
Linear relaxation based branch-and-bound for multi-objective integer
programming with warm-starting

Nicolas Forget∗, Sune Lauth Gadegaard, Lars Relund Nielsen
Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus
University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark

August 4, 2021

Abstract: In this paper we propose a generic branch-and-bound algorithm for solving multi-objective
integer linear programming problems. In the recent literature, competitive frameworks has been
proposed for bi-objective 0-1 problems, and many of these frameworks rely on the use of the linear
relaxation to obtain lower bound sets. When increasing the number of objective functions, however,
the polyhedral structure of the linear relaxation becomes more complex, and consequently requires
more computational effort to obtain. In this paper we overcome this obstacle by speeding up the
computations. To do so, in each branching node we use information available from its farther
node to warm-start a Bensons-like algorithm. We show that the proposed algorithm significantly
reduces the CPU time of the framework on several different problem classes with three, four and five
objective functions. Moreover, we point out difficulties that arise when non-binary integer variables
are introduced in the models, and test our algorithm on problem that contains non-binary integer
variables too.

Keywords: multi-objective optimization; multi-objective branch-and-bound; combinatorial optimiza-
tion; linear relaxation; warm-starting

1 Introduction

In many real-life problems, it is usually possible to define multiple relevant objectives to optimize
simultaneously. For example, one could be interested in minimizing costs, distances, traveling time,
the impact on the environment, and so forth. Sometimes, it is not enough to consider only one of
these objectives to obtain a satisfactory solution to a real-life problem. Instead, several possibly
conflicting objectives should be considered simultaneously. Multi-objective optimization is the field
that addresses such optimization problems and as a result, produces desirable trade-offs between the
conflicting objectives.

In this paper, we consider Multi-Objective Integer Linear Problems (MOILP) with ? linear ob-
jectives. It is assumed that all variables in the decision space are integer. A special class of MOILP
consists of Multi-objective Combinatorial Optimization Problems (MOCOP) with only binary vari-
ables and well-structured constraints (Nemhauser and Wolsey, 1999).

Over the past decades, variousmethodologies have been proposed in the literature to solveMOILPs.
These methodologies can be roughly divided into two main categories: Objective Space Search (OSS)
algorithms and Decision Space Search (DSS) algorithms. The principle of an OSS algorithm is to

∗Corresponding author (nforget@econ.au.dk).

1

nforget@econ.au.dk

search the objective space by solving a series of single-objective problems, obtained by scalarizing
the objective functions (Ehrgott, 2005). Hence, the power of single-objective solvers can be used
to generate the optimal set of solutions (see Section 2 for a formal definition). Consequently, much
attention has been paid to OSS methods over the years (see e.g. Ulungu and Teghem (1995); Visée,
Teghem, Pirlot, and Ulungu (1998); Sylva and Crema (2004); Ozlen, Burton, and MacRae (2014);
Kirlik and Sayın (2014); Boland, Charkhgard, and Savelsbergh (2017); Boland and Savelsbergh (2016);
Tamby and Vanderpooten (2020)).

In contrast, a DSS algorithm searches the decision space. To the best of our knowledge, Klein and
Hannan (1982) were the first to suggest a solution approach for the MOILP using a DSS algorithm.
They used a unique branching tree to solve a series of single-objective integer programs, resulting
in the computation of all desirable solutions. A year later, Kiziltan and Yucaoğlu (1983) proposed
another general branch-and-bound framework. In particular, they used minimal completion, providing
a lower approximation of the ideal point as a lower bound. Both of these frameworks were designed
for the multi-objective case where ? > 2.

In the following years, attention was paid to problem-specific methods, for example in Ulungu
and Teghem (1997) and Ramos, Alonso, Sicilia, and González (1998). In Visée et al. (1998), the
authors used a multi-objective DSS algorithm embedded in an OSS algorithm, the so-called two-phase
method. The next general branch-and-bound framework was developed by Mavrotas and Diakoulaki
(1998), and improved inMavrotas and Diakoulaki (2005). Their algorithm solvesMOILPs with binary
variables, but can also handle continuous variables in addition to binary ones. Furthermore, whereas
previous branch-and-bound frameworks rely on the use of the ideal point (or an approximation hereof)
as lower bound set, the authors propose to consider both the ideal point for dominance tests, and a
finite set of points, namely the extreme points of the multi-objective linear relaxation, to update the
upper bound set. However, Vincent (2013) showed that dominated solutions may be returned. The
approach of Mavrotas and Diakoulaki (2005) was corrected for the bi-objective case in Vincent, Seipp,
Ruzika, Przybylski, and Gandibleux (2013). The use of a finite set of points as a lower bound set was
further explored for specific problems in Jozefowiez, Laporte, and Semet (2012) for the bi-objective
case and in Florios, Mavrotas, and Diakoulaki (2010) for the multi-objective case.

Sourd and Spanjaard (2008) were the first to usemore complex lower bound sets for the bi-objective
case. They proposed to use a surface (i.e. an infinite set of points) as a lower bound set instead of a
finite set of points, as was the traditional method used in the literature at that time. Due to the novel
nature of their lower bound set, their approach came with a new dominance test. In their framework,
the lower bound set is obtained by solving the convex relaxation, which provides the convex hull
of the non-dominated points contained in a specific node. Tested on spanning tree problems, the
procedure produces very good lower bound sets efficiently and results in a major speed-up, but it
may be less efficient on problems having a hard single-objective version, as it needs to solve multiple
single-objective integer problems at each node.

Vincent et al. (2013) showed that for bi-objective problems with computationally demanding
single-objective versions, the linear relaxation is often preferable in terms of computation times,
even though it leads to larger branch-and-bound trees. They also showed that the linear relaxation
is preferable to the ideal point and to the ideal point of the linear relaxation. Moreover, the authors
proposed an extension of their branch-and-bound framework to Bi-Objective Mixed-Integer Problems
(BOMIP) along with an alternative dominance test. The class of BOMIP was also studied by Belotti,
Soylu, andWiecek (2013), and improved in Belotti, Soylu, andWiecek (2016) who developed stronger
fathoming rules. Finally, Adelgren and Gupte (2019) provided an extensive study on BOMIP and
incorporated the recent knowledge of DSS algorithms in their framework.

In recent years, more attention has been paid to hybridizing decision space search and objective

2

space search methods for the bi-objective case. A first hybrid algorithm was developed by Stidsen,
Andersen, and Dammann (2014), and later refined by Stidsen and Andersen (2018). The authors used
the linear relaxation of a weighted-sum scalarization as a lower bound set, which provides a weaker
but computationally less expensive surface than the linear or convex relaxation. They also developed
slicing, with the purpose of splitting the search in the objective space into several independent cones
(or slices), yielding stronger upper bound sets and at the same time enabling the possibility of
parallelizing the search of each slice. Finally, the authors introduced the principle of pareto branching,
which consists of creating sub-problems in the objective space by deriving information from the partial
dominance between the lower bound set and the upper bound set.

Gadegaard, Nielsen, and Ehrgott (2019) introduced an improved version of pareto branching,
which they named extended pareto branching in their paper), and they coupled the type of branching
with the use of both the linear relaxation of weighted-sum scalarizations and multi-objective linear
relaxation. In parallel, Parragh and Tricoire (2019) also developed further pareto branching, herein
denoted objective branching. They used it together with linear relaxation, but also with stronger lower
bound sets generated using a column generation approach. In both cases, promising results were
shown for the bi-objective case.

It appears that the branch-and-bound frameworks developed over the last decade are competitive
when solving bi-objective problems compared to state-of-the-art-OSS algorithms. This is achieved by
using more sophisticated lower bound sets, stronger fathoming rules, and injecting information derived
from the objective space in the method. In this paper, we are interested in developing a branch-and-
bound framework that is inspired by the recent bi-objective frameworks and that is applied on problems
with three objective functions or more. We focus on the use of more sophisticated lower bound sets,
namely the linear relaxation, and explain how we can accelerate its computation in a multi-objective
branch-and-bound setting. Furthermore, it appears that although many of the recent bi-objective
frameworks can be applied to integer problems, problems with binary variables (MOCOPs) are mostly
studied. We consider the general integer case and devote a section to the difficulties that may arise
when the variables can take arbitrary integer values. To summarize, in this paper, we:

• develop a procedure to warm-start the computation of lower bound sets;

• study how warm-starting can be beneficial for other parts of the framework;

• unveil new challenges that arise when introducing integer (non-binary) variables;

• use four different problem classes that include both binary and integer variables to show that
warm-starting significantly reduces the total computational time.

The remainder of this paper is organized as follows: In Section 2 we present the preliminaries
and in Section 3 we present a generic branch-and-bound framework for MOILPs. Section 4 describes
how lower bound sets can be generated using a Benson-like algorithm and how such an algorithm can
be modified so warm-starting becomes possible. In Section 5 we conduct an extensive computational
study, and finally Section 6 concludes the paper.

2 Preliminaries

In multi-objective optimization, not only one but several conflicting objectives are considered simul-
taneously, and hence it is most often impossible to find one solution optimizing all objectives at the
same time. Therefore, it is necessary to introduce operators for the comparison of points and sets.

