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1 Introduction

The MDP package in R is a package for solving Markov decision processes (MDPs) with
discrete time-steps, states and actions. Both ordinary [4] and hierarchial MDPs [1] can be
solved. In this paper we use the term MDP for both types of MDPs.

Generating and solving an MDP is done in two steps. First, the MDP is generated and
saved in a set of binary files. Next, you load the MDP into memory from the binary files
and solve it.

The package uses algorithms based on the state-expanded directed hypergraph of the
MDP [3] which are all implemented in C++ for fast running times. Under development is
also support for MLHMP which is a Java implementation of algorithms for solving MDPs
[2]. A hypergraph representing an MDP with time-horizon N = 5 is shown in Figure 1.
Each node corresponds to a specific state in the MDP and a directed hyperarc is defined
for each possible action. For instance, node v2,1 corresponds to a state number 1 at stage
2. The two hyperarcs with head in node v3,0 show that two actions are possible given state
number 0 at stage 3. Action mt corresponds to a deterministic transition to state number
zero at stage 4 and action nmt corresponds to a transition to state number 0 or 1 at stage
4 with a certain probability greater than zero.

States and actions can be identified using either an unique id or index vector ν. In an
ordinary MDP the index vector consists of the stage and state number, i.e. state corre-
sponding to node v3,1 in Figure 1 is uniquely identified using ν = (n,s) = (3,1). Similar,
action buy is uniquely identified using ν = (n,s,a) = (0,0,0). Note that index always

start from zero.
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Figure 1: A state-expanded hypergraph for an MDP with time horizon N = 5. At stage
n each node vn,i corresponds to a state in Sn. The hyperarcs correspond to actions, e.g. if
the system at stage 3 is in state number 1 then there are two possible actions. Action mt

results in a deterministic transition to state zero (because there is only one tail) at stage 4
and nmt results in a transition to either state number 1 or 2 with a certain probability.
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Figure 2: A hypergraph representation of the first stage of a hierarchical MDP. Level
0 indicate the founder level, and the nodes indicates states at the different levels. A
child process (oval box) is represented using its state-expanded hypergraph (hyperarcs not
shown) and is uniquely defined by a given state and action of its parent process.
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A hierarchical MDP is an MDP with parameters defined in a special way, but never-
theless in accordance with all usual rules and conditions relating to such processes [1]. The
basic idea of the hierarchical structure is that stages of the process can be expanded to
a so-called child process, which again may expand stages further to new child processes
leading to multiple levels. To illustrate consider the MDP shown in Figure 2. The process
has three levels. At Level 2 we have a set of ordinary MDPs with finite time-horizon
(one for each oval box) which all can be represented using a state-expanded hypergraph
(hyperarcs not shown, only hyperarcs connecting processes are shown). An MDP at Level
2 is uniquely defined by a given state s and action a of its parent process at Level 1

(illustrated by the arcs with head and tail node at Level 1 and Level 2, respectively).
Moreover, when a child process at Level 2 terminates a transition from a state s ∈ SN of
the child process to a state at the next stage of the parent process occur (illustrated by
the (hyper)arcs having head and tail at Level 2 and Level 1, respectively). Since a child
process is always defined by a stage, state and action of the parent process we have that
for instance a state at level 1 have an index vector ν = (n0,s0,a0,n1,s1).

In general a state s and action a at level l can be uniquely identified using

νs = (n0,s0,a0,n1,s1, . . . ,nl,sl)

νa = (n0,s0,a0,n1,s1, . . . ,nl,sl,al).

The index vector of three states is illustrated in Figure 2.
Another way to identify a state or action is using an id number. Id numbers can be

seen when printing information about the model i R. This will be further clarified in the
example in Section 2.

Now let us have a look at package. The package can be installed from R-Forge using

> install .packages ("MDP",repos="http://r-forge .r-project .org ")

and afterwards loaded

> library (MDP)

Help about the package can be seen by writing

> ?MDP

We illustrate the package capabilities by some examples in the next sections.

2 Ordinary MDP with finite time-horizon

Consider the machine replacement example from Nielsen and Kristensen [3] where the
machine is always replaced after 4 years. The state of the machine may be: good, average,
and not working. Given the machine’s state we may maintain the machine. In this case the
machine’s state will be good at the next decision epoch. Otherwise, the machine’s state
will not be better at next decision epoch. When the machine is bought it may be either in
state good or average. Moreover, if the machine is not working it must be replaced.
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(n,s) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)
reward 70 50 70 50 70 50
s′ {0,1} {1,2} {0,1} {1,2} {0,1} {1,2}
pn (· | s,nmt)

{ 6
10 , 4

10

} { 6
10 , 4

10

} { 5
10 , 5

10

} { 5
10 , 5

10

} { 2
10 , 8

10

} { 2
10 , 8

10

}

Table 1: Input data for the machine replacement problem given action nmt.

The problem of when to replace the machine can be modelled using a Markov decision
process with N = 5 decision epochs. We use system states good (state 0), average (state
1), not working (state 2) and dummy state replaced together with actions buy (buy),
maintain (mt), no maintenance (nmt), and replace (rep).

The set of states at stage zero S0 contains a single dummy state s0 representing the
machine before knowing its initial state. The only possible action is buy.

