)

where X = {𝑥 ∈ N𝑛
0 | 𝐴𝑥 ≧ 𝑏} is the feasible set in the decision space. We assume that X is bounded (if

this is not the case, it will be detected by our algorithm). The matrix 𝐴 ∈ R𝑚×𝑛 defines the coefficients of the

𝑚 constraints with right-hand side 𝑏 ∈ Z𝑚. The 𝑝 linear objectives are defined using the matrix 𝐶 ∈ Z𝑝×𝑛

of objective function coefficients. The corresponding set of feasible objective vectors in the objective space is

Y = {𝑧(𝑥) | 𝑥 ∈ X} := 𝐶X.

In this paper, we will focus on the computation of the non-dominated set of points, defined as Y𝑁 = {𝑦 ∈

Y | �𝑦′ ∈ Y, 𝑦′ ⩽ 𝑦}. Note thatY𝑁 is discrete and bounded since 𝑧(𝑥) is linear and X is discrete and bounded.

By extension, the non-dominated part of any set S ⊆ 𝑅𝑝 will be denoted by S𝑁 = {𝑠 ∈ S | �𝑠′ ∈ S, 𝑠′ ⩽ 𝑠}.

2.1 Polyhedral theory

In this section, we recall the theory presented in Nemhauser and Wolsey (1999). LetH+ = {𝑦 ∈ R𝑝 | 𝜋𝑦 ≥ 𝜋0}

denote a half-space in R𝑝 and letH = {𝑦 ∈ R𝑝 | 𝜋𝑦 = 𝜋0} be the corresponding hyperplanewith normal vector

𝜋𝑇 . A polyhedron P = {𝑦 ∈ R𝑝 | 𝐺𝑦 ≧ 𝑒} is the intersection of a finite number of half-spaces and hence a

closed convex set. A polyhedron P ∈ R𝑝 is of full dimension if the dimension of P is 𝑝. A half-space is valid

if it contains P and redundant if P is unchanged when removed. A bounded polyhedron is called a polytope.

A face F = {𝑦 ∈ P | 𝑦 ∈ H} of P is the intersection of P and a hyperplane H of a valid half-space

H+. Given that P is of dimension 𝑝, a facet is a face of dimension 𝑝 − 1. The boundary of a full dimensional

polyhedron P can be described using a finite set of facets. Let P𝐻 = {H+1 , . . . ,H
+
𝑘
} denote the half-space

representation of P (the half-spaces corresponding to the facets), then P = ∩H+∈P𝐻H+.

A vertex of P is a face of dimension zero. The vector 𝑟 ∈ R𝑝 is a ray of P if 𝑥 + 𝜆𝑟 ∈ P for all 𝑥 ∈ P

and 𝜆 ≥ 0. A ray 𝑟 of P is said to be extreme if 𝑟 = 𝜆1𝑟
1 + 𝜆2𝑟

2 where 𝑟1 and 𝑟2 are rays of P and 𝜆1, 𝜆2 > 0

implies that 𝑟1 = 𝜆𝑟2 for some 𝜆 > 0. A facet of a polyhedron P can be described using a finite set of vertices

V𝐹 and extreme rays R𝐹 satisfying F = conv(V𝐹) + {
∑

𝑟 ∈R𝐹
𝜆𝑟𝑟, 𝜆 ≧ 0} (convex hull of vertices and rays).

Since the boundary of a polyhedron consists of a finite set of facets, a vertex-ray representation of polytope P

is P𝑉 = (V𝑃,R𝑃) satisfying P = conv(V𝑃) + {
∑

𝑟 ∈R𝑃
𝜆𝑟𝑟, 𝜆 ≧ 0}. In general, if we use a representation of

P using (P𝐻 ,P𝑉), the sets P𝐻 and P𝑉 are linked together using e.g. an adjacency list so it is known which

5

vertices are adjacent, which vertices and rays belong to which facets, and vice versa. Note that P is a polytope

if and only if no extreme ray exists, i.e. R𝐹 = ∅ and rays can be dropped from P𝑉 .

The linear relaxation of P can be defined as:

min{𝑧(𝑥) = 𝐶𝑥 | 𝑥 ∈ X𝐿𝑃} (PLP)

where X𝐿𝑃 = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≧ 𝑏, 𝑥 ≧ 0}. Let Y𝐿𝑃 denote the corresponding feasible objective vectors and

Y𝐿𝑃
𝑁
the non-dominated set of PLP. Note that Y𝐿𝑃 is a polytope (Benson, 1998), and Y𝐿𝑃

𝑁
corresponds to the

non-dominated part of this polytope.

Consider a setS ⊂ R𝑝 and define polyhedraR𝑝

≧ B {𝑦 ∈ R𝑝 | 𝑦 ≧ 0} andS+R𝑝

≧ := {𝑦 ∈ R𝑝 | ∃𝑠 ∈ S, 𝑠 ≦ 𝑦}.

For the development of the branch-and-bound algorithm, it is convenient to have a description of the polyhedron

P𝐿𝑃
≧ B Y𝐿𝑃

𝑁
+R𝑝

≧ since P𝐿𝑃
≧ is a full dimension polytope with vertices contained inY𝐿𝑃

𝑁
. In addition to these

sets, it will be convenient to define the set R𝑝

⩾ B {𝑦 ∈ R𝑝 | 𝑦 ⩾ 0}.

2.2 Bound sets

Given a set of points S ⊆ R𝑝, it is possible to define lower and upper bound sets for S𝑁 . For this purpose, the

definition from Ehrgott and Gandibleux (2007), recalled in Definition 1, will be used. A subset S is R𝑝

≧-closed

if S + R𝑝

≧ is closed, and R
𝑝

≧-bounded if there exists 𝑦 ∈ R𝑝 such that S ⊂ {𝑦} + R𝑝

≧ .

Definition 1. (Ehrgott and Gandibleux, 2007) Let S ⊆ R𝑝 be a set.

• A lower bound set L for S𝑁 is an R𝑝

≧-closed and R𝑝

≧-bounded set that satisfies S𝑁 ⊂ L + R𝑝

≧ , and

L = L𝑁 .

• An upper bound setU for S𝑁 is an R𝑝

≧-closed and R𝑝

≧-bounded set that satisfies S𝑁 ⊂ cl[R𝑝\(U +R𝑝

≧)]

andU = U𝑁 (U is stable). Here cl(·) denotes the closure operator.

Ehrgott and Gandibleux (2007) showed that the singleton {𝑦𝐼 }, denoted the ideal point and defined by

𝑦𝐼
𝑘
= min𝑦∈Y{𝑦𝑘}, is a valid lower bound set for Y𝑁 . The same holds for the non-dominated set of the linear

relaxation PLP of P. Moreover, the anti-ideal point {𝑦𝐴𝐼 }, defined as 𝑦𝐴𝐼
𝑘

= max𝑦∈Y{𝑦𝑘}, yields a valid upper

bound set for Y𝑁 . A variant of the anti-ideal point is the nadir point, defined as 𝑦𝑁
𝑘

= max𝑦∈Y𝑁 {𝑦𝑘}. The

authors also showed that, in the context of a branch-and-bound algorithm, the incumbent set, which is the current

stable set of solutions found at any point during the algorithm, is a valid upper bound set for Y𝑁 .

An upper bound setU can alternatively be described in terms of its corresponding set of local upper bounds

N(U) (sometimes also referred to as local nadir points). This concept was formally defined by Klamroth et al.

(2015), and their definition is recalled in Definition 2. Let C(𝑢) = 𝑢 − R𝑝

≧ := {𝑦 ∈ R𝑝 | 𝑦 ≦ 𝑢} be the search

cone of 𝑢 ∈ R𝑝.

6

Algorithm 1 Branch-and-bound algorithm for a MOILP.
1: Create the root node 𝜂0; set T ← {𝜂0} andU ← ∅

2: while T ≠ ∅ do

3: Select a node 𝜂 from T and set T ← T \ {𝜂}

4: Find a local lower bound set to 𝜂

5: Update the upper bound setU

6: if 𝜂 cannot be pruned then

7: Branch and split 𝑃(𝜂) into disjoint sub-problems (𝑃(𝜂1), . . . , 𝑃(𝜂𝑘))

8: Create child nodes of 𝜂 and set T ← T ∪ {𝜂1, . . . , 𝜂𝑘}

9: end if

10: end while

11: return U

Definition 2. (Klamroth et al., 2015) The set of local upper bounds ofU, N(U), is a set that satisfies

• cl[R𝑝\(U + R𝑝

≧)] =
⋃

𝑢∈N(U)
C(𝑢)

• N(U) is minimal, i.e. there is no 𝑢1, 𝑢2 ∈ N (U) such that C(𝑢1) ⊆ C(𝑢2)

3 A branch-and-bound framework for MOILP

In this section, we describe a branch-and-bound framework for MOILPs that uses the linear relaxation to obtain

lower bound sets.

A general description of a multi-objective branch-and-bound (MOBB) framework for solving problem P is

given in Algorithm 1. The algorithm manages a branching tree, T , where each node 𝜂 contains a sub-problem

of P. At each node 𝜂, the sub-problem contained in 𝜂 is denoted by 𝑃(𝜂), and its feasible set and set of feasible

objective vectors are X(𝜂) and Y(𝜂) respectively. Similarly, the set of non-dominated points of 𝑃(𝜂) is given

by Y𝑁 (𝜂). We define analogously X𝐿𝑃 (𝜂), Y𝐿𝑃 (𝜂) and Y𝐿𝑃
𝑁
(𝜂) for the linear relaxation 𝑃𝐿𝑃 (𝜂) of 𝑃(𝜂).

A candidate set T is used to store nodes that are not yet explored, and is initialized with the root node that

contains the full MOILP (line 1). Moreover, a global upper bound (incumbent) set is used to maintain a stable

set of feasible solutions to P. The algorithm terminates when the candidate list, T , becomes empty; that is,

when it has been proven thatU = Y𝑁 .