3

Given H1, H2 ∈ R?, the point H1 weakly dominates H2 (H1 5 H2) if H1
:
≤ H2

:
, ∀: ∈ {1, ..., ?}. Moreover,

we say that H1 dominates H2 (H1 6 H2) if H1 5 H2 and H1 ≠ H2. These dominance relations can be
extended to sets of points as follows: Let A,B ⊆ R?, we say that A dominates B if for all 1 ∈ B,
there exists 0 ∈ A such that 0 6 1. Furthermore, a subset A ⊂ R? is said to be stable if for any
0, 0′ ∈ A, 0
 0′.

Consider the Multi-Objective Integer Linear Problem (MOILP) with = variables:

min{I(G) = �G | G ∈ X} (P)

whereX = {G ∈ N=0 | �G = 1} is the feasible set in the decision space. We assume thatX is bounded (if
this is not the case, it will be detected by our algorithm). The matrix � ∈ R<×= defines the coefficients
of the < constraints with right-hand side 1 ∈ Z<. The ? linear objectives are defined using the matrix
� ∈ Z?×= of objective function coefficients. The corresponding set of feasible objective vectors in the
objective space is Y = {I(G) | G ∈ X} := �X.

In this paper, we will focus on the computation of the non-dominated set of points, defined as
Y# = {H ∈ Y | �H′ ∈ Y, H′ 6 H}. Note that Y# is discrete and bounded since I(G) is linear and X
is discrete and bounded. By extension, the non-dominated part of any set S ⊆ '? will be denoted by
S# = {B ∈ S | �B′ ∈ S, B′ 6 B}.

2.1 Polyhedral theory

In this section, we recall the theory presented in Nemhauser and Wolsey (1999). LetH+ = {H ∈ R? |
cH ≥ c0} denote a half-space in R? and letH = {H ∈ R? | cH = c0} be the corresponding hyperplane
with normal vector c) . A polyhedron P = {H ∈ R? | �H = 4} is the intersection of a finite number of
half-spaces and hence a closed convex set. A polyhedron P ∈ R? is of full dimension if the dimension
of P is ?. A half-space is valid if it contains P and redundant if P is unchanged when removed. A
bounded polyhedron is called a polytope.

A face F = {H ∈ P | H ∈ H} of P is the intersection of P and a hyperplane H of a valid
half-spaceH+. Given that P is of dimension ?, a facet is a face of dimension ?−1. The boundary of a
full dimensional polyhedron P can be described using a finite set of facets. Let P� = {H+1 , . . . ,H

+
:
}

denote the half-space representation of P (the half-spaces corresponding to the facets), then P =

∩H+∈P�H+.
A vertex of P is a face of dimension zero. The vector A ∈ R? is a ray of P if G + _A ∈ P for all

G ∈ P and _ ≥ 0. A ray A of P is said to be extreme if A = _1A1+_2A2 where A1 and A2 are rays of P and
_1, _2 > 0 implies that A1 = _A2 for some _ > 0. A facet of a polyhedron P can be described using a
finite set of verticesV� and extreme rays R� satisfying F = conv(V�) + {

∑
A ∈R� _AA, _ = 0} (convex

hull of vertices and rays). Since the boundary of a polyhedron consists of a finite set of facets, a vertex-
ray representation of polytope P is P+ = (V%,R%) satisfying P = conv(V%) + {

∑
A ∈R% _AA, _ = 0}.

In general, if we use a representation of P using (P� ,P+), the sets P� and P+ are linked together
using e.g. an adjacency list so it is known which vertices are adjacent, which vertices and rays belong
to which facets, and vice versa. Note that P is a polytope if and only if no extreme ray exists, i.e.
R� = ∅ and rays can be dropped from P+ .

The linear relaxation of P can be defined as:

min{I(G) = �G | G ∈ X!%} (PLP)

where X!% = {G ∈ R= | �G = 1, G = 0}. Let Y!% denote the corresponding feasible objective
vectors and Y!%

#
the non-dominated set of PLP. Hence Y!% is a polytope (Benson, 1998), and Y!%

#

corresponds to the non-dominated part of this polytope.

4

Consider a set S ⊂ R? and define polyhedra R?= B {H ∈ R? | H = 0} and S + R
?

= := {H ∈
R? | ∃B ∈ S, B 5 H}. For the development of the branch-and-bound algorithm, it is convenient to
have a description of the polyhedron P!%= B Y!%

#
+ R?= since P!%= is a full dimension polytope

with vertices contained in Y!%
#

. In addition to these sets, it will be convenient to define the set
R
?

> B {H ∈ R? | H > 0}.

2.2 Bound sets

Given a set of points S ⊆ R?, it is possible to define lower and upper bound sets for S# . For
this purpose, the definition from Ehrgott and Gandibleux (2007), recalled in Definition 1, will be
used. A subset S is R?=-closed if S + R?= is closed, and R?=-bounded if there exists H ∈ R? such that
S ⊂ {H} + R?= .

Definition 1. (Ehrgott and Gandibleux, 2007) Let S ⊆ R? be a set.

• A lower bound set L for S# is an R?=-closed and R?=-bounded set that satisfies S# ⊂ L + R?= ,
and L = L# .

• An upper bound set U for S# is an R
?

=-closed and R
?

=-bounded set that satisfies S# ⊂
cl[R?\(U + R?=)] andU = U# (U is stable). Here cl(·) denotes the closure operator.

Ehrgott and Gandibleux (2007) showed that the singleton {H� }, denoted the ideal point and defined
by H�

:
= minH∈Y{H: }, is a valid lower bound set forY# . The same holds for the non-dominated set of

the linear relaxation PLP of P. Moreover, the anti-ideal point {H�� }, defined as H��
:

= maxH∈Y{H: },
yields a valid upper bound set for Y# . A variant of the anti-ideal point is the nadir point, defined as
H#
:

= maxH∈Y# {H: }. The authors also showed that, in the context of a branch-and-bound algorithm,
the incumbent set, which is the current stable set of solutions found at any point during the algorithm,
is a valid upper bound set for Y# .

An upper bound set U can alternatively be described in terms of its corresponding set of local
upper bounds N(U) (sometimes also referred to as local nadir points). This concept was formally
defined by Klamroth, Lacour, and Vanderpooten (2015), and their definition is recalled in Definition 2.
Let C(D) = D − R?= := {H ∈ R? | H 5 D} be the search cone of D ∈ R?.

Definition 2. (Klamroth et al., 2015) The set of local upper bounds ofU,N(U), is a set that satisfies

• cl[R?\(U + R?=)] =
⋃

D∈N(U)
C(D)

• N(U) is minimal, i.e. there is no D1, D2 ∈ N (U) such that C(D1) ⊆ C(D2)

3 A branch-and-bound framework for MOILP

In this section, we describe a branch-and-bound framework for MOILPs that uses the linear relaxation
to obtain lower bound sets.

A general description of a multi-objective branch-and-bound (MOBB) framework for solving
problem P is given in Algorithm 1. The algorithm manages a branching tree, T , where each node [
contains a sub-problem of P. At each node [, the sub-problem contained in [is denoted by %([), and
its feasible set and set of feasible objective vectors are X([) and Y([) respectively. Similarly, the set

5

Algorithm 1 Branch-and-bound algorithm for a MOILP.

1: Create the root node [0; set T ← {[0} andU ← ∅
2: while T ≠ ∅ do
3: Select a node [from T and set T ← T \ {[}
4: Find a local lower bound set to [
5: Update the upper bound setU
6: if [cannot be pruned then
7: Branch and split %([) into disjoint sub-problems (%([1), . . . , %([:))
8: Create child nodes of [and set T ← T ∪ {[1, . . . , [: }
9: end if
10: end while
11: return U

of non-dominated points of %([) is given by Y# ([). We define analogously X!% ([), Y!% ([) and
Y!%
#
([) for the linear relaxation %!% ([) of %([).

A candidate set T is used to store nodes that are not yet explored, and is initialized with the root
node that contains the full MOILP (line 1). Moreover, a global upper bound (incumbent) set is used to
maintain a stable set of feasible solutions to P. The algorithm terminates when the candidate list, T ,
becomes empty; that is, when it has been proven thatU = Y# .

Implementations of a MOBB algorithm may differ in the node selection rule (line 3), in the way
the lower bound set is calculated (line 4), and in how the upper bound set is updated (line 5). Moreover,
different pruning rulesmay be used to remove a node from the candidate set (line 6). Finally, different
variable selection rules may be used to split a father node into a set of child nodes (lines 7-8).

As node selection rule we use the so-called breadth first search strategy, which follows a FIFO
principle, meaning that we always chose the unprocessed node that was created first. We use the
non-dominated set Y!%

#
([) of the linear relaxation %!% ([) as a lower bound set in each node. We

use a revisited state-of-the-art version of Benson’s outer approximation algorithm using warm-starting
(see Section 4) where the polyhedron Y!%

#
([) + R?= is found with both a half-space and vertex and

ray representation. Since an integer-feasible solution to %!% ([) is feasible for %([), the upper bound
set can be updated using the vertex representation of the lower bound set Y!%

#
([) by adding vertices

corresponding to integer solutions toU and removing any dominated points.
Different rules can be used to prune a node as well. If %!% ([) is not feasible (i.e. X!% ([) = ∅),

then %([) is not feasible either sinceX([) ⊆ X!% ([) = ∅, and hence the node is pruned by infeasibility.
In the case where Y!%

#
([) + R?= contains a single vertex H with a feasible pre-image, the node can be

pruned by optimality since all points in Y([) are weakly dominated by H. Finally, if Y!%
#
([) + R?=

is dominated by U, the node can be pruned by dominance. In practice, the latter rule is checked
by applying the methodology used for the bi-objective case in Sourd and Spanjaard (2008) and in
Gadegaard et al. (2019), since it extends naturally to the multi-objective case. This is recalled in
Lemma 1.

