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Abstract: Supply chain collaboration using advancements in information technology is on the
rise and this includes sharing of information between suppliers and buyers. In this paper we study
the value of information about the development of supply lead times from a buyer’s perspective.
We consider a periodically reviewed single-item inventory system in a lost sales setting where
at most one order can be outstanding at a time. We compare the performance of an inventory
model assuming informed lead times to a model assuming uninformed independent and iden-
tically distributed lead times. We employ the dynamic programming approach to find the best
state-dependent ordering policy to minimize the expected average total cost per time unit. Our
numerical results show that acquiring information about the development of supply lead times is
of value. In general the best policy suggested by the model assuming informed lead times causes
lower average cost than the model assuming uninformed lead times.

Keywords: Lost sales, Stochastic lead times, Informed lead times, Dynamic programming, Markov
decision process

1 Introduction
The crucial part of inventory management is to make replenishment decisions in the face of
uncertainties at upstream and downstream stages of the supply chain. Demand uncertainty rep-
resents uncertainty in the downstream supply chain, whereas lead-time uncertainty captures the
uncertainty of the supply system, i.e. the upstream part of the supply chain. As discussed in
an empirical examination by Wagner and Bode (2008), such variations can be equated to supply
chain risks which lower its performance. One way to mitigate supply chain risk is by improv-
ing confidence between decision-makers through collaboration and better information sharing
(Christopher and Lee, 2004). An empirical study by Li, Yang, Sun, and Sohal (2009) suggests
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that effective use of information technology has a positive effect on supply chain integration and
hence on its performance. Advancements in information technology and its role in supply chain
management provides managers with an opportunity to relatively easily obtain dynamic infor-
mation about demand and supply variations. Similar to demand variations, major variations in
supply lead times may have identifiable sources, such as equipment breakdown, workload condi-
tions etc. These sources of variation reflect the condition of the supply system, and replenishment
lead times evolve as the system evolves over time. Inventory models which consider the evolu-
tion of demand and use advance information in decision making are widely studied, for example
Hariharan and Zipkin (1995); Karlin and Fabens (1959); Song and Zipkin (1993) and Gallego
and Özer (2001). However, more sparsely studied are the models with shared information about
upstream supply conditions. The hypothesis test by Cannon and Homburg (2001) shows that an
increasing number of suppliers share information to reduce acquisition and operation costs for
the customer, thus emphasizing a need for further study of such systems.

Since the mid-1990s some results for inventory control models with information about sup-
ply conditions have been available, such as Song and Zipkin (1996). In these models, stockouts
are backordered. However, stockouts may also result in lost sales. The lost-sales case has con-
siderable practical significance. The study by Corsten and Gruen (2004) shows that in almost
half of the cases unmet demands result in lost sales not backorders. Lost sales also appear to be
a common mechanism for handling shortages in some spare parts industries.

The purpose of this paper is to investigate the performance of the value of advanced lead-time
information under lost sales. We study a single-item inventory control model with lost sales and
ubiquitous demand uncertainty, controlled by a periodic review inventory replenishment policy
with at most one order outstanding at any given time. The inventory is supplied by a system with
evolving replenishment lead times which are informed in advance and with certainty at every
ordering decision epoch.

The assumption of no more than one outstanding replenishment order at a time can be justi-
fied from a practical standpoint. The likelihood of placing a new order while awaiting the arrival
of an existing order can be negligible due to, for example, terms in the supplier-buyer contract or
due to the buyer’s internal ordering policy. Moreover, allowing for simultaneously outstanding
orders makes the model numerically intractable in general (Zipkin, 2008a,b).

We assume that the supply system is exogenous, i.e. its development is independent of our
demands and replenishment orders (Zipkin, 2000, Section 7.4). Hence, replenishment order lead
time is independent of the size of our order and only depends on the conditions of the supply
system. However, the system is transparent in the sense that it is assumed to be possible to obtain
information about its current state and about the development of its supply lead times. Hence,
changes in lead times are characterized by a Markov chain. Thus, with a reliable estimate of
current lead time, information of the development of future lead times is available through the
Markovian dependence. The performance of the model with information about the development
of supply lead times is compared to the model with independent and identically distributed (i.i.d.)
lead times. The latter model represents the case where the supplier is not sharing information
about the development of the supply lead times.

