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1 Introduction

Sensitivity analysis in a mathematical programming problem determines how an optimal solution is
affected by changes in the parameter values. For some problem classes, such as linear programming
(LP), the analysis can be carried out using post-optimal information (e.g., shadow prices or reduced
costs). In fact, the region of parameter values for which the optimal solution remains the same can often
be determined without any re-optimization. For other problem classes, including mixed-integer linear
programming (MILP), re-optimization is necessary. In this paper we consider sensitivity analysis in
a MILP problem. More specifically, we investigate how an optimal solution is affected by changes in
the objective function coefficient(s).

This paper presents a novel technique for sensitivity analysis of the objective function coefficients
in a MILP based on multi-objective programming. In general, sensitivity analysis of the objective
function coefficients in an LP comes down to solving a parametric linear programming problem. A
connection between sensitivity analysis of the objective function coefficients in an LP and multi-
objective linear programming (MOLP) has already been established. The paper by Yu and Zeleny
[1976] considers a weighted sum problem that assigns non-negative weights to the objective functions.
The authors observe that the nondominated points of the MOLP correspond to the optimal solutions
to the weighted sum problem. Using this insight, they determine the weights for which a given non-
dominated point corresponds to an optimal solution. Steuer [1986] likewise describes the connection
between parametric analysis for the objective function coefficients of an LP and the nondominated
points to a MOLP. The approach does not immediately generalize to integer LP (ILP). For an ILP, it is
clear that if the convex hull of the feasible set is known, sensitivity analysis of the objective function
coefficients reduces to that of an LP. In general, however, the set of nondominated points is not the
same for a multi-objective integer linear program and the MOLP that arises by relaxing integrality.

In this paper, we consider the general MILP problem

max{ν(x, y) | (x, y) ∈ X}
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with objective function ν(x, y) = cx + hy with c ∈ Qn and h ∈ Qp, where Q is the set of
rational numbers. The feasible set is X = {(x, y) ∈ Zn × Rp | Ax+Gy ≤ b, x ≥ 0, y ≥ 0} with
A ∈ Qm×n, G ∈ Qm×p and b ∈ Qm. Throughout the paper, we assume that X ≠ ∅ and that
there exists an optimal solution (x∗, y∗) to Π with objective value ν∗ = ν(x∗, y∗) < +∞. For
K ⊆ {1, 2, · · · , n}, our focus is the parameterized MILP obtained by replacing the objective function
coefficients ck, k ∈ K by ck +∆k, k ∈ K

max{ν(∆k:k∈K)(x, y) | (x, y) ∈ X},

with ν(∆k:k∈K)(x, y) = cx + hy +
∑

k∈K ∆kxk. We define the sensitivity region as the maximal
region of simultaneous changes to the coefficients such that (x∗, y∗) remains optimal to Π, i.e.,

Ω =
{
(∆k : k ∈ K) ∈ R|K| | ν(∆k:k∈K)(x, y) ≤ ν(∆k:k∈K)(x

∗, y∗), (x, y) ∈ X
}
.

The region is maximal in the sense that for variations beyond this, the optimal solution to Π changes.
The same analysis can be carried out for simultaneous variations in any coefficients of the vectors c
and h.

The paper shows that the sensitivity region is determined by a subset of the vertices to the convex
hull of the feasible set of the MILP. Although the convex hull is usually unknown, we show that these
vertices correspond to nondominated points of a multi-objective optimization problem, and thus, the
sensitivity region can be obtained from a subset of the nondominated points. Indeed if we consider
sensitivity analysis on |K| coefficients of the objective function, the sensitivity region is determined
by solving a multi-objective MILP with |K| + 1 objectives which finds the extreme nondominated
points adjacent to the nondominated point corresponding to the optimal solution of the MILP. For the
special case of changes to a single objective function coefficient, we prove that the optimal solution of
the MILP corresponds to a nondominated point of a bi-objective MILP and to obtain the sensitivity
region it suffices to determine the two extreme adjacent nondominated points.

The multi-objective approach to sensitivity analysis applies to MILPs, including LPs and ILPs,
and is as such, very general. Furthermore, it is independent of the solution method used for multi-
objective programming. The paper gives numerical experiments providing preliminary computational
experience of the proposed technique. Since there is a high interest in developing multi-objective
solvers the computational performance will improve as multi-objective solvers become increasingly
efficient (see e.g. Bökler, Parragh, Sinnl, and Tricoire [2021], Przybylski, Klamroth, and Lacour
[2019]).

The paper is structured as follows. Section 2 gives a short literature review of approaches to
sensitivity analysis in MILPs, and Section 3 provides a brief introduction to multi-objective analysis.
In Section 4 we discuss sensitivity of MILP with respect to changes in a single objective function
coefficient and in Subsection 4.3 we address the special case of MILP with binary variables. In Section
5 we extend our analysis to simultaneous changes in multiple objective function coefficients, and in
Section 6 we give some preliminary experimental results. Section 7 summarizes our findings.

2 Literature review

To the best of our knowledge, sensitivity analysis for MILP was first addressed by Jensen [1968] who
analyzed changes in the parameter values of a small instance. As pointed out by the author, sensitivity
analysis for MILP is much more computationally demanding than for LP. Some general foundations
for parametric analysis were suggested and discussed by Geoffrion and Nauss [1977] and Jenkins
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[1990] who considered changes in the objective function coefficients and the right-hand side of the
constraints. These papers also include extensive reviews of previous work.

One strand of the existing literature focuses on the branch and bound method. A post-optimality
algorithm exploits the branching tree to obtain new primal feasible solutions or improve the dual bounds
using the LP-relaxation. Such papers include those of Geoffrion and Nauss [1977], Ohtake and Nishida
[1985], Piper and Zoltners [1975] and Roodman [1974]. This approach likewise covers changes in the
objective function coefficients and the right-hand side. Other branch and bound approaches include Li
and Ierapetritou [2007] and Oberdieck, Wittmann-Hohlbein, and Pistikopoulos [2014]. These papers
contain illustrative examples but no experimental results.

A related line of postoptimality analysis for integer programming problems revolves around rep-
resentations of optimal and near-optimal solutions. The authors Hadžić and Hooker [2006] propose
a Multivalued Decision Diagram (MDD) to serve as a compact representation of the branching tree.
The idea is further developed by Serra and Hooker [2017]. The authors demonstrate that an MDD
can be used to answer a number of postoptimality questions, e.g., how to retrieve all feasible solutions
with objective function values within a given distance to the optimal value.

Other papers apply cutting plane methods to estimate the convex hull of the feasible region.
Examples are provided by Holm and Klein [1978] who investigate unit changes in the right-hand side
and Klein and Holm [1979] who specify conditions for the current solution to remain optimal given
changes in the objective function coefficients or the right-hand side.

With inspiration from LP, a substantial body of literature relies on duality theory. These papers
study the value function, which parameterizes the optimal value of the problem by the right-hand side
of the constraints [Guzelsoy and Ralphs, 2010]. Using duality, the value function of an LP problem
can be expressed in terms of its shadow prices and shown to be piecewise linear and convex. Similarly,
several papers have addressed MILP duality in terms of the value function, including Blair and Jeroslow
[1977, 1979, 1982, 1984, 1985], Cook, Gerards, Schrĳver, and Tardos [1986], Schrage and Wolsey
[1985], Wolsey [1981] and Lasserre [2009]. On this basis, Tind and Wolsey [1981] and Wolsey [1981]
apply subadditive price functions for sensitivity analysis. Moreover, by means of branch and bound,
Schrage and Wolsey [1985] compute a piecewise linear value function that bounds the optimal value
for a given perturbation of the right-hand side. A major challenge for MILP, however, is that the value
function is in general non-convex and even discontinuous, see for instance Nemhauser and Wolsey
[1988].

Another approach is based on inference duality and allows for changes in both the objective function
coefficients, the right-hand side, and the coefficients of the constraint matrix [Dawande and Hooker,
2000]. This method, too, assumes that the MILP is solved by branch and bound. Given a permitted
change to the objective function value, the authors set up a system of linear inequalities that account
for perturbations of the parameters and have to be satisfied by every leaf node of the branching tree.
Even so, their interval of change to a coefficient may only be a subset of its maximal interval. For
more details, see Hooker [2009].

A few papers consider changes to a single objective function coefficient and obtain the interval for
which a solution remains optimal by solving a sequence of MILP models, see Jenkins [1982] and Dua
and Pistikopoulos [2000]. These methods are independent of the MILP solution method.

The recent paper by Charitopoulos, Papageorgiou, and Dua [2018] considers changes in both the
objective function coefficients, the right hand side and the coefficients of the constraint matrix. It
develops a novel solution method based on symbolic manipulation and semi-algebraic geometry. The
method is illustrated with a number of examples and also contains experimental results for rather small
instances. This paper also contains a summary of developments in multi-parametric programming
theory.

3



We believe that our paper is the first to obtain maximal sensitivity regions for changes to multiple
objective function coefficients in general MILPs.

The multi-objective approach to sensitivity analysis is independent of the solution method used for
multi-objective optimization. That is, the computational performance will improve as multi-objective
solvers become increasingly efficient. In the recent years there have been a high interest in developing
multi-objective solvers for finding the nondominated set. For instance, for multi-objective ILP see
Forget, Gadegaard, and Nielsen [2022], Kirlik and Sayin [2014], Tamby and Vanderpooten [2021] and
for multi-objective MILP see Doğan, Lokman, and Köksalan [2021], Eichfelder and Warnow [2021],
Pal and Charkhgard [2019], Stidsen and Andersen [2018], Stidsen, Andersen, and Dammann [2014].
Other paper consider algorithms for finding a subset [Bökler et al., 2021, Przybylski et al., 2019].

3 Multi-objective optimization

Consider the multi-objective mixed-integer linear programming (MO-MILP) problem given by

max {z(x, y) ∈ Rq | (x, y) ∈ X} ,

which maps a feasible solution (x, y) ∈ X into an objective point z(x, y) =
(
z1(x, y), . . . zq(x, y)

)
with zi(x, y) = cix + hiy, i ∈ {1, . . . , q}, ci ∈ Qn, hi ∈ Qp. We refer to X as the feasible set in
solution space and Z = {z(x, y) ∈ Rq | (x, y) ∈ X} as the corresponding feasible set in objective
space. We say that two feasible solutions (x1, y1), (x2, y2) are equivalent if they map into the same
objective point, i.e. z(x1, y1) = z(x2, y2). Feasible solutions are generally compared in terms of the
following binary relation in objective space. For objective points z1, z2 ∈ Rq,

z1 ≻ z2 if and only if z1i ≥ z2i , i = 1, . . . , q and z1 ̸= z2.