Lemma 1. LetU be an upper bound set for Y# . The node [can be pruned by dominance if for each
D ∈ N (U), D ∉ Y!%

#
([) + R?= holds true.

Proof. First, for any non-dominated point H ∈ Y# of the initial problem %, there exists at least
one D ∈ N (U) such that H 5 D. Indeed, from Definition 1 and Definition 2, we have that Y# ⊂
cl[R?\(U+R?=)] and cl[R?\(U+R

?

=)] =
⋃
D∈N(U) C(D). Thus,Y# ⊂

⋃
D∈N(U) C(D). This implies

6

Algorithm 2 Benson’s outer approximation algorithm
1: Input: A polyhedron P represented using P� and P+ = (V%,R%) such that P!%= ⊆ P
2: while ∃ E ∈ V% such that E ∉ P!%= do
3: Compute a cutting hyperplaneH for E
4: (P� ,P+) ← updateP(P�,P+ ,H)
5: end while
6: return (P+ ,P�)

that for each H ∈ Y# , there exists D ∈ N (U) such that H ∈ C(D) and consequently, by the definition
of C(D), there exists D ∈ N (U) such that H 5 D. Furthermore, we know that there is no D ∈ N (U)
such that D ∈ Y!%

#
([) + R?= . It is not possible that H ∈ Y!%# ([) + R

?

= if D ∉ Y!%
#
([) + R?= , because

by construction of R?= , for any set S ⊂ R? and for any B ∈ S + R?= , {B} + R
?

= ⊆ S + R
?

= . Hence,
since H 5 D, we have that D ∈ {H} + R?= and thus, D ∈ Y!%

#
([) + R?= , which is a contradiction. This

implies that necessarily, H ∉ Y!%
#
([) + R?= , and as a result, no new non-dominated point can be found

in sub-problem %([).

If the node cannot be pruned, %([) is divided into easier sub-problems. Like in the single-objective
case, two disjoint sub-problems are traditionally created by using a variable selection rule to choose
a variable G8 and imposing bounds on this variable. Usually, one sub-problem will be generated with
the feasible set {G ∈ X([) | G8 ≤ I}, and the other with the feasible set {G ∈ X([) | G8 ≥ I + 1}, where
I ∈ N. Choosing the variable and the bound, E, is a non-trivial task, as the performance of the MOBB
highly depends on these choices. In the single-objective case, the lower bound (set) usually consists
of a single solution and as a result, each variable G8 takes a single value. This can be used to make
an easy choice regarding the bound imposed (e.g. I = bG8c). In the multi-objective case, multiple
points may exist in the lower bound set, and as a consequence, a variable may take different values for
different points. A trivial choice does not exist anymore, and a rule should be applied (see Section 5).

4 Linear relaxation for MOBB

In this section, we provide a strategy for accelerating the computation of the lower bound set (line 4
in Algorithm 1), i.e. the linear relaxation. Our methodology relies on Benson’s outer approximation
algorithm (Benson, 1998) and its recent refinements (see e.g. Csirmaz, 2015; Hamel, Löhne, and
Rudloff, 2013; Löhne and Weißing, 2020). For this purpose, we need a formal definition of the
concept of outer approximation.

Definition 3. Let P,Q ⊂ R? be two polyhedra such that Q# ⊆ P. Then P is an outer approximation
of Q.

An outline of a Benson-like algorithm is given in Algorithm 2. The algorithm works by iteratively
building tighter outer approximations of P!%= = Y!% + R?= = Y!%

#
+ R?= and starts with an initial

polyhedron that contains P!%= . Next, half-spaces are iteratively found whose corresponding hyper-
planes define facets of P!%= until all the facets have been enumerated. The algorithm provides both
a vertex-ray representation and a half-space representation of P!%= , where a pre-image is known for
each of the vertices in P!%= .

The initialization step (line 1) consists of finding an initial polyhedron that contains P!%= . At each
iteration of Algorithm 2, if there exists a vertex E in the vertex-ray representation P+ which is not

7

Algorithm 3 Updating the outer approximation (updateP)

1: Input: (P� ,P+) and hyperplane Ĥ
2: P� ← P� ∪ {Ĥ}
3: P+ ← updateV(P�,P+ ,Ĥ)
4: for allH+ ∈ P� (defining face F) do
5: if F have ? − 1 vertices and rays or less then
6: P� ← P� \ {H+}
7: else if ? > 3 then
8: if all vertices and rays of F lies on Ĥ then
9: P� ← P� \ {H+}
10: end if
11: end if
12: end for
13: P+ ← relinkV(P�,P+)
14: return (PC

+
,PC

�
)

included in P!%= , a cutting plane should be computed in order to separate E from the polyhedron. In
order to check the inclusion of vertex E on line 2, the linear program � (E) is solved:

min B
s.t. �G = 1, (1)

�G + B 5 E, (2)
G, B = 0

If the optimal value is 0, then E ∈ P!%= and a pre-image of E is obtained by storing the optimal
values of the G variables of � (E); otherwise, E is not included in P!%= . Let D ∈ R< be optimal dual
values corresponding to (1) and F ∈ R? dual values corresponding to (2). Hamel et al. (2013) showed
that the hyperplane H = {H ∈ R? | F) H = 1) D} defines a facet of P!%= and that H separates E from
P!%= . Hence, the hyperplaneH on line 3 can be found using the dual values of � (E). Once a cutting
plane H is computed, the outer approximation of P!%= is updated using function updateP on line 4
of Algorithm 2. The loop is repeated until no vertex E can be found, and the algorithm stops (P!%= has
been found, line 6).

A description of updateP is given in Algorithm 3. As input, the algorithm takes the current half-
space and vertex-ray representation and the cutting hyperplane. First, the vertex-ray representation is
updated by examining adjacent vertices, finding new vertices of the facet of the hyperplane Ĥ and
removing old vertices not part of the polyhedron (line 3). Updating the vertex-ray representation
using function updateV is known as a sub-procedure of an online vertex enumeration problem. A
well-known technique for solving this problem is the double description method (see e.g. Fukuda and
Prodon (1996)).

Next, redundant faces are removed on lines 4-12. If redundant half-spaces are not removed,
many unnecessary operations will be performed, e.g. when performing dominance tests. Moreover,
having no redundant half-spaces is a necessary condition for finding adjacent vertices in the vertex
enumeration algorithm used (Fukuda and Prodon (1996)). Since, P!%= is a full-dimension polyhedron,
facets are of dimension ? − 1, and all faces with dimensions below ? − 1 are redundant. Consequently,
if a facet is defined by ? − 1 vertices and rays or less, then it is redundant. This is checked on lines

8

5-6. Even though this is a necessary condition for any ?, it is not a sufficient condition when ? > 3.
Indeed, in this case, a face of dimension 2 can be defined by more than ? − 1 vertices. A face of
dimension 3 can be described as the intersection of at least ?−3 hyperplanes (Nemhauser andWolsey,
1999). Hence a face of dimension 3 < ? − 1 is the intersection of two or more hyperplanes. Since the
input P� to Algorithm 3 only contains facets, the only way for a facet to become a face is if it gets
intersected with the new cutting hyperplane Ĥ such that all of its vertices and rays are located on Ĥ
(lines 8-9).

Finally, since all redundant half-spaces have been removed from P� , we can update the adjacency
list of the vertices in P+ using function relinkV on line 13. That is, using the vertex enumeration
algorithm (Fukuda and Prodon (1996)).

Note that in Algorithm 2, only facets are generated between lines 2-5. Hence, only facets of the
initial outer approximation may become redundant during the algorithm. In particular, if the initial
outer approximation shares all of its facets with P!%= , no faces become redundant.

Lemma 2. Consider Algorithm 2 and let P0 denote the initial polyhedron with half-space repre-
sentation P0

�
(line 1). Then only half-spaces in P0

�
may be redundant for P!%= . Moreover, if

P0 = {H�
!%
} + R?= then all half-spaces in P0� are facets of P!%= .

Proof. Hamel et al. (2013) showed that the cutting hyperplane H found on line 3 defines a facet of
P!%= . Hence, only half-spaces in P0

�
may be redundant. Let H�

!%
= (Ĥ1, . . . , Ĥ?). If P0 = {H�!%} +R

?

=

then the half-spaces {H ∈ R? | H8 ≥ Ĥ8}, 8 = 1, . . . , ? define the facets of P0, which are facets of P!%=
too.

4.1 Warm-starting Benson-like algorithms in MOBB

We will now study how to improve the performance of the Benson-like algorithm embedded in a
MOBB.

Lemma 3. Consider a child node [2 of the father node [5 in the branch-and-bound tree of Algorithm 1.
Then P!%= ([5) B Y!%# ([5) + R

?

= is an outer approximation of P!%= ([2) B Y!%# ([2) + R
?

= .

Proof. By construction of the problems %([5) and %([2), we have that X!% ([2) ⊆ X!% ([5), which
implies thatY!% ([2) ⊆ Y!% ([5). Hence P!%= ([2) ⊆ P!%= ([5), and since the non-dominated set of
P!%= ([2) isY!%# ([2) ⊆ P!%= ([2), we have that P!%= ([5) is an outer approximation of P!%= ([2).

