Solving MDPs using the MDP package in R

Lars Relund Nielsen*
Department of Genetics and Biotechnology, University of Aarhus, P.O. Box 50, DK-8830 Tjele,

Denmark, lars@relund. dk.

Anders Ringgaard Kristensen
Department of Large Animal Sciences, University of Copenhagen, Groennegaardsvej 2, DK-1870
Frederiksberg C, Denmark.

July 26, 2009

1 Introduction

The MDP package in R is a package for solving Markov decision processes (MDPs) with
discrete time-steps, states and actions. Both ordinary [4] and hierarchial MDPs [1] can be
solved. In this paper we use the term MDP for both types of MDPs.

Generating and solving an MDP is done in two steps. First, the MDP is generated and
saved in a set of binary files. Next, you load the MDP into memory from the binary files
and solve it.

The package uses algorithms based on the state-expanded directed hypergraph of the
MDP [3] which are all implemented in C++ for fast running times. Under development is
also support for MLHMP which is a Java implementation of algorithms for solving MDPs
[2]. A hypergraph representing an MDP with time-horizon N =5 is shown in Figure [Il
Each node corresponds to a specific state in the MDP and a directed hyperarc is defined
for each possible action. For instance, node Vo1 corresponds to a state number 1 at stage
2. The two hyperarcs with head in node vz g show that two actions are possible given state
number 0 at stage 3. Action mt corresponds to a deterministic transition to state number
zero at stage 4 and action nmt corresponds to a transition to state number 0 or 1 at stage
4 with a certain probability greater than zero.

States and actions can be identified using either an unique id or index vector v. In an
ordinary MDP the index vector consists of the stage and state number, i.e. state corre-
sponding to node vz 1 in Figure [Il is uniquely identified using v = (n,s) = (3,1). Similar,
action buy is uniquely identified using v = (n,s,a) = (0,0,0). Note that index always
start from zero.

*Corresponding author

lars@relund.dk

Figure 1: A state-expanded hypergraph for an MDP with time horizon N =5. At stage
N each node Vpj corresponds to a state in .#,. The hyperarcs correspond to actions, e.g. if
the system at stage 3 is in state number 1 then there are two possible actions. Action mt
results in a deterministic transition to state zero (because there is only one tail) at stage 4
and nmt results in a transition to either state number 1 or 2 with a certain probability.

Q

o child process
RN
>
g ——v=(0,1)

@ child process

ap AA
~
E child processes
5 child process

Jv=(0,11,21)

N e ® O
— : : - -
o : : - -
3 - ‘ - -
8 O O O\ ©

Figure 2: A hypergraph representation of the first stage of a hierarchical MDP. Level
0 indicate the founder level, and the nodes indicates states at the different levels. A
child process (oval box) is represented using its state-expanded hypergraph (hyperarcs not
shown) and is uniquely defined by a given state and action of its parent process.

A hierarchical MDP is an MDP with parameters defined in a special way, but never-
theless in accordance with all usual rules and conditions relating to such processes |1]. The
basic idea of the hierarchical structure is that stages of the process can be expanded to
a so-called child process, which again may expand stages further to new child processes
leading to multiple levels. To illustrate consider the MDP shown in Figure 2. The process
has three levels. At Level 2 we have a set of ordinary MDPs with finite time-horizon
(one for each oval box) which all can be represented using a state-expanded hypergraph
(hyperarcs not shown, only hyperarcs connecting processes are shown). An MDP at Level
2 is uniquely defined by a given state S and action a of its parent process at Level 1
(illustrated by the arcs with head and tail node at Level 1 and Level 2, respectively).
Moreover, when a child process at Level 2 terminates a transition from a state s€ .y of
the child process to a state at the next stage of the parent process occur (illustrated by
the (hyper)arcs having head and tail at Level 2 and Level 1, respectively). Since a child
process is always defined by a stage, state and action of the parent process we have that
for instance a state at level 1 have an index vector vV = (ng,So, a0, N1,S1).