A point z2 is said to be dominated by z1 if z1 ≻ z2. On the basis of this, an ’optimal’ solution to ΠMO
is defined by the concept of Pareto optimality or efficiency.

Definition 1. A vector (x, y) ∈ X is called Pareto optimal or efficient if ∄(x̂, ŷ) ∈ X : z(x̂, ŷ) ≻
z(x, y). The corresponding objective vector z(x, y) is said to be a nondominated point.

The efficient set XE is a set of feasible efficient solutions such that all (x, y) ∈ X\XE are
either dominated by or equivalent to a point in XE . Moreover, the set of nondominated points
ZN = {z(x, y) ∈ Z | (x, y) ∈ XE} is the corresponding image set in objective space1. For ZN ̸= ∅,
we further define

Z≤ = conv (ZN + {z ∈ Rq : z ≤ 0}) ,

where+ denotes the Minkowski sum and conv (·) denotes the convex hull. The setZ≤ is a polyhedron,
and thus, can be characterized by its vertices and rays or by its facets. Given a vertex of Z≤, we refer
to the adjacent vertices as those lying on the same facet of Z≤. We use this to introduce the notions
of supported and extreme nondominated points.

Definition 2. A point z ∈ ZN is a supported nondominated point if it is on the boundary of Z≤;
otherwise it is unsupported. A supported nondominated point z is extreme if it is a vertex of Z≤;
otherwise it is nonextreme.

1There may be several efficient sets XE that differ only by the inclusion of equivalent solutions. All efficient sets,
however, map into the unique set of nondominated points ZN . In this paper, we assume that the efficient set XE is complete
but of minimal cardinality (for each nondominated point we only include one efficient solution).
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Figure 1: Solution space (Figure 1a) and objective space (Figure 1b) of the bi-
objective MILP in Example 1. The dark gray regions define the feasible set in solution
space. A vertex in solution space corresponds to a point in objective space with the
same number.

For bi-objective MILP problems (q = 2), the extreme nondominated points include the so-called
upper left (UL) and lower right (LR) points in ZN . We define

zUL
2 = max{z2 | (z1, z2) ∈ ZN} and zLR1 = max{z1 | (z1, z2) ∈ ZN},

such that the upper left point zUL and the lower right point zLR are as follows

zUL =
{
(z1, z2) ∈ ZN | z2 = zUL

2

}
and zLR =

{
(z1, z2) ∈ ZN | z1 = zLR1

}
.

Example 1. Consider the bi-objective MILP

max{(3x1, y1 + y2) | (x, y) ∈ X}

with X defined by the constraints

2x1 + y1 + y2 ≤ 5
2y1 − y2 ≤ 3

x1 − y1 + 2y2 ≤ 3
y1, y2 ≥ 0, x1 ∈ Z+

(1)

Figure 1a illustrates the solution space. The feasible set of the LP-relaxation is depicted in light
gray, whereas the feasible set X of the MILP consists of the union of three polytopes that are depicted
in dark gray. The vertices of the polytopes are numbered from 1 to 14.
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Figure 1b depicts the objective space. The feasible set Z in objective space is the union of the line
segments LS(z1, z5), LS(z6, z10) and LS(z11, z14), where LS(zi, zj) denotes the line segment between
the objective points zi and zj . The nondominated set is

ZN =
{
z1, z6, z11

}
,

e.g. corresponding to the (minimal cardinality) set of efficient solutions

XE =
{
(x1, y1), (x6, y6), (x11, y11)

}
,

and the light gray region illustrates Z≤. A vertex of Z≤ corresponds to a vertex in the solution space
with the same number. Note that some vertices in the solution space correspond to the same vertex in
Z≤. For instance, vertices number 11 and 13 correspond to the solutions (x11, y11) = (2, 1/3, 2/3) and
(x13, y13) = (2, 1, 0), respectively, and the objective point z11 = z13 = (6, 1). The objective points
z1 and z11 are extreme nondominated points whereas z6 is a supported nonextreme nondominated
point. The upper left point is zUL = z1 and the lower right point is zLR = z11.

4 Varying a single objective function coefficient

This section determines the sensitivity region for changes to a single objective function coefficient,
i.e., |K| = 1. We show that it suffices to inspect a subset of the feasible solutions to the MILP.

We distinguish between two cases; the case of a current objective function coefficient different from
zero and the case of a coefficient equal to zero, see Subsection 4.1 and Subsection 4.2, respectively.
In the first case, we first assume that the sign of the coefficient remains the same upon a change. The
feasible points of interest are efficient solutions to a bi-objective MILP with one objective function
being the contribution of the variable/coefficient under consideration and the other objective being the
remaining contribution to the objective of the MILP. The idea is that the efficient solutions define the
tradeoff between the two objectives. We next assume that the sign of the coefficient changes. Now,
the subset of the feasible points further includes the efficient set of another bi-objective MILP with the
first objective function having opposite sign.

In Subsection 4.3 we consider special cases, in particular, a change to an objective function
coefficient for which the corresponding variable is binary.

4.1 The case ck ̸= 0

Define the parametrized MILP obtained by replacing the coefficient ck by ck +∆ for varying ∆

max{ν∆(x, y) | (x, y) ∈ X},

with ν∆(x, y) = cx + hy + ∆xk. It is easy to see that the sensitivity region is a convex set and
therefore an interval. We let lb be its lower bound and ub be its upper bound such that

[lb, ub] = {∆ ∈ R | ν∆(x, y) ≤ ν∆(x
∗, y∗), (x, y) ∈ X} ,

that is, ∆ ∈ [lb, ub] if and only if

∆ ≥ ν(x∗, y∗)− ν(x, y)

xk − x∗k
(2)
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for xk < x∗k, ∀ (x, y) ∈ X , and

∆ ≤ ν(x∗, y∗)− ν(x, y)

xk − x∗k
(3)

for xk > x∗k, ∀ (x, y) ∈ X . For xk = x∗k there are no restrictions on ∆.
Define the interval [lb(X̂ ), ub(X̂ )] of a subset X̂ of X as

lb(X̂ ) = sup

{
ν(x∗, y∗)− ν(x, y)

xk − x∗k
| (x, y) ∈ X̂ , xk < x∗k

}
, and

ub(X̂ ) = inf

{
ν(x∗, y∗)− ν(x, y)

xk − x∗k
| (x, y) ∈ X̂ , xk > x∗k

}
,

assuming that supremum and infimum of the empty set equal −∞ and ∞, respectively. Clearly,
lb(X̂ ) ≤ 0 and ub(X̂ ) ≥ 0. Combining the definition with equations (2)-(3), we obtain the following
lemma.

Lemma 1. The sensitivity region is [lb, ub] = [lb(X ), ub(X )]. Moreover, if X̂ ⊆ X then

lb(X̂ ) ≤ lb(X ) ≤ 0 ≤ ub(X ) ≤ ub(X̂ ).

Lemma 1 states the obvious fact that ∆ = 0 is within the sensitivity region as Π∆ reduces to Π.
Furthermore, for X̂ ⊆ X , the interval [lb(X̂ ), ub(X̂ )] contains the sensitivity region. Our goal is to
identify subsets of X for which this interval is precisely the sensitivity region. We illustrate the idea
in Example 2.

Example 2. Consider the MILP

max{3x1 + y1 + y2 | (x, y) ∈ X},

where the feasible set X is defined in (1) and illustrated in Figure 1a. An optimal solution is
(x∗, y∗) = (x11, y11) = (2, 13 ,

2
3) (vertex number 11) with objective ν∗ = ν(x∗, y∗) = 7. We aim

to determine the sensitivity region for changes to each of the objective function coefficients c1 = 3,
h1 = 1 and h2 = 1.

The sensitivity regions can be determined from the set of vertices of the convex hull of X . Hence,
if set

X̂ =
{
(x1, y1), . . . , (x14, y14)

}
,

(see Figure 1a), then [lb, ub] = [lb(X̂ ), ub(X̂ )]. The sensitivity regions found using the vertices are
shown in Table 1. For example, the sensitivity region of changes to coefficient h1 is [−3

2 , 0], where
the lower bound is determined by vertex 12 and the upper bound is determined by vertex 13.

Now, consider the bi-objective MO-MILPs

max{(3x1, y1 + y2) | (x, y) ∈ X} (coefficient c1), and (4)
max{(y1, 3x1 + y2) | (x, y) ∈ X} (coefficient h1), and (5)
max{(y2, 3x1 + y1) | (x, y) ∈ X} (coefficient h2), (6)

obtained by letting the first objective be the contribution of the variable/coefficient under consideration
(as indicated in the parenthesis) and the second objective be the remaining contribution to the objective
of the MILP.
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Table 1: Sensitivity regions for the coefficients c1, h1 and h2. Computations are based
on either the set of vertices (X̂ ) or the efficient set (XE).

Using X̂ Using XE

Coeff.a Fig.b lb(X̂ ) ub(X̂ ) arg lbc arg ubd ZN
e lb(XE) ub(XE) arg lbf arg ubg

c1 = 3 1b -1 ∞ 1, 2, 6, 7 none 1, 6, 11 -1 ∞ 1, 6 none
h1 = 1 2a -32 0 12 13 LS(11,13), LS(6,7), LS(1,2) −∞ 0 none 13
h2 = 1 2b 0 1 13 2, 7 LS(11,13), LS(6,7), LS(1,2) 0 1 13 2, 7

a: Objective function coefficient under consideration and its current value. b: The figure showing the objective space for the
MO-MILP solved. c: Indices of the vertices in Figure 1a that finds lb(X̂ ). d: Indices of the vertices in Figure 1a that finds
ub(X̂ ). e: Nondominated point indices (see the figure with the objective space). LS(i, j) is the line segment between the
two points with indices i and j. f: Indices of the nondominated points in the objective space that finds lb(XE). g: Indices
of the nondominated points in the objective space that finds ub(XE).