Due to Lemma 3, polyhedron P!%= ([5) can be used as the initial outer approximation when
starting Algorithm 2 in a child node [2 . That is, at any child node, it is possible to warm-start the
computation of the linear relaxation by using the relaxation found in the father node. As a result, the
total number of linear programs to be solved is expected to decrease since the only way to obtain a facet
is to solve � (E) for a vertex E and obtain an optimal value strictly larger than zero. Hence a facet that is
present both in P!%= ([5) and P!%= ([2) will be enumerated only once, since it is already known when
starting Algorithm 2 in child node [2 . However, some half-spaces in P� may have to be removed in
Algorithm 2 since they define non-facet faces and are therefore redundant. Due to Lemma 2 we have:

Corollary 1. Consider Algorithm 1 using Algorithm 2 to find the lower bound set on line 4. If we use
initial outer approximation P = {H�

!%
([2)} + R?= at the root node [0, then no redundant half-spaces

have to be removed from P� during Algorithm 2. If we use initial outer approximation P = P!%= ([5)
at a child node [2 with father node [5 , then only half-spaces of P!%= ([5) may be redundant.

9

Due to Corollary 1 we initialize Algorithm 2 with outer approximation {H�
!%
([2)} +R?= in the root

node and hence do not have to check for redundant half-spaces (lines 4-12 in Algorithm 3). Moreover,
when using P!%= ([5) as initial outer approximation in a child node, only the half-spaces of P!%= ([5)
have to be checked for redundancy.

Additional advantages of warm-starting the lower bound computations

Warm-startingAlgorithm2when solving the linear relaxation in aMOBBbrings additional information
that can be utilized to accommodate additional speed-ups by eliminating redundant work. In the
following, we present a number of observations that can help to speed-up the processing of branching
nodes. In what follows, we will assume that branching is performed by adding simple bounds to
variables, i.e. G8 ≤ I or G8 ≥ I, for I ∈ N=0 . Further, we will refer to [

2 as a child node of the father
node [5 .

In Algorithm 2, to confirm that a vertex E is feasible, the linear program � (E) has to be solved
and have an optimal value of 0. However, this is not always necessary when using the polyhedron
P!%= ([5) as a starting outer approximation when computing P!%= ([2):

Observation 1. After solving the linear relaxation in [5 , a pre-image for each vertex of P!%= ([5)
is known. Hence, when solving the linear relaxation %!% ([2) using P!%= ([5) as an initial outer
approximation, it is known that � (E) = 0 for all E ∈ P!%= ([5) with a feasible pre-image in [2 .

This significantly reduces the number of single-objective linear programs that needs to be solved
in Algorithm 2. In addition, when branching as stated in Section 3, we know that from [5 to [2 , only
one constraint in the form G8 ≤ I or G8 ≥ I + 1 is added, I ∈ N. Hence, verifying the feasibility of a
pre-image of a vertex reduces to simply comparing the value of a variable to a constant. Note that if
more involved branching constraints are used, it is necessary to check that the pre-image satisfies all
of them.

Observation 1 only holds in [2 for the vertices that belong to P!%= ([5). A vertex E, generated
during the execution of Algorithm 2 for [2 , has to be checked for feasibility by solving � (E), because
we do not know a pre-image for it yet. Furthermore, we still need to solve � (E) for any vertex
E ∈ (P!%= ([5))+ that does not have a feasible pre-image for [2 in order to generate the cutting plane
that cuts off E in line 3 of Algorithm 2.

Regarding the update of the upper bound set, here the incumbent set, there is also an easily
achievable speed-up available: for any integer feasible vertex E ∈ ((P!%= ([2))+ ∩ (P!%= ([5))+ it has
already been checked whether it improves the current upper bound set or not when processing [5 .
Thus, only newly generated pre-images of vertices should be used when updating the upper bound set
in line 5 of Algorithm 1 at node [2 .

Similarly, by keeping track of the cutting planes generated in node [2 , one can reduce the number
of comparisons done when performing the dominance test in line 9 of Algorithm 1. Let D ∈ N (U) be
a local upper bound dominated by the lower bound set in the father node [5 of [2 . This implies that
D ∈ P!%= ([5), which, by using the definition of a polyhedron in terms of half-spaces, is equivalent
to D ∈ ⋂

ℎ∈(P!%= ([5))� ℎ
+. Hence, we already know that in [2 , for all the old supporting hyperplanes

ℎ ∈ (Y!%
#
([2) + R?=)� ∩ (P!%= ([5))� , we have D ∈ ℎ+. As a result, the only way for D to become

non-dominated is to be located outside the half-space corresponding to one of the new facets generated
in [2 . Otherwise, it remains dominated. Hence, the status of D can be determined by looking at the
facets generated in [only.

To conclude, it is possible to derive additional information using Algorithm 2 because its starting
point is exactly its ending point in its father node. Hence, we can easily keep track of how the lower

10

bound set was modified by the new constraints generated from the father to the child node, and use
this information to reduce the number of redundant operations.

5 Computational experiments

In this section, we present the results from our experiments conducted on MOCOs and MOILPs. The
purpose of the computational study is to answer the following questions:

1. How do the different algorithm configurations perform, and which configurations perform the
best?

2. How do the different variable-selection configurations perform? In particular, what is the best
way to choose the bound for branching?

3. Howwell do the different algorithm parts perform? Especially, how does warm-staring speed-up
Algorithm 2?

4. How are leaf nodes in the branching tree pruned?

5. How are the geometrical properties of the lower bound set evolving during the algorithm?

6. How fast can the algorithm prove optimality given a good initial upper bound set?

7. How is the performance of the MOBB algorithm compared to an objective space search algo-
rithm?

All experiments are conducted with a time limit of one our for solving an instance.

5.1 Implementation details and algorithm configurations

All algorithms are implemented in C++17 and compiled using theMSVCcompiler with default options.
Experiments are carried out on a personal computer with an Intel(R) Core(TM) i5-8250U CPU @
1.60GHz processor and 8GB of RAM memory, using Windows 10. The algorithms are available at
Forget (2021). Different configurations of Algorithm 1 will be tested:

Node selection: A breadth-first strategy is used on line 3. Preliminary experiments showed that there
is no clear winner between using a depth-first or a breadth-first strategy. On the set of instances
we considered, breadth-first performed slightly better on average, and we will stick to that choice
for the rest of the experiments.

Calculation of lower bound set: The lower bound set on line 4 is computed using two different
configurations:

• LP: At each node [in the branching tree, {H�
!%
([)} + R?= is used as the initial outer

approximation.
• WLP: At each node [in the branching treewith father node [5 , the lower bound setP!%= ([5)
of the father node is used to warm-start the computation of the linear relaxation. In the
root node, {H�

!%
} + R?= is used.

11

Calls to the single-objective linear programming solver in Algorithm 2 are performed with
CPLEX 12.10, using and modifying a single model for the whole branching tree. When the
model is modified, the solution process is initialized using the optimal basis of the previous
model solved. The lower bound polyhedron is stored using a data structure with a linked
vertex-ray and a half-space representation, and updated using Algorithm 3.

Updating the upper bound set: The upper bound set is updated by searching for vertices in the lower
bound set of a node with an integer-feasible pre-image (line 5). Each time a new point is added to
the upper bound set, the set of local upper bounds is also updated using the algorithm developed
by Klamroth et al. (2015).

Pruning nodes: A node is checked for pruning (line 6) by first checking if the node can be pruned
by infeasibility, then by optimality, and finally by dominance using Lemma 1 (see Section 3 for
further details).

Variable selection: The variable chosen for branching on line 7 is the variable that is the most often
fractional among the vertex solutions in the lower bound set. If no fractional variable exists, we
select the free binary variable with the average value closest to 0.5. If there is no free binary
variable, a general integer variable with different maximum and minimum values is chosen. If
there are ties, the variable with the lowest index is chosen. Given branching variable G8 , two
child nodes are created using bound I. If G8 is binary, bound I = 0 is used, i.e. a rule denoted
BINARY that branches on G8 = I and G8 = I + 1. Given an integer branching variable G8 , a bound
I ∈ N has to be chosen, and we branch using constraints G8 ≤ I and G8 ≥ I + 1. Let {G18 , . . . , G:8 }
denote the sorted : values in the pre-images of all the vertices of the lower bound set. We test
the configurations:

• MED: Choose I as the floor of the median value of {G1
8
, . . . , G:

8
}. That is, if the values are

2.4, 3.3 and 100 then I = b3.3c, and if the values are 2.4, 3.3, 50 and 100 then I = b26.65c
(average of the two "middle" values). This is expected to result in more balanced trees,
since we are more likely to discard the same number of vertices in both sub-problems.

• MOFV: Choose bound I such that most pre-images of vertices have G8 ∈]I, I + 1[. The
reasoning behind this rule is to discard as many vertices with a non-integer value on G8
as possible in both sub-problems created. If there is no decimal value for G8 the bound is
chosen randomly in the range [

⌊
G1
8

⌋
,
⌈
G:
8

⌉
].

• RAND: Choose the bound randomly in the range [
⌊
G1
8

⌋
,
⌈
G:
8

⌉
].

In principle, using LP vs WLP should not affect the branching tree given all other configurations
fixed. However, when the pre-image of a vertex is in fact feasible, the LP-configuration might produce
an alternative optimumwhen solving � (E) whereby a different pre-image of the vertex E is found. This
will, potentially, lead to faster updates of the upper bound set and different search paths being followed
as the pre-images are used to decide on the branching variable as well as on the bound. Our test
showed, however, that these differences only affect very few instances, and that the effect is negligible.
As a result we only test the most promising rule (MOFV) for finding the bound (variable selection) for
LP.