We consider an infinite time horizon inventory problem and formulate it as a dynamic pro-
gram with finite and discrete state space. We assume that ordering, inventory holding and lost
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sales penalty costs are linear and the objective is to minimize expected average total cost per time
unit over an infinite time horizon. Through numerical experiments, we observe the significance
of information about the development of lead times. By changing the evolutionary pattern, we
are able to study its qualitative effect on the inventory performance assuming either informed
lead times or i.i.d. lead times. Such comparisons enable us to estimate the value of informa-
tion available about the development of lead times compared to knowing only their long-term
distribution.

The rest of the paper is organized as follows. In Section 2 we give a brief survey of the
literature related to inventory systems with lost sales and information about supply conditions.
Analytical models used for our numerical study are introduced in Section 3 and computational
experiments are specified and reported in Section 4. Finally, Section 5 summarizes the results
and concludes the paper.

2 Literature review
Davis (1993) contains a general discussion about the role of uncertainty in supply chain manage-
ment from a business perspective by using Hewlett-Packard as a case study. Not only upstream
and downstream uncertainties complicate the management of inventory but the way to treat stock-
outs also further complicates the problem. Inventory models with backlogging of unfulfilled de-
mand are reasonably well understood today and detailed discussion about them can be found in
Zipkin (2000) and Axsäter (2006). However, inventory control models in which stockouts are
treated as lost sales have been studied more sparsely. For further insight into the differences be-
tween models with backorders and lost sales, we can refer to Montgomery, Bazaraa, and Keswani
(1973) who study a model in which, during a stock out, a fraction of the demand is backordered
and the rest is lost. The basic problem of an inventory model with lost sales (constant lead time)
was formulated more than 50 years ago by Karlin and Fabens (1959). Yet, today it proves to be a
difficult problem to work with because of the rapidly growing state space with longer lead times,
which is discussed in Zipkin (2000, Section 9.6.5) and described by the curse of dimensionality.
Hence, few extensions to more complex systems are available.

Hadley and Whitin (1963, Section 4-11) discuss the difficulty in analyzing a continuously
reviewed reorder point policy under lost sales. For results regarding periodically reviewed re-
order point policies under lost sales see Johansen and Hill (2000). Nahmias (1979) provides
approximations for the periodically reviewed inventory model with non-linear ordering cost and
variable lead times, while Cohen, Kleindorfer, and Lee (1988) present an approximation for the
periodically reviewed (s,S) inventory model with two priority demand classes.

Downs, Metters, and Semple (2001) study a multi-item periodically reviewed model with
deterministic delivery time lags and a finite horizon. Recently, Zipkin (2008b) has presented an
elegant state-space reduction technique for inventory models with lost sales and extended this
approach to important variations of the model: limited capacity, correlated demands, stochastic
lead times, and multiple demand classes. Equipped with this state-space reduction technique,
Zipkin (2008a) is able to obtain optimal replenishment policies for longer lead times than re-
ported before. His paper also tests plausible heuristics for a limited range of systems.
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Due to the relatively easy-to-handle structure of inventory models with backordering they
have usually been considered in past studies assuming more complex settings, such as informa-
tion about supply conditions. This is the case, for example, in Song and Zipkin (1996), where
exogenous supply is modeled as a Markov chain and as the information about supply evolves
so do lead times. They analyze the effect of evolving lead times on policy decisions. Özekici
and Parlar (1999) assume that the order is satisfied immediately if the supplier is available and,
in the other extreme, if the supplier is unavailable, the order is never fulfilled. Availability of
the supplier depends on the environment, which is modeled as a Markov chain. Gallego and Hu
(2004) analyze inventory problems with Markov-modulated supply with limited capacity as well
as separately Markov-modulated demand processes. Arifoğlu and Özekici (2010) extend this
model and its results by considering the case where available information is imperfect due to a
partially observable environment.

The paper by Ben-Daya and Hariga (2004) discusses the single-vendor-single-buyer produc-
tion inventory model which minimizes the consolidated expected total cost per time unit for
vendor and buyer. They assume that the lead time of an order depends on its size. A comment
on this paper by Glock (2009) takes the model a step further by demonstrating benefits in con-
sidering different reorder points for each batch shipment and unequal-sized batch shipments. A
note on the same paper by Hsiao (2008) proposes a variation of the original model by assuming
two different reorder points and service levels.