The nondominated points of (4) are illustrated in Figure 1b and the nondominated points of (5) and
(6) are illustrated in Figure 2. Table 1 provides the corresponding nondominated sets ZN , the bounds
lb(XE) and ub(XE) and the nondominated points determining the bounds. Note that the vertices in X̂
determining a sensitivity region are efficient solutions, except for MO-MILP (5), where vertex number
12 is not an efficient solution. In this case, the nondominated point corresponding to the optimal
solution is the upper left point.

Example 2 indicates that it may suffice to consider the efficient solutions (or nondominated points)
of a bi-objective problem to determine the sensitivity region. Below, we show that this generally holds
when the sign of the objective function coefficient remains the same.

Define the bi-objective problem Π+
MO with objective vector

z+(x, y) = (z1(x, y), z2(x, y)) = (ckxk,
n∑

i=1
i̸=k

cixi + hy). (7)

and feasible set X . Notice that ν(x, y) = z1(x, y) + z2(x, y). Denote by X+
E the efficient set of

Π+
MO, defining the tradeoff between the two objectives. Now, we can select (x∗, y∗) ∈ X+

E , and
hence, X+

E ̸= ∅. To see this, assume that (x∗, y∗) ̸∈ X+
E for all optimal solutions. Then there exists

(x̄, ȳ) ∈ X such that ckx̄k ≥ ckx
∗
k and

∑
i ̸=k cix̄i + hȳ ≥

∑
i ̸=k cix

∗
i + hy∗, and at least one of

the inequalities is strict.This implies that cx̄ + hȳ > cx∗ + hy∗, a contradiction to the optimality of
(x∗, y∗) to the problem Π.

Now, the interval [lb(X+
E ), ub(X+

E )] contains the sensitivity region. Lemma 2 shows that if ck > 0
(resp. ck < 0) and ck + ∆ ≥ 0 (resp. ck + ∆ ≤ 0) for all ∆ ∈ [lb(X+

E ), ub(X+
E )], then X+

E defines
the sensitivity region. Otherwise, we may only determine a subset of the sensitivity region.

Lemma 2. Consider the bi-objective problem Π+
MO with efficient set X+

E .
If ck > 0, define

lb+ = max
(
lb(X+

E ),−ck
)
, and ub+ = ub(X+

E ).

Then lb ≤ lb+ ≤ ub+ = ub. Moreover, if lb+ = lb(X+
E ) then lb+ = lb.

If ck < 0, define

lb+ = lb(X+
E ), and ub+ = min

(
ub(X+

E ),−ck
)
.

Then lb = lb+ ≤ ub+ ≤ ub. Moreover, if ub+ = ub(X+
E ) then ub+ = ub.
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(a) MO-MILP (5) (sensitivity analysis on h1).
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(b) MO-MILP (6) (sensitivity analysis on h2).

Figure 2: Objective space of the MO-MILPs (5) and (6). The objective space of MO-
MILP (4) (sensitivity analysis on c1) is illustrated in Figure 1b. The dark gray regions
define the feasible sets in objective space. A vertex in objective space corresponds
to the vertex in solution space with the same number, see Figure 1a.

Proof. Using Lemma 1 it is sufficient to show that [lb+, ub+] ⊆ [lb(X ), ub(X )]. Conversely, now
assume that∃∆ : ∆ ∈ [lb+, ub+]\[lb(X ), ub(X )] implying that∃(x̂, ŷ) ∈ X : ν∆(x̂, ŷ) > ν∆(x

∗, y∗).
Note that since ∆ ∈ [lb+, ub+] ⊆ [lb(X+

E ), ub(X+
E )], we have ν∆(x, y) ≤ ν∆(x

∗, y∗), (x, y) ∈ X+
E .

Hence, (x̂, ŷ) /∈ X+
E and there exists (x̄, ȳ) ∈ X+

E such that (i) ckx̄k ≥ ckx̂k and (ii)
∑

i ̸=k cix̄i+hȳ ≥∑
i ̸=k cix̂i+hŷ. We multiply (i) by (ck +∆)/ck ≥ 0 and add it to (ii) to obtain ν∆(x̄, ȳ) ≥ ν∆(x̂, ŷ).

But then ν∆(x̄, ȳ) > ν∆(x
∗, y∗), contradicting ∆ ∈ [lb(X+

E ), ub(X+
E )].

If the sign of the objective function coefficient changes, we define another bi-objective problem
Π−

MO with objective vector

z−(x, y) = (−z1(x, y), z2(x, y)) = (−ckxk,
n∑

i=1
i̸=k

cixi + hy).

and feasible set X . Notice that the sign of the first objective function is now the opposite. Denote
by X−

E the efficient set of Π−
MO. With the opposite sign the first objective may be unbounded, that is

sup{−ckxk | (x, y) ∈ X} = +∞, and then X−
E = ∅. However, if X is compact this situation cannot

occur. Lemma 3 shows that if ck > 0 (resp. ck < 0) and the lower bound lb+ (resp. ub+) of Lemma 2
is determined by −ck, then the set X−

E may be required to determine the remainder of the sensitivity
region.
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Lemma 3. Consider the bi-objective problem Π−
MO with efficient set X−

E .
If ck > 0 and lb(X+

E ) < −ck, define

lb− =

{
lb(X−

E ), if X−
E ̸= ∅,

−ck, otherwise
and ub− = −ck.

Then lb = lb− ≤ ub− ≤ ub.
If ck < 0 and ub(X+

E ) > −ck, define

lb− = −ck, and ub− =

{
ub(X−

E ), if X−
E ̸= ∅,

−ck, otherwise

Then lb ≤ lb− ≤ ub− = ub.

Proof. The proof follows the same lines as the proof of Lemma 2, see Appendix A.

The combination of Lemmas 2 and 3 is summarized in the following theorem.

Theorem 1. Consider the problems Π+
MO and Π−

MO with efficient sets X+
E and X−

E , respectively. For
ck ̸= 0, the sensitivity region [lb, ub] is given by

lb =


−ck, if ck > 0, lb(X+

E ) < −ck and X−
E = ∅,

lb(X−
E ), if ck > 0, lb(X+

E ) < −ck and X−
E ̸= ∅,

lb(X+
E ), otherwise,

and

ub =


−ck, if ck < 0, ub(X+

E ) > −ck and X−
E = ∅,

ub(X−
E ), if ck < 0, ub(X+

E ) > −ck and X−
E ̸= ∅,

ub(X+
E ), otherwise.

Theorem 1 holds for all efficient sets X+
E and X−

E of the bi-objective problems. As an alternative
to using the efficient solutions (in solution space) in dimension Rn+p, it may be convenient to use the
nondominated points (in objective space) in dimension R2 to determine the sensitivity region. Let

Z+
N = {z+(x, y) | (x, y) ∈ X+

E },

denote the nondominated set of Π+
MO and let

Z− = {z+(x, y) | (x, y) ∈ X−
E },

denote the efficient set of Π−
MO projected into the objective space of z+(x, y). Notice that z+(x, y) ∈

Z− if and only if z−(x, y) is a nondominated point of Π−
MO. Given (z∗1 , z

∗
2) = z+(x∗, y∗) and a set Ẑ

of objective points, define

lb(Ẑ ) = sup

{
ck(z

∗
1 + z∗2 − z1 − z2)

z1 − z∗1
| (z1, z2) ∈ Ẑ ,

z1
ck

<
z∗1
ck

}
, and

ub(Ẑ ) = inf

{
ck(z

∗
1 + z∗2 − z1 − z2)

z1 − z∗1
| (z1, z2) ∈ Ẑ ,

z1
ck

>
z∗1
ck

}
,

assuming that the supremum and the infimum of the empty set equal −∞ and ∞, respectively.
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Corollary 1. For ck ̸= 0,

lb(X+
E ) = lb(Z+

N ), ub(X+
E ) = ub(Z+

N ), lb(X−
E ) = lb(Z−), ub(X−

E ) = ub(Z−),

i.e. the sensitivity region can be found by replacing X+
E with Z+

N and X−
E with Z− in Theorem 1.

Proof. Insert z∗1 +z∗2 = ν(x∗, y∗), z1+z2 = ν(x, y), z1/ck = xk and z∗1/ck = x∗k into the definitions
of lb(X̂ ) and ub(X̂ ).

Example 3. We revisit Example 2. By Theorem 1 and Corollary 1, a sensitivity region can be
determined from efficient solutions or nondominated points. The sensitivity region of the coefficients
c1 and h2 can be found using the nondominated setZ+

N ofΠ+
MO with objectives (4) and (6), respectively.

The sensitivity region of the coefficient h1 is computed using both Z+
N and Z− (i.e. the line segment

between objective points z11 and z12 in Figure 2a), as the lower bound is lb(Z+
N ) = −∞. Observe that

the sensitivity region of the coefficient c1 can be determined using the extreme nondominated point
z1 = (0, 5) in Figure 1b (see also Table 1). Similarly, the sensitivity region of the objective function
coefficient h2 can be determined using extreme points z7 = (32 ,

9
2) and z13 = (1, 6), as observed in

Figure 2b. Finally, the sensitivity region of the objective function coefficient h1 is determined using
points z12 = (12 , 6) (with (−1

2 , 6) in Z−) and z13 = (0, 7) (in Z+
N ) illustrated in Figure 2a, where

(−1
2 , 6) and (0, 7) are extreme nondominated points.

Example 3 suggests that to determine the sensitivity region, it suffices to consider the extreme
nondominated points. Accordingly, let Z+

N,e denote the set of extreme points of

Z+
≤ = conv

(
Z+
N + {z ∈ Rq : z ≤ 0}

)
,

and Z−
e denote the set of extreme points of

Z−
≤ = conv

(
Z− + {z ∈ Rq : z ≤ 0}

)
.

Corollary 2. The sensitivity region can be found by replacing Z+
N with Z+

N,e and Z− with Z−
e in

Corollary 1.