5.2 Test instances

Different problem classes are considered with 3, 4, and 5 objective functions. An overview is given in
Table 1. For each problem class, size (number of variables), and number of objectives, 10 instances

12

Table 1: Instances used and average number of non-dominated points (480 instances in total).

Class ?a =b Range �c %�d %�e #f

ILP 3 10, 20, 30, 40 [-100,100] 35 80 40
ILP 4 10, 20, 30 [-100,100] 56 81 30
ILP 5 10, 20 [-100,100] 78 78 20
KP 3 10, 20, 30, 40, 50 [1,1000] 31 100 50
KP 4 10, 20, 30, 40 [1,1000] 54 100 40
KP 5 10, 20 [2,1000] 75 100 20
PPP 3 33, 39, 45, 54, 63 [1,2499] 14 3 50
PPP 4 24, 27, 33, 39, 48, 57 [1,2500] 21 4 60
PPP 5 15, 18, 24, 30, 36 [1,2500] 27 6 50
UFLP 3 42, 56, 72, 90 [1,1000] 88 3 40
UFLP 4 20, 30, 42, 56 [2,1000] 84 5 40
UFLP 5 12, 20, 30, 42 [2,1000] 81 8 40
a Number of objectives.
b Variable sizes.
c Range of the objective function coefficients� .
d Percentage of objective coefficients not dominated by other coefficients.
e Percentage of non-zeros in the constraint matrix �.
f Number of instances.

PPP UFLP

ILP KP

20 30 40 50 60 25 50 75

10 20 30 40 10 20 30 40 50
0

200

400

600

0

5000

10000

15000

20000

0

300

600

900

0

10000

20000

Variable size (=)

|Y
#
|

? 3 4 5 reached time limit solved

Figure 1: Number of non-dominated points. One point for each instance and trend lines are given.
Instances that have not been solved to optimality are illustrated with a transparent point.

13

are generated. All instances can be obtained from Forget, Nielsen, and Gadegaard (2020) at the
Multi-objective repository (MOrepo - Nielsen, 2017) and Kirlik (2014).

The problem class, denoted by ILP, consists of randomly generated MOILPs with up to 40
variables. These instances were proposed and solved in Kirlik and Sayın (2014). Note that in general
the constraint matrix for integermodels modeling real-life applications is sparse and structured. We use
these instances to investigate how the algorithm performs on dense and unstructured integer models.
Class PPP consists of Production Planning Problems with up to 63 variables. Both integer and binary
variables are included in themodel, as well as “big"” constraints. We refer the reader to Appendix B.1
for a model description and more details regarding the ranges of the coefficients. Class KP are binary
Knapsack problems with up to 50 variables/items. These instances were proposed and solved in Kirlik
and Sayın (2014). Finally, class UFLP are Uncapacitated Facility Location Problems with up to 90
variables. It is a combinatorial problem (only binary variables), and the objective coefficients were
generated such that the percentage of objective coefficients not dominated by other coefficients is high
(approx. 80%). This results in many non-dominated points. We refer the reader to Appendix B.2 for
more details regarding the model and the generation of coefficients. Note that PPP and UFLP have a
sparse constraint matrix compared to ILP.

In Figure 1 the number of non-dominated points are given for each instance. We have increased
the variable size for each problem class until the size becomes so large that some instances cannot
be solved within the time limit. The instances which have not been solved to optimality (19%) are
illustrated with transparent points. In general the number of non-dominated points grow with variable
size (=) and number of objectives (?). Note though that there may be a high variation for fixed = and
?. Moreover, the variation grows with = and ?. For UFLP the number of non-dominated points grows
rapidly as a function of variable size which is due to the high percentage of objective coefficients not
dominated by other coefficients.

5.3 Performance of the different algorithm configurations

First, we rank the configurations with respect to the average CPU time for all solved instances. The
sequence from best to worst for the integer problems with non-binary variables (ILP and PPP) becomes
WLP-MOFV (0%), WLP-RAND (8%), LP-MOFV (10%), and WLP-MED (11%), where the increase in percentages
compared to the best configuration is given in parentheses. For the combinatorial problems (KP and
UFLP), WLP performed on average 44% faster compared to LP.

A plot of the CPU time for each instance is given in Figure 2. Note the variation in CPU time for
the 10 instances given each class and variable size. Warm-starting the computation (WLP) in general
performs better than LP. On average WLP (using the best variable selection configuration) performed
29% faster compared to LP. This can also be seen in Figure 3 illustrating the number of solved instances
given a CPU time limit. We have increased the variable size for each problem class until the size
becomes so large that some instances cannot be solved within the time limit. That is, the number of
instances solved before the time limit is below 100%.

In a few instances LP performed best (fastest in 4% of the instances). We will have a closer look
at the reason for this in Section 5.5

5.4 Variable selection - Rules for choosing the bound

We are here interested in determining whether one rule for finding the bound (MED, RAND, and MOFV) is
consistently better than the other when considering non-binary integer problems. Since the effect on
the branching tree of using LP vs WLP is negligible, we will consider the WLP configuration here. By

14

ILP KP PPP UFLP

?
=
3

?
=
4

?
=
5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

Variable size (=)

C
PU

(s
ec
on

ds
)

LP WLP BINARY MED MOFV RAND

Figure 2: CPU times (a point for each instance) with trend lines.

ILP KP PPP UFLP

?
=
3

?
=
4

?
=
5

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CPU (seconds)

%

LP WLP BINARY MED MOFV RAND

Figure 3: Number of instances in percent solved given cpu time (seconds). An instance is considered
as unsolved if the cpu time exceed 3600 seconds (time limit). One curve is depicted for each of the
configuration tested.

15

? = 3 ? = 4 ? = 5

ILP
PPP

20 40 60 10 20 30 40 50 10 20 30

0
50000

100000
150000
200000

0

500000

1000000

1500000

Number of variables

N
od

es
in

th
e
br
an
ch
in
g
tre

e

MED MOFV RAND

Figure 4: CPU time for different rules of choosing the bound.

Table 2: Speed-up factor using WLP instead of LP for each problem class and number of objectives.
The rule for choosing the bound is MOFV.

Cpu LPs solved

Class ? = 3 ? = 4 ? = 5 ? = 3 ? = 4 ? = 5

ILP 1.38 1.46 1.22 1.49 1.73 1.80
KP 1.43 1.36 1.12 1.51 1.55 1.50
PPP 1.37 1.69 1.74 1.55 2.15 2.61
UFLP 1.93 1.74 1.17 2.20 2.18 1.95

considering the performance profiles in Figure 3 we see that there is no clear winner among MED, RAND,
and MOFV.

The MOFV-configuration performed best in 45% of the instances. If we compare with the second
best rule for each instance, the CPU time on average increased with 11 seconds (a 3% increase).

If we take a look at the size of the branching tree in Figure 4, then the tree size for MOFV is not
bigger that the one for MED. As a result, we use MOFV in the succeeding experiments, since MOFV is
slightly faster on average and produce the smallest branching tree.

5.5 Detailed performance of different algorithm parts

In this section, we take a closer look at different parts of Algorithm 1. Different speed-up factors by
using WLP instead of LP are given in Table 2. The factor is obtained by dividing the LP value with the
WLP value. Only instances with both configurations solved are recorded. WLP are on average 1.47 times
faster than LP with significant differences among the problem classes, e.g. for problem class UFLP,
WLP is on average 1.61 times faster while for class ILP the speed-up is 1.35.

Most of the CPU time (95% for LP and 91% for WLP) is used on calculating the lower bound
set (Algorithm 2) and the speed-up is mainly due to a reduction in the number of times the linear
programming solver has to be called on line 2 in Algorithm 2. This can be seen in Table 2. For
example, for UFLP WLP is 1.61 times faster and solves 2.11 times less linear programs on average than
LP. However, when using WLP the initial outer approximation has to be copied from the father node into

16

83.8

4.2

9.82.2

90.8

6.4

1.61.2

79.6

4.2

13.5
2.7

90

6.5

1.52

70.2

2.2

21.6
6

87.5

4.1

1.17.3

86.1

3.1

8.32.5

91.1

4.8

1.13

78.8

12.4

7.31.5

78.3

19.8

2.3

-0.4

76.6

10.3

11.21.9

80.9

16.8

1.90.5

64.7

3.7

27.1
4.5

84.2

7.7

1.86.3

74

10.1

13.7
2.1

78.2

18.5

2.11.1

56.3

36.3

6.41
46.7

52.1

1.9

-0.7

63.9

23.6

111.5

59.5

38.7

1.8

-0.1

61.1

5.3

30.5
3.2

80.8

12.8

2.73.7

51.7

37.2

9.91.1
40.1

58.6

1.4

-0.1

3 4 5

ILP
K
P

PPP
U
FLP

LP WLP LP WLP LP WLP

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

pe
rc
en
to

ft
ot
al
C
PU

tim
e

Initialization Other Solve LPs Update polyhedron

Figure 5: Proportion of the cpu time spent in the different components of Algorithm 2.

the child node and managing the polyhedron is harder since we have to check for redundant half-spaces
in Algorithm 3 (lines 4-12). As a result we have a smaller reduction in CPU times than the reduction
in number of LPs solved.