Implementations of a MOBB algorithm may differ in the node selection rule (line 3), in the way the lower

bound set is calculated (line 4), and in how the upper bound set is updated (line 5). Moreover, different pruning

7

rules may be used to remove a node from the candidate set (line 6). Finally, different variable selection rules

may be used to split a father node into a set of child nodes (lines 7-8).

As node selection rule we use the so-called breadth first search strategy, which follows a FIFO principle,

meaning that we always chose the unprocessed node that was created first. We use the non-dominated set

Y𝐿𝑃
𝑁
(𝜂) of the linear relaxation 𝑃𝐿𝑃 (𝜂) as a lower bound set in each node. We use a revisited state-of-the-art

version of Benson’s outer approximation algorithm using warm-starting (see Section 4) where the polyhedron

Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ is found with both a half-space and vertex and ray representation. Since an integer-feasible

solution to 𝑃𝐿𝑃 (𝜂) is feasible for 𝑃(𝜂), the upper bound set can be updated using the vertex representation

of the lower bound set Y𝐿𝑃
𝑁
(𝜂) by adding vertices corresponding to integer solutions to U and removing any

dominated points.

Different rules can be used to prune a node as well. If 𝑃𝐿𝑃 (𝜂) is not feasible (i.e. X𝐿𝑃 (𝜂) = ∅), then 𝑃(𝜂)

is not feasible either since X(𝜂) ⊆ X𝐿𝑃 (𝜂) = ∅, and hence the node is pruned by infeasibility. In the case

where Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ contains a single vertex 𝑦 with a feasible pre-image, the node can be pruned by optimality

since all points in Y(𝜂) are weakly dominated by 𝑦. Finally, if Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ is dominated by U, the node

can be pruned by dominance. In practice, the latter rule is checked by applying the methodology used for the

bi-objective case in Sourd and Spanjaard (2008) and in Gadegaard et al. (2019), since it extends naturally to the

multi-objective case. This is recalled in Lemma 1.

Lemma 1. LetU be an upper bound set forY𝑁 . The node 𝜂 can be pruned by dominance if for each 𝑢 ∈ N (U),

𝑢 ∉ Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ holds true.

Proof. First, for any non-dominated point 𝑦 ∈ Y𝑁 of the initial problem 𝑃, there exists at least one 𝑢 ∈ N (U)

such that 𝑦 ≦ 𝑢. Indeed, from Definition 1 and Definition 2, we have that Y𝑁 ⊂ cl[R𝑝\(U + R𝑝

≧)] and

cl[R𝑝\(U + R𝑝

≧)] =
⋃

𝑢∈N(U) C(𝑢). Thus, Y𝑁 ⊂
⋃

𝑢∈N(U) C(𝑢). This implies that for each 𝑦 ∈ Y𝑁 , there

exists 𝑢 ∈ N (U) such that 𝑦 ∈ C(𝑢) and consequently, by the definition of C(𝑢), there exists 𝑢 ∈ N (U) such

that 𝑦 ≦ 𝑢. Furthermore, we know that there is no 𝑢 ∈ N (U) such that 𝑢 ∈ Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ . It is not possible

that 𝑦 ∈ Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ if 𝑢 ∉ Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ , because by construction of R
𝑝

≧ , for any set S ⊂ R𝑝 and for any

𝑠 ∈ S + R𝑝

≧ , {𝑠} + R
𝑝

≧ ⊆ S + R
𝑝

≧ . Hence, since 𝑦 ≦ 𝑢, we have that 𝑢 ∈ {𝑦} + R𝑝

≧ and thus, 𝑢 ∈ Y𝐿𝑃
𝑁
(𝜂) + R𝑝

≧ ,

which is a contradiction. This implies that necessarily, 𝑦 ∉ Y𝐿𝑃
𝑁
(𝜂) +R𝑝

≧ , and as a result, no new non-dominated

point can be found in sub-problem 𝑃(𝜂).

If the node cannot be pruned, 𝑃(𝜂) is divided into easier sub-problems. Like in the single-objective case,

two disjoint sub-problems are traditionally created by using a variable selection rule to choose a variable

𝑥𝑖 and imposing bounds on this variable. Usually, one sub-problem will be generated with the feasible set

{𝑥 ∈ X(𝜂) | 𝑥𝑖 ≤ 𝑧}, and the other with the feasible set {𝑥 ∈ X(𝜂) | 𝑥𝑖 ≥ 𝑧 + 1}, where 𝑧 ∈ N. Choosing

8

Algorithm 2 Benson’s outer approximation algorithm
1: Input: A polyhedron P represented using P𝐻 and P𝑉 = (V𝑃,R𝑃) such that P𝐿𝑃

≧ ⊆ P

2: while ∃ 𝑣 ∈ V𝑃 such that 𝑣 ∉ P𝐿𝑃
≧ do

3: Compute a cutting hyperplaneH for 𝑣

4: (P𝐻 ,P𝑉) ← updateP(P𝐻,P𝑉,H)

5: end while

6: return (P𝑉 ,P𝐻)

the variable and the bound, 𝑧, is a non-trivial task, as the performance of the MOBB highly depends on these

choices. In the single-objective case, the lower bound (set) usually consists of a single solution and as a result,

each variable 𝑥𝑖 takes a single value. This can be used to make an easy choice regarding the bound imposed (e.g.

𝑧 = ⌊𝑥𝑖⌋). In the multi-objective case, multiple points may exist in the lower bound set, and as a consequence, a

variable may take different values for different points. A trivial choice does not exist anymore, and a rule should

be applied (see Section 5).

4 Linear relaxation for MOBB

In this section, we provide a strategy for accelerating the computation of the lower bound set (line 4 in

Algorithm 1), i.e. the linear relaxation. Our methodology relies on Benson’s outer approximation algorithm

(Benson, 1998) and its recent refinements (see e.g. Csirmaz, 2015; Hamel, Löhne, and Rudloff, 2013; Löhne

and Weißing, 2020). For this purpose, we need a formal definition of the concept of outer approximation.

Definition 3. Let P,Q ⊂ R𝑝 be two polyhedra such that Q𝑁 ⊆ P. Then P is an outer approximation of Q.

An outline of a Benson-like algorithm is given in Algorithm 2. The algorithm works by iteratively building

tighter outer approximations of P𝐿𝑃
≧ = Y𝐿𝑃+R𝑝

≧ = Y𝐿𝑃
𝑁
+R𝑝

≧ and starts with an initial polyhedron that contains

P𝐿𝑃
≧ . Next, half-spaces are iteratively found whose corresponding hyperplanes define facets of P𝐿𝑃

≧ until all

the facets have been enumerated. The algorithm provides both a vertex-ray representation and a half-space

representation of P𝐿𝑃
≧ , where a pre-image is known for each of the vertices in P𝐿𝑃

≧ .

The initialization step (line 1 of Algorithm 2) consists of finding an initial polyhedron that contains P𝐿𝑃
≧ . At

each iteration of Algorithm 2, if there exists a vertex 𝑣 in the vertex-ray representation P𝑉 which is not included

in P𝐿𝑃
≧ , a cutting plane should be computed in order to separate 𝑣 from the polyhedron. In order to check the

9

Algorithm 3 Updating the outer approximation (updateP)

1: Input: (P𝐻 ,P𝑉) and hyperplane Ĥ

2: P𝐻 ← P𝐻 ∪ {Ĥ}

3: P𝑉 ← updateV(P𝐻,P𝑉,Ĥ)

4: for allH+ ∈ P𝐻 (defining face F) do

5: if F have 𝑝 − 1 vertices and rays or less then

6: P𝐻 ← P𝐻 \ {H+}

7: else if 𝑝 > 3 then

8: if all vertices and rays of F lies on Ĥ then

9: P𝐻 ← P𝐻 \ {H+}

10: end if

11: end if

12: end for

13: P𝑉 ← relinkV(P𝐻,P𝑉)

14: return (P𝑡
𝑉
,P𝑡

𝐻
)

inclusion of vertex 𝑣 on line 2, the linear program 𝐹 (𝑣) is solved:

min 𝑠

s.t. 𝐴𝑥 ≧ 𝑏, (1)

𝐶𝑥 − 𝑠 ≦ 𝑣, (2)

𝑥, 𝑠 ≧ 0

If the optimal value is 0, then 𝑣 ∈ P𝐿𝑃
≧ and a pre-image of 𝑣 is obtained by storing the optimal values

of the 𝑥 variables of 𝐹 (𝑣); otherwise, 𝑣 is not included in P𝐿𝑃
≧ . Let 𝑢 ∈ R𝑚 be optimal dual values

corresponding to (1) and 𝑤 ∈ R𝑝 dual values corresponding to (2). Hamel et al. (2013) showed that the

hyperplaneH = {𝑦 ∈ R𝑝 | 𝑤𝑇 𝑦 = 𝑏𝑇𝑢} defines a facet of P𝐿𝑃
≧ and thatH separates 𝑣 from P𝐿𝑃

≧ . Hence, the

hyperplane H on line 3 can be found using the dual values of 𝐹 (𝑣). Once a cutting plane H is computed, the

outer approximation of P𝐿𝑃
≧ is updated using function updateP on line 4 of Algorithm 2. The loop is repeated

until no vertex 𝑣 can be found, and the algorithm stops (P𝐿𝑃
≧ has been found, line 6).

A description of updateP is given in Algorithm 3. As input, the algorithm takes the current half-space

and vertex-ray representation and the cutting hyperplane. First, the vertex-ray representation is updated by

examining adjacent vertices, finding new vertices of the facet of the hyperplane Ĥ and removing old vertices

not part of the polyhedron (line 3). Updating the vertex-ray representation using function updateV is known as

10

a sub-procedure of an online vertex enumeration problem. A well-known technique for solving this problem is

the double description method (see e.g. Fukuda and Prodon (1996)).