For the reasons mentioned above, inventory models under lost-sales settings and with in-
formation about supply conditions have received limited attention. Arreola-Risa and DeCroix
(1998) explore the model with supply durations occurring randomly and lasting for a random
duration. Their model assumes that the demand is stochastic and delivery lead times are equal
to zero. In case of stockouts, a fraction of the demand is backordered and the remaining fraction
is lost. In the paper by Mohebbi (2003), he investigates the issue of random supply interruptions
(available/unavailable) in a continuous review inventory system where demand as well as non-
zero lead times are stochastic and where stockouts are lost sales. He assumes that the duration
of supplier availability and unavailability is independent. It is also assumed that the maximum
number of outstanding replenishment orders is limited to one at any time. Variations of this
model are presented by Mohebbi (2004) and Mohebbi and Hao (2006). In all these models, the
assumption is that supply interruptions and the duration are random and independent. Hence,
although information about availability of the supplier is provided at the current moment, no
information about future supply conditions is available. However, Li, Xu, and Hayya (2004)
present a periodic review inventory model in a lost-sales setting, which allows for the age of
the availability of the supplier to affect availability in the next time period. Thus, in this model
some information about the future condition of the supplier is provided, given that the supplier
is available at the current moment. The model assumes that the lead time is negligible and that
a replenishment order can be placed only if the supplier is available. Thus, there appears to be a
basis for exploring inventory control under the lost-sales setting, where the information available
about supply conditions not only informs about the current lead time, but also provides some
information about its future development.
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3 Model formulation
We consider a periodically reviewed inventory model under a lost-sales setting and assume that
there can never be more than one outstanding order at any time. We describe the inventory model
using the following notation:

n Index denoting the decision epoch under consideration

xn Inventory level after order due in decision epoch n is delivered

on Quantity outstanding in decision epoch n

un Order delivered in decision epoch n

M Maximum possible inventory (on hand + on order)

Ln Lead time at decision epoch n

Z Maximum possible lead time of an order

Dt Cumulative demand over t time units. We use D = D1 as short-hand notation

qn Replenishment order placed at decision epoch n

rn Time elapsed for the outstanding order at decision epoch n

c Unit cost of procurement

h Unit inventory holding cost per time unit

p Unit penalty cost for lost sales

As in Song and Zipkin (1996), we may suppress the index n and write x for xn and x+ for
xn+1, i.e. the subscript + denote the next decision epoch. Moreover, we define x+ = max(0,x)
and the indicator function 1{v∈V} to be equal to one if v ∈V and zero otherwise.

To find the optimal inventory policy, we model the inventory system as a discrete infinite
time-horizon semi-Markov decision process (sMDP). At decision epoch n the system occupies a
state s. Given the decision-maker observes state s at decision epoch n, he can choose a decision q
from the set of allowable decisions generating expected cost cq

s until the next decision epoch. The
length of the decision epoch is stochastic and dependent on q and s. Moreover, let pq

s,s+ denote
the transition probability of obtaining state s+ at the next decision epoch. A policy specifies
which decision q to use at all states s for all decision epochs and provides the decision maker
with a plan of which decision to take given decision epoch and state. The optimal policy is found
under the average expected cost criterion. Moreover, since the state and decision space are finite
and the sMDP is stationary and unichain, the optimal policy can be found using policy iteration
(Puterman, 1994).

3.1 Model with informed supply lead times
In this model, reliable information about the lead time of an order placed in the current period is
available. At each decision epoch, the sequence of events is as follows:
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n n+1
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Figure 1: The events at decision epoch n (informed lead times).

1. If an order is due, then it is delivered, and the state of the inventory level is reviewed. The
supplier provides reliable information about the lead time of an order placed in the current
period.

2. A decision about placing a new replenishment order is made.

3. Demand occurs and the procurement, holding and lost-sales penalty costs are assessed.

When making decision q, the time until the next decision epoch is

t̂ = t̂(q,L) =

{
L if q > 0,
1 if q = 0.

(1)

For the decision epoch at time t, state (x,L) and order q, the next decision epoch occurs at time
t + t̂. Thus, we have decision epochs of various length. Moreover, we assume that the length of
a review period is chosen such that the lead time is at least one time unit. Decision epoch n is
illustrated in Figure 1.