The cost of buying the machine is 100 with transition probability of 0.7 to state good

and 0.3 to state average. The reward (scrap value) of replacing a machine is 30, 10, and 5
in state 0, 1, and 2, respectively. The reward of the machine given action mt becomes 55,
40, and 30 given state 0, 1, and 2, respectively. Moreover, the system enters state 0 with
probability 1 at the next stage. Finally, Table 1 shows the reward, transition states and
probabilities given action nmt.

The state-expanded hypergraph is shown in Figure 1. It contains a hyperarc for each
possible action a given stage n and state s ∈ Sn. The head node of a hyperarc corresponds
to the state of the system before action a is taken and the tail nodes to the possible system
states after action a is taken.

2.1 Generating the MDP

We generate the model in R using the binaryMDPWriter:

> prefix<- "machine_ "

> w <- binaryMDPWriter(prefix )

> w$setWeights (c("Net reward "))

> w$process ()

> w$stage () # stage n=0

> w$state(label ="Dummy") # v=(0,0)

> w$action (label ="buy", weights =-100 , prob=c(1,0,0.7, 1,1,0.3), end=T)

> w$endState ()

> w$endStage ()

> w$stage () # stage n=1

> w$state(label ="good") # v=(1,0)

> w$action (label ="mt", weights =55, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =70, prob=c(1,0,0.6, 1,1,0.4), end=T)

> w$endState ()

> w$state(label ="average ") # v=(1,1)

> w$action (label ="mt", weights =40, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =50, prob=c(1,1,0.6, 1,2,0.4), end=T)

> w$endState ()

> w$endStage ()

> w$stage () # stage n=2

> w$state(label ="good") # v=(2,0)

> w$action (label ="mt", weights =55, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =70, prob=c(1,0,0.5, 1,1,0.5), end=T)
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> w$endState ()

> w$state(label ="average ") # v=(2,1)

> w$action (label ="mt", weights =40, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =50, prob=c(1,1,0.5, 1,2,0.5), end=T)

> w$endState ()

> w$state(label ="not working ") # v=(2,2)

> w$action (label ="mt", weights =30, prob=c(1,0,1) , end=T)

> w$action (label ="rep", weights =5, prob=c(1,3,1) , end=T)

> w$endState ()

> w$endStage ()

> w$stage () # stage n=3

> w$state(label ="good") # v=(3,0)

> w$action (label ="mt", weights =55, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =70, prob=c(1,0,0.2, 1,1,0.8), end=T)

> w$endState ()

> w$state(label ="average ") # v=(3,1)

> w$action (label ="mt", weights =40, prob=c(1,0,1) , end=T)

> w$action (label ="nmt", weights =50, prob=c(1,1,0.2, 1,2,0.8), end=T)

> w$endState ()

> w$state(label ="not working ") # v=(3,2)

> w$action (label ="mt", weights =30, prob=c(1,0,1) , end=T)

> w$action (label ="rep", weights =5, prob=c(1,3,1) , end=T)

> w$endState ()

> w$state(label ="replaced ") # v=(3,3)

> w$action (label ="Dummy", weights =0, prob=c(1,3,1) , end=T)

> w$endState ()

> w$endStage ()

> w$stage () # stage n=4

> w$state(label ="good", end=T) # v=(4,0)

> w$state(label ="average ", end=T) # v=(4,1)

> w$state(label ="not working ", end=T) # v=(4,2)

> w$state(label ="replaced ", end=T) # v=(4,3)

> w$endStage ()

> w$endProcess ()

> w$closeWriter ()

Statistics:

states : 14

actions: 18

weights: 1

Closing binary MDP writer.

A set of binary files (all with prefix machine_) containing the model have now been gen-
erated. Note how the model is generated in a hierarchical way. A process contain stages
which contain states which again contain actions. An action is defined by a set of weights
(in this case the net reward) and a set of transition probabilities. The probabilities are
defined using a vector of the form (q0, i0, p0, . . . ,qr, ir, pr) stating that r transitions are pos-
sible. Each triple (q j, i j, p j) define a transition. The number q j ∈ {0,1,2} is the scope of
the transition. If q j = 0 then we make a transition to the next stage in the parent process,
if q j = 1 we make a transition to the next stage in the current process and if q j = 2 we make
a transition to the first stage in the child process. The number i j define which state index
we consider at the next stage, e.g. if i j = 0 we consider the state with index 0 (remember
index start from zero). Finally, p j is the probability. For instance, (q j, i j, p j) = (1,3,0.2)
specify that we have a transition with probability 0.2 to the state with index 3 at the next
stage of the current process.
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2.2 Getting an overview

Various information about the whole model can be seen in R:

> stateIdxDf (prefix ) # states of the MDP with labels returned as a data frame

sId n0 s0 label

1 0 0 0 Dummy

2 1 1 0 good

3 2 1 1 average

4 3 2 0 good

5 4 2 1 average

6 5 2 2 not working

7 6 3 0 good

8 7 3 1 average

9 8 3 2 not working

10 9 3 3 replaced

11 10 4 0 good

12 11 4 1 average

13 12 4 2 not working

14 13 4 3 replaced

> actionInfo (prefix ) # all action information of the MDP returned in a single data

frame

aId sId scp0 idx0 pr0 scp1 idx1 pr1 label

1 0 0 1 0 0.7 1 1 0.3 buy

2 1 1 1 0 1.0 NA NA NA mt

3 2 1 1 0 0.6 1 1 0.4 nmt

4 3 2 1 0 1.0 NA NA NA mt

5 4 2 1 1 0.6 1 2 0.4 nmt

6 5 3 1 0 1.0 NA NA NA mt

7 6 3 1 0 0.5 1 1 0.5 nmt

8 7 4 1 0 1.0 NA NA NA mt

9 8 4 1 1 0.5 1 2 0.5 nmt

10 9 5 1 0 1.0 NA NA NA mt

11 10 5 1 3 1.0 NA NA NA rep

12 11 6 1 0 1.0 NA NA NA mt

13 12 6 1 0 0.2 1 1 0.8 nmt

14 13 7 1 0 1.0 NA NA NA mt

15 14 7 1 1 0.2 1 2 0.8 nmt

16 15 8 1 0 1.0 NA NA NA mt

17 16 8 1 3 1.0 NA NA NA rep

18 17 9 1 3 1.0 NA NA NA Dummy

Note that the data frame for the states show both each states unique id (a single number)
and index vector (the columns with names n<level> and s<level>). For the action data
frame each action is given an unique id.

2.3 Finding the optimal policy

A finite-horizon MDP can be solved using value iteration. First we load the model:

> mdp<-loadMDP(prefix )
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Cpu for reading the binary files: 0s

Cpu time for checking MDP 0s.

Cpu time for building state-expanded hypergraph 0s

> mdp

$binNames

[1] "machine_stateIdx.bin" "machine_stateIdxLbl.bin" "machine_actionIdx.bin"

[4] "machine_actionIdxLbl.bin" "machine_actionWeight.bin" "machine_actionWeightLbl.bin"

[7] "machine_transProb.bin"

$timeHorizon

[1] 5

$states

[1] 14

$founderStatesLast

[1] 4

$actions

[1] 18

$levels

[1] 1

$weightNames

[1] "Net reward"

$ptr

<pointer: 0x013a8fe8>

attr(,"class")

[1] "MDP:C++"

The object is a list containing basic information about the model and a pointer to the C++

object containing the model. Next, we solve the MDP using value iteration:

> iW<-0 # index of the weight we want to optimize

> scrapValues<-c(30,10,5,0) # scrap values of replacing the machine (the values of the

4 states at stage 4)

> valueIte (mdp , iW, termValues =scrapValues )

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

The MDP has now been optimized. The optimal policy can be extracted using:

> policy<-getPolicy(mdp , labels =TRUE) # optimal policy for each sId

> states<-stateIdxDf(prefix ) # information about the states

> policy<-merge(states ,policy ) # merge the two data frames

> policyW<-getPolicyW(mdp , iW) # the optimal rewards of the policy

> policy<-merge(policy ,policyW ) # add the rewards

> policy
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sId n0 s0 label aLabel w0

1 0 0 0 Dummy buy 102.2

2 1 1 0 good nmt 208.5

3 2 1 1 average mt 187.5

4 3 2 0 good nmt 147.5

5 4 2 1 average mt 125.0

6 5 2 2 not working mt 115.0

7 6 3 0 good mt 85.0

8 7 3 1 average mt 70.0

9 8 3 2 not working mt 60.0

10 9 3 3 replaced Dummy 0.0

11 10 4 0 good 30.0

12 11 4 1 average 10.0

13 12 4 2 not working 5.0

14 13 4 3 replaced 0.0

2.4 Modifying the MDP

It is possible to do some manipulations to the MDP already stored in memory. You may
remove some actions from the MDP. For instance assume that it is not possible to maintain
the machine at stage 1. We remove the mt actions at stage 1:

> removeAction(mdp , sId =1, iA =0) # remove action 0 at the state with sId=1

> removeAction(mdp , sId =2, iA =0)

Next, we try to optimize the MDP:

> valueIte (mdp , iW, termValues =scrapValues )

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

> policy<-getPolicy(mdp , labels =TRUE) # optimal policy for each sId

> states<-stateIdxDf(prefix ) # information about the states

> policy<-merge(states ,policy ) # merge the two data frames

> policyW<-getPolicyW(mdp , iW) # the optimal rewards of the policy

> policy<-merge(policy ,policyW ) # add the rewards

> policy

sId n0 s0 label aLabel w0

1 0 0 0 Dummy buy 97.25

2 1 1 0 good nmt 208.50

3 2 1 1 average nmt 171.00

4 3 2 0 good nmt 147.50

5 4 2 1 average mt 125.00

6 5 2 2 not working mt 115.00

7 6 3 0 good mt 85.00

8 7 3 1 average mt 70.00

9 8 3 2 not working mt 60.00

10 9 3 3 replaced Dummy 0.00

11 10 4 0 good 30.00

12 11 4 1 average 10.00

13 12 4 2 not working 5.00

14 13 4 3 replaced 0.00

8



We could also have removed the mt actions by fixing the nmt actions:

> fixAction (mdp , sId =1, iA =1) # remove all actions at state sId=1 except action 1

> fixAction (mdp , sId =2, iA =1)

You reset the MDP again with:

> resetActions(mdp) # reset the MDP such that all actions are used

It is possible to modify the weights of an action, e.g. assume that the cost of buying
the machine is 50 instead of 100:

> setActionWeight(mdp , w=-50 , sId =0, iA=0, iW=0)

The solution now becomes:

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

sId n0 s0 label aLabel w0

1 0 0 0 Dummy buy 152.2

2 1 1 0 good nmt 208.5

3 2 1 1 average mt 187.5

4 3 2 0 good nmt 147.5

5 4 2 1 average mt 125.0

6 5 2 2 not working mt 115.0

7 6 3 0 good mt 85.0

8 7 3 1 average mt 70.0

9 8 3 2 not working mt 60.0

10 9 3 3 replaced Dummy 0.0

11 10 4 0 good 30.0

12 11 4 1 average 10.0

13 12 4 2 not working 5.0

14 13 4 3 replaced 0.0

2.5 Evaluating a specific policy

We may evaluate a certain policy, e.g. the policy always to maintain the machine:

> setActionWeight(mdp , w=-100 , sId =0, iA=0, iW=0) # set weight to original

> policy<-data.frame(sId=states $sId ,iA =0)

> policy<-as .matrix (policy )

> setPolicy (mdp , policy )

If the policy matrix does not contain all states then the actions from the previous optimal
policy are used. Now let us calculate the expected reward of that policy:

> calcWeights (mdp , iW, termValues =scrapValues )

> policy<-getPolicy(mdp , labels =TRUE) # optimal policy for each sId

> states<-stateIdxDf(prefix ) # information about the states

> policy<-merge(states ,policy ) # merge the two data frames

> policyW<-getPolicyW(mdp , iW) # the optimal rewards of the policy

> policy<-merge(policy ,policyW ) # add the rewards

> policy
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sId n0 s0 label aLabel w0

1 0 0 0 Dummy buy 90.5

2 1 1 0 good mt 195.0

3 2 1 1 average mt 180.0

4 3 2 0 good mt 140.0

5 4 2 1 average mt 125.0

6 5 2 2 not working mt 115.0

7 6 3 0 good mt 85.0

8 7 3 1 average mt 70.0

9 8 3 2 not working mt 60.0

10 9 3 3 replaced Dummy 0.0

11 10 4 0 good 30.0

12 11 4 1 average 10.0

13 12 4 2 not working 5.0

14 13 4 3 replaced 0.0

3 Ordinary MDP with infinite time-horizon

For a sow it is relevant to consider at regular time intervals whether to keep the sow for a
period more or replace it by a new sow. Let a stage denote the time between two litters.
At the time of a stage we observe the state of the sow which in this simple example is the
current litter size small, average or big.

Two actions are possible, namely, keep or replace. Given an action 3 weights are
defined the duration, net reward and the number of piglets. The weights and transition
probabilities of an action are specified explicit when we generate the MDP:

> prefix ="sow_"

> w<-binaryMDPWriter(prefix )

> w$setWeights (c("Duration ", "Net reward ", "Piglets "))

> w$process ()

> w$stage ()

> w$state(label ="Small litter ")

> w$action (label ="Keep",weights =c(1,10000 ,8),prob=c(1,0,0.6, 1,1,0.3, 1,2,0.1))

> w$endAction ()

> w$action (label ="Replace ",weights =c(1 ,9000 ,8) ,prob=c(1,0,1/3, 1,1,1/3, 1,2,1 /3))

> w$endAction ()

> w$endState ()

> w$state(label ="Average litter ")

> w$action (label ="Keep",weights =c(1 ,12000 ,11),prob=c(1,0,0.2, 1,1,0.6, 1,2,0.2))

> w$endAction ()

> w$action (label ="Replace ",weights =c(1 ,11000 ,11),prob=c(1,0,1/3, 1,1,1/3, 1,2,1/3))

> w$endAction ()

> w$endState ()

> w$state(label ="Big litter ")

> w$action (label ="Keep",weights =c(1 ,14000 ,14),prob=c(1,0,0.1, 1,1,0.3, 1,2,0.6))

> w$endAction ()

> w$action (label ="Replace ",weights =c(1 ,13000 ,14),prob=c(1,0,1/3, 1,1,1/3, 1,2,1/3))

> w$endAction ()

> w$endState ()

> w$endStage ()

> w$endProcess ()

> w$closeWriter ()

Statistics:

states : 3
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actions: 6

weights: 3

Closing binary MDP writer.

Note that since we only have one stage at the founder level (level 0) the MDP have an
infinite time-horizon. That is, the MDP model a sow and all it successors (when a sow is
replaced, a new is always inserted).

Let us have a overview over the model

> stateIdxDf (prefix ) # states of the MDP with labels returned as a data frame

sId n0 s0 label

1 0 0 0 Small litter

2 1 0 1 Average litter

3 2 0 2 Big litter

> actionInfo (prefix ) # all action information of the MDP returned in a single data

frame

aId sId Duration Net reward Piglets scp0 idx0 pr0 scp1 idx1 pr1 scp2 idx2 pr2 label

1 0 0 1 10000 8 1 0 0.6000000 1 1 0.3000000 1 2 0.1000000 Keep

2 1 0 1 9000 8 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace

3 2 1 1 12000 11 1 0 0.2000000 1 1 0.6000000 1 2 0.2000000 Keep

4 3 1 1 11000 11 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace

5 4 2 1 14000 14 1 0 0.1000000 1 1 0.3000000 1 2 0.6000000 Keep

6 5 2 1 13000 14 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace

3.1 Finding the optimal policy under different criteria

Let us try to optimize our model under the expected discounted reward criterion. Here
two optimization techniques are possible. Let us first have a look at value iteration which
provide an approximate solution.