In general a state S and action a at level | can be uniquely identified using

Vs = (n07507807n17517'"an|7a>
Va = (Mo, S0,80,N1,S1; -+ M, S, &)
The index vector of three states is illustrated in Figure 2
Another way to identify a state or action is using an id number. Id numbers can be
seen when printing information about the model i R. This will be further clarified in the

example in Section 2l
Now let us have a look at package. The package can be installed from R-Forge using

> install.packages ("MDP",repos="http://r-forge.r-project .org")

and afterwards loaded

> library (MDP)

Help about the package can be seen by writing

> 7?MDP

We illustrate the package capabilities by some examples in the next sections.

2 Ordinary MDP with finite time-horizon

Consider the machine replacement example from Nielsen and Kristensen [3] where the
machine is always replaced after 4 years. The state of the machine may be: good, average,
and not working. Given the machine’s state we may maintain the machine. In this case the
machine’s state will be good at the next decision epoch. Otherwise, the machine’s state
will not be better at next decision epoch. When the machine is bought it may be either in
state good or average. Moreover, if the machine is not working it must be replaced.

(n,s) (1,0) (1,1 (2,0) (2,1) (3,0 (3,1)
reward 70 50 70 50 70 50
g {0,1} {1,2} {0,1} {1,2} {0,1} {1,2}

Pn(- | S, nmt) 10710} {10710} {10710} {10710} {10710} {10710

Table 1: Input data for the machine replacement problem given action nmt.

The problem of when to replace the machine can be modelled using a Markov decision
process with N =5 decision epochs. We use system states good (state 0), average (state
1), not working (state 2) and dummy state replaced together with actions buy (buy),
maintain (mt), no maintenance (nmt), and replace (rep).

The set of states at stage zero & contains a single dummy state Sy representing the
machine before knowing its initial state. The only possible action is buy.

The cost of buying the machine is 100 with transition probability of 0.7 to state good
and 0.3 to state average. The reward (scrap value) of replacing a machine is 30, 10, and 5
in state 0, 1, and 2, respectively. The reward of the machine given action mt becomes 55,
40, and 30 given state 0, 1, and 2, respectively. Moreover, the system enters state 0 with
probability 1 at the next stage. Finally, Table [Il shows the reward, transition states and
probabilities given action nmt.

The state-expanded hypergraph is shown in Figure [Il It contains a hyperarc for each
possible action a given stage n and state s€ §,. The head node of a hyperarc corresponds
to the state of the system before action ais taken and the tail nodes to the possible system
states after action a is taken.

2.1 Generating the MDP
We generate the model in R using the binaryMDPWriter:

prefix<-"machine_"
w <- binaryMDPWriter (prefix)
w§setWeights (c("Net reward"))
w$process ()
w$stage () # stage n=0
w$state (label="Dummy") # v=(0,0)
w$action(label="buy", weights=-100, prob=c(1,0,0.7, 1,1,0.3), end=T)
w$endState ()
w$endStage ()
w$stage () # stage n=1
w$state (label="good") # v=(1,0)
w$action(label="mt", weights=55, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=70, prob=c(1,0,0.6, 1,1,0.4), end=T)
w$endState ()
w$state(label="average") # v=(1,1)
w$action(label="mt", weights=40, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=50, prob=c(1,1,0.6, 1,2,0.4), end=T)
w$endState ()
w$endStage ()
w$stage () # stage n=2
w$state (label="good") # v=(2,0)
w$action(label="mt", weights=55, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=70, prob=c(1,0,0.5, 1,1,0.5), end=T)

VVVVVVVVVVVVVVVVVVVYVYVYVYV

w$endState ()
w$§state(label="average") # v=(2,1)
w$action(label="mt", weights=40, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=50, prob=c(1,1,0.5, 1,2,0.5), end=T)
w$endState ()
w$state(label="not working") # v=(2,2)
w$action(label="mt", weights=30, prob=c(1,0,1), end=T)
w$action(label="rep", weights=5, prob=c(1,3,1), end=T)
w$endState ()
w$endStage ()
w$stage () # stage n=3
w$state (label="good") # v=(3,0)
w$action(label="mt", weights=55, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=70, prob=c(1,0,0.2, 1,1,0.8), end=T)
w$endState ()
w$state(label="average") # v=(3,1)
w$action(label="mt", weights=40, prob=c(1,0,1), end=T)
w$action(label="nmt", weights=50, prob=c(1,1,0.2, 1,2,0.8), end=T)
w$endState ()
w$state(label="not working") # v=(3,2)
w$action(label="mt", weights=30, prob=c(1,0,1), end=T)
w$action(label="rep", weights=5, prob=c(1,3,1), end=T)
w$endState ()
w§state (label="replaced") # v=(3,3)
w$action(label="Dummy", weights=0, prob=c(1,3,1), end=T)
w$endState ()
w$endStage ()
w$stage () # stage n=4