The inventory dynamics are given by

x+ = (x−Dt̂)
++q,

To find the optimal inventory policy, we model the inventory system as a discrete infinite
time-horizon semi-Markov decision process. A state s = (x,L) is defined using state variables x
and L where x ∈ {0, . . . ,M} and L ∈ {1, . . . ,Z}. The set of possible order quantities (decisions) q
is {0, . . . ,M− x}. The time between each decision epoch is given in (1) Note that the restriction
on the maximum possible inventory (M) and lead-time (Z) allows us to have a finite state space as
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well as a finite decision set. High values of M and Z make the number of states high which may
pose a problem due to the curse of dimensionality; however, limited maximum inventory can
be valid in real-life situations, for example due to budget constraints or constraints on physical
storage capacity. Very long lead times may occur, e.g. due to a strike or supplier breakdowns,
but are rare and not handled by the model.

The transition probabilities can be calculated as

pq
s,s+ = Pr(x+,L+ | x,L,q, t̂) = Pr(x+ | x,q, t̂) ·Pr(L+ | L, t̂), (2)

where

Pr(x+ | x,q, t̂) = Pr((x−Dt̂)
++q = x+)

=

{
Pr((x−Dt̂)

+ = 0), if x+ = q,
Pr((x−Dt̂)+q = x+), if x+ > q,

=

{
Pr(Dt̂ ≥ x), if x+ = q,
Pr(Dt̂ = x+q− x+), if x+ > q,

corresponding to a demand higher and below the current inventory level. Note that the current
lead time is deterministic; however, the lead time at the next decision epoch is a random variable
dependent on the current lead time. The probability Pr(L+ | L, t̂) can be calculated based on a
function of a random variable (see Section 4).

The cost incurred until the next decision epoch is given by

cq
s = cq+H(x, t̂), (3)

i.e. the procurement cost and H(x, t̂) which denotes the expected holding and lost-sales cost over
t̂ time periods given the present inventory level x. H can be defined recursively as

H(x, t) =
x

∑
d=0

Pr(D = d)(h(x−d)+H(x−d, t−1))

+
∞

∑
d=x+1

Pr(D = d)(p(d− x)+H(0, t−1))

with H(x,0) = 0. A discount factor equal to 1 is assumed. A fixed ordering cost may be added
to (3) which in general will result in an optimal policy where small orders are avoided; however,
for the simplicity of the model we choose not to include it in the model. Moreover, a fixed
ordering cost is usually associated with the administration of placing a replenishment order.
With advancements in automation of inventory management systems the cost of placing an order
is becoming minimal. Hence, from a practical point it is valid to assume the fixed ordering cost
to be zero.
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n n+1

t = 1
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Figure 2: The events in the decision epoch n (stochastic lead times).

3.2 Model assuming stochastic supply lead times
In this alternative model, the lead times are assumed to be i.i.d. and no certain information is
available about the lead time of an outstanding order. In each period, the sequence of events is
as follows:

1. If an order is due in the period, then it is delivered and the state of the inventory level is
reviewed.

2. If an order is not outstanding already, then a decision about placing a new replenishment
order is taken.

3. Demand occurs and procurement, holding and lost-sales penalty costs are assessed.

Unlike in the previous model, we need to review the inventory level state in every period in
this model, i.e. the length of each decision epoch is one time unit. If in the current period a
previously outstanding order is delivered, then a new ordering decision can be made. Otherwise,
the only possible decision is not to place an order. The decision epoch is illustrated in Figure 2.
The inventory dynamics are given by

x+ = (x−D)++u+.

To find the optimal inventory policy, we model the inventory system as a discrete, infinite
time-horizon Markov decision process. A state s = (x,o,r) is defined using state variables x, o
and r, where x ∈ {0, . . . ,M}, o ∈ {0, . . . ,M− x} and r ∈ {0, . . . ,Z−1}. Note that not all combi-
nations of the state variables are possible since o and r are interrelated. If there is no outstanding
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order or an order is received then o = r = 0. Otherwise, if there is an order outstanding, then
o > 0 and r > 0. If o = 0, the set of possible order quantities (decisions) q ∈ {0, . . . ,M− x}.
Moreover, since only a single order can be outstanding, no order can be issued (q = 0) if o > 0.