Since most of the time is used for calculating the lower bound set, let us have a closer look at
the relative usage of the different parts of Algorithm 2. An overview is given in Figure 5 where the
different parts are:

Initialization Proportion of time used to calculate the outer approximation with polyhedron ({H�
!%
} +

R
?

= for LP, and time to copy the lower bound set from the father node for WLP. That is, time used
to find the input on line 1 of Algorithm 2.

Solve LPs Proportion of time used to solve linear programs in CPLEX (line 2 of Algorithm 2).

Update polyhedron Proportion of time used for updating the polyhedron using Algorithm 3.

Other Proportion of time used on other parts of Figure 5, such as picking a vertex in the polyhedron
(line 2), retrieving pre-images from cplex’s ouput, checking the pre-image of a point from the
father node...

17

58.7

3.2

38.1

7

16.8

76.2

16.4

10.2

73.3

0

42.4

57.6

66.5

7.1

26.4

10.8

30.1

59.1

20.7

20.4

58.9

0

77.4

22.6

65.8

15.3

18.9

17.5

34.6

47.8

13.8

37.3

48.9

0

93.5

6.5

3 4 5

ILP KP PPP UFLP ILP KP PPP UFLP ILP KP PPP UFLP

0

25

50

75

100

pe
rc
en
to

fl
ea
fn

od
es

dominance infeasibility optimality

Figure 6: Proportion of leaf nodes pruned by infeasibility, optimality and dominance.

First, note that the proportion of time for initialization is much higher for LP compared to WLP.
For WLP the time for copying the lower bound set from the father is negligible. Second, note that the
cost of updating the polyhedron increases with the number of objectives. This is an observation that
was also made by Csirmaz (2015), who showed that in higher dimensions (? = 10 in their paper),
updating the polyhedron was actually the bottleneck of the Benson-like algorithm. This also explains
why the speed-up factors in Algorithm 1 in general decrease with the number of objectives while the
reduction of linear programs solved in general increase. Even though we solve relatively less linear
programs for increasing ?, we have to use more time on updating the polyhedron containing the lower
bound set. Hence alternative lower bound sets that does not require to manage a polyhedron, or at
least less polyhedral operations, may be preferred in higher dimensions. Next, note that updating the
polyhedron takes a higher proportion of time for WLP. This is because we have to check for redundant
half-spaces (lines 4-12 in Algorithm 3). Finally, observe that even though we have a high reduction in
the number of linear programs solved for WLP the proportion of time used for solving linear programs
is still the most predominant (except for UFLP, ? = 5).

5.6 Pruning nodes

In this section we take a closer look at how nodes are pruned. Recall that a node is checked for pruning
by first checking if the node can be pruned by infeasibility, next optimality, and finally by dominance.
The results are illustrated in Figure 6 where the proportion of leaf nodes pruned by infeasibility,
optimality and dominance are given.

It appears from Figure 6 that different behaviors are observed for the different problem classes.
However, for all problem classes, the proportion of leaf nodes pruned by dominance decreases as the
number of objectives increases. The reason for this is that the likelihood of a point is non-dominated
increases as we add dimensions to the objective space, which makes the nodes harder to prune by

18

Vertices in Y!%
#
([)

ILP

Vertices in Y!%
#
([)

KP

Vertices in Y!%
#
([)

PPP

Vertices in Y!%
#
([)

UFLP

Facets with rays in P!%= ([)
ILP

Facets with rays in P!%= ([)
KP

Facets with rays in P!%= ([)
PPP

Facets with rays in P!%= ([)
UFLP

Facets in Y!%
#
([)

ILP

Facets in Y!%
#
([)

KP

Facets in Y!%
#
([)

PPP

Facets in Y!%
#
([)

UFLP

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40

0 20 40 60 0 10 20 30 40 50 0 20 40 60 80 0 20 40
0

2000

4000

0

1000

2000

0

400

800

1200

0

2

4

6

0

20

40

60

80

0

10

20

30

0

100

200

300

0

200

400

600

0

200

400

600

0

50

100

150

0

200

400

0

100

200

branching tree depth

? = 3 ? = 4 ? = 5
=

10
12
15

18
20
21

24
27
30

33
36
39

40
42
45

48
50
54

56
57
63

72
90

Figure 7: Average number of facets and vertices in the lower bound set and polyhedron calculated
using Algorithm 2.

dominance.
Similarly, the proportion of nodes fathomed by optimality increases, which means that nodes with

a unique integer vertex in the lower bound set are less rare for higher dimensional problems. Since
these nodes are more likely to appear deep in the tree where many variables are fixed, it suggests that
the branch-and-bound algorithm develops deeper trees when more objective functions are considered
- again this is consistent with the fact that as the number of objectives increase, generating all non-
dominated outcomes comes closer to a total enumeration of the decision space.

5.7 Geometric properties of the lower bound set during the algorithm

In this section, we take a closer look at the polyhedral properties of the lower bound sets found at each
node in the branching tree during the algorithm. In Figure 7 statistics about the number of facets and
vertices in Y!%

#
([) and facets with rays in P!%= ([), i.e. extra facets needed for the full-dimensional

polyhedron P!%= ([) is given. The numbers are given as a function of the depth of the branching tree
with a line for each ? and =.

First, note that the numbers decrease as a function of the depth of the branching tree, e.g. as we
branch deeper the lower bound set has fewer facets and vertices.

Second, consider a problem class and a fixed number of variables =. As the number of objectives

19

grow, the lower bound sets contain more facets and vertices. That is, more objectives generate more
complex lower bound sets, which is mainly due to the dimension increase of the lower bound set. The
same holds for fixed number of objectives ?. As = grows the lower bound sets contain more facets and
vertices. That is, larger problem sizes generate more complex lower bound sets.

Third, consider the decrease in the numbers as the depth grows for each problem class. For ILP
and KP the numbers decrease slower compared to PPP and UFLP. This is properly due to that when we
branch in PPP and UFLP the subproblems becomes more restricted resulting in smaller lower bound
sets faster (fixing a H variable in these problem classes implicitly fixes some G variables). This is not
the case for ILP and KP, which does not have these implication relations between the variables and
hence fixing a variable does not restrict the objective space as much.

Next, compare the number of vertices among problem classes. The number of vertices for PPP is
lowest and highest for UFLP. That is, the lower bound sets in PPP are relatively simple compared to the
UFLP and hence much faster to calculate and update (see Figure 5). Indeed, the proportion of cpu time
spent in finding the initial polyhedron is very large compared to other problem classes, which suggests
that only a few iterations are required to solve the linear relaxation once the initial polyhedron is found.
That is particularly beneficial to WLP since, as we observe in Figure 5, warm-starting Algorithm 2
significantly reduces the initialization part of the algorithm.

If we consider the number of facets including rays in the polyhedron we can see that it increases
rapidly with increasing ? and for ? = 5 it is higher than the number of facets (without rays) in the
lower bound set (except for UFLP). That is, managing and updating the full-dimensional polyhedron
instead of just the lower bound set seems to come at a higher cost as ? increases.

Finally, recall the size of the non-dominated sets in Figure 1. Here the size of the non-dominated
set for PPP is high. However, the number of vertices in the lower bound set is low. That is, problems
with large non-dominated sets may generate (often weak) lower bound sets with few vertices. The
opposite is also true. For ILP and KP the number of vertices is relatively higher compared to the size
of the non-dominated set. That is, the relationship between the number of vertices and number of
non-dominated points (i.e. the upper bound set) is problem specific.

5.8 Proving optimality

It is well known that it is crucial in single objective integer linear optimization to obtain a strong upper
bound early during the branch-and-bound algorithm. This is to increase the potential for pruning
nodes based on the bound. Generalizing to the MOILP-case, obtaining a strong upper bound set might
also increase the potential for pruning nodes based on dominance, thus leading to smaller trees and
consequently lower CPU times.

In order to investigate the potential of such a strong upper bound set found early, we have run the
algorithm where the upper bound set is initialized byY# (using WLP with MOFV or BINARY). That is, on
line 1 of Algorithm 1 we replaceU ← ∅ withU ← Y# . This corresponds to having a very fast and
effective heuristic.

As can be seen from Figure 8 the reduction in CPU time is significant. On average over all the
instances the speed-up factor is 2.06 meaning that on average, not providing an optimal solution at the
root node, makes the cpu time increase with 106%.

As there is no significant computation time involved in generating solutions in our branch-and-
bound algorithm (feasible solutions are simply harvested from integer feasible vertices of the lower
bound sets), the speed-up must come from the increased pruning potential. The number of nodes in the
branching tree on average increase with 110% for WLP. Note also, that in the WLP-UB configuration, the
algorithm still check whether each integer feasible vertex of the lower bound sets found should enter

20

ILP KP PPP UFLP

?
=
3

?
=
4

?
=
5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

Variable size (=)

C
PU

(s
ec
on

ds
)

WLP-UB WLP

Figure 8: CPU times for WLP and WLP with the non-dominated set used as initial upper bound set in the
root node (WLP-UB).

the upper bound set, which underlines the fact that the reduction in computation time comes from the
increased pruning potential.

Concluding, it seems that, just as is the case for single objective integer programming, generating
a strong upper bound set in the early stages of the algorithm may have a significant positive impact on
the performance on the algorithm,

5.9 Performance of themulti-objective B&B algorithm compared to an objective space
search algorithm

The performance of the B&B algorithm is compared to the Objective Space Search (OSS) algorithm in
Kirlik and Sayın (2014). A C++ implementation of the algorithm was obtained fromKirlik (2014). We
updated the code to work with CPLEX 12.10 by changing calls to deprecated functions and compiled
the code using the MSVC compiler with default options. The results are shown in Figure 9.