Next, redundant faces are removed on lines 4-12. If redundant half-spaces are not removed, many unnec-

essary operations will be performed, e.g. when performing dominance tests. Moreover, having no redundant

half-spaces is a necessary condition for finding adjacent vertices in the vertex enumeration algorithm used

(Fukuda and Prodon (1996)). Since P𝐿𝑃
≧ is a full-dimension polyhedron, facets are of dimension 𝑝 − 1, and

all faces with dimensions below 𝑝 − 1 are redundant. Consequently, if a facet is defined by 𝑝 − 1 vertices and

rays or less, then it is redundant. This is checked on lines 5-6. Even though this is a necessary condition for

any 𝑝, it is not a sufficient condition when 𝑝 > 3. Indeed, in this case, a face of dimension 2 can be defined

by more than 𝑝 − 1 vertices. A face of dimension 𝑑 can be described as the intersection of at least 𝑝 − 𝑑

hyperplanes (Nemhauser and Wolsey, 1999). Hence a face of dimension 𝑑 < 𝑝 − 1 is the intersection of two or

more hyperplanes. Since the input P𝐻 to Algorithm 3 only contains facets, the only way for a facet to become

a face is if it gets intersected with the new cutting hyperplane Ĥ such that all of its vertices and rays are located

on Ĥ (lines 8-9).

Finally, since all redundant half-spaces have been removed from P𝐻 , we can update the adjacency list of

the vertices in P𝑉 using function relinkV on line 13. That is, using the vertex enumeration algorithm (Fukuda

and Prodon (1996)).

Note that in Algorithm 2, only facets are generated between lines 2-5. Hence, only facets of the initial outer

approximation may become redundant during the algorithm. In particular, if the initial outer approximation

shares all of its facets with P𝐿𝑃
≧ , no faces become redundant.

Lemma 2. Consider Algorithm 2 and let P0 denote the initial polyhedron with half-space representation P0
𝐻

(line 1). Then only half-spaces in P0
𝐻

may be redundant for P𝐿𝑃
≧ . Moreover, if P0 = {𝑦𝐼

𝐿𝑃
} + R𝑝

≧ then all

half-spaces in P0
𝐻

are facets of P𝐿𝑃
≧ .

Proof. Hamel et al. (2013) showed that the cutting hyperplaneH found on line 3 defines a facet of P𝐿𝑃
≧ . Hence,

only half-spaces in P0
𝐻
may be redundant. Let 𝑦𝐼

𝐿𝑃
= (𝑦̂1, . . . , 𝑦̂𝑝). If P0 = {𝑦𝐼

𝐿𝑃
} + R𝑝

≧ then the half-spaces

{𝑦 ∈ R𝑝 | 𝑦𝑖 ≥ 𝑦̂𝑖}, 𝑖 = 1, . . . , 𝑝 define the facets of P0, which are facets of P𝐿𝑃
≧ too.

4.1 Warm-starting Benson-like algorithms in MOBB

We will now study how to improve the performance of the Benson-like algorithm embedded in a MOBB.

Lemma 3. Consider a child node 𝜂𝑐 of the father node 𝜂 𝑓 in the branch-and-bound tree of Algorithm 1. Then

P𝐿𝑃
≧ (𝜂 𝑓) B Y𝐿𝑃

𝑁
(𝜂 𝑓) + R𝑝

≧ is an outer approximation of P𝐿𝑃
≧ (𝜂𝑐) B Y𝐿𝑃

𝑁
(𝜂𝑐) + R𝑝

≧ .

11

P𝐿𝑃
≧ (𝜂𝑐)

P𝐿𝑃
≧ (𝜂 𝑓)

𝑧1

𝑧 2

Figure 1: The lower bound set of the father node 𝜂 𝑓 is an outer approximation of the lower bound set of the

child node 𝜂𝑐.

Proof. By construction of the problems 𝑃(𝜂 𝑓) and 𝑃(𝜂𝑐), we have that X𝐿𝑃 (𝜂𝑐) ⊆ X𝐿𝑃 (𝜂 𝑓), which implies

that Y𝐿𝑃 (𝜂𝑐) ⊆ Y𝐿𝑃 (𝜂 𝑓). Hence P𝐿𝑃
≧ (𝜂𝑐) ⊆ P𝐿𝑃

≧ (𝜂 𝑓), and since the non-dominated set of P𝐿𝑃
≧ (𝜂𝑐) is

Y𝐿𝑃
𝑁
(𝜂𝑐) ⊆ P𝐿𝑃

≧ (𝜂𝑐), we have that P𝐿𝑃
≧ (𝜂 𝑓) is an outer approximation of P𝐿𝑃

≧ (𝜂𝑐).

Due to Lemma 3, polyhedron P𝐿𝑃
≧ (𝜂 𝑓) can be used as the initial outer approximation when starting

Algorithm 2 in a child node 𝜂𝑐 (see Figure 1). That is, at any child node, it is possible to warm-start the

computation of the linear relaxation by using the relaxation found in the father node. As a result, the total

number of linear programs to be solved is expected to decrease since the only way to obtain a facet is to solve

𝐹 (𝑣) for a vertex 𝑣 and obtain an optimal value strictly larger than zero. Hence a facet that is present both in

P𝐿𝑃
≧ (𝜂 𝑓) and P𝐿𝑃

≧ (𝜂𝑐) will be enumerated only once, since it is already known when starting Algorithm 2 in

child node 𝜂𝑐. However, some half-spaces in P𝐻 may have to be removed in Algorithm 2 since they define

non-facet faces and are therefore redundant. Due to Lemma 2 we have:

Corollary 1. Consider Algorithm 1 using Algorithm 2 to find the lower bound set on line 4. If we use initial

outer approximation P = {𝑦𝐼
𝐿𝑃
(𝜂𝑐)}+R𝑝

≧ at the root node 𝜂0, then no redundant half-spaces have to be removed

from P𝐻 during Algorithm 2. If we use initial outer approximation P = P𝐿𝑃
≧ (𝜂 𝑓) at a child node 𝜂𝑐 with father

node 𝜂 𝑓 , then only half-spaces of P𝐿𝑃
≧ (𝜂 𝑓) may be redundant.

Due to Corollary 1 we initialize Algorithm 2 with outer approximation {𝑦𝐼
𝐿𝑃
(𝜂𝑐)} + R𝑝

≧ in the root node

and hence do not have to check for redundant half-spaces (lines 4-12 in Algorithm 3). Moreover, when using

P𝐿𝑃
≧ (𝜂 𝑓) as initial outer approximation in a child node, only the half-spaces of P𝐿𝑃

≧ (𝜂 𝑓) have to be checked

for redundancy.

12

Additional advantages of warm-starting the lower bound computations

Warm-starting Algorithm 2 when solving the linear relaxation in a MOBB brings additional information that

can be utilized to accommodate additional speed-ups by eliminating redundant work. In the following, we

present a number of observations that can help to speed-up the processing of branching nodes. In what follows,

we will assume that branching is performed by adding simple bounds to variables, i.e. 𝑥𝑖 ≤ 𝑧 or 𝑥𝑖 ≥ 𝑧, for

𝑧 ∈ N𝑛
0 . Further, we will refer to 𝜂

𝑐 as a child node of the father node 𝜂 𝑓 .

In Algorithm 2, to confirm that a vertex 𝑣 is feasible, the linear program 𝐹 (𝑣) has to be solved and have an

optimal value of 0. However, this is not always necessary when using the polyhedron P𝐿𝑃
≧ (𝜂 𝑓) as a starting

outer approximation when computing P𝐿𝑃
≧ (𝜂𝑐):

Observation 1. After solving the linear relaxation in 𝜂 𝑓 , a pre-image for each vertex of P𝐿𝑃
≧ (𝜂 𝑓) is known.

Hence, when solving the linear relaxation 𝑃𝐿𝑃 (𝜂𝑐) using P𝐿𝑃
≧ (𝜂 𝑓) as an initial outer approximation, it is

known that 𝐹 (𝑣) = 0 for all 𝑣 ∈ P𝐿𝑃
≧ (𝜂 𝑓) with a feasible pre-image in 𝜂𝑐.

This significantly reduces the number of single-objective linear programs that needs to be solved in Algo-

rithm 2. In addition, when branching as stated in Section 3, we know that from 𝜂 𝑓 to 𝜂𝑐, only one constraint in

the form 𝑥𝑖 ≤ 𝑧 or 𝑥𝑖 ≥ 𝑧 + 1 is added, 𝑧 ∈ N. Hence, verifying the feasibility of a pre-image of a vertex reduces

to simply comparing the value of a variable to a constant. Note that if more involved branching constraints are

used, it is necessary to check that the pre-image satisfies all of them.

Observation 1 only holds in 𝜂𝑐 for the vertices that belong to P𝐿𝑃
≧ (𝜂 𝑓). A vertex 𝑣, generated during the

execution of Algorithm 2 for 𝜂𝑐, has to be checked for feasibility by solving 𝐹 (𝑣), because we do not know a

pre-image for it yet. Furthermore, we still need to solve 𝐹 (𝑣) for any vertex 𝑣 ∈ (P𝐿𝑃
≧ (𝜂 𝑓))𝑉 that does not have

a feasible pre-image for 𝜂𝑐 in order to generate the cutting plane that cuts off 𝑣 in line 3 of Algorithm 2.

Regarding the update of the upper bound set, here the incumbent set, there is also an easily achievable

speed-up available: for any integer feasible vertex 𝑣 ∈ ((P𝐿𝑃
≧ (𝜂𝑐))𝑉 ∩ (P𝐿𝑃

≧ (𝜂 𝑓))𝑉 it has already been checked

whether it improves the current upper bound set or not when processing 𝜂 𝑓 . Thus, only newly generated

pre-images of vertices should be used when updating the upper bound set in line 5 of Algorithm 1 at node 𝜂𝑐.