Let pq
ss+ = Pr(x+,o+,r+ | x,o,r) denote the transition probability. If o = r = 0 and q = 0 then

pq
ss+ =


Pr(D≥ x), if x+ = 0,o+ = 0,r+ = 0
Pr(D = x− x+), if x+ ∈ {1, . . . ,x},o+ = 0,r+ = 0
0, otherwise,

corresponding to a demand higher and lower than the current inventory. If o = r = 0 and q > 0,
then

pq
ss+ =



Pr(D≥ x)Pr(L = 1), if x+ = q,o+ = 0,r+ = 0
Pr(D = x− x++q)Pr(L = 1), if x+ ∈ {q+1, . . . ,q+ x},o+ = 0,r+ = 0
Pr(D≥ x)Pr(L > 1), if x+ = 0,o+ = q,r+ = 1
Pr(D = x− x+)Pr(L > 1), if x+ ∈ {1, . . . ,x},o+ = q,r+ = 1
0, otherwise,

corresponding to a demand higher and lower than the current inventory and arrival of the order
at next decision epoch and a demand higher and lower than the current inventory and arrival of
the order after next decision epoch, respectively. When o > 0, r > 0, then q = 0 and we have that

pq
ss+ =



Pr(D > x)Pr(L = r+1 | L > r), if x+ = o,o+ = 0,r+ = 0
Pr(D = x− x++o)Pr(L = r+1 | L > r), if x+ ∈ {o+1, . . . ,o+ x},o+ = 0,r+ = 0
Pr(D≥ x)Pr(L > r+1 | L > r), if x+ = 0,o+ = o,r+ = r+1
Pr(D = x− x+)Pr(L > r+1 | L > r), if x+ ∈ {1, . . . ,x},o+ = o,r+ = r+1
0, otherwise,

corresponding to a demand higher and lower than the current inventory and arrival of the order
at next decision epoch and a demand higher and lower than the current inventory and arrival of
the order after next decision epoch, respectively. The probabilities Pr(L = l) are derived from the
steady-state probabilities of the corresponding model with informed lead times (see Section 4).
Hence, the resulting lead-time distributions used are the same in both models.

The expected cost until the next decision epoch is given by

cq
s = cq+hE

(
(x−D)+

)
+ pE

(
(D− x)+

)
,

i.e. the procurement cost and expected holding and lost-sales cost of one time unit. The mean of
(x−D)+ can be calculated as

E
(
(x−D)+

)
=

x

∑
d=0

(x−d)Pr(D = d),

since D is discrete and non-negative. Moreover, E((D− x)+) = E((x−D)+)− x+E(D).
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4 Numerical results
The computational experiments were conducted using R (R Development Core Team, 2010)
together with the R package “MDP” (Nielsen, 2009), which was used to generate each MDP and
solve the model using policy iteration under the average cost criterion. The experiments provide
insights into which parameters of the model affect the reduction

∆ = 100(1−gI/gU), (4)

i.e. the percentage reduction of the average cost per time unit under informed lead times (gI)
compared to the average cost per time unit under uninformed lead times (gU ).

In our experiments we assume that p > c. Think of p as the unit cost of lost revenue or
goodwill or the cost of a special emergency delivery. Given that possibility, if p < c, then it is
obviously preferred to always use an emergency source instead of a regular source. Hence, it
would be appropriate to assume p > c. In fact, in most of our experiments (instances 1-30) we
also assume that p > c+h. Thus, it would not be cheaper to lose demands occurring in the next
period than to carry inventory forward. This kind of cost structure can typically be found in the
retail industry where lost sales are commonly observed. A cost structure where p≤ c+h, i.e. the
cost of carrying a specific inventory are comparably high, were also tested which apply to other
industries (instance 31-36).

Preliminary tests showed that a fixed ordering cost added to (3) has little effect on the cost
ratio (4) between the two models and the optimal policy. As a result we only consider test
instances without a fixed ordering cost in the experiments.

We assume that the demand is Poisson distributed (D ∼ Po(λ )). Moreover, in the case of
informed lead times, we assume that the transition over one time unit is given by:

Lt+1 =


1, if round(Lt +Bt)≤ 1
round(Lt +Bt), if round(Lt +Bt) = {2, . . . ,Z−1},
Z, if round(Lt +Bt)≥ Z

(5)

where Bt ∼ N(µ,σ2) and hence the transition probabilities become:

Pr(Lt+1 | Lt) =


Pr(Bt ≤ 1.5−Lt), if Lt+1 = 1
Pr(Bt ∈ [Lt+1−Lt−0.5,Lt+1−Lt +0.5], if Lt+1 ∈ {2, . . . ,Z−1}
Pr(Bt ≥ Z−Lt−0.5), if Lt+1 = Z

(6)

Let P denote the transition matrix of (6) then Pr(L+ = i | L = j, t̂) in (2) can be calculated as the
(i, j)’th element in Pt̂ (Puterman, 1994).