> mdp<-loadMDP(prefix )

Cpu for reading the binary files: 0s

Cpu time for checking MDP 0s.

Cpu time for building state-expanded hypergraph 0s

> mdp
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$binNames

[1] "sow_stateIdx.bin" "sow_stateIdxLbl.bin" "sow_actionIdx.bin" "sow_actionIdxLbl.bin"

[5] "sow_actionWeight.bin" "sow_actionWeightLbl.bin" "sow_transProb.bin"

$timeHorizon

[1] Inf

$states

[1] 3

$founderStatesLast

[1] 3

$actions

[1] 6

$levels

[1] 1

$weightNames

[1] "Duration" "Net reward" "Piglets"

$ptr

<pointer: 0x01d13728>

attr(,"class")

[1] "MDP:C++"

> ## solve the MDP using value iteration

> iW<-1 # index of the weight we want to optimize

> iDur<-0 # index of the duration/time

> rate<-0 .1 # discount rate

> rateBase<-1 # rate base

> valueIte (mdp , iW, iDur , rate , rateBase , times = 10000 , eps = 0.00001)

Run value iteration with epsilon = 1e-05 at most 10000 time(s)

using quantity 'Net reward' under expected discounted reward criterion

with 'Duration' as duration using interest rate 0.1 and rate basis equal 1.

Iterations: 211. Running time 0s.

> policy<-getPolicy(mdp , labels =TRUE) # optimal policy for each sId

> states<-stateIdxDf(prefix ) # information about the states

> policy<-merge(states ,policy ) # merge the two data frames

> policyW<-getPolicyW(mdp , iW) # the optimal rewards of the policy

> policy<-merge(policy ,policyW ) # add the rewards

> policy

sId n0 s0 label aLabel w1

1 0 0 0 Small litter Replace 124363.1

2 1 0 1 Average litter Keep 127287.7

3 2 0 2 Big litter Keep 130836.9
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First note that the we optimize the MDP for a specific interest rate which according to a
rate basis, i.e. if the rate is 0.1 and the rate base is 4 then the discount rate over one time
unit is exp(−0.1/4) = 0.9753. The discount rate over t time units then becomes

δ (t) = exp(−rate/rateBase)t .

Second, the parameter times denote an upper bound on the number of iterations. Finally,
the parameter eps denote the ε for stopping the algorithm. If the maximum difference
between the expected discounted reward of 2 states is below ε then the algorithm stops,
i.e the policy becomes epsilon optimal (see [4] p161).

Let us have a look at how value iteration performs for each iteration.

> termValues<-c(0,0,0)

> iterations<-1:211

> df<-data .frame(n=iterations ,a1=NA ,V1=NA ,D1=NA ,a2=NA ,V2=NA,D2=NA,a3=NA,V3=NA,D3=NA)

> for (i in iterations ) {

+ valueIte (mdp , iW , iDur , rate , rateBase , times = 1, eps = 0.00001 , termValues )

+ a<-getPolicy(mdp , labels =T)

+ w<-getPolicyW(mdp , iW)

+ res<-rep (NA ,10)

+ res [1] <-i

+ res [2] <-a [1,2]

+ res [3] <-round (w[1,2],2)

+ res [4] <-round (w[1,2] -termValues [1] ,2)

+ res [5] <-a [2,2]

+ res [6] <-round (w[2,2],2)

+ res [7] <-round (w[2,2] -termValues [2] ,2)

+ res [8] <-a [3,2]

+ res [9] <-round (w[3,2],2)

+ res [10] <-round (w[3,2] -termValues [3] ,2)

+ df[i,] <-res

+ termValues<-w[,2]

+ }

> df[c(1:3 ,51:53 ,151:153 ,210:211) ,]

n a1 V1 D1 a2 V2 D2 a3 V3 D3

1 1 Keep 10000 10000 Keep 12000 12000 Keep 14000 14000

2 2 Keep 19953.21 9953.21 Keep 22858.05 10858.05 Keep 25762.89 11762.89

3 3 Replace 29682.82 9729.61 Keep 32682.82 9824.77 Keep 35997.02 10234.13

51 51 Replace 123583.65 81.97 Keep 126508.29 81.97 Keep 130057.51 81.97

52 52 Replace 123657.82 74.17 Keep 126582.47 74.17 Keep 130131.69 74.17

53 53 Replace 123724.93 67.11 Keep 126649.58 67.11 Keep 130198.8 67.11

151 151 Replace 124363.03 0 Keep 127287.67 0 Keep 130836.89 0

152 152 Replace 124363.03 0 Keep 127287.68 0 Keep 130836.9 0

153 153 Replace 124363.03 0 Keep 127287.68 0 Keep 130836.9 0

210 210 Replace 124363.06 0 Keep 127287.71 0 Keep 130836.93 0

211 211 Replace 124363.06 0 Keep 127287.71 0 Keep 130836.93 0

Note value iteration converges very slowly to the optimal value.
Another optimization technique is policy iteration which finds an optimal policy. Let

us solve the MDP under the expected discount criterion.