Similarly, by keeping track of the cutting planes generated in node 𝜂𝑐, one can reduce the number of

comparisons done when performing the dominance test in line 9 of Algorithm 1. Let 𝑢 ∈ N (U) be a local

upper bound dominated by the lower bound set in the father node 𝜂 𝑓 of 𝜂𝑐. This implies that 𝑢 ∈ P𝐿𝑃
≧ (𝜂 𝑓),

which, by using the definition of a polyhedron in terms of half-spaces, is equivalent to 𝑢 ∈ ⋂ℎ∈(P𝐿𝑃
≧ (𝜂 𝑓))𝐻 ℎ+.

Hence, we already know that in 𝜂𝑐, for all the old supporting hyperplanes ℎ ∈ (Y𝐿𝑃
𝑁
(𝜂𝑐) +R𝑝

≧)𝐻∩(P𝐿𝑃
≧ (𝜂 𝑓))𝐻 ,

we have 𝑢 ∈ ℎ+. As a result, the only way for 𝑢 to become non-dominated is to be located outside the half-space

corresponding to one of the new facets generated in 𝜂𝑐. Otherwise, it remains dominated. Hence, the status of

13

𝑢 can be determined by looking at the facets generated in 𝜂 only.

To conclude, it is possible to derive additional information using Algorithm 2 because its starting point is

exactly its ending point in its father node. Hence, we can easily keep track of how the lower bound set was

modified by the new constraints generated from the father to the child node, and use this information to reduce

the number of redundant operations.

5 Computational experiments

In this section, we present the results from our experiments conducted on MOCOs and MOILPs. The purpose

of the computational study is to answer the following questions:

1. How do the different algorithm configurations perform, and which configurations perform the best?

2. How do the different variable-selection configurations perform? In particular, what is the best way to

choose the bound for branching?

3. How well do the different algorithm parts perform? Especially, how much does warm-starting improve

Algorithm 2?

4. How are leaf nodes in the branching tree pruned?

5. How are the geometrical properties of the lower bound set evolving during the algorithm?

6. How fast can the algorithm prove optimality given a good initial upper bound set?

7. How is the performance of the MOBB algorithm compared to an objective space search algorithm?

All experiments are conducted with a time limit of one hour for solving an instance.

5.1 Implementation details and algorithm configurations

All algorithms are implemented in C++17 and compiled using the MSVC compiler with default options. Ex-

periments are carried out on a personal computer with an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

processor and 8GB of RAM memory, using Windows 10. The algorithms are available at https://github.

com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound/tree/v1.0. Different con-

figurations of Algorithm 1 will be tested:

Node selection: A breadth-first strategy is used on line 3 of Algorithm 1. Preliminary experiments showed that

there is no clear winner between using a depth-first or a breadth-first strategy. On the set of instances we

14

https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound/tree/v1.0
https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound/tree/v1.0

considered, breadth-first performed slightly better on average, and we will stick to that choice for the rest

of the experiments.

Calculation of lower bound set: The lower bound set on line 4 of Algorithm 1 is computed using two different

configurations:

• LP: At each node 𝜂 in the branching tree, {𝑦𝐼
𝐿𝑃
(𝜂)} + R𝑝

≧ is used as the initial outer approximation.

• WLP: At each node 𝜂 in the branching tree with father node 𝜂 𝑓 , the lower bound set P𝐿𝑃
≧ (𝜂 𝑓) of

the father node is used to warm-start the computation of the linear relaxation. In the root node,

{𝑦𝐼
𝐿𝑃
} + R𝑝

≧ is used.

Calls to the single-objective linear programming solver in Algorithm 2 are performed with CPLEX 12.10,

using and modifying a single model for the whole branching tree. When the model is modified, the

solution process is initialized using the optimal basis of the previous model solved. The lower bound

polyhedron is stored using a data structure with a linked vertex-ray and a half-space representation, and

updated using Algorithm 3.

Updating the upper bound set: The upper bound set is updated by searching for vertices in the lower bound

set of a node with an integer-feasible pre-image (line 5 of Algorithm 1). Each time a new point is added

to the upper bound set, the set of local upper bounds is also updated using the algorithm developed by

Klamroth et al. (2015).

Pruning nodes: A node is checked for pruning (line 6 of Algorithm 1) by first checking if the node can be

pruned by infeasibility, then by optimality, and finally by dominance using Lemma 1. The dominance test

terminates when one dominated local upper bound is found, or when all local upper bounds have been

checked. Moreover, a non-dominated local upper bound in the father node will remain non-dominated in

all of its child nodes. Hence, it is not necessary to check it again. However, this requires to keep track

locally of the status of each local upper bound inN(U), which evolves globally. Preliminary experiments

showed that if that resulted in minor improvements when 𝑝 = 3 (a reduction of a few percentage points of

total CPU time), the computational cost was greater than recomputing the dominance test from scratch in

each node for larger 𝑝, due to the larger number of local upper bounds. Consequently, no information is

kept from the father node to the children node, and the dominance test is performed from scratch at each

node.

Variable selection: The variable chosen for branching on line 7 of Algorithm 1 is the variable that is the most

often fractional among the vertex solutions in the lower bound set. If no fractional variable exists, we

select the free binary variable with the average value closest to 0.5. If there is no free binary variable,

15

a general integer variable with different maximum and minimum values is chosen. If there are ties, the

variable with the lowest index is chosen. Given branching variable 𝑥𝑖 , two child nodes are created using

bound 𝑧. If 𝑥𝑖 is binary, bound 𝑧 = 0 is used, i.e. a rule denoted BINARY that branches on 𝑥𝑖 = 𝑧 and

𝑥𝑖 = 𝑧 + 1. Given an integer branching variable 𝑥𝑖 , a bound 𝑧 ∈ N has to be chosen, and we branch using

constraints 𝑥𝑖 ≤ 𝑧 and 𝑥𝑖 ≥ 𝑧 + 1. Let {𝑥1
𝑖
, . . . , 𝑥𝑘

𝑖
} denote the sorted 𝑘 values in the pre-images of all the

vertices of the lower bound set. We test the configurations:

• MED: Choose 𝑧 as the floor of the median value of {𝑥1
𝑖
, . . . , 𝑥𝑘

𝑖
}. That is, if the values are 2.4, 3.3

and 100 then 𝑧 = ⌊3.3⌋, and if the values are 2.4, 3.3, 50 and 100 then 𝑧 = ⌊26.65⌋ (average of the

two "middle" values). This is expected to result in more balanced trees, since we are more likely to

discard the same number of vertices in both sub-problems.

• MOFV: Choose bound 𝑧 such that most pre-images of vertices have 𝑥𝑖 ∈]𝑧, 𝑧 + 1[. The reasoning

behind this rule is to discard as many vertices with a non-integer value on 𝑥𝑖 as possible in both

sub-problems created. If there is no decimal value for 𝑥𝑖 the bound is chosen randomly in the range

[
⌊
𝑥1
𝑖

⌋
,
⌈
𝑥𝑘
𝑖

⌉
].

• RAND: Choose the bound randomly in the range [
⌊
𝑥1
𝑖

⌋
,
⌈
𝑥𝑘
𝑖

⌉
].

In principle, using LP vs WLP should not affect the branching tree given all other configurations fixed.

However, when the pre-image of a vertex is in fact feasible, the LP-configuration might produce an alternative

optimum when solving 𝐹 (𝑣) whereby a different pre-image of the vertex 𝑣 is found. This will, potentially, lead

to faster updates of the upper bound set and different search paths being followed as the pre-images are used

to decide on the branching variable as well as on the bound. Our test showed, however, that these differences

only affect very few instances, and that the effect is negligible. As a result we only test the most promising rule

(MOFV) for finding the bound (variable selection) for LP.

5.2 Test instances

Different problem classes are considered with 3, 4, and 5 objective functions. An overview is given in

Table 1. For each problem class, size (number of variables), and number of objectives, 10 instances are

generated. All instances can be obtained from https://github.com/MCDMSociety/MOrepo-Forget21 and

https://github.com/MCDMSociety/MOrepo-Kirlik14.

The problem class, denoted by ILP, consists of randomly generated MOILPs with up to 40 variables. These

instances were proposed and solved in Kirlik and Sayın (2014). Note that in general, the constraint matrix for

integer models modeling real-life applications is sparse and structured. We use these instances to investigate

how the algorithm performs on dense and unstructured integer models. Class PPP consists of Production

16

https://github.com/MCDMSociety/MOrepo-Forget21
https://github.com/MCDMSociety/MOrepo-Kirlik14

Table 1: Instances used (480 instances in total).

Class 𝑝a 𝑛b Range 𝐶c %𝐶d %𝐴e #f

ILP 3 10, 20, 30, 40 [-100,100] 35 80 40
ILP 4 10, 20, 30 [-100,100] 56 81 30
ILP 5 10, 20 [-100,100] 78 78 20
KP 3 10, 20, 30, 40, 50 [1,1000] 31 100 50
KP 4 10, 20, 30, 40 [1,1000] 54 100 40
KP 5 10, 20 [2,1000] 75 100 20
PPP 3 33, 39, 45, 54, 63 [1,2499] 14 3 50
PPP 4 24, 27, 33, 39, 48, 57 [1,2500] 21 4 60
PPP 5 15, 18, 24, 30, 36 [1,2500] 27 6 50
UFLP 3 42, 56, 72, 90 [1,1000] 88 3 40
UFLP 4 20, 30, 42, 56 [2,1000] 84 5 40
UFLP 5 12, 20, 30, 42 [2,1000] 81 8 40
a Number of objectives.
b Variable sizes.
c Range of the objective function coefficients𝐶 .
d Percentage of objective coefficients not dominated by other coefficients.
e Percentage of non-zeros in the constraint matrix 𝐴.
f Number of instances.