The choice of (5) and (6) is based on the observation that they provide a discrete distribution
on a finite set of lead times L ∈ {1, . . . ,Z}. Moreover, by modifying the mean and variance of B,
we can change the shape of the steady-state distribution (used in the model with stochastic lead
times) of L to be close to uniform or having a high probability mass at the endpoints. This can be
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Figure 3: The transition probabilities Pr(L+ | L, t̂ = L) given L = 1,4,7 in the model with in-
formed lead times and the corresponding steady state probabilities (last column) used in the
model with stochastic lead times (for Z = 7). Each row represents a different combination of
mean and variance of B.

seen in Figure 3, where the probability mass function of Pr(L+ | L, t̂ = L) for L = 1,4,7 and Z = 7
and the steady-state probabilities are illustrated. Note that zero mean and high variance results
in a high probability mass at 1 and Z. Conversely, a small variance results in a near uniform
steady-state distribution. Letting the mean be different from zero gives a bias towards either 1 or
7.

The experiments are shown in Table 1. First, we examine the effect of increasing the penalty
cost p using instances 1-6. This is illustrated in Figure 4a. Increasing p makes the average
cost per time unit g increase for both models. Moreover, the benefit of informed lead times (∆)
increases with p.

In test instances 7-15, the effect of the demand rate (λ ) is considered. The results are il-
lustrated in Figure 4b. The reduction ∆ peaks around λ = 4. If the demand rate is low, then
lost sales are rare under the optimal policy and we cannot utilise our information about the lead
times very much to avoid penalty cost. If the demand rate is very high, then due to the maximum
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Table 1: Results for different instances of the model.

# M Z µ σ λ c p h gI
a gU

b ∆c

1 20 7 0 1 5 100 250 10 842 907 7.1
2 20 7 0 1 5 100 500 10 1353 1537 12.0
3 20 7 0 1 5 100 750 10 1863 2167 14.0
4 20 7 0 1 5 100 1000 10 2372 2796 15.2
5 20 7 0 1 5 100 1250 10 2881 3424 15.9
6 20 7 0 1 5 100 1500 10 3390 4053 16.4
7 20 7 0 1 2 100 1000 10 440 461 4.5
8 20 7 0 1 3 100 1000 10 985 1121 12.1
9 20 7 0 1 4 100 1000 10 1649 1962 15.9

10 20 7 0 1 5 100 1000 10 2372 2796 15.2
11 20 7 0 1 6 100 1000 10 3141 3627 13.4
12 20 7 0 1 7 100 1000 10 3947 4484 12.0
13 20 7 0 1 10 100 1000 10 6540 7168 8.8
14 20 7 0 1 15 100 1000 10 11209 11870 5.6
15 20 7 0 1 20 100 1000 10 15964 16611 3.9
16 20 7 0 1 5 100 1000 10 2372 2796 15.2
17 20 7 0 5 5 100 1000 10 2060 2802 26.5
18 20 7 0 10 5 100 1000 10 1676 2805 40.2
19 20 7 0 15 5 100 1000 10 1524 2805 45.7
20 20 7 0 20 5 100 1000 10 1446 2805 48.4
21 20 7 0 25 5 100 1000 10 1400 2806 50.1
22 20 7 0 50 5 100 1000 10 1306 2806 53.5
23 20 7 1 5 5 100 1000 10 2479 3000 17.4
24 20 7 -1 5 5 100 1000 10 1635 2545 35.7
25 20 5 0 1 5 100 1000 10 1964 2292 14.3
26 20 7 0 1 5 100 1000 10 2372 2796 15.2
27 20 10 0 1 5 100 1000 10 2764 3182 13.1
28 20 12 0 1 5 100 1000 10 2952 3360 12.2
29 20 15 0 1 5 100 1000 10 3169 3567 11.2
30 20 20 0 1 5 100 1000 10 3429 3814 10.1
31 20 7 0 1 5 100 150 50 683 699 2.3
32 20 7 0 1 5 100 150 60 688 703 2.2
33 20 7 0 1 5 100 150 70 692 706 2.0
34 20 7 0 1 5 100 150 80 695 709 2.0
35 20 7 0 1 5 100 150 90 697 711 1.9
36 20 7 0 1 5 100 150 100 700 712 1.8

a Average cost per time unit (informed lead times).
b Average cost per time unit (uninformed lead times).
c Cost reduction in percent (100(1−gI/gU )).

inventory level M, we will almost always have lost sales and the information about lead times
will not solve this problem. Hence, a demand rate in-between gives the best benefit of informed
lead times.