w$state (label="good", end=T) # v=(4,0)
w$state(label="average", end=T) # v=(04,1)
w$state (label="not working", end=T) # v=(4,2)
w$state(label="replaced", end=T) # v=(4,3)

w$endStage ()
w$endProcess ()
w$closeWriter ()

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVVYV

Statistics:
states : 14
actions: 18
weights: 1

Closing binary MDP writer.

A set of binary files (all with prefix machine_) containing the model have now been gen-
erated. Note how the model is generated in a hierarchical way. A process contain stages
which contain states which again contain actions. An action is defined by a set of weights
(in this case the net reward) and a set of transition probabilities. The probabilities are
defined using a vector of the form (qo,io, Po,---,0r,ir, Pr) stating that r transitions are pos-
sible. Each triple (qj,ij, pj) define a transition. The number qj € {0,1,2} is the scope of
the transition. If gj = O then we make a transition to the next stage in the parent process,
if gj = 1 we make a transition to the next stage in the current process and if gj = 2 we make
a transition to the first stage in the child process. The number ij define which state index
we consider at the next stage, e.g. if i; =0 we consider the state with index 0 (remember
index start from zero). Finally, pj is the probability. For instance, (qj,ij, pj) = (1,3,0.2)
specify that we have a transition with probability 0.2 to the state with index 3 at the next
stage of the current process.

2.2 Getting an overview

Various information about the whole model can be seen in R:

> stateIdxDf (prefix) # states of the MDP with labels returned as a data frame
sId n0 sO label

1 0 0 O Dummy

2 1 1 0 good

3 2 1 1 average

4 3 2 0 good

5 4 2 1 average

6 5 2 2 not working

7 6 3 0 good

8 7 3 1 average

9 8 3 2 not working

10 9 3 3 replaced

11 10 4 O good

12 11 4 1 average

13 12 4 2 not working

14 13 4 3 replaced

> actionInfo (prefix) # all action information of the MDP returned in a single data

frame

ald sId scpO idx0 prO scpl idxl prl label
1 0o 0 1 00.7 1 1 0.3 buy
2 1 1 1 01.0 NA NA NA mt
3 2 1 1 0 0.6 1 1 0.4 nmt
4 3 2 1 01.0 NA NA NA mt
5 4 2 1 10.6 1 2 0.4 nmt
6 5 3 1 01.0 NA NA NA mt
7 6 3 1 0 0.5 1 1 0.5 nmt
8 7 4 1 01.0 NA NA NA mt
9 8 4 1 10.5 1 2 0.5 nmt
10 9 5 1 01.0 NA NA NA mt
11 10 5 1 31.0 NA NA NA rep
12 11 6 1 01.0 NA NA NA mt
13 12 6 1 00.2 1 1 0.8 nmt
14 13 7 1 01.0 NA NA NA mt
15 14 7 1 10.2 1 2 0.8 nmt
16 15 8 1 01.0 NA NA NA mt
17 16 8 1 31.0 NA NA NA rep
18 17 9 1 31.0 NA NA NA Dummy

Note that the data frame for the states show both each states unique id (a single number)
and index vector (the columns with names n<level> and s<level>). For the action data
frame each action is given an unique id.