The OSS algorithm is tested against the best configuration of our branch-and-bound framework
(WLP with MOFV or BINARY). Huge gaps in terms of CPU time are observed. First, it appears that the
OSS algorithm performs better on instances with three objective functions. However, as we add more
objective functions, the trend is reversing and eventually, our algorithm becomes better than the OSS
algorithm for all problem classes when ? = 5. It suggest that our algorithm scales better to problems
with a larger number of objective functions.

Moreover, it is interesting to note that the branch-and-bound algorithm is particularly good com-
pared to the OSS algorithm on problems with a lot of non-dominated points, namely PPP and UFLP. It
is somehow expected since one single-objective ILP is solved for each non-dominated point during the
OSS algorithm, meanwhile many non-dominated points can be gathered at the same time in some of the
nodes of the branch-and-bound tree. That also explains the better performance of our algorithm when
handling higher-dimensional problems, as more non-dominated points are expected when considering
more objective functions.

21

ILP KP PPP UFLP

?
=
3

?
=
4

?
=
5

10 20 30 40 10 20 30 40 50 20 30 40 50 60 25 50 75

0

1000

2000

3000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

Variable size (=)

C
PU

(s
ec
on

ds
)

OSS WLP

Figure 9: CPU times for OSS and WLP (using MOFV).

6 Conclusion

In Section 3, we implemented a branch-and-bound algorithm that can solve any MOILP with any
number of objectives. It was inspired by the recent successful bi-objective frameworks found in the
literature, and the adapted to the multi-objective case. In particular, it was based on the use of linear
relaxations to generate lower bound sets, and used a Benson-like algorithm to do so. We also pointed
out that in case integer variables exists in the problem solved, in addition to choosing the variable
to branch on, we need to chose the bound imposed on the branching variable in the child nodes in
addition to choosing the variable to branch on. This decision is not trivial anymore when there exist
two points or more in the lower bound set. We tested three different rules in Section 5 and showed that
despite the fact that they performed quite similarly in practice, there are instances where the choice
has a significant impact in terms of total CPU time.

Moreover, in Section 4 we proposed a way to accelerate the computation of the linear relaxation
in the specific context of a multi-objective branch-and-bound algorithm. It relies on the use of the
lower bound set from the father node to warm-start the solution process in the current node. Our
experiments showed that this led to a great reduction in the number of calls to the single-objective
linear programming solver, which resulted in a significant speed-up for most of our instances. However,
warm-starting the lower bound set computation comes at a greater cost of managing the polyhedra
coresponding to the lower bound sets. A consequence of that is a decrease in the speed-up as the
number of objective functions increases.

This latter observation suggests that for high-dimensional problems, it may be preferred to use a
lower bound set that does not require as many polyhedral operations as the one used in this paper. An
alternative approach could be to use an implicit lower bound set as defined in Gadegaard et al. (2019)
instead of explicitly computing the linear relaxation. In such an approach, line 4 of Algorithm 1 is
skipped, and a linear program similar to � (D) is solved to check whether a local upper bound D is

22

dominated by the lower bound set.
Besides, in the recent bi-objective literature, methods that use information from the objective space

to enhance the DSS algorithm have proven to be very efficient. Extending these concepts to the case
where ? ≥ 3 may then be of great interest and may potentially result in an even more efficient DSS
algorithm.

References

Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective mixed-integer linear
programming. Submitted to INFORMS Journal on Computing, 2019. URL http://www.
optimization-online.org/DB_FILE/2016/10/5676.pdf.

Pietro Belotti, Banu Soylu, and Margaret M. Wiecek. A branch-and-bound algorithm for biojbective
mixed-intger programs. Technical report, Clemson University, 2013.

Pietro Belotti, Banu Soylu, and Margaret M. Wiecek. Fathoming rules for biobjective mixed integer
linear programs: Review and extensions. Discrete Optimization, 22:341–363, nov 2016. doi:
10.1016/j.disopt.2016.09.003.

Harold P. Benson. An outer approximation algorithm for genrating all efficient extreme points in the
outcome set of a multiple objective linear programming problem. Journal of Global Optimization,
13:1–24, 1998.

N. Boland and H. Charkhgardand M. Savelsbergh. The l-shape search method for triobjective integer
programming. Mathematical Programming Computation, 8(2):217–251, Jun 2016. doi: 10.1007/
s12532-015-0093-3.

N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method: A simple and
efficient algorithm for solving tri-objective integer programs. European Journal of Operational
Research, 260(3):873 – 885, 2017. ISSN 0377-2217. doi: 10.1016/j.ejor.2016.03.035.

R. H. Byrd, A. J. Goldman, and Miriam Heller. Technical note—recognizing unbounded integer
programs. Operations Research, 35(1):140–142, 1987. doi: https://doi.org/10.1287/opre.35.1.140.

László Csirmaz. Using multiobjective optimization to map the entropy region. Computational Opti-
mization and Applications, 63(1):45–67, jun 2015. doi: 10.1007/s10589-015-9760-6.

M. Ehrgott. Multicriteria Optimization. Springer Berlin, Heidelberg, 2nd edition, 2005. ISBN
3540213988.

M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization problems.
Computers & Operations Research, 34(9):2674–2694, 2007. doi: 10.1016/j.cor.2005.10.003.

K. Florios, G.Mavrotas, andD.Diakoulaki. Solvingmultiobjective, multiconstraint knapsack problems
using mathematical programming and evolutionary algorithms. European Journal of Operational
Research, 203(1):14 – 21, 2010.

N. Forget. C++ implementation of multi-objective branch-and-bound, 2021. URL https://github.
com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound.

23

http://www.optimization-online.org/DB_FILE/2016/10/5676.pdf
http://www.optimization-online.org/DB_FILE/2016/10/5676.pdf
https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound
https://github.com/NicolasJForget/LinearRelaxationBasedMultiObjectiveBranchAndBound

N. Forget, L. R. Nielsen, and S. L. Gadegaard. Instances and results for linear relaxation
based branch-and-bound (morepo-forget21), 2020. URL https://github.com/MCDMSociety/
MOrepo-Forget21.

Komei Fukuda and Alain Prodon. Double description method revisited. In Lecture Notes in Computer
Science, volume 1120, pages 91–111. Springer, Berlin, 1996.

S.L. Gadegaard, L.R. Nielsen, and M. Ehrgott. Bi-objective branch-and-cut algorithms based on lp
relaxation and bound sets. INFORMS Journal on Computing, 2019.

Andreas H. Hamel, Andreas Löhne, and Birgit Rudloff. Benson type algorithms for linear vector
optimization and applications. Journal of Global Optimization, 59(4):811–836, aug 2013. doi:
10.1007/s10898-013-0098-2.

Nicolas Jozefowiez, Gilbert Laporte, and Frédéric Semet. A generic branch-and-cut algorithm for
multiobjective optimization problems: Application to the multilabel traveling salesman problem.
INFORMS Journal on Computing, 24(4):554–564, nov 2012. doi: 10.1287/ĳoc.1110.0476.

G. Kirlik. Test instances for multiobjective discrete optimization problems, 2014. URL http:
//home.ku.edu.tr/~moolibrary/.

G. Kirlik and S. Sayın. A new algorithm for generating all nondominated solutions of multiobjective
discrete optimization problems. European Journal of Operational Research, 232(3):479 – 488,
2014. ISSN 0377-2217. doi: 10.1016/j.ejor.2013.08.001.

Gokhan Kirlik and Serpil Sayın. Computing the nadir point for multiobjective discrete opti-
mization problems. Journal of Global Optimization, 62(1):79–99, aug 2014. doi: 10.1007/
s10898-014-0227-6.

G. Kiziltan and E. Yucaoğlu. An algorithm for multiobjective zero-one linear programming. Manage-
ment Science, 29(12):1444–1453, December 1983. doi: 10.1287/mnsc.29.12.1444.

K. Klamroth, R. Lacour, and D Vanderpooten. On the representation of the search region in multi-
objective optimization. European Journal of Operational Research, 245:767–778, 2015. doi:
10.1016/j.ejor.2015.03.031.

D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming problem.
European Journal of Operational Research, 9(4):378 – 385, 1982. doi: 10.1016/0377-2217(82)
90182-5.

A Löhne and B. Weißing. Bensolve - vlp solver, version 2.1.x. http://www.bensolve.org, 2020.

G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective
linear programming. European Journal of Operational Research, 107(3):530–541, 1998. doi:
10.1016/S0377-2217(97)00077-5.

G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm
for mixed 0-1 multiple objective linear programming. Applied Mathematics and Computation, 171
(1):53–71, 2005. doi: 10.1016/j.amc.2005.01.038.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
1999.

24

https://github.com/MCDMSociety/MOrepo-Forget21
https://github.com/MCDMSociety/MOrepo-Forget21
http://home.ku.edu.tr/~moolibrary/
http://home.ku.edu.tr/~moolibrary/
http://www.bensolve.org

L.R. Nielsen. Multi-objective optimization repository (morepo), 2017. URL https://github.com/
MCDMSociety/MOrepo.

L.R. Nielsen. gMOIP: Tools for 2D and 3D Plots of Single and Multi-Objective Linear/Integer
Programming Models, 2020. v1.4.3.