Proof. Note that Z+
N,e ⊆ Z+

N . Assume that there exists a ∆ such that ∃(ẑ1, ẑ2) ∈ Z+
N\Z+

N,e :
ẑ1(ck + ∆)/ck + ẑ2 = ẑ∆ > z∗∆ = z∗1(ck + ∆)/ck + z∗2 and z1(ck + ∆)/ck + z2 = z∆ ≤ z∗∆ =
z∗1(ck +∆)/ck + z∗2 , (z1, z2) ∈ Z+

N,e. Since (ẑ1, ẑ2) ∈ Z+
≤\Z+

N,e there are some (z̄11 , z̄
1
2), (z̄

2
1 , z̄

2
2) ∈

Z+
N,e and λ ∈ (0, 1) such that ẑ1 = λz̄11 + (1 − λ)z̄21 and ẑ2 = λz̄12 + (1 − λ)z̄22 . Since, however,

(z̄11 , z̄
1
2), (z̄

2
1 , z̄

2
2) ∈ Z+

N,e, we have that (i) z̄11(ck + ∆)/ck + z̄12 ≤ z∗1(ck + ∆)/ck + z∗2 and (ii)
z̄21(ck+∆)/ck+ z̄22 ≤ z∗1(ck+∆)/ck+ z∗2 . We multiply (i) by λ and (ii) by 1−λ and add the them to
obtain ẑ1(ck +∆)/ck + ẑ2 ≤ z∗1(ck +∆)/ck + z∗2 , which is a contradiction. The other case is treated
similarly.

Example 4. Again, revisit Example 2. Table 2 lists the extreme nondominated points. Notice that the
sensitivity regions are determined by at most two of the extreme points. For example, the sensitivity
region for h1 is determined by the two points z12 and z13 (see Figure 2a) and the sensitivity region for
h2 is determined by z7 and z13 (see Figure 2b). For c1, the permissible increase is +∞, and the lower
bound can be found using z1 (see Figure 1b).
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Table 2: Sensitivity analysis for the coefficients c1, h1 and h2. The projections of the
efficient sets into objective space, Z+

N,e and Z−
e .

Coeff. Sensitivity analysis on c1 Z+
N,e Sensitivity analysis on h1 Sensitivity analysis on h2

Vertex z1 = 3x1 z2 = y1 + y2 Z+
N,e Z−

e z1 = y1 z2 = 3x1 + y2 Z+
N,e Z−

e z1 = y2 z2 = 3x1 + y1 Z+
N,e Z−

e

1 0 5 ✓ ✓ 8
3

7
3 ✓ 7

3
8
3

2 0 5 ✓ ✓ 7
3

8
3

8
3

7
3 ✓

3 0 3
2 0 3

2
3
2 0

4 0 3
2

3
2 0 0 3

2

5 0 0 0 0 0 0
6 3 3 ✓ 2 4 ✓ 1 5
7 3 3 ✓ 4

3
14
3

5
3

13
3 ✓

8 3 1 0 4 1 3
9 3 5

3
3
2 3 0 9

2

10 3 0 0 3 0 3
11 6 1 ✓ 1

3
20
3 ✓ ✓ 2

3
19
3 ✓

12 6 1
2 0 13

2 ✓ 1
2 6

13 6 1 ✓ 1 6 ✓ 0 7 ✓ ✓

14 6 0 0 6 0 6

Example 4 further demonstrates that the extreme points used to determine the sensitivity region lie
on the same facets of conv

(
Z+
N,e ∪ Z−

e

)
as the objective point corresponding to the optimal solution,

i.e. they are the vertices adjacent to z+(x∗, y∗). For instance, in Figure 2a the vertices z12 and z13 are
adjacent to z+(x∗, y∗) = z11 and in Figure 2b the vertices z7 and z13 are adjacent to z11. However,
z+(x∗, y∗) may not be an extreme point (but a convex combination of two extreme points).

On this basis, Theorem 2 provides a precise characterization of the sensitivity region. To illustrate,
assume that ck > 0 (ck < 0 is similar) and order the points in the set Z−

e ∪ Z+
N,e ∪ {z+(x∗, y∗)}

according to increasing first coordinate. If z+(x∗, y∗) is neither the first nor the last point in this
ordering, then the maximal sensitivity region can be found using the two adjacent points to z+(x∗, y∗).
If z+(x∗, y∗) corresponds to the last point then the objective function coefficient can increase to +∞,
because there is no feasible point setting an upper limit, and the lower limit of a decrease can be
found using the next to last point. If z+(x∗, y∗) corresponds to the first point, two possibilities exist.
If Z−

e ̸= ∅, then Z−
e = {z+(x∗, y∗)}, and the objective function coefficient can decrease to −∞,

because there is no feasible point setting a lower limit. If, on the other hand, Z−
e = ∅, then the lower

limit is equal to −ck.

Theorem 2. Assume that ck ̸= 0. Consider the ordered set

Z−
e ∪ Z+

N,e ∪ {z+(x∗, y∗)} = {z1, z2, . . . , zJ , . . . , zI}

with zi1 < zi+1
1 for i = 1, . . . , I − 1 and Z+

N,e ∪ {z+(x∗, y∗)} = {zJ , . . . , zI}. Define J ≤ i∗ ≤ I ,
such that zi∗ = z+(x∗, y∗). The sensitivity region [lb, ub] is given by

lb =



−∞, if i∗ = I, ck < 0,

lb({zi∗+1}), if i∗ < I, ck < 0,

−∞, if i∗ = 1,Z−
e ̸= ∅, ck > 0,

−ck, if i∗ = 1,Z−
e = ∅, ck > 0,

lb({zi∗−1}), if i∗ > 1, ck > 0,

ub =



∞, if i∗ = 1,Z−
e ̸= ∅, ck < 0,

−ck, if i∗ = 1,Z−
e = ∅, ck < 0,

ub({zi∗−1}), if i∗ > 1, ck < 0,

∞, if i∗ = I, ck > 0,

ub({zi∗+1}), if i∗ < I, ck > 0.
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Proof. It is well-known from multi-objective optimization, that the piecewise linear function obtained
by connecting the points z1, . . . , zI is concave, see also Figure 2a and Table 2. If Z−

e ̸= ∅ and
zJ ∈ Z−

e , the function is strictly increasing between the points z1, . . . , zJ and strictly decreasing
between the points zJ , . . . , zI . If Z−

e ̸= ∅ and zJ ̸∈ Z−
e , the function is strictly increasing between

the points z1, . . . , zJ−1, it is constant between zJ−1 and zJ , and strictly decreasing between the points
zJ , . . . , zI . In particular, the slope between the points zi and zi+1 is strictly larger than the slope
between the points zi+1 and zi+2, for i = 1, 2, . . . , I − 2. We prove the theorem for ck > 0. The
proof for ck < 0 is similar.

Notice that

zi
∗
2 − zj2
zi

∗
1 − zj1

= − 1

ck
· ck(z

i∗
1 + zi

∗
2 − zj1 − zj2)

zj1 − zi
∗
1

− 1, j ∈ {1, . . . , I}\{i∗}.

Thus, the strictly decreasing slopes imply that

ck(z
i∗
1 + zi

∗
2 − zj1 − zj2)

zj1 − zi
∗
1

<
ck(z

i∗
1 + zi

∗
2 − zj+1

1 − zj+1
2 )

zj+1
1 − zi

∗
1

, j, j + 1 ∈ {1, . . . , I}\{i∗}.

By comparing this expression with the lower and upper bounds lb(Z+
N,e) and ub(Z+

N,e), it should
be clear that the supremum is attained at the point zi∗−1 if it exists, and that the infimum is attained
at the point zi∗+1 if it exists. Therefore, if i∗ < I then ub(Z+

N,e) = ub({zi∗+1}) and if i∗ > J then
lb(Z+

N,e) = lb({zi∗−1}) > −ck. Moreover, if i∗ = I then zi∗1 > zj1 for all j ∈ {J, . . . , I}\{i∗}, and so,
the infimum is not attained and ub(Z+

N,e) = +∞. If i∗ = J , then zi∗1 < zj1 for all j ∈ {J, . . . , I}\{i∗},
the supremum is not attained and lb(Z+

N,e) = −∞ < −ck.
By Theorem 1, if i∗ < I then ub = ub(Z+

N,e) = ub({zi∗+1}) and if i∗ = I then ub = ub(Z+
N,e) =

+∞. Also, if i∗ > J then lb = lb(Z+
N,e) = lb({zi∗−1}). Consider i∗ = J . If Z−

e = ∅, then J = 1

and lb = −ck. Consider Z−
e ̸= ∅. If J > 1 then the supremum of the lower bound lb(Z−

e ) is attained
at the point zi∗−1, and so, lb = lb(Z−

e ) = lb({zi∗−1}). If J = 1 then the supremum is not attained
and lb = lb(Z−

e ) = −∞.

4.2 The case ck = 0

Define the bi-objective programs, Π+,0
MO with objective vector

z+(x, y) = (z1(x, y), z2(x, y)) = (xk,

n∑
i=1
i̸=k

cixi + hy)

and Π−,0
MO with objective vector

z−(x, y) = (−z1(x, y), z2(x, y)) = (−xk,
n∑

i=1
i ̸=k

cixi + hy),

both with feasible set X . Notice, that efficient set X+,0
E of Π+,0

MO does not depend on the objective
function coefficient of xk in the first objective, as long as it is positive. Similarly, the efficient set X−,0

E

of Π−,0
MO is independent of the objective function coefficient of xk in the first objective, as long as it is

negative. Note also that we may have X+,0
E = ∅ and X−,0

E = ∅.
We obtain the following extension to Theorem 1.
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Proposition 1. Consider the problems Π+,0
MO and Π−,0

MO with efficient sets X+,0
E and X−,0

E , respectively.
For ck = 0, the sensitivity region [lb, ub] is given by

lb =

{
lb(X−,0

E ), if X−,0
E ̸= ∅

0, otherwise
and ub =

{
ub(X+,0

E ), if X+,0
E ̸= ∅

0, otherwise.

Proof. See Appendix A.

4.3 Special cases

Recall that if ck ̸= 0 then z+(x∗, y∗) is a nondominated point to the bi-objective problem Π+
MO. If this

is the only nondominated point of Π+
MO and Π−

MO, the value of ck has no effect on the optimal solution.

Corollary 3. Assume that ck ̸= 0. If |Z+
N ∪ Z−| = 1, then lb = −∞ and ub = +∞.

Proof. If |Z+
N ∪Z−| = 1 then Z+

N,e = Z−
e = {z+(x∗, y∗)}, and hence, i = J = I in Theorem 2.

If xk is binary, then 1 ≤ |Z+
N | ≤ 2, that is, we have at most two nondominated points of Π+

MO. One
nondominated point is z+(x∗, y∗) and the other candidate is ẑ+ = (ẑ+1 , ẑ

+
2 ) with ẑ+1 = ck(1 − x∗k)

and

ẑ+2 = sup


n∑

i=1
i̸=k

cixi + hy | (x, y) ∈ X , xk = 1− x∗k

 .