> policyIteDiscount(mdp , iW, iDur , rate , rateBase )

13



Run policy iteration using quantity 'Net reward' under discounting criterion

with 'Duration' as duration using interest rate 0.1 and a rate basis equal 1.

Iteration(s): 1 2 3 finished.

> policy<-getPolicy(mdp , labels =TRUE)

> sIdx<-stateIdxDf(prefix )

> policy<-merge(sIdx ,policy )

> policyW<-getPolicyW(mdp , iW)

> policy<-merge(policy ,policyW )

> rpo<-calcRPO(mdp , iW , iA=0, criterion ="discount ", iDur=iDur , rate=rate ,

rateBase =rateBase )

> policy<-merge(policy ,rpo)

> policy $w1<-round (policy $w1 ,0)

> policy $rpo<-round (policy $rpo ,0)

> policy

sId n0 s0 label aLabel w1 rpo

1 0 0 0 Small litter Replace 124363 -455

2 1 0 1 Average litter Keep 127288 925

3 2 0 2 Big litter Keep 130837 2474

First, note that policy iteration converges fast only 3 iterations are needed. Second, we
also here try to calculate the retention payoff (RPO) or opportunity cost with respect to
action keep (action index 0). The RPO is the discounted gain of keeping the sow until her
optimal replacement time instead of replacing her now. For instance if we consider a sow
with a big litter we loose 2474 by replacing the sow instead keeping her to her until her
optimal replacement time. That is, if the RPO is positive the optimal decision is to keep
the sow and if the RPO is negative the optimal decision is to replace the sow.

Other criteria can also be optimized using policy iteration. For instance we can maxi-
mize the average reward over time:

> g<-policyIteAve(mdp , iW , iDur)

Run policy iteration under average reward criterion using

reward 'Net reward' over 'Duration'. Iterations (g):

1 (12000) 2 (12187.5) 3 (12187.5) finished.

> policy<-getPolicy(mdp , labels =TRUE)

> policy<-merge(sIdx ,policy )

> policyW<-getPolicyW(mdp , iW)

> policy<-merge(policy ,policyW )

> rpo<-calcRPO(mdp , iW , iA=0, criterion ="average ", iDur = iDur , g=g)

> policy<-merge(policy ,rpo)

> policy $w1<-round (policy $w1 ,0)

> policy $rpo<-round (policy $rpo ,0)

> policy
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sId n0 s0 label aLabel w1 rpo

1 0 0 0 Small litter Replace -6688 -656

2 1 0 1 Average litter Keep -3813 875

3 2 0 2 Big litter Keep 0 2688

Here g is the average reward pr time unit and the weights are relative values compared to
the big litter state.

We may also maximize the average reward over piglets:

> iDur<-2

> g<-policyIteAve(mdp , iW , iDur=iDur)

Run policy iteration under average reward criterion using

reward 'Net reward' over 'Piglets'. Iterations (g):

1 (1090.91) 2 (1095.81) 3 (1095.81) finished.

> policy<-getPolicy(mdp , labels =TRUE)

> policy<-merge(sIdx ,policy )

> policyW<-getPolicyW(mdp , iW)

> policy<-merge(policy ,policyW )

> rpo<-calcRPO(mdp , iW , iA=0, criterion ="average ", iDur = iDur , g=g)

> policy<-merge(policy ,rpo)

> policy $w1<-round (policy $w1 ,0)

> policy $rpo<-round (policy $rpo ,0)

> policy

sId n0 s0 label aLabel w1 rpo

1 0 0 0 Small litter Keep 4772 2198

2 1 0 1 Average litter Keep 2251 964

3 2 0 2 Big litter Replace 0 -189

Here g is the average reward pr piglet and the weights are relative values compared to the
big litter state.

3.2 Calculating other key figures for the optimal policy

Consider the optimal policy under the expected discounted reward criterion:

> policyIteDiscount(mdp , iW, iDur , rate , rateBase )

Run policy iteration using quantity 'Net reward' under discounting criterion

with 'Piglets' as duration using interest rate 0.1 and a rate basis equal 1.

Iteration(s): 1 2 finished.
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> policy<-getPolicy(mdp , labels =TRUE)

> sIdx<-stateIdxDf(prefix )

> policy<-merge(sIdx ,policy )

> policyW<-getPolicyW(mdp , iW)

> policy<-merge(policy ,policyW )

> rpo<-calcRPO(mdp , iW , iA=0, criterion ="discount ", iDur=iDur , rate=rate ,

rateBase =rateBase )

> policy<-merge(policy ,rpo)

> policy $w1<-round (policy $w1 ,0)

> policy $rpo<-round (policy $rpo ,0)

> policy

sId n0 s0 label aLabel w1 rpo

1 0 0 0 Small litter Keep 18161 964

2 1 0 1 Average litter Keep 18047 974

3 2 0 2 Big litter Keep 18524 1025

Since other weights are defined for each action we can calculate the average number of
piglets per time unit under the optimal policy:

> g<-calcWeights(mdp , iW=2, criterion ="average ", iDur = 0)

> g

[1] 11

or the average reward per piglet:

> g<-calcWeights(mdp , iW=1, criterion ="average ", iDur = 2)

> g

[1] 1090.909

4 Hierarchical MDP with infinite time-horizon

We consider a cow replacement problem where we want to represent the age of the cow,
i.e. the lactation number of the cow. During a lactation a cow may have a high, average
or low yield. We assume that a cow is always replaced after 4 lactations.