PPP UFLP

ILP KP

20 30 40 50 60 25 50 75

10 20 30 40 10 20 30 40 50
0

200

400

600

0

5000

10000

15000

20000

0

300

600

900

0

10000

20000

Variable size (𝑛)

|Y
𝑁
|

𝑝 = 3 𝑝 = 4 𝑝 = 5 reached time limit solved

Figure 2: Number of non-dominated points. One point for each instance and average lines are given. Instances

that have not been solved to optimality are illustrated with a transparent point.

17

Planning Problems with up to 63 variables. Both integer and binary variables are included in the model, as

well as “big 𝑀” constraints. We refer the reader to Appendix B.1 for a model description and more details

regarding the ranges of the coefficients. Class KP are binary Knapsack problems with up to 50 variables/items.

These instances were proposed and solved in Kirlik and Sayın (2014). Finally, class UFLP are Uncapacitated

Facility Location Problems with up to 90 variables. It is a combinatorial problem (only binary variables), and

the objective coefficients were generated such that the percentage of objective coefficients not dominated by

other coefficients is high (approx. 80%). This results in many non-dominated points. We refer the reader to

Appendix B.2 for more details regarding the model and the generation of coefficients. Note that PPP and UFLP

have a sparse constraint matrix compared to ILP.

In Figure 2 the number of non-dominated points are given for each instance. We have increased the variable

size for each problem class until the size becomes so large that some instances cannot be solved within the time

limit. The instances which have not been solved to optimality (19%) are illustrated with transparent points. In

general the number of non-dominated points grows with variable size (𝑛) and number of objectives (𝑝). Note

though that there may be a high variation for fixed 𝑛 and 𝑝. Moreover, the variation grows with 𝑛 and 𝑝.

The number of non-dominated points seems to be correlated with the density of the constraint matrix (%A in

Table 1). A dense constraint matrix may in some cases result in a small feasible solution space corresponding

to few non-dominated points. However, more important factors is the range of the objective coefficients and the

percentage of non-dominated objective coefficients (consider PPP and UFLP). Given a problem class, increasing

these factors will result in a higher number of non-dominated points (Forget, Nielsen, and Gadegaard, 2020).

Moreover, for UFLP the number of non-dominated points grows rapidly as a function of the number of variables,

which is due to the high percentage of objective coefficients not dominated by other coefficients.

5.3 Performance of the different algorithm configurations

First, we rank the configurations with respect to the average CPU time for all solved instances. The sequence

from best to worst for the integer problems with non-binary variables (ILP and PPP) becomes WLP-MOFV (0%),

WLP-RAND (8%), LP-MOFV (10%), and WLP-MED (11%), where the increase in percentages compared to the best

configuration is given in parentheses. For the combinatorial problems (KP and UFLP), WLP performed on

average 44% faster compared to LP.

A plot of the CPU time for each instance is given in Figure 3. Note the variation in CPU time for the 10

instances given each class and variable size. Warm-starting the computation (WLP) in general performs better

than LP. On average WLP (using the best variable selection configuration) performed 29% faster compared to LP.

This can also be seen in Figure 4 illustrating the number of solved instances given a CPU time limit. We have

increased the variable size for each problem class until the size becomes so large that some instances cannot be

18

ILP KP PPP UFLP

𝑝
=

3
𝑝
=

4
𝑝
=

5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

Variable size (𝑛)

C
PU
(s
ec
on
ds
)

LP WLP BINARY MED MOFV RAND

Figure 3: CPU times (a point for each instance) with average lines.

ILP KP PPP UFLP

𝑝
=

3
𝑝
=

4
𝑝
=

5

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CPU (seconds)

%

LP WLP BINARY MED MOFV RAND

Figure 4: Number of instances in percent solved given cpu time (seconds). An instance is considered as unsolved

if the cpu time exceed 3600 seconds (time limit). One curve is depicted for each of the configuration tested.

19

𝑝 = 5

ILP

𝑝 = 5

PPP

𝑝 = 4

ILP

𝑝 = 4

PPP

𝑝 = 3

ILP

𝑝 = 3

PPP

10.0 12.5 15.0 17.5 20.0 15 20 25 30 35

10 15 20 25 30 30 40 50

10 20 30 40 40 50 60
0

500000
1000000
1500000

0
250000
500000
750000

0e+00
2e+05
4e+05
6e+05

0
50000
100000
150000
200000

0
25000
50000
75000
100000
125000

0
10000
20000
30000

Number of variables

N
od
es
in
th
e
br
an
ch
in
g
tre
e

MED MOFV RAND

Figure 5: Tree size for different variable selection rules with average lines.

solved within the time limit. That is, the number of instances solved before the time limit is below 100%.

In a few instances LP performed best (fastest in 4% of the instances). We will have a closer look at the reason

for this in Section 5.5

5.4 Variable selection - Rules for choosing the bound

We are here interested in determiningwhether one rule for finding the bound (MED, RAND, and MOFV) is consistently

better than the other when considering non-binary integer problems. Since the effect on the branching tree of

using LP vs WLP is negligible, we will consider the WLP configuration here. By considering the performance

profiles in Figure 4 we see that there is no clear winner among MED, RAND, and MOFV.

The MOFV-configuration performed best in 45% of the instances. If we compare with the second best rule

for each instance, the CPU time on average increased with 11 seconds (a 3% increase).

If we take a look at the size of the branching tree in Figure 5, then the tree size for MOFV is not bigger than

the one for MED. As a result, we use MOFV in the succeeding experiments, since MOFV is slightly faster on average

and produces the smallest branching tree.

20

Table 2: Speed-up factor using WLP instead of LP for each problem class and number of objectives. The rule for

choosing the bound is MOFV.

Cpu LPs solved

Class 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 3 𝑝 = 4 𝑝 = 5

ILP 1.38 1.46 1.22 1.49 1.73 1.80

KP 1.43 1.36 1.12 1.51 1.55 1.50

PPP 1.37 1.69 1.74 1.55 2.15 2.61

UFLP 1.93 1.74 1.17 2.20 2.18 1.95

5.5 Detailed performance of different algorithm parts

In this section, we take a closer look at different parts of Algorithm 1. Different speed-up factors by using

WLP instead of LP are given in Table 2. The factor is obtained by dividing the LP value with the WLP value.

Only instances with both configurations solved are recorded. WLP are on average 1.47 times faster than LP with

significant differences among the problem classes, e.g. for problem class UFLP, WLP is on average 1.61 times

faster while for class ILP the speed-up is 1.35.

Most of the CPU time (95% for LP and 91% for WLP) is used on calculating the lower bound set (Algorithm 2)

and the speed-up is mainly due to a reduction in the number of times the linear programming solver has to

be called on line 2 in Algorithm 2. This can be seen in Table 2. For example, for UFLP WLP is 1.61 times

faster and solves 2.11 times less linear programs on average than LP. However, when using WLP the initial outer

approximation has to be copied from the father node into the child node and managing the polyhedron is harder

since we have to check for redundant half-spaces in Algorithm 3 (lines 4-12). As a result we have a smaller

reduction in CPU times than the reduction in number of LPs solved.

Since most of the time is used for calculating the lower bound set, let us have a closer look at the relative

usage of the different parts of Algorithm 2. An overview is given in Figure 6 where the different parts are:

Initialization Proportion of time used to calculate the outer approximation with polyhedron ({𝑦𝐼
𝐿𝑃
} + R𝑝

≧ for

LP, and time to copy the lower bound set from the father node for WLP. That is, time used to find the input

on line 1 of Algorithm 2.

Solve LPs Proportion of time used to solve linear programs in CPLEX (line 2 of Algorithm 2).

Update polyhedron Proportion of time used for updating the polyhedron using Algorithm 3.

Other Proportion of time used on other parts of Figure 6, such as picking a vertex in the polyhedron (line 2),

retrieving pre-images from CPLEX’s ouput, checking the pre-image of a point from the father node...

21

83.8

4.2

9.82.2

90.8

6.4

1.61.2

79.6

4.2

13.5
2.7

90

6.5

1.52

70.2

2.2

21.6
6

87.5

4.1

1.17.3

86.1

3.1

8.32.5

91.1

4.8

1.13

78.8

12.4

7.31.5

78.3

19.8

2.3

-0.4

76.6

10.3

11.21.9

80.9

16.8

1.90.5

64.7

3.7

27.1
4.5

84.2

7.7

1.86.3

74

10.1

13.7
2.1

78.2

18.5

2.11.1

56.3

36.3

6.41
46.7

52.1

1.9

-0.7

63.9

23.6

111.5

59.5

38.7

1.8

-0.1

61.1

5.3

30.5
3.2

80.8

12.8

2.73.7

51.7

37.2

9.91.1
40.1

58.6

1.4

-0.1

3 4 5

ILP
K
P

PPP
U
FLP

LP WLP LP WLP LP WLP

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

pe
rc
en
to
ft
ot
al
C
PU
tim
e

Initialization Other Solve LPs Update polyhedron

Figure 6: Proportion of the cpu time spent in the different components of Algorithm 2.

First, note that the proportion of time for initialization is much higher for LP compared to WLP. For WLP the

time for copying the lower bound set from the father is negligible. Second, note that the cost of updating the

polyhedron increases with the number of objectives. This is an observation that was also made by Csirmaz

(2015), who showed that in higher dimensions (𝑝 = 10 in their paper), updating the polyhedron was actually

the bottleneck of the Benson-like algorithm. This also explains why the speed-up factors in Algorithm 1 in

general decrease with the number of objectives while the reduction of linear programs solved in general increase.