M. Ozlen, B.A. Burton, and C.A.G. MacRae. Multi-objective integer programming: An improved
recursive algorithm. Journal of Optimization Theory and Applications, 160(2):470–482, Feb 2014.
doi: 10.1007/s10957-013-0364-y.

S.N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming. INFORMS
Journal on Computing, 2019. doi: 10.1287/ĳoc.2018.0856.

R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the optimal biobjective
spanning tree. European Journal of Operational Research, 111(3):617 – 628, 1998. doi: 10.1016/
S0377-2217(97)00391-3.

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the
biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–484, 2008. doi:
10.1287/ĳoc.1070.0260.

T. Stidsen and K. A. Andersen. A hybrid approach for biobjective optimization. Discrete Optimization,
28:89–114, 2018. doi: 10.1016/j.disopt.2018.02.001.

T. Stidsen, K. A. Andersen, and B. Dammann. A branch and bound algorithm for a class of biobjective
mixed integer programs. Management Science, 60(4):1009–1032, 2014. doi: 10.1287/mnsc.2013.
1802.

J. Sylva and A. Crema. A method for finding the set of non-dominated vectors for multiple objective
integer linear programs. European Journal of Operational Research, 158(1):46 – 55, 2004. doi:
10.1016/S0377-2217(03)00255-8.

S. Tamby and D. Vanderpooten. Enumeration of the nondominated set of multiobjective discrete
optimization problems. INFORMS Journal on Computing, 2020. doi: 10.1287/ĳoc.2020.0953.
Ahead of print.

E. L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-bound proce-
dure. In João Clímaco, editor, Multicriteria Analysis, pages 269–278. Springer Berlin Heidelberg,
1997.

E.L. Ulungu and J. Teghem. The two phases method: An efficient procedure to solve bi-objective
combinatorial optimization problems. Foundations of Computing and Decision Sciences, 20(2):
149–165, 1995.

T Vincent. Caractérisation des solutions efficaces et algorithmes d’énumération exacts pour
l’optimisation multiobjectif en variables mixtes binaires. PhD thesis, LINA, Université de Nantes,
France, 2013. URL http://www.theses.fr/2013NANT2065.

T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective branch and
bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case.
Computers & Operations Research, 40(1):498–509, 2013. doi: 10.1016/j.cor.2012.08.003.

25

https://github.com/MCDMSociety/MOrepo
https://github.com/MCDMSociety/MOrepo
http://www.theses.fr/2013NANT2065

M Visée, J Teghem, M Pirlot, and EL Ulungu. Two-phases method and branch and bound procedures
to solve the bi–objective knapsack problem. Journal of Global Optimization, 12:139–155, 1998.

Appendices
A Detecting the unbounded case

It was assumed in the paper that theMOILP under scrutiny had a bounded feasible set. In this appendix
we will briefly demonstrate how the algorithm developed in this paper is able to detect unbounded
MOILPs.

As oppose to MOCO problems, when introducing a general integer variable G8 ∈ N in the model,
there is not necessarily finite bounds given on the value of G8 , and, depending on the other constraints
of the problem, G8 could take an infinite number of possible values. In the single-objective case, an
optimization problemmin{ 5 (G) | G ∈ X} is said to be unbounded if, for all ; ∈ R there exists an G ∈ X
such that 5 (G) < ;. In the single-objective case, detecting unbounded integer programs was already
studied several decades ago. In particular, the following theorem has been stated:

Theorem 1 (Byrd, Goldman, and Heller (1987)). Let % be a single-objective integer program with a
constraint matrix denoted by �. If � has rational entries only and if %!% , the linear relaxation of %,
is unbounded; then % is either infeasible or unbounded .

For the remainder of the discussion, we will only consider constraint matrices with rational
coefficients. In order to investigate unboundedness in MOILPs we formally define an unbounded
MOILP as follows

Definition 4. Given a MOILP min{�G |G ∈ X}, we say that the MOILP is unbounded if there exists a
vector _ ∈ R?= such that for all ; ∈ R there exists an Ĝ ∈ X for which

_�Ĝ < ;

Thus, we define a MOILP to be unbounded if there exists a weighted sum scalarization (with
non-negative weights), which is unbounded in the single objective sense. From this definition in
combination with Theorem 1 it is evident that unboundedness of a MOILP can be detected by
inspecting whether there exists a weighted sum scalarization with a linear programming relaxation,
which is unbounded. In that case, the MOILP is either unbounded or infeasible as the MOILP has the
same feasible set as any weighted sum scalarization hereof.

When using Algorithm 2 for solving the linear relaxation, no weighted sum scalarization is solved
directly. However, unboundedness can be detected by inspecting the extreme rays ofY!%

#
+R?= . Let A

be an extreme ray ofY!%
#
+R?= such that at least one of its component is strictly positive, and another is

strictly negative. When moving along such an extreme ray, because of the conditions on A, at least one
objective function value will increase, meanwhile at least another one will decrease. In other words,
the weighted sum scalarization

min{_(A)�G | G ∈ X}
where _(A) is a vector perpendicular to A ordered towards the origo, is either infeasible or unbounded,
and thus, the MOILP itself is either infeasible or unbounded. Hence, solving the root node of the
branch bound tree in Algorithm 1 answers whether the MOILP could be unbounded or not, and if a
feasibel solution is found, then the answer is given.

26

B Problem classes

B.1 Production Planning Problem

At each period, C ∈) , a fixed demand, 3C , for a product is known. This demand must be met from
either production in the period, from the inventory or as a combination of produced and stored items.
The production in period C is given by GC while the number of items in inventory at the end of period C
is given by BC . Both GC and BC are assumed to be integers.

If at least one unit is produced at period C, a fixed cost is incurred. The variables HC indicate
whether at least one item is produced at time C (HC = 1) or not (HC = 0).

The multi-objective production planning problem (PPP) with ? objectives can then be described
as the following MOILP:

min
)∑
C=1
(2:C GC + ℎ:C BC + 5 :C HC) ∀: ∈ {1, ..., ?}

s.t. GC + BC−1 = BC + 3C ∀C ∈ {1, . . . ,)}
GC ≤ "HC , ∀C ∈ {1, . . . ,)}
B0 = 0,
GC , BC ∈ N ∀C ∈ {1, . . . ,)}
HC ∈ {0, 1} ∀C ∈ {1, . . . ,)}

The production costs, storage costs, and fixed costs are given by 2:C , ℎ:C , and 5 :C , respectively.
Production and storage costs are generated randomly in the interval [1, 100], and fixed costs in the
interval [1, 2500]. The demands, 3C , are generated randomly in [1, 50]. The total number of variables
is given by 3) , and the number of constraints is 2) . The parameter " in the indicator constraints is
given by " =

∑)
C=1 3C .

B.2 Uncapacitated Facility Location Problem

In this problem, there is a set of ; locations where a facility can be opened, and a set of A customers
that each have to be assigned to a location. Two decisions have to be made: which locations to open
and which customers to assign to which facilities. Both opening a facility and assigning a customer
to an open facility induces a cost, and the overall cost has to be minimized. Let H 9 = 1 if a facility is
opened at location 9 , and H 9 = 0 otherwise, ∀ 9 ∈ {1, ..., ;}. Furthermore, let G8 9 = 1 if customer 8 is
assigned to location 9 , and G8 9 = 0 otherwise, ∀8 ∈ {1, ..., A},∀ 9 ∈ {1, ..., ;}.

The multi-objective uncapacitated facility location problem (UFLP) with ? objectives can be
formulated as the following MOCO problem

27

min
A∑
8=1

;∑
9=1
2:8 9G8 9 +

;∑
9=1

5 :9 H 9 ∀: ∈ {1, ..., ?}

s.t.
;∑
9=1
G8 9 = 1 ∀8 ∈ {1, . . . , A}

G8 9 ≤ H 9 ∀8 ∈ {1, . . . , A}, 9 ∈ {1, . . . , ;}
G8 9 ∈ {0, 1} ∀8 ∈ {1, . . . , A}, 9 ∈ {1, . . . , ;}
H 9 ∈ {0, 1} ∀ 9 ∈ {1, . . . , ;}

The cost for assigning customer 8 to facility 9 in objective : is given by 2:
8 9
. The assignment costs

belongs to the interval [1, 1000] and is generated on the non-dominated part (in minimization) of an
hypersphere of dimension ? (see Nielsen (2020) for further details). The cost for opening a facility on
location 9 is given by 5 9 . The fixed opening costs are generated from the interval [1, 100] and, like
the assignment costs, these coefficients are generated on the non-dominated part (in minimization) of
an hypersphere of dimension ?. The number of variables in this problem is = = ; (A + 1).

28

	Introduction
	Preliminaries
	Polyhedral theory
	Bound sets

	A branch-and-bound framework for MOILP
	Linear relaxation for MOBB
	Warm-starting Benson-like algorithms in MOBB

	Computational experiments
	Implementation details and algorithm configurations
	Test instances
	Performance of the different algorithm configurations
	Variable selection - Rules for choosing the bound
	Detailed performance of different algorithm parts
	Pruning nodes
	Geometric properties of the lower bound set during the algorithm
	Proving optimality
	Performance of the multi-objective B&B algorithm compared to an objective space search algorithm

	Conclusion
	Detecting the unbounded case
	Problem classes
	Production Planning Problem
	Uncapacitated Facility Location Problem