In addition to lactation and milk yield we also want to take the genetic merit into
account which is either bad, average or good. When a cow is replaced we assume that the
probability of a bad, average or good heifer is equal.

We formulate the problem as a hierarchical MDP with 2 levels. At level 0 the states
are the genetic merit and the length of a stage is a life of a cow. At level 1 a stage describe
a lactation and states describe the yield. Decisions at level 1 are keep or replace.

Note the MDP runs over an infinite time-horizon at the founder level where each state
(genetic merit) define an ordinary MDP at level 1 with 4 lactations.
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4.1 Generating the MDP

To generate the MDP we need to know the weights and transition probabilities which are
provided in a csv file. To ease the understanding we provide 2 functions for reading from
the csv:

> cowDf<-read .csv("cow .csv ")

> head(cowDf)

s0 n1 s1 label Duration Reward Output scp0 idx0 pr0 scp1 idx1 pr1 scp2 idx2 pr2

1 0 0 0 Dummy 0 0 0 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333

2 0 1 0 Keep 1 6000 3000 1 0 0.6000000 1 1 0.3000000 1 2 0.1000000

3 0 1 0 Replace 1 5000 3000 0 0 0.3333333 0 1 0.3333333 0 2 0.3333333

4 0 1 1 Keep 1 8000 4000 1 0 0.2000000 1 1 0.6000000 1 2 0.2000000

5 0 1 1 Replace 1 7000 4000 0 0 0.3333333 0 1 0.3333333 0 2 0.3333333

6 0 1 2 Keep 1 10000 5000 1 0 0.1000000 1 1 0.3000000 1 2 0.6000000

> lev1W<-function(s0Idx ,n1Idx ,s1Idx ,a1Lbl ) {

+ r<-subset (cowDf ,s0== s0Idx & n1==n1Idx & s1== s1Idx & label == a1Lbl)

+ return (as.numeric (r[5:7]) )

+ }

> lev1W (2,2,1, ' Keep ' ) # good genetic merit , lactation 2, avg yield , keep action

[1] 1 14000 7000

> lev1Pr<-function(s0Idx ,n1Idx ,s1Idx ,a1Lbl) {

+ r<-subset (cowDf ,s0== s0Idx & n1==n1Idx & s1== s1Idx & label == a1Lbl)

+ return (as.numeric (r[8:16]) )

+ }

> lev1Pr (2,2,1, ' Replace ') # good genetic merit , lactation 2, avg yield , replace action

[1] 0.0000000 0.0000000 0.3333333 0.0000000 1.0000000 0.3333333 0.0000000 2.0000000 0.3333333

> lblS0<-c ( ' Bad genetic level ' , ' Avg genetic level ' , ' Good genetic level ')
> lblS1<-c ( ' Low yield ' , ' Avg yield ' , ' High yield ' )
> prefix<- "cow_"

> w<-binaryMDPWriter(prefix )

> w$setWeights (c("Duration ", "Net reward ", "Yield"))

> w$process ()

> w$stage () # stage 0 at founder level

> for (s0 in 0:2) {

+ w$state(label=lblS0[s0+1]) # state at founder

+ w$action (label="Keep", weights =c(0,0,0), prob=c(2,0,1)) # action at founder

+ w$process ()

+ w$stage () # dummy stage at level 1

+ w$state(label="Dummy")

+ w$action (label="Dummy", weights =c(0,0,0) , prob=c(1,0,1/3, 1,1,1/3,

1,2,1 /3))

+ w$endAction ()

+ w$endState ()

+ w$endStage ()

+ for (d1 in 1:4) {
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+ w$stage () # stage at level 1

+ for (s1 in 0:2) {

+ w$state(label=lblS1[s1+1])

+ if (d1!=4) {

+ w$action (label ="Keep", weights =lev1W(s0 ,d1 ,s1 ,"Keep"),

prob=lev1Pr (s0 ,d1 ,s1 ,"Keep"))

+ w$endAction ()

+ }

+ w$action (label="Replace ", weights =lev1W(s0 ,d1 ,s1 ,"Replace "),

prob=lev1Pr (s0 ,d1 ,s1 ,"Replace "))

+ w$endAction ()

+ w$endState ()

+ }

+ w$endStage ()

+ }

+ w$endProcess ()

+ w$endAction ()

+ w$endState ()

+ }

> w$endStage ()

> w$endProcess ()

> w$closeWriter ()

Statistics:

states : 42

actions: 69

weights: 3

Closing binary MDP writer.

4.2 Finding the optimal policy

We find the optimal policy under the expected discounted reward criterion the MDP using
policy iteration:

> ## solve under discount criterion

> mdp<-loadMDP(prefix )

Cpu for reading the binary files: 0.03s

Cpu time for checking MDP 0s.