Now, we obtain the following.

Corollary 4. Assume that ck ̸= 0 and xk is binary. If ẑ+2 = −∞, then lb = −∞ and ub = ∞.
Otherwise, z+(x∗, y∗) ∈ Z+

N,e and

1. if x∗k = 1 then lb = ẑ+1 + ẑ+2 − ν(x∗, y∗) and ub = ∞.

2. if x∗k = 0 then ub = ν(x∗, y∗)− ẑ+1 − ẑ+2 and lb = −∞.

Proof. If ẑ+2 = −∞, then |Z+
N ∪ Z−| = 1 and the first result follows from Corollary 3. Otherwise,

|Z+
N ∪Z−| = |Z+

N,e∪Z−
e | = 2 and z+(x∗, y∗) ∈ Z+

N,e since it is nondominated under objective (7). If
x∗k = 1, then i∗ = I in Theorem 2 and the lower and upper bound becomes lb∆ = ẑ+1 + ẑ+2 −ν(x∗, y∗)
and ub∆ = ∞, respectively. If x∗k = 0, then i∗ = 1 in Theorem 2 and the lower and upper bound
becomes ub∆ = ν(x∗, y∗)− ẑ+1 − ẑ+2 and lb∆ = −∞, respectively.

Corollary 4 is similar to Proposition 2.3 in Geoffrion and Nauss [1977] and to Theorems 1 and 3
in Pisinger and Saidi [2017].

Example 5. To illustrate the results of this section, we use an example presented by Schrage and
Wolsey [1985].

max ν(x) = 77x1 + 6x2 + 3x3 + 6x4 + 33x5 + 13x6 + 110x7 + 21x8 + 47x9

s.t. 774x1 + 76x2 + 22x3 + 42x4 + 21x5 + 760x6 + 818x7 + 62x8 + 785x9 ≤ 1500
67x1 + 27x2 + 794x3 + 53x4 + 234x5 + 32x6 + 792x7 + 97x8 + 435x9 ≤ 1500

xj ∈ {0, 1}, j = 1, 2, . . . , 9.

The optimal solution is x∗ = (x∗1, . . . , x
∗
9) = (0, 1, 0, 1, 1, 0, 1, 1, 0). The optimal value is ν(x∗) =

176.
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k 1 2 3 4 5 6 7 8 9
ck 77 6 3 6 33 13 110 21 47
lb −∞ −6 −∞ −6 −33 −∞ −30 −21 −∞
ub 30 +∞ 30 +∞ +∞ 94 +∞ +∞ 63

Table 3: Lower bounds (lb) and upper bounds (ub) of the sensitivity region for ck.

To determine the sensitivity interval for c1, note that z+(x∗, y∗) = (0, 176), and that ẑ+ = (77, 69).
By Corollary 4, ub = 176− 77− 69 = 30 and lb = −∞. The sensitivity interval for ∆ is therefore
(−∞, 30]. For changes to c2, note that z+(x∗, y∗) = (6, 170), and that ẑ+ = (0, 170). By Corollary 4,
lb = 0 + 170 − 176 = −6 and ub = +∞, and the sensitivity interval for ∆ is [−6,∞). The other
sensitivity intervals are given in Table 3.

5 Simultaneous variations of multiple objective function coefficients

We extend our analysis to determine the sensitivity region for simultaneous changes to two or more
objective function coefficients. For a single objective function coefficient, it suffices to inspect at
most two sets of efficient solutions, each to a bi-objective problem. For simultaneous changes to
two objective function coefficients, we have to examine at most four efficient sets, corresponding to
the four combinations of the signs of the two coefficients, and each corresponding to a tri-objective
problem. The results generalize to simultaneous variations of multiple objective function coefficients.
In particular, for changes in |K| objective function coefficients we have to consider at most 2|K|

sets of efficient solutions, likewise corresponding to the 2|K| combinations of their signs, and each
corresponding to a multi-objective problem with |K|+ 1 objective functions.

In Subsection 5.2 we show that the 100% rule [Bradley, Hax, and Magnanti, 1977] in linear
programming also holds for MILPs.

5.1 Varying two objective function coefficients

The parameterized MILP Π∆k,∆l
obtained by varying the coefficients ck and cl is:

max{ν(∆k,∆l)(x, y) | (x, y) ∈ X},

where ν(∆k,∆l)(x, y) = cx+ hy +∆kxk +∆lxl. The sensitivity region is then

Ω =
{
(∆k,∆l) ∈ R2 | ν(∆k,∆l)(x, y) ≤ ν(∆k,∆l)(x

∗, y∗), (x, y) ∈ X
}
.

For a subset X̂ of X , we define the region

Ω(X̂ ) =
{
(∆k,∆l) ∈ R2 | ν(∆k,∆l)(x, y) ≤ ν(∆k,∆l)(x

∗, y∗), (x, y) ∈ X̂
}
.

If X̂ ̸= ∅, then Ω(X̂ ) is a convex set. If X̂ = ∅, we define Ω(X̂ ) = ∅.
The extension of Lemma 1 follows immediately.

Lemma 4. The sensitivity region is Ω = Ω(X ). Moreover, if X̂ ⊆ X \ ∅, then Ω(X̂ ) ⊇ Ω(X ).
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Assume that ck, cl ̸= 0 and define the tri-objective problems Π++
MO,Π

+−
MO,Π

−+
MO and Π−−

MO with the
four distinct objective vectors

z++(x, y) = (z1(x, y), z2(x, y), z3(x, y)) = (ckxk, clxl,
n∑

i=1
i̸=k,l

cixi + hy), and

z+−(x, y) = (z1(x, y),−z2(x, y), z3(x, y)) = (ckxk,−clxl,
n∑

i=1
i̸=k,l

cixi + hy), and

z−+(x, y) = (−z1(x, y), z2(x, y), z3(x, y)) = (−ckxk, clxl,
n∑

i=1
i̸=k,l

cixi + hy), and

z−−(x, y) = (−z1(x, y),−z2(x, y), z3(x, y)) = (−ckxk,−clxl,
n∑

i=1
i ̸=k,l

cixi + hy),

and feasible set X . Denote by X++
E the efficient set to Π++

MO , and similarly for X+−
E ,X−+

E and X−−
E .

To determine the sensitivity region Ω(X ), we further define the sets

Ω++ = {(∆k,∆l) ∈ Ω(X++
E ) | sgn(ck +∆k) ∈ {sgn(ck), 0}, sgn(cl +∆l) ∈ {sgn(cl), 0}}, and

Ω+− = {(∆k,∆l) ∈ Ω(X+−
E ) | sgn(ck +∆k) ∈ {sgn(ck), 0}, sgn(cl +∆l) ∈ {− sgn(cl), 0}}, and

Ω−+ = {(∆k,∆l) ∈ Ω(X−+
E ) | sgn(ck +∆k) ∈ {− sgn(ck), 0}, sgn(cl +∆l) ∈ {sgn(cl), 0}}, and

Ω−− = {(∆k,∆l) ∈ Ω(X−−
E ) | sgn(ck +∆k) ∈ {− sgn(ck), 0}, sgn(cl +∆l) ∈ {− sgn(cl), 0}},

where sgn(·) is the signum function. If ck > 0 then sgn(ck + ∆k) ∈ {sgn(ck), 0} means that
ck +∆k ≥ 0, and if ck < 0 it means ck +∆k ≤ 0.

We can now formulate our theorem.

Theorem 3. The sensitivity region is Ω = Ω++ ∪ Ω+− ∪ Ω−+ ∪ Ω−−.

Proof. By Lemma 4 it is sufficient to show that Ω++ ∪ Ω+− ∪ Ω−+ ∪ Ω−− ⊆ Ω(X ).
Assume on the contrary that ∃(∆k,∆l) : (∆k,∆l) ∈ (Ω++ ∪Ω+− ∪Ω−+ ∪Ω−−)\Ω(X ). Since

(∆k,∆l) /∈ Ω(X ), ∃(x̂, ŷ) ∈ X : ν(∆k,∆l)(x̂, ŷ) > ν(∆k,∆l)(x
∗, y∗). There are four cases: 1)

(∆k,∆l) ∈ Ω++, 2) (∆k,∆l) ∈ Ω+−, 3) (∆k,∆l) ∈ Ω−+ and 4) (∆k,∆l) ∈ Ω−−. We consider the
first two. Cases 3) and 4) can be proven similarly.

1) Since (∆k,∆l) ∈ Ω++ ⊆ Ω(X++
E ), we have that (x̂, ŷ) /∈ X++

E . This implies that there exists
some (x̄, ȳ) ∈ X++

E such that (i) ckx̄k ≥ ckx̂k and (ii) clx̄l ≥ clx̂l and (iii)
∑

i ̸=k,l cix̄i + hȳ ≥∑
i ̸=k,l cix̂i + hŷ. We multiply (i) by (ck + ∆k)/ck ≥ 0 and (ii) by (cl + ∆l)/cl ≥ 0 and add

them to (iii) to obtain ν(∆k,∆l)(x̄, ȳ) > ν(∆k,∆l)(x̂, ŷ) > ν(∆k,∆l)(x
∗, y∗). This contradicts that

z∆k,∆l
(x, y) ≤ z∆k,∆l

(x∗, y∗), (x, y) ∈ X++
E .

2) By the same reasoning as above, there exists some (x̄, ȳ) ∈ X+−
E such that (i) ckx̄k ≥ ckx̂k and

(ii)−clx̄l ≥ −clx̂l and (iii)
∑

i ̸=k,l cix̄i+hȳ ≥
∑

i ̸=k,l cix̂i+hŷ. We multiply (i) by (ck+∆k)/ck ≥ 0
and (ii) by (cl + ∆l)/cl ≤ 0 and add them to (iii) to obtain ν(∆k,∆l)(x̄, ȳ) > ν(∆k,∆l)(x̂, ŷ) >
ν(∆k,∆l)(x

∗, y∗), which is again a contradiction.