For test instances 16-24, we look at different lead time distributions. The different distribu-
tions can be studied in Figure 3. In instances 16-22, we increase the variance of B used in (6).
Higher variance results in more fluctuations in lead time at two subsequent epochs and higher
probability mass at the end points (1 and Z) of the steady-state distribution (see Figure 3). Differ-
ent distributions have a large impact on ∆. A cost reduction of approximately 50% is obtained if
the distribution has a high probability mass at the end points. The model assuming informed lead
times can utilise the transition probabilities in (6) better and hence produce results adjusted to
varying development patterns of L. This can be seen in Figure 5, where Figure 5a shows the op-
timal policy for σ = 1 (near uniform steady-state distribution) and Figure 5b the optimal policy
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Figure 4: Development of ∆ for different parameters.

for σ = 20 (high probability mass at the end points). Note that in the case with high probability
mass at the end points the optimal policy only orders for low lead times, whereas in the other
case orders are placed for high lead times, too. With uninformed lead times, the optimal policy
is almost identical in both cases.

Instances 23 and 24 provide results when we have a trend towards a lead time of either one
or Z. The average cost reduction is much higher when we have a bias towards a low lead time.
This is due to the fact that if we often have a low lead time, the optimal policy can benefit more
from this in the case of informed lead times.

The range of the lead-time distribution when the steady-state distribution is close to uniform
is considered in instances 25-30. Increasing Z implies decreasing benefit of informed lead times
(∆); however, the effect is not considerable compared to the structure of the lead time density
(instances 16-24). By increasing the range, the average inventory cost will increase as well.

Finally, we have a look at a cost structure where p≤ c+h, i.e. the cost of carrying a specific
inventory is comparably high (see instance 31-36 in Table 1). In this case the benefit of informed
lead times is lower compared to the case where p > c+h. When p < c+h, it would be cheaper
to lose sales than to carry inventory into the next period. In that case, the informed lead time
model only uses the information about the current state L and does not really use the information
about the conditional density (6) as the model would only suggest to order enough to cover the
demand in one period. Thus the information available about lead times is not used to its potential
and hence the improvement achieved is smaller compared to the case where p > c+h.
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(b) σ = 20.

Figure 5: Optimal policy for two different values of σ . Each number represents the optimal order
amount given the state. In the uninformed case, only states with r = o = 0 are shown.

5 Conclusions and future research
Unlike the conventional assumption in inventory models that supply lead times are independent
and/or identically distributed, we have considered a model in which lead times are dependent and
where information about the development of lead times is available. These lead times are mod-
eled as a Markov chain and the information about their development is represented by transition
probabilities. We have studied a periodically reviewed lost-sales inventory model with stochas-
tic demand and compared the performance of the model assuming dependent and informed lead
times with the model assuming i.i.d. lead times.

Our numerical results show that information regarding the development of lead times may
have a significant effect on inventory replenishment decisions. Using information about lead
times can considerably improve the performance of the inventory control model compared to
considering lead times only to be i.i.d.

Informed lead times seem to have the most significance when the demand rate is neither too
low nor too high (cf. Figure 4) and when the steady-state distribution of the lead time has a high
probability mass at a low lead time. Also, using information about lead times seems to be most
beneficial when lost sales are relatively costly.

Inspired by the integrated single-vendor-single-buyer production inventory model studied in
Glock (2012), an interesting extension study could be to assume that the lead time of an order
depends on its size and the lead time of an order can be reduced for an extra cost. Moreover,
as discussed in Glock and Ries (2012) and Guiffrida and Jaber (2008) there are ways to reduce
supply chain variances by investing in extra resources and a big impact can be achieved by doing
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so. This could be a potential extension of the paper. Also, when considering longer lead times,
allowing multiple outstanding orders will significantly increase the complications in solving this
problem. Hence, a small improvement step could be to consider at most two orders outstanding
instead of only one. Finally, using the discounted cost criterion instead of the average cost
criterion will provide a further dimension to the analysis.
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