Even though we solve relatively less linear programs for increasing 𝑝, we have to use more time on updating

the polyhedron containing the lower bound set. Hence alternative lower bound sets that does not require to

manage a polyhedron, or at least less polyhedral operations, may be preferred in higher dimensions. Next, note

that updating the polyhedron takes a higher proportion of time for WLP. This is because we have to check for

22

58.7

3.2

38.1

7

16.8

76.2

16.4

10.2

73.3

0

42.4

57.6

66.5

7.1

26.4

10.8

30.1

59.1

20.7

20.4

58.9

0

77.4

22.6

65.8

15.3

18.9

17.5

34.6

47.8

13.8

37.3

48.9

0

93.5

6.5

3 4 5

ILP KP PPP UFLP ILP KP PPP UFLP ILP KP PPP UFLP

0

25

50

75

100

pe
rc
en
to
fl
ea
fn
od
es

dominance infeasibility optimality

Figure 7: Proportion of leaf nodes pruned by infeasibility, optimality and dominance.

redundant half-spaces (lines 4-12 in Algorithm 3). Finally, observe that even though we have a high reduction

in the number of linear programs solved for WLP the proportion of time used for solving linear programs is still

the most predominant (except for UFLP, 𝑝 = 5).

5.6 Pruning nodes

In this section we take a closer look at how nodes are pruned. Recall that a node is checked for pruning by first

checking if the node can be pruned by infeasibility, next optimality, and finally by dominance. The results are

illustrated in Figure 7 where the proportion of leaf nodes pruned by infeasibility, optimality and dominance are

given.

It appears from Figure 7 that different behaviors are observed for the different problem classes. However,

for all problem classes, the proportion of leaf nodes pruned by dominance decreases as the number of objectives

increases. The reason for this is that the likelihood of a point is non-dominated increases as we add dimensions

to the objective space, which makes the nodes harder to prune by dominance.

Similarly, the proportion of nodes fathomed by optimality increases, which means that nodes with a unique

integer vertex in the lower bound set are less rare for higher dimensional problems. Since these nodes are more

likely to appear deep in the tree where many variables are fixed, it suggests that the branch-and-bound algorithm

develops deeper trees when more objective functions are considered - again this is consistent with the fact that as

23

Vertices in Y𝐿𝑃
𝑁
(𝜂)

ILP

Vertices in Y𝐿𝑃
𝑁
(𝜂)

KP

Vertices in Y𝐿𝑃
𝑁
(𝜂)

PPP

Vertices in Y𝐿𝑃
𝑁
(𝜂)

UFLP

Facets with rays in P𝐿𝑃
≧ (𝜂)

ILP

Facets with rays in P𝐿𝑃
≧ (𝜂)

KP

Facets with rays in P𝐿𝑃
≧ (𝜂)

PPP

Facets with rays in P𝐿𝑃
≧ (𝜂)

UFLP

Facets in Y𝐿𝑃
𝑁
(𝜂)

ILP

Facets in Y𝐿𝑃
𝑁
(𝜂)

KP

Facets in Y𝐿𝑃
𝑁
(𝜂)

PPP

Facets in Y𝐿𝑃
𝑁
(𝜂)

UFLP

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40
0

2000

4000

0

1000

2000

0

400

800

1200

0

2

4

6

0

20

40

60

80

0

10

20

30

0

100

200

300

0

200

400

600

0

200

400

600

0

50

100

150

0

200

400

0

100

200

branching tree depth

𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑛

10
12
15

18
20
21

24
27
30

33
36
39

40
42
45

48
50
54

56
57
63

72
90

Figure 8: Average number of facets and vertices in the lower bound set and polyhedron calculated using

Algorithm 2.

the number of objectives increases, generating all non-dominated outcomes comes closer to a total enumeration

of the decision space.

5.7 Geometric properties of the lower bound set during the algorithm

In this section, we take a closer look at the polyhedral properties of the lower bound sets found at each node in

the branching tree during the algorithm. In Figure 8 statistics about the number of facets and vertices inY𝐿𝑃
𝑁
(𝜂)

and facets with rays in P𝐿𝑃
≧ (𝜂), i.e. extra facets needed for the full-dimensional polyhedron P𝐿𝑃

≧ (𝜂) is given.

The numbers are given as a function of the depth of the branching tree with a line for each 𝑝 and 𝑛.

First, note that the numbers decrease as a function of the depth of the branching tree, e.g. as we branch

deeper the lower bound set has fewer facets and vertices.

Second, consider a problem class and a fixed number of variables 𝑛. As the number of objectives grows, the

lower bound sets contain more facets and vertices. That is, more objectives generate more complex lower bound

24

sets, which is mainly due to the dimension increase of the lower bound set. The same holds for fixed number of

objectives 𝑝. As 𝑛 grows the lower bound sets contain more facets and vertices. That is, larger problem sizes

generate more complex lower bound sets.

Third, consider the decrease in the numbers as the depth grows for each problem class. For ILP and KP the

numbers decrease slower compared to PPP and UFLP. This is probably due to the fact that when we branch in

PPP and UFLP the subproblems become more restricted resulting in smaller lower bound sets faster (fixing a 𝑦

variable in these problem classes implicitly fixes some 𝑥 variables). This is not the case for ILP and KP, which

do not have these implication relations between the variables and hence fixing a variable does not restrict the

objective space as much.

Next, compare the number of vertices among problem classes. The number of vertices for PPP is lowest

and highest for UFLP. That is, the lower bound sets in PPP are relatively simple compared to the UFLP and

hence much faster to calculate and update (see Figure 6). Indeed, the proportion of cpu time spent in finding

the initial polyhedron is very large compared to other problem classes, which suggests that only a few iterations

are required to solve the linear relaxation once the initial polyhedron is found. That is particularly beneficial to

WLP since, as we observe in Figure 6, warm-starting Algorithm 2 significantly reduces the initialization part of

the algorithm.

If we consider the number of facets including rays in the polyhedron we can see that it increases rapidly with

increasing 𝑝 and for 𝑝 = 5 it is higher than the number of facets (without rays) in the lower bound set (except

for UFLP). That is, managing and updating the full-dimensional polyhedron instead of just the lower bound set

seems to come at a higher cost as 𝑝 increases.

Finally, recall the size of the non-dominated sets in Figure 2. Here the size of the non-dominated set for

PPP is high. However, the number of vertices in the lower bound set is low. That is, problems with large

non-dominated sets may generate (often weak) lower bound sets with few vertices. The opposite is also true.

For ILP and KP the number of vertices is relatively higher compared to the size of the non-dominated set. That

is, the relationship between the number of vertices and number of non-dominated points (i.e. the upper bound

set) is problem specific.

5.8 Proving optimality

It is well known that it is crucial in single objective integer linear optimization to obtain a strong upper bound

early during the branch-and-bound algorithm. This is to increase the potential for pruning nodes based on the

bound. Generalizing to MOILP, obtaining a strong upper bound set might also increase the potential for pruning

nodes based on dominance, thus leading to smaller trees and consequently lower CPU times.

In order to investigate the potential of such a strong upper bound set found early, we have run the algorithm

25

ILP KP PPP UFLP

𝑝
=

3
𝑝
=

4
𝑝
=

5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

Variable size (𝑛)

C
PU
(s
ec
on
ds
)

WLP-UB WLP

Figure 9: CPU times (with average lines) for WLP and WLP with the non-dominated set used as initial upper

bound set in the root node (WLP-UB).

where the upper bound set is initialized byY𝑁 (using WLPwith MOFV or BINARY). That is, on line 1 of Algorithm 1

we replaceU ← ∅ withU ← Y𝑁 . This corresponds to having a very fast and effective heuristic.

As can be seen from Figure 9 the reduction in CPU time is significant. On average over all the instances the

speed-up factor is 2.06 meaning that on average, not providing an optimal solution at the root node, makes the

cpu time increase with 106%.

As there is no significant computation time involved in generating solutions in our branch-and-bound

algorithm (feasible solutions are simply harvested from integer feasible vertices of the lower bound sets), the

speed-up must come from the increased pruning potential. The number of nodes in the branching tree on average

decrease with 30% for WLP-UB. Note also, that in the WLP-UB configuration, the algorithm still check whether

each integer feasible vertex of the lower bound sets found should enter the upper bound set, which underlines

the fact that the reduction in computation time comes from the increased pruning potential.

Concluding, it seems that, just as is the case for single objective integer programming, generating a strong

upper bound set in the early stages of the algorithm may have a significant positive impact on the performance

on the algorithm,

26

ILP KP PPP UFLP

𝑝
=

3
𝑝
=

4
𝑝
=

5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

Variable size (𝑛)

C
PU
(s
ec
on
ds
)

OSS WLP

Figure 10: CPU times for OSS and WLP (using MOFV) with average lines.

5.9 Performance of the multi-objective B&B algorithm compared to an objective space search

algorithm

The performance of the B&B algorithm was compared to the Objective Space Search (OSS) algorithm by Kirlik

and Sayın (2014). A C++ implementation of the algorithm was obtained from Kirlik (2014). We are aware

that there exist more recent OSS algorithms that outperform Kirlik (2014), in particular for 𝑝 ≥ 4 (such as

Tamby and Vanderpooten (2021));however, since no C++ implementation is available and the implementation

of existing OSS algorithms is not the purpose of this paper, the algorithm by Kirlik and Sayın (2014) was used.

The current development of OSS algorithms is more mature and the algorithms may outperform multi-

objective B&B algorithms. Moreover, OSS algorithms benefit from the power of single-objective MIP solvers,

which have been improved over decades. Having this in mind, the purpose of this study is not necessarily to

outperform the OSS algorithm, but rather to discuss and thoroughly analyse the concept of objective branching

in a B&B algorithm against an OSS algorithm. Indeed, we do believe that it will take further research before

reaching a competitive B&B algorithm, and we propose here a first step towards an efficient implementation.