Since Ω is a convex set, we have that if ∆k ̸= −ck and ∆l ̸= −cl for all (∆k,∆l) ∈ Ω++, then
Ω = Ω++ and it is sufficient to consider the tri-objective problem Π++

MO .
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As in Corollary 1 and Corollary 2, the set Ω++ can be expressed in terms of the extreme nondomi-
nated points in objective space. Let (z∗1 , z∗2 , z∗3) = z++(x∗, y∗) and denote by Z++

N,e the set of extreme
nondominated points to Π++

MO . Then,

Ω++ = {(∆k,∆l) ∈ R2 | ∆k

ck
(z1 − z∗1) +

∆l

cl
(z2 − z∗2) ≤ z∗1 + z∗2 + z∗3 − z1 − z2 − z3,

(z1, z2, z3) ∈ Z++
N,e, sgn(ck +∆k) ∈ {sgn(ck), 0}, sgn(cl +∆l) ∈ {sgn(cl), 0}}.

The sets Ω+−,Ω−+ and Ω−− can likewise be expressed in terms of extreme nondominated points.
For the general analysis of variations of three or more objective function coefficients, see Appendix

B.
We illustrate the results on two examples.

Example 6. We return to the example presented by Schrage and Wolsey [1985].
To determine the region of simultaneous changes to ck and cl, note that there are at most four

nondominated points, that is, z++(x∗, y∗) = (ckx
∗
k, clx

∗
l ,

∑
i ̸=k,l

cix
∗
i ), ẑ+− = (ckx

∗
k, cl(1− x∗l ), ẑ

+−
3 ),

ẑ−+ = (ck(1− x∗k), clx
∗
l , ẑ

+−
3 ) and ẑ−− = (ck(1− x∗k), cl(1− x∗l ), ẑ

+−
3 ) with

ẑ+−
3 = sup


9∑

i=1
i̸=k,l

cix
∗
i | (x, y) ∈ X , xk = x∗k, xl = 1− x∗l

 , and

ẑ−+
3 = sup


9∑

i=1
i̸=k,l

cix
∗
i | (x, y) ∈ X , xk = 1− x∗k, xl = x∗l

 , and

ẑ−−
3 = sup


9∑

i=1
i ̸=k,l

cix
∗
i | (x, y) ∈ X , xk = 1− x∗k, xl = 1− x∗l

 .

For changes to c1 and c3, the nondominated points are {(0, 0, 176), (0, 3, 86), (77, 0, 99), (77, 3, 66)}.
The sensitivity region is Ω = {(∆1,∆3) ∈ R2 | ∆1 ≤ 33,∆3 ≤ 87,∆1 + ∆3 ≤ 30}. For changes
to c7 and c9, the nondominated points are {(0, 0, 146), (0, 47, 66), (77, 0, 99)} (for x7 = x9 = 1, the
problem is infeasible) and the sensitivity region is Ω = {(∆7,∆9) ∈ R2 | ∆7 ≥ −30,−∆7 +∆9 ≤
63}.

Example 7. Return to the MILP in Example 2.
We consider simultaneous changes of the objective function coefficients c1 and h1. We start by

finding the set Ω++. The efficient solutions are X++
E = {(xi, yi), i = 1, 6, 11}, and hence, Ω++ =

{(∆1,∆2) ∈ R2 | −∆1+∆2 ≤ 1, ∆1 ≥ −3, ∆2 ≤ 0, ∆2 ≥ −1}. Notice that if (∆1,∆2) ∈ Ω++,
we cannot have that ∆1 = −3. Thus, Ω−+ = Ω−− = ∅. However, we may have ∆2 = −1. Therefore,
we proceed to find the set Ω+−. The efficient solutions are X+−

E = {{(xi, yi), i = 2, 7, 11, 12},
and so, Ω+− = {(∆1,∆2) ∈ R2 | −∆1 + ∆2 ≤ 1, ∆2 ≤ −1, ∆2 ≥ −1.5}. It follows that
Ω = Ω++ ∪ Ω+− = {(∆1,∆2) ∈ R2 | −∆1 +∆2 ≤ 1, ∆2 ≤ 0, ∆2 ≥ −1.5}.

5.2 The 100% rule

According to the 100% rule in linear programming, the solution remains optimal for simultaneous
changes in the objective function coefficients provided that the sum of relative changes is at most
100%, see Bradley et al. [1977]. We extend this result to MILP.
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Table 4: Inequalities with weights.

Inequalities Weight
cx+ hy ≤ cx∗ + hy∗ 1−

∑
i∈Kc

lb∪K
h
lb

∆i
lbi

−
∑

i∈Kc
ub∪K

h
ub

∆i
ubi

(
cx+ hy + lbixi ≤ cx∗ + hy∗ + lbix

∗
i , for i ∈ Kc

lb
∆i
lbi

cx+ hy + lbiyi ≤ cx∗ + hy∗ + lbiy
∗
i , for i ∈ Kh

lb
∆i
lbi

cx+ hy + ubixi ≤ cx∗ + hy∗ + ubix
∗
i , for i ∈ Kc

ub
∆i
ubi

cx+ hy + ubiyi ≤ cx∗ + hy∗ + ubiy
∗
i , for i ∈ Kh

ub
∆i
ubi

For k ∈ {1, 2, . . . , n, n + 1, . . . , n + p}, denote by ∆k the change to coefficient k of the vector
c ∈ Rn or the vector h ∈ Rp and let lbk and ubk be the lower and upper bounds of its sensitivity
interval. Denote by Kc

lb,K
c
ub ⊆ {1, 2, . . . , n} the two disjoint sets of indices for which the coefficients

of c decrease respectively increase, and similarly, denote by Kh
lb,K

h
ub ⊆ {n + 1, n + 2, . . . , n + p}

the sets for which the coefficients of h decrease respectively increase. The 100% rule can be stated as
follows.

Theorem 4. Assume that ∑
i∈Kc

lb∪K
h
lb

∆i

lbi
+

∑
i∈Kc

ub∪K
h
ub

∆i

ubi
≤ 1.

Then (∆1,∆2, . . . ,∆n,∆n+1, . . . ,∆n+p) is in the sensitivity region.

Proof. Consider (x, y) ∈ X . We weigh the inequalities in Table 4 and add them to obtain

n∑
i=1

(ci +∆i)xi +

n+p∑
i=n+1

(hi +∆i)yi ≤
n∑

i=1

(ci +∆i)x
∗
i +

n+p∑
i=n+1

(hi +∆i)y
∗
i .

6 Numerical experiments

We carry out sensitivity analysis on two problems from the literature; a pure ILP for capital budgeting
and a MILP formulation of a production lot sizing problem. Our numerical experiments serve to
provide preliminary computational experience of the proposed technique. Since it is independent
of the solution method used the computational performance will improve as multi-objective solvers
become increasingly efficient.

For bi-objective mixed-integer linear programming, we determine the extreme adjacent nondomi-
nated points using a modification of the first phase of the so-called two-phase method, see Przybylski,
Gandibleux, and Ehrgott [2008]. For general MO-MILP, we use the code developed by Bökler and
Mutzel [2015].

The two-phase method and modifications to this have been implemented in C++ using Visual
Studio C++ 2015 and ILOG CPLEX Studio 12.7. The tests are performed on an x-64 based Fujitsu
Lifebook E654 with 2.2 Ghz Intel Core i7 MQ CPU with 16 GB ram.
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6.1 Capital budgeting

A capital budgeting problem faced by companies engaged in procurement of R&D contracts consists
of optimally allocating limited funds to the suggested projects, see Petersen [1967]. The problem can
be formulated as a binary ILP max{cx | Ax ≤ b, x ∈ {0, 1}n}, where xj = 1 if project j is selected
and xj = 0 otherwise, j = 1, . . . , n. Moreover, c is the vector of contract volumes, A is a cost matrix,
and b is the vector of budgets.

In line with Dawande and Hooker [2000], we solve the largest of the capital budgeting instances
proposed by Petersen [1967]. This instance includes 50 projects and 5 budget constraints.

Table 5: Sensitivity intervals for each objective function coefficient of the capital bud-
geting problem. All entries are in thousands of dollars.

j cj ∆cj j cj ∆cj j cj ∆cj
1 560 [−∞, 43] 18 115 [−∞, 41] 35 71 [−13,+∞]
2 1125 [−∞, 189] 19 82 [−44,+∞] 36 49 [−19,+∞]
3 300 [−∞, 62] 20 22 [−13,+∞] 37 108 [−58,+∞]
4 620 [−74,+∞] 21 631 [−∞, 72] 38 116 [−18,+∞]
5 2100 [−∞, 809] 22 132 [−∞, 57] 39 90 [−64,+∞]
6 431 [−140,+∞] 23 420 [−76,+∞] 40 738 [−382,+∞]
7 68 [−∞, 18] 24 86 [−∞, 39] 41 1811 [−884,+∞]
8 328 [−85,+∞] 25 42 [−13,+∞] 42 430 [−286,+∞]
9 47 [−28,+∞] 26 103 [−19,+∞] 43 3060 [−2076,+∞]

10 122 [−∞, 33] 27 215 [−75,+∞] 44 215 [−38,+∞]
11 322 [−87,+∞] 28 81 [−29,+∞] 45 58 [−∞, 13]
12 196 [−19,+∞] 29 91 [−71,+∞] 46 296 [−∞, 77]
13 41 [−32,+∞] 30 26 [−∞, 13] 47 620 [−181,+∞]
14 25 [−∞, 14] 31 49 [−43,+∞] 48 418 [−191,+∞]
15 425 [−248,+∞] 32 420 [−285,+∞] 49 47 [−18,+∞]
16 4260 [−1389,+∞] 33 316 [−∞, 18] 50 81 [−61,+∞]
17 416 [−245,+∞] 34 72 [−31,+∞]

Table 5 shows the results of a change to a single objective function coefficient. For example,
the contract volume of project 1 is $560.000. Since x∗1 = 0, the current allocation of funds remains
optimal for any decrease in volume. Moreover, the allocation is optimal as long as the volume is less
than or equal to $603.000, i.e., the volume can increase by at most 8%. This also means that if the
contract volume of project 1 increases by at least ∆1 = $43.000, it will be optimal to invest in project
1. Similarly, the contract volume of project 4 is $620.000 and x∗4 = 1. The volume can increase
indefinitely but decrease by at most ∆4 = $74.000 for the current allocation to remain optimal. If
the contract volume of project 4 falls below $546.000 the companies should not invest in project 4.
An interesting question to ask is what happens if the contract volumes of project 1 and project 2
vary simultaneously? Using Theorem 3 it can be shown that the optimal solution does not change if
∆1 ≤ $43.000, ∆4 ≥ −$135.000 and ∆1 −∆4 ≤ $74.000. We see that if the contract volume of
project 1 increases with, say, ∆1 = $40.000, then the optimal solution remains optimal if the contract
volume of project 4 decreases at most ∆4 = −$34.000. Now, what happens if the contract volumes
of projects 1, 2 and 4 vary simultaneously? By Theorem 5, the optimal solution does not change if
∆1 ≤ $43.000, ∆2 ≤ $189.000 and ∆1 −∆4 ≤ $74.000.
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To determine the sensitivity intervals for changes in the contract volumes of xj with j ∈
{1, 2, · · · , 50}, the total CPU time is 7.6 seconds, with an average time of only 0.15 seconds. For
simultaneous changes in the contract volumes of the variables xi, xj with i, j ∈ {1, 2, · · · , 50}, the
total CPU time for all 1,225 sensitivity regions is 400 seconds, i.e. 6-7 minutes, with an average time
of 0.33 seconds. Finally, for the variables xi, xj , xk with i, j, k ∈ {1, 2, · · · , 20}, the total and average
CPU time for the 1,140 sensitivity regions is 820 seconds and 0.72 seconds, respectively. The results
demonstrate that for binary integer linear programs, a complete sensitivity analysis of single variables
or pairs of variables can be carried out within short computation time. Furthermore, it is feasible to
obtain the sensitivity regions for selected sets of more than two variables.