Cpu time for building state-expanded hypergraph 0.016s

> iW<-1 # index of the weight we want to optimize (net reward )

> iDur<-0 # index of the duration/time

> rate<-0 .1 # discount rate

> rateBase<-1 # rate base , i.e. given a duration of t the rate is

> sIdx<-stateIdxDf(prefix )

> policyIteDiscount(mdp , iW, iDur , rate , rateBase )

Run policy iteration using quantity 'Net reward' under discounting criterion

with 'Duration' as duration using interest rate 0.1 and a rate basis equal 1.

Iteration(s): 1 2 3 4 finished.
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> policy<-getPolicy(mdp , labels =TRUE)

> policy<-merge(sIdx ,policy )

> policyW<-getPolicyW(mdp , iW)

> policy<-merge(policy ,policyW )

> rpo<-calcRPO(mdp , iW , iA=0, criterion ="discount ", iDur=iDur , rate=rate ,

rateBase =rateBase )

> policy<-merge(policy ,rpo)

> policy

sId n0 s0 a0 n1 s1 label aLabel w1 rpo

1 0 0 0 NA NA NA Bad genetic level Keep 115594.1 0.00000

2 1 0 0 0 0 0 Dummy Dummy 115594.1 0.00000

3 2 0 0 0 1 0 Low yield Replace 113594.1 -2095.39618

4 3 0 0 0 1 1 Avg yield Replace 115594.1 -1190.55876

5 4 0 0 0 1 2 High yield Replace 117594.1 -285.72134

6 5 0 0 0 2 0 Low yield Replace 115594.1 -2095.39618

7 6 0 0 0 2 1 Avg yield Replace 117594.1 -1190.55876

8 7 0 0 0 2 2 High yield Replace 119594.1 -285.72134

9 8 0 0 0 3 0 Low yield Replace 115594.1 -3000.23360

10 9 0 0 0 3 1 Avg yield Replace 117594.1 -2095.39618

11 10 0 0 0 3 2 High yield Replace 119594.1 -1190.55876

12 11 0 0 0 4 0 Low yield Replace 114594.1 0.00000

13 12 0 0 0 4 1 Avg yield Replace 116594.1 0.00000

14 13 0 0 0 4 2 High yield Replace 118594.1 0.00000

15 14 0 1 NA NA NA Avg genetic level Keep 118982.8 0.00000

16 15 0 1 0 0 0 Dummy Dummy 118982.8 0.00000

17 16 0 1 0 1 0 Low yield Keep 115675.2 81.05822

18 17 0 1 0 1 1 Avg yield Keep 118946.8 1352.67520

19 18 0 1 0 1 2 High yield Keep 122326.4 2732.26494

20 19 0 1 0 2 0 Low yield Replace 117594.1 -229.70139

21 20 0 1 0 2 1 Avg yield Keep 120325.3 731.15596

22 21 0 1 0 2 2 High yield Keep 123454.2 1860.07314

23 22 0 1 0 3 0 Low yield Replace 117594.1 -1190.55876

24 23 0 1 0 3 1 Avg yield Replace 119594.1 -285.72134

25 24 0 1 0 3 2 High yield Keep 122213.2 619.11607

26 25 0 1 0 4 0 Low yield Replace 116594.1 0.00000

27 26 0 1 0 4 1 Avg yield Replace 118594.1 0.00000

28 27 0 1 0 4 2 High yield Replace 120594.1 0.00000

29 28 0 2 NA NA NA Good genetic level Keep 125468.3 0.00000

30 29 0 2 0 0 0 Dummy Dummy 125468.3 0.00000

31 30 0 2 0 1 0 Low yield Keep 121968.9 4374.75204

32 31 0 2 0 1 1 Avg yield Keep 125468.3 5874.15939

33 32 0 2 0 1 2 High yield Keep 128967.7 7373.56674

34 33 0 2 0 2 0 Low yield Keep 122087.6 2493.51826

35 34 0 2 0 2 1 Avg yield Keep 125401.8 3807.72105

36 35 0 2 0 2 2 High yield Keep 128716.0 5121.92385

37 36 0 2 0 3 0 Low yield Keep 120213.2 619.11607

38 37 0 2 0 3 1 Avg yield Keep 123118.1 1523.95349

39 38 0 2 0 3 2 High yield Keep 126022.9 2428.79091

40 39 0 2 0 4 0 Low yield Replace 118594.1 0.00000

41 40 0 2 0 4 1 Avg yield Replace 120594.1 0.00000

42 41 0 2 0 4 2 High yield Replace 122594.1 0.00000

4.3 Visual view of the hierarchical structure of the MDP

The program MLHMP is a Java implementation of some algorithms for solving MDPs
[2]. It have a graphical user interface where the hierarchical structure of the MDP can be
visualized. A model can be loaded into MLHMP using the HMP format which is an XML
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file containing the model. The MDP package contain a function for converting the binary
files to the HMP format:

> convertBinary2HMP(prefix )

Model saved to file: cow_converted.hmp

Converted binary files to hmp format.

user system elapsed

0.46 0.00 0.47

The function create the file cow_converted.hmp which can be opened by MLHMP.
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