Moreover, our research may result in an advancement of the development of promising methods that hybridize

decision space and objective space search methods.

The code by Kirlik and Sayın (2014) was updated to work with CPLEX 12.10 and compiled using the

MSVC compiler with default options. The results are shown in Figure 10. The OSS algorithm is tested against

27

the best configuration of our branch-and-bound framework (WLP with MOFV or BINARY). Different winners with

respect to CPU time are observed. First, it appears that this OSS algorithm performs better on instances with

three objective functions. However, as the number of objective functions increase, the trend is reversing and the

B&B algorithm becomes better than the OSS algorithm for all problem classes when 𝑝 = 5.

When looking more closely at the case 𝑝 = 3, note that the gap in terms of CPU time between the B&B

algorithm and the OSS algorithm is lowest for problem classes with many non-dominated points, namely PPP

and UFLP. The OSS algorithm is sensitive to increasing number of non-dominated points since one single-

objective ILP is solved for each non-dominated point during the OSS algorithm. Contrary, many non-dominated

points may be found at the same time in some of the nodes of the branch-and-bound tree. This supports a better

performance of the B&B algorithm when handling more objectives, as more non-dominated points are expected

when considering more objectives.

To test the algorithms with longer running time, we extended the time limit to 4 hours, and considered two

unsolved instances (either for WLP or OSS) for each problem class and number of objectives. The two instances

with the lowest and highest upper bound set was picked among the unsolved instances. If only one instance was

unsolved, we chose the instance solved with the largest cpu time for WLP for the second instance. The results are

given in Table 3 containing CPU times, speedup ratios and approximation measures.

An 𝜖-approximation of Y𝑁 is a set Ȳ such that for each 𝑦 ∈ Y𝑁 , there exists 𝑦̄ ∈ Ȳ such that 𝑦̄ − 𝜖Δ ≦ 𝑦,

where Δ = 𝑦𝑁 − 𝑦𝐼 . This can be interpreted as the maximal proportion of the distance between the ideal and

the nadir point one need to shift the points in Ȳ to satisfy this condition. To find 𝜖 , we extracted the the upper

bound set after one hour (denoted by Ū), and calculated the 𝜖 needed such that Ū is an 𝜖-approximation ofY𝑁 .

We also reported the average value 𝜖 of 𝜖 needed for for each non-dominated point, i.e. 𝜖 = 1
|Y𝑁 |

∑
𝑦∈Y𝑁 𝜖𝑦 ,

where 𝜖𝑦 is the minimal value 𝜖 such that there exists 𝑦̄ ∈ Ū such that 𝑦̄ − 𝜖Δ ≦ 𝑦.

Consider Table 3. First, observe even beyond the one hour time limit, the B&B algorithm exhibit the same

behavior as when given the limit. The OSS algorithm performs better on instances with three objective functions

and as the number of objective functions increase, the trend is reversing and the B&B algorithm becomes better

than the OSS algorithm. Indeed, B&B is most competitive compared to the OSS algorithm on problems that

exhibit a large number of non-dominated points.

Second, for UFLP, the proportion of non-dominated points obtained within one hour is very high even

though the total computation time is not necessarily that close to one hour. This shows that for this problem

class, the B&B algorithm spend a lot of time obtaining a few missing non-dominated points and trying to

prove optimality. This observation confirms the results from Figure 9, where having Y𝑁 as upper bound set

did not significantly reduce the total CPU time for UFLP. Also, it implies that in some cases, stopping the

B&B prematurely is likely to provide a good approximation of Y𝑁 . This is not necessarily the case if an OSS

28

Table 3: Some instances solved with a time limit increased to 4 hours. KP for 𝑝 = 5 were not added since all

instances are solved in less than one hour. ILP for 𝑝 = 5 are not added since all instances resolved resulted in

more than 4 hours CPU time for WLP and OSS.

Class 𝑝a 𝑛b |Y𝑁 |c WLP d OSS e Speedupf Proportiong 𝜖h 𝜖 i

PPP

3 63
1309 4421.91 82.63 0.02 39.7 4.3 0.5
8093 2827.16 1213.28 0.43 100 0.0 0.0

4 33
33453 4620.17 > 4 hours > 3.12 89.6 0.4 0.0
12844 1120.48 > 4 hours > 12.50 100 0.0 0.0

5 36
25041j > 4 hours > 4 hours - - - -
25409 8623.28 > 4 hours > 1.69 60.6 2.4 0.1

UFLP

3 90
10623 4935.04 3687.22 0.54 96.5 0.8 0.0
8557 3661.84 2934.19 0.80 99.4 0.4 0.0

4 56
15797 3640.48 > 4 hours > 3.99 100 0.5 0.0
20088 5748.01 > 4 hours > 2.50 98.7 1.8 0.0

5 42
12968 4258.93 > 4 hours > 3.32 100 0.0 0.0
10441 3796.83 > 4 hours > 3.84 100 0.0 0.0

ILP
3 40

187 > 4 hours 399.88 < 0.03 3.7 11.9 4.3
253 10176.10 127.55 0.01 7.5 10.9 2.8

4 30
572 > 4 hours 772.08 < 0.06 9.3 14.7 3.7
920 > 4 hours 1979.75 < 0.14 9.4 12.1 2.9

KP
3 50

557 5523.37 45.22 0.01 53.9 7.0 0.8
383 3610.06 29.99 0.01 62.4 6.0 0.5

4 40
901 7378.62 2672.89 0.36 10.2 10.8 2.7
1435 5966.67 > 4 hours > 2.44 22.4 11.1 2.3

a Number of objectives.
b Number of variables.
c Number of non-dominated points.
d CPU time when solving using WLP.
e CPU time when solving using OSS.
f Speedup ratio obtained by dividing the CPU time of OSS by the CPU time of WLP.
g Proportion of non-dominated points found after one hour of running WLP, in percentage.
h The upper bound set obtained after one hour is an 𝜖 -approximation of Y𝑁 .The number reported is 100𝜖 , and can be interpreted as a percentage of the distance between 𝑦𝐼 and 𝑦𝑁 .
i The number reported is 100𝜖 , and can be interpreted as a percentage of the distance between 𝑦𝐼 and 𝑦𝑁 .
j Size of the upper bound set at the 4 hours time limit.

algorithm is stopped early, since at most one non-dominated point is generated at each iteration whereas multiple

solutions can be harvested at a single node in a B&B algorithm.

Next, the approximation found is of good quality for UFLP and PPP. The value of 𝜖 is very close to 0, which

implies that on average, Ū is very close to Y𝑁 . For KP and in particular ILP the approximation is of lower

quality but still relatively good.

Finally, observe that 𝜖 is significantly lower than 𝜖 . This suggest that in some part of the objective space,

the approximation is of good quality, but there are may be a few regions in which no good feasible solution is

found yet. Identifying such regions and intensifying the search in those may be beneficial in case of an early

stop of the B&B algorithm.

29

6 Conclusion

In Section 3, we implemented a branch-and-bound algorithm that can solve any MOILP with any number of

objectives. It was inspired by the recent successful bi-objective frameworks found in the literature, and then

adapted to the multi-objective case. In particular, it was based on the use of linear relaxations to generate lower

bound sets, and used a Benson-like algorithm to do so. We also pointed out that in case integer variables exists

in the problem solved, we need to chose the bound imposed on the branching variable in the child nodes in

addition the variable to branch on. This decision is not trivial anymore when there exist two points or more

in the lower bound set. We tested three different rules in Section 5 and showed that despite the fact that they

performed quite similarly in practice, there are instances where the choice has a significant impact in terms of

total CPU time.

Moreover, in Section 4 we proposed a way to accelerate the computation of the linear relaxation in the

specific context of a multi-objective branch-and-bound algorithm. It relies on the use of the lower bound set

from the father node to warm-start the solution process in the current node. Our experiments showed that this

led to a great reduction in the number of calls to the single-objective linear programming solver, which resulted

in a significant speed-up for most of our instances. However, warm-starting the lower bound set computation

comes at a greater cost of managing the polyhedra coresponding to the lower bound sets. A consequence of that

is a decrease in the speed-up as the number of objective functions increases.

This latter observation suggests that for high-dimensional problems, it may be preferred to use a lower bound

set that does not require as many polyhedral operations as the one used in this paper. An alternative approach

could be to use an implicit lower bound set as defined in Gadegaard et al. (2019) instead of explicitly computing

the linear relaxation. In such an approach, line 4 of Algorithm 1 is skipped, and a linear program similar to

𝐹 (𝑢) is solved to check whether a local upper bound 𝑢 is dominated by the lower bound set.

Besides, in the recent bi-objective literature, methods that use information from the objective space to

enhance the DSS algorithm have proven to be very efficient. Extending these concepts to the case where 𝑝 ≥ 3

may then be of great interest and may potentially result in an even more efficient DSS algorithm.

Finally, similar to the single-objective case, the branch-and-bound algorithm could be stopped early to obtain

an approximation of Y𝑁 . Our computation study showed that the upper bound set obtained after stopping the

B&B early could provide a very good approximation of Y𝑁 , but also that there could be some regions of the

objective space in which the quality of the approximation decreases. We believe that developing a procedure that

intensifies the search in such regions could be beneficial to the B&B algorithm, in the sense that approximations

of better quality could be obtained if the algorithm is stopped early. A possible approach would be for example

to design an appropriate node selection rule.

30

References

Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective mixed-integer linear programming.

INFORMS Journal on Computing, oct 2021. doi:10.1287/ijoc.2021.1092. Published online 21 Oct 2021.

P. Belotti, B. Soylu, and M. M. Wiecek. A branch-and-bound algorithm for biojbective mixed-intger programs.

Technical report, Clemson University, 2013. URL http://www.optimization-online.org/DB_HTML/2013/

01/3719.html.