6.2 Production lot sizing

The production lot sizing problem determines an optimal production plan for various types of items
over a finite planning horizon. The aim is to cover demand of all time periods, while respecting capacity
constraints (on the time spent on production and setup) and allowing for inventory and backlogging
of production, and at the minimal inventory, backlog and setup costs. The problem is formulated as a
MILP.

We use an extended version of the lot sizing problem, Model 1 by Molina, Morabito, and Alexan-
dre de Araujo [2016], which includes piecewise linear and convex costs of transporting the items using
pallets, assuming distinct types of items cannot be mixed on the same pallet, see (8). Parameters and
variables are defined in Appendix C.

min
n∑

i=1

T∑
t=1

(h+itI
+
it + h−itI

−
it + sityit) +

T∑
t=1

(c0 + c1
n∑

i=1
ait + c2

n∑
i=1

bit)

s.t I+i,t−1 − I−i,t−1 + xit − I+i,t + I−i,1 = dit, i = 1, 2, · · · , n, t = 1, 2, · · · , T

xit −Myit ≤ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T
n∑

i=1
(pixit + qiyit) ≤ Capt, t = 1, 2, · · · , T

xit −mi(ait + bit) ≤ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T
n∑

i=1
ait ≤ R, t = 1, 2, · · · , T

I+i0 = I−i0 = I+iT = I−iT = 0, i = 1, 2, · · · , n

xit ≥ 0, I+it ≥ 0, I−it ≥ 0 i = 1, 2, · · · , n, t = 1, 2, · · · , T

ait, bit ∈ Z+, yit ∈ {0, 1} i = 1, 2, · · · , n, t = 1, 2, · · · , T.

We illustrate our method on an instance with (n, T ) = (3, 8). We generate data as described for
Model 1 by Molina et al. [2016] and include the data in Appendix C.1. This instance contains 72
continuous variables, 48 integer variables and 24 binary variables and 100 constraints. A number of
interesting questions arises:

• The inventory cost for product 2 in period 2 is h+2,2 = $3. How much can this cost vary while the
solution remains optimal? Using the results of Section 4, any change should be in the interval
[−3; 0] (assuming that the inventory cost is nonnegative). Hence, if the inventory cost increases,
the optimal production plan changes. The CPU time to obtain the answer is 3.64 seconds.
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• The setup cost for product 2 in period 2 is s2,2 = $50. How much can this cost vary? Our
analysis shows that the cost can increase to as much as $8280, suggesting that setup costs have
limited impact on the optimal production plan. The CPU time is only 0.69 seconds.

• The objective function coefficient of a2,6 is $50. In which range does the current production plan
remain optimal? The answer is that the change should be in the interval [−50; 32] (assuming that
the coefficient is nonnegative; otherwise, the lower bound is -$200). The CPU is 4.38 seconds.

• The objective function coefficient of b2,6 is $200 and the sensitivity interval is [−32;∞]. Thus,
if the higher unit cost of product 2 in period 6 is at least $168, it remains optimal to transport
only at the lower unit cost. The CPU time to obtain the answer is 3.41 seconds.

• For which simultaneous changes ∆1,∆2 to the objective function coefficients of the backlog
and setup costs of product 2 in period 2, respectively, does the optimal solution remain the
same? Using Theorem 3, it can be shown that any changes should satisfy the constraints
∆1 ≥ −10, ∆2 ≥ −50, −148∆1 +∆2 ≤ 8230, −240∆1 +∆2 ≤ 8345, −314∆1 +∆2 ≤
8345, −474∆1 +∆2 ≤ 8649, −571∆1 +∆2 ≤ 8672, −590∆1 +∆2 ≤ 8805, −667∆1 +
∆2 ≤ 9544. The CPU time is 423.97 seconds, indicating that sensitivity analysis for more than
a single coefficient is significantly more time consuming than sensitivity analysis for a single
coefficient.

We proceed to further investigate the CPU times for changes to single objective function co-
efficients. Tables 6 and 7 are based on the averages of 10 instances with (n, T ) = (3, 8) and
(n, T ) = (3, 12), respectively. Both tables report the times for computing the sensitivity intervals for
all variables and for five separate groups of variables, e.g. the group I+it , i = 1, . . . , n, t = 1, . . . , T is
denoted by I+. The left-hand-sides of the tables show statistics for computing the sensitivity interval
for a single variable in the group and the right-hand-sides for all variables in the group.

Table 6: CPU-times (seconds) for computing the sensitivity intervals for the objective
function coefficients for the five groups of variables with n = 3 and T = 8. Each group
contains 24 variables.

Single variable All variables
Variables Average Std.dev. Median Min Max Average Std.dev. Median Min Max
I+ 4.39 12.95 1.56 0.42 161.25 105.40 139.07 32.86 21.74 438.37
I− 2.77 12.23 1.16 0.41 187.48 66.37 77.71 26.40 16.08 250.06
y 0.92 2.26 0.31 0.13 24.27 22.13 27.96 7.84 4.81 78.25
a 2.00 1.75 1.32 0.44 12.84 48.03 34.12 31.42 20.75 112.00
b 1.52 1.11 0.94 0.41 5.11 36.40 25.62 22.53 14.55 86.38
All 2.32 8.16 1.03 0.13 187.48 278.06 293.11 120.26 80.73 907.83

Table 6 shows that on average it takes 2.32 seconds to compute a sensitivity interval, with a
minimum of 0.13 seconds, a maximum of 3 minutes and 7 seconds (187.48 seconds) and a standard
deviation of 8.16 seconds. It should be remarked that a few hard instances makes the average high.
In fact, the median is only around a second. Evidently, the average time to compute all sensitivity
intervals is proportional to the number of variables, i.e. 4 minutes and 38 seconds (278.06 seconds).
The same applies to the median, which is 2 minutes (120.26 seconds). However, both the span between
the minimum and maximum and the standard deviation increases much less than proportionally, i.e.
1-15 minutes (80.73-907.83 seconds) and 5 minutes (293.11 seconds), respectively. As expected
from Section 4.3, binary variables are less time consuming than others. The non-binary variables
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Table 7: CPU-times (seconds) for computing the sensitivity intervals for the objective
function coefficients for the five groups of variables with n = 3 and T = 12. Each
group contains 36 variables.

Single variable All variables
Variables Average Std.dev. Median Min Max Average Std.dev. Median Min Max
I+ 12.48 39.00 4.32 0.61 661.20 449.15 499.17 259.29 49.18 1417.63
I− 6.89 14.10 3.20 0.63 215.48 247.99 288.60 126.77 34.85 860.83
y 1.96 7.73 0.80 0.16 138.66 70.60 83.24 44.38 14.52 294.11
a 6.28 7.58 3.28 0.63 40.69 226.20 256.53 148.37 42.37 880.45
b 5.39 7.33 2.18 0.64 49.39 194.06 248.41 105.96 33.02 846.77
All 6.60 19.72 2.15 0.16 661.20 1179.58 1316.76 671.26 172.01 4272.51

have comparable medians, whereas the computation times for the continuous inventory variables vary
significantly more than for the number of pallets. Similar conclusions hold when increasing the size
of the instances, see Table 7. Compared to Table 6 the median time to compute a sensitivity interval
doubles whereas the average roughly increases by a factor three, and the increases are even higher for
the time to compute all sensitivity intervals.

7 Conclusions

This paper presents a multi-objective optimization approach to sensitivity analysis of the objective
function coefficients in MILP. For variations in a single objective function coefficient, we show how
to determine the maximal sensitivity region by bi-objective mixed-integer linear programming. We
show that it suffices to determine the two extreme nondominated points in objective space that are
adjacent to the optimal solution. We extend the methodology for simultaneous changes to two or more
coefficients, determining the sensitivity region by use of multi-objective analysis.

Our approach can be used with any solution method for multi-objective optimization. For bi-
objective mixed-integer linear programming, the sets of extreme nondominated points can be found
using the first phase of the so-called two-phase method, see for example Przybylski et al. [2008].
As shown, it is sufficient to find the two adjacent points. The first phase of the two-phase method
can be easily modified to do so. A number of recent papers describe how to determine the set of
nondominated points of a general MO-MILP. Özpeynirci and Köksalan [2010] present a maximal
algorithm for finding all extreme nondominated points of a MO-MILP, Przybylski, Gandibleux, and
Ehrgott [2010] finds all nondominated extreme points for a multi-objective integer program, and
Kirlik and Sayin [2014] determine all nondominated points to multi-objective discrete models. One
or more of these algorithms may be used. Available software packages can likewise find the set
of nondominated points of a MO-MILP, see for instance Gandibleux, Soleilhac, Przybylski, Lucas,
Ruzika, and Halffmann [2017a] and Gandibleux, Soleilhac, Przybylski, and Ruzika [2017b].

Although computational performance remains to be further tested, existing methods for multi-
objective optimization demonstrate the potential of our procedure. That is, as multi-objective solvers
become more efficient, they can be called from a MILP solver and used to find sensitivity regions.
This may both be a priori or a posteriori, i.e. after the optimal MILP solution has been observed.

Our method does not immediately generalize to changes to the right-hand-side and the coefficients
of the constraint matrix in MILP. We therefore leave these extensions to future research.
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Appendices

A Proofs of Lemma 3 and Proposition 1

Proof of Lemma 3

Proof. Lemma 2 shows that lb(X ) ≤ lb+ and ub+ ≤ ub(X ). If ck > 0 and lb(X+
E ) < −ck

then lb+ = −ck, and if ck < 0 and ub(X+
E ) > −ck then ub+ = −ck. Therefore, we have that

lb(X ) ≤ −ck = ub− for ck > 0 and lb− = −ck ≤ ub(X ) for ck < 0.
Consider ck > 0 and X−

E ̸= ∅. Using Lemma 1, it remains to show that lb(X ) ≤ lb−. Assume
contrarily that ∃∆ : lb− < ∆ < lb(X ). As ∆ /∈ [lb(X ), ub(X )], we have that ∃(x̂, ŷ) ∈ X :
ν∆(x̂, ŷ) > ν∆(x

∗, y∗). Since, however, ∆ ∈ [lb−, lb(X )] ⊆ [lb(X−
E ), ub(X−

E )], we have ν∆(x, y) ≤
ν∆(x

∗, y∗), (x, y) ∈ X−
E . Hence, (x̂, ŷ) /∈ X−

E . This implies that there exists (x̄, ȳ) ∈ X−
E , such that

(i) −ckx̄k ≥ −ckx̂k and (ii)
∑

i ̸=k cix̄i +hȳ ≥
∑

i ̸=k cix̂i +hŷ. We multiply (i) by (ck +∆)/ck ≤ 0
and add it to (ii) to obtain ν∆(x̄, ȳ) ≥ ν∆(x̂, ŷ). But then ν∆(x̄, ȳ) > ν∆(x

∗, y∗), contradicting
∆ ∈ [lb(X−

E ), ub(X−
E )].

For ck > 0 and X−
E = ∅, we aim to show that lb(X ) ≥ −ck. Assume contrarily that ∃∆ :

lb(X ) < ∆ < −ck. As ∆ ∈ [lb(X ), ub(X )], we have that ν∆(x, y) ≤ ν∆(x
∗, y∗), (x, y) ∈ X . Since,

however, X−
E = ∅, there exists (x̄, ȳ) ∈ X , such that (i) −ckx̄k ≥ −ckx

∗
k and (ii)

∑
i ̸=k cix̄i + hȳ ≥∑

i ̸=k cix
∗
i +hy∗, with at least one of the inequalities being strict. We multiply (i) by (ck+∆)/ck < 0

and add it to (ii) to obtain ν∆(x̄, ȳ) > ν∆(x
∗, y∗), which is a contradiction.

Consider ck < 0 and X−
E ̸= ∅. Using Lemma 1, it remains to show that ub− ≤ ub(X ). Assume

contrarily that ∃∆ : ub− > ∆ > ub(X ) and proceed as in the case of ck > 0.
The case of ck < 0 and X−

E = ∅ is similar to ck > 0.

Proof of Proposition 1

Proof. First, consider the upper bound. Assume that X+
E ̸= ∅. To see that ub(X+

E ) = ub(X ),
assume contrarily that ∃∆ : ub(X ) < ∆ < ub(X+

E ). As in the proof of Lemma 2, ∃(x̂, ŷ) ∈
X\X+

E : ν∆(x̂, ŷ) > ν∆(x
∗, y∗) and there exists (x̄, ȳ) ∈ X+

E such that (i) x̄k ≥ x̂k and (ii)∑
i ̸=k cix̄i + hȳ ≥

∑
i ̸=k cix̂i + hŷ. We multiply (i) by ∆ ≥ 0 and add it to (ii) to obtain ν∆(x̄, ȳ) ≥

ν∆(x̂, ŷ) > ν∆(x
∗, y∗), which is a contradiction.

For X+
E = ∅, we aim to show that ub(X ) = 0. Assume contrarily that ∃∆ : ∆ > 0. Now,

ν∆(x, y) ≤ ν∆(x
∗, y∗), (x, y) ∈ X and there exists (x̄, ȳ) ∈ X , such that (i) x̄k ≥ x∗k and (ii)∑

i ̸=k cix̄i + hȳ ≥
∑

i ̸=k cix
∗
i + hy∗, with at least one of the inequalities being strict. We multiply (i)

by ∆ > 0 and add it to (ii) to obtain ν∆(x̄, ȳ) > ν∆(x
∗, y∗), which is a contradiction.

Next, consider the lower bound. Assume that X−
E ̸= ∅. As before, to see that lb(X ) = lb(X−

E ),
assume that ∃∆ : lb(X−

E ) < ∆ < lb(X ). As in the proof of Lemma 3, ∃(x̂, ŷ) ∈ X\X−
E : ν∆(x̂, ŷ) >
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ν∆(x
∗, y∗) and there exists (x̄, ȳ) ∈ X−

E such that (i) −x̄k ≥ −x̂k and (ii)
∑

i ̸=k cix̄i + hȳ ≥∑
i ̸=k cix̂i + hŷ. We multiply (i) by ∆ ≤ 0 and add it to (ii) to obtain ν∆(x̄, ȳ) ≥ ν∆(x̂, ŷ) >

ν∆(x
∗, y∗), which is again a contradiction.

For X−
E = ∅, we aim to show that lb(X ) = 0. Assume contrarily that ∃∆ : ∆ < 0. Now,

ν∆(x, y) ≤ ν∆(x
∗, y∗), (x, y) ∈ X and there exists (x̄, ȳ) ∈ X , such that (i) −x̄k ≥ −x∗k and (ii)∑

i ̸=k cix̄i + hȳ ≥
∑

i ̸=k cix
∗
i + hy∗, with at least one of the inequalities being strict. We multiply (i)

by ∆ < 0 and add it to (ii) to obtain ν∆(x̄, ȳ) > ν∆(x
∗, y∗), which is a contradiction.

B Variations of three or more objective function coefficients

For K ⊆ {1, 2, · · · , n + p}, we will determine the sensitivity region for simultaneous changes
(∆k : k ∈ K) to the objective function coefficients ck, k ∈ K of the vector c such that (x∗, y∗)
remains optimal to Π. The same analysis applies to changes in any |K| coefficients of the vectors c
and h.

For a subset X̂ of X , define the region

Ω(X̂ ) =
{
(∆k : k ∈ K) ∈ R|K| | ν(∆k:k∈K)(x, y) ≤ ν(∆k:k∈K)(x

∗, y∗), (x, y) ∈ X̂
}
.

If X̂ ̸= ∅, then Ω(X̂ ) is a convex set. If X̂ = ∅, we define Ω(X̂ ) = ∅.
Let Θ = {θ ∈ R|K| | θk ∈ {+,−}, k ∈ K} and θ ∈ Θ. Define the multi-objective problems

Πθ
MO with the |K|+ 1 objective functions

zθ(x, y) = (sgn(θ1)c1x1, · · · , sgn(θ|K|)c|K|x|K|,
n∑

i=1
i̸∈K

cixi + hy),

and feasible set X . Denote by X θ
E the efficient set to Πθ

MO and define

Ωθ = {(∆k : k ∈ K) ∈ Ω(X θ
E) | sgn(ck +∆k) ∈ {sgn(θk) · sgn(ck), 0}, k ∈ K}.

We can now formulate the general result.

Theorem 5. The sensitivity region is ∪θ∈ΘΩ
θ.

Proof. The proof is similar to the proof of Theorem 3 and is therefore omitted.

Let θ ∈ Θ. Similarly to Corollary 1 and Corollary 2 it suffices to consider the set Ωθ of the extreme
nondominated points in objective space. Consider the image set

Zθ
N = {(c1x1, · · · , c|K|x|K|,

n∑
i=1
i ̸∈K

cixi + hy) | (x, y) ∈ X θ
E}.

and let Zθ
N,e denote the set of extreme points of the set

Zθ
≤ = conv

(
Zθ
N + {z ∈ Rq : z ≤ 0}

)
.

Then,

Ωθ = {(∆k : k ∈ K) ∈ R|K| |
∑

k∈K
∆t

ck
(zk − z∗k) ≤

∑
k∈K(z∗k − zk) + z∗|K|+1 − z|K|+1,

(z1, · · · , z|K|, z|K|+1) ∈ Zθ
N,e, sgn(ck +∆k) ∈ {sgn(θk) · sgn(ck), 0}, k ∈ K}.
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C Production lot sizing: Nomenclature

Parameters:
i = 1, 2, · · · , n Number of types of items
t = 1, 2, · · · , T Number of periods in the planning horizon
sit Setup cost for the production of item i in period t
h+it Unit inventory cost of item i in period t
h−it Penalty for delay of one unit of item i in period t
dit Demand for item i in period t
pi Time required to produce a unit of item i
qi Setup time for the production of item i
Capt Production capacity in period t

M A sufficiently large positive number. We use M =
∑n

i=1

∑T
t=1 dit

mi Number of items of type i that can be placed on the same pallet
c0 Fixed monthly cost of the contract
c1 Unit transport cost of first R pallets used
c2 Unit transport cost of the other pallets (c1 < c2)
R The contracted number of hired pallets with cost c1

Variables:
xit Amount to be produced of item i in period t
I+it Inventory of item i in period t
I−it Backlog of item i in period t
yit Binary variable indicating the production of item i in period t

(yit = 1 if xit > 0; yit = 0 otherwise)
ait Number of pallets transported containing item i in period t with unit cost c1
bit Number of pallets transported containing item i in period t with unit cost c2

C.1 Production lot sizing: Data

Below, we provide the data for instance 1 with (n, T ) = (3, 8). All data are generated as described for
Model 1 in Molina et al. [2016].

(sit, h
+
it , h

−
it) = (50, 3, 10), i = 1, · · · , 3, t = 1, · · · , 8,

dit
i/t 1 2 3 4 5 6 7 8
1 208 117 180 177 241 159 127 186
2 527 917 728 349 759 382 730 330
3 264 329 353 262 297 232 199 337

(p1, p2, p3) = (1, 1, 1),
(q1, q2, q3) = (29, 28, 30),
Capt = 1336, t = 1, · · · , 8,
M = 8390,
(m1,m2,m3) = (131, 81, 74),
(c0, c1, c2) = (0, 50, 200),
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R = 9.
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