P. Belotti, B. Soylu, and M.M. Wiecek. Fathoming rules for biobjective mixed integer linear programs: Review

and extensions. Discrete Optimization, 22:341–363, nov 2016. doi:10.1016/j.disopt.2016.09.003.

H. P. Benson. An outer approximation algorithm for genrating all efficient extreme points in the outcome set of

a multiple objective linear programming problem. Journal of Global Optimization, 13:1–24, 1998.

N. Boland and H. Charkhgardand M. Savelsbergh. The l-shape search method for triobjective integer program-

ming. Mathematical Programming Computation, 8(2):217–251, Jun 2016. doi:10.1007/s12532-015-0093-3.

N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method: A simple and efficient

algorithm for solving tri-objective integer programs. European Journal of Operational Research, 260(3):873

– 885, 2017. ISSN 0377-2217. doi:10.1016/j.ejor.2016.03.035.

L. Csirmaz. Using multiobjective optimization to map the entropy region. Computational Optimization and

Applications, 63(1):45–67, jun 2015. doi:10.1007/s10589-015-9760-6.

M. Ehrgott. Multicriteria Optimization. Springer Berlin, Heidelberg, 2nd edition, 2005. ISBN 3540213988.

M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization problems. Computers &

Operations Research, 34(9):2674–2694, 2007. doi:10.1016/j.cor.2005.10.003.

K. Florios, G. Mavrotas, and D. Diakoulaki. Solving multiobjective, multiconstraint knapsack problems using

mathematical programming and evolutionary algorithms. European Journal of Operational Research, 203

(1):14 – 21, 2010.

N. Forget, L.R. Nielsen, and S.L Gadegaard. Computational results (all instances). Technical report, Aarhus

University, 2020. URL https://mcdmsociety.github.io/MOrepo-Forget20/report.html. Results for all

the instances at the repository MOrepo-Forget20.

K. Fukuda and A. Prodon. Double description method revisited. In Lecture Notes in Computer Science, volume

1120, pages 91–111. Springer, Berlin, 1996.

31

http://dx.doi.org/10.1287/ijoc.2021.1092
http://www.optimization-online.org/DB_HTML/2013/01/3719.html
http://www.optimization-online.org/DB_HTML/2013/01/3719.html
http://dx.doi.org/10.1016/j.disopt.2016.09.003
http://dx.doi.org/10.1007/s12532-015-0093-3
http://dx.doi.org/10.1016/j.ejor.2016.03.035
http://dx.doi.org/10.1007/s10589-015-9760-6
http://dx.doi.org/10.1016/j.cor.2005.10.003
https://mcdmsociety.github.io/MOrepo-Forget20/report.html

S.L. Gadegaard, L.R. Nielsen, and M. Ehrgott. Bi-objective branch-and-cut algorithms based on lp relaxation

and bound sets. INFORMS Journal on Computing, 31(4):790–804, 2019.

A. H. Hamel, A. Löhne, and B. Rudloff. Benson type algorithms for linear vector optimization and applications.

Journal of Global Optimization, 59(4):811–836, aug 2013. doi:10.1007/s10898-013-0098-2.

N. Jozefowiez, G. Laporte, and F. Semet. A generic branch-and-cut algorithm for multiobjective optimization

problems: Application to the multilabel traveling salesman problem. INFORMS Journal on Computing, 24

(4):554–564, nov 2012. doi:10.1287/ijoc.1110.0476.

G. Kirlik. Test instances for multiobjective discrete optimization problems, 2014. URL http://home.ku.edu.

tr/~moolibrary/.

G. Kirlik and S. Sayın. Computing the nadir point for multiobjective discrete optimization problems. Journal

of Global Optimization, 62(1):79–99, aug 2014. doi:10.1007/s10898-014-0227-6.

G. Kirlik and S. Sayın. A new algorithm for generating all nondominated solutions of multiobjective discrete

optimization problems. European Journal of Operational Research, 232(3):479 – 488, 2014. ISSN 0377-

2217. doi:10.1016/j.ejor.2013.08.001.

G. Kiziltan and E. Yucaoğlu. An algorithm for multiobjective zero-one linear programming. Management

Science, 29(12):1444–1453, December 1983. doi:10.1287/mnsc.29.12.1444.

K. Klamroth, R. Lacour, and D Vanderpooten. On the representation of the search region in multi-objective

optimization. European Journal of Operational Research, 245(3):767–778, 2015. doi:10.1016/j.ejor.2015.

03.031.

D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming problem. European

Journal of Operational Research, 9(4):378 – 385, 1982. doi:10.1016/0377-2217(82)90182-5.

A. Löhne and B. Weißing. Bensolve - vlp solver, version 2.1.x. http://www.bensolve.org, 2020.

G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objec-

tive linear programming. European Journal of Operational Research, 107(3):530–541, 1998. doi:

10.1016/S0377-2217(97)00077-5.

G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm for mixed

0-1 multiple objective linear programming. Applied Mathematics and Computation, 171(1):53–71, 2005.

doi:10.1016/j.amc.2005.01.038.

32

http://dx.doi.org/10.1007/s10898-013-0098-2
http://dx.doi.org/10.1287/ijoc.1110.0476
http://home.ku.edu.tr/~moolibrary/
http://home.ku.edu.tr/~moolibrary/
http://dx.doi.org/10.1007/s10898-014-0227-6
http://dx.doi.org/10.1016/j.ejor.2013.08.001
http://dx.doi.org/10.1287/mnsc.29.12.1444
http://dx.doi.org/10.1016/j.ejor.2015.03.031
http://dx.doi.org/10.1016/j.ejor.2015.03.031
http://dx.doi.org/10.1016/0377-2217(82)90182-5
http://www.bensolve.org
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/j.amc.2005.01.038

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, 1999.

M. Ozlen, B.A. Burton, and C.A.G. MacRae. Multi-objective integer programming: An improved recursive

algorithm. Journal of Optimization Theory and Applications, 160(2):470–482, Feb 2014. doi:10.1007/

s10957-013-0364-y.

S.N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming. INFORMS Journal on

Computing, 31(4):805–822, 2019. doi:10.1287/ijoc.2018.0856.

R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the optimal biobjective spanning tree.

European Journal of Operational Research, 111(3):617 – 628, 1998. doi:10.1016/S0377-2217(97)00391-3.

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the biobjective

spanning tree problem. INFORMS Journal on Computing, 20(3):472–484, 2008. doi:10.1287/ijoc.1070.0260.

T. Stidsen and K. A. Andersen. A hybrid approach for biobjective optimization. Discrete Optimization, 28:

89–114, 2018. doi:10.1016/j.disopt.2018.02.001.

T. Stidsen, K. A. Andersen, and B. Dammann. A branch and bound algorithm for a class of biobjective mixed

integer programs. Management Science, 60(4):1009–1032, 2014. doi:10.1287/mnsc.2013.1802.

J. Sylva andA. Crema. Amethod for finding the set of non-dominated vectors formultiple objective integer linear

programs. European Journal of Operational Research, 158(1):46 – 55, 2004. doi:10.1016/S0377-2217(03)

00255-8.

S. Tamby and D. Vanderpooten. Enumeration of the nondominated set of multiobjective discrete optimization

problems. INFORMS Journal on Computing, 33(1):72–85, 2021. doi:10.1287/ijoc.2020.0953.

E. L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-bound procedure. In

João Clímaco, editor, Multicriteria Analysis, pages 269–278. Springer Berlin Heidelberg, 1997.

E.L. Ulungu and J. Teghem. The two phases method: An efficient procedure to solve bi-objective combinatorial

optimization problems. Foundations of Computing and Decision Sciences, 20(2):149–165, 1995.

T. Vincent. Caractérisation des solutions efficaces et algorithmes d’énumération exacts pour l’optimisation

multiobjectif en variables mixtes binaires. PhD thesis, LINA, Université de Nantes, France, 2013. URL

http://www.theses.fr/2013NANT2065.

T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective branch and bound

for mixed 0-1 linear programming: Corrections and improvements for the biobjective case. Computers &

Operations Research, 40(1):498–509, 2013. doi:10.1016/j.cor.2012.08.003.

33

http://dx.doi.org/10.1007/s10957-013-0364-y
http://dx.doi.org/10.1007/s10957-013-0364-y
http://dx.doi.org/10.1287/ijoc.2018.0856
http://dx.doi.org/10.1016/S0377-2217(97)00391-3
http://dx.doi.org/10.1287/ijoc.1070.0260
http://dx.doi.org/10.1016/j.disopt.2018.02.001
http://dx.doi.org/10.1287/mnsc.2013.1802
http://dx.doi.org/10.1016/S0377-2217(03)00255-8
http://dx.doi.org/10.1016/S0377-2217(03)00255-8
http://dx.doi.org/10.1287/ijoc.2020.0953
http://www.theses.fr/2013NANT2065
http://dx.doi.org/10.1016/j.cor.2012.08.003

M. Visée, J. Teghem, M. Pirlot, and EL Ulungu. Two-phases method and branch and bound procedures to solve

the bi–objective knapsack problem. Journal of Global Optimization, 12:139–155, 1998.

34

	Introduction
	Preliminaries
	Polyhedral theory
	Bound sets

	A branch-and-bound framework for MOILP
	Linear relaxation for MOBB
	Warm-starting Benson-like algorithms in MOBB

	Computational experiments
	Implementation details and algorithm configurations
	Test instances
	Performance of the different algorithm configurations
	Variable selection - Rules for choosing the bound
	Detailed performance of different algorithm parts
	Pruning nodes
	Geometric properties of the lower bound set during the algorithm
	Proving optimality
	Performance of the multi-objective B&B algorithm compared to an objective space search algorithm

	Conclusion