2.3 Finding the optimal policy
A finite-horizon MDP can be solved using value iteration. First we load the model:

> mdp<-loadMDP(prefix)

Cpu for reading the binary files: Os
Cpu time for checking MDP Os.
Cpu time for building state-expanded hypergraph Os

> mdp

$binNames
[1] "machine_stateIdx.bin"

$timeHorizon
[1] 5

$states
[1] 14

$founderStatesLast
[1] 4

$actions
[1] 18

$levels
[1] 1

$weightNames
[1] "Net reward"

$ptr
<pointer: 0x013a8fe8>

attr(,"class")
[1] "MDP:C++"

[4] "machine_actionIdxLbl.bin"
[7] "machine_transProb.bin"

"machine_stateIdxLbl.bin"
"machine_actionWeight.bin"

"machine_actionIdx.bin"
"machine_actionWeightLbl.bin"

The object is a list containing basic information about the model and a pointer to the C++
object containing the model. Next, we solve the MDP using value iteration:

iW<-0

states at stage 4)

V&V V

scrapValues<-c(30,10,5,0)

index of the weight we want to optimize

valueIte (mdp, iW, termValues=scrapValues)

scrap values of replacing the machine (the values of the

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

The MDP has now been optimized. The optimal policy can be extracted using:

V V.V V VYV

policy

policy<-getPolicy(mdp,
states<-stateIdxDf (prefix)
policy<-merge(states ,policy)
policyW<-getPolicyW(mdp, iW)
policy<-merge(policy ,policyW)

labels=TRUE)

HOH R W W

optimal policy for each sId
information about the states
merge the two data frames

the optimal rewards of the policy
add the rewards

sId nO sO label alabel

=
o

1 0 0 O Dummy buy 102.2
2 1 1 0 good nmt 208.5
3 2 1 1 average mt 187.5
4 3 2 0 good nmt 147.5
5 4 2 1 average mt 125.0
6 5 2 2 not working mt 115.0
7 6 3 0 good mt 85.0
8 7 3 1 average mt 70.0
9 8 3 2 not working mt 60.0
10 9 3 3 replaced Dummy 0.0
11 10 4 0 good 30.0
12 11 4 1 average 10.0
13 12 4 2 not working 5.0
14 13 4 3 replaced 0.0

2.4 Modifying the MDP

It is possible to do some manipulations to the MDP already stored in memory. You may
remove some actions from the MDP. For instance assume that it is not possible to maintain
the machine at stage 1. We remove the mt actions at stage 1:

> removeAction(mdp, sId=1, iA=0) # remove action 0 at the state with sId=1
> removeAction(mdp, sId=2, iA=0)

Next, we try to optimize the MDP:

> valuelte (mdp, iW, termValues=scrapValues)

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

> policy<-getPolicy(mdp, labels=TRUE) # optimal policy for each sId
> states<-stateIdxDf (prefix) # information about the states
> policy<-merge(states ,policy) # merge the two data frames
> policyW<-getPolicyW(mdp, iW) # the optimal rewards of the policy
> policy<-merge(policy ,policyW) # add the rewards
> policy
sId n0 sO label aLabel w0
1 0 0 O Dummy buy 97.25
2 11 0 good nmt 208.50
3 2 1 1 average nmt 171.00
4 3 2 0 good nmt 147.50
5 4 2 1 average mt 125.00
6 5 2 2 not working mt 115.00
7 6 3 0 good mt 85.00
8 7 3 1 average mt 70.00
9 8 3 2 not working mt 60.00
10 9 3 3 replaced Dummy 0.00
11 10 4 O good 30.00
12 11 4 1 average 10.00
13 12 4 2 not working 5.00
14 13 4 3 replaced 0.00

We could also have removed the mt actions by fixing the nmt actions:

> fixAction (mdp, sId=1, iA=1) # remove all actions at state sId=1 except action 1
> fixAction (mdp, sId=2, iA=1)

You reset the MDP again with:

> resetActions (mdp) # reset the MDP such that all actions are used

It is possible to modify the weights of an action, e.g. assume that the cost of buying
the machine is 50 instead of 100:

> setActionWeight (mdp, w=-50, sId=0, iA=0, iW=0)

The solution now becomes:

Run value iteration using quantity 'Net reward' under expected reward criterion. Finished (0s).

sId n0 sO label aLabel w0
1 0 0 O Dummy buy 152.2
2 1 1 0 good nmt 208.5
3 2 1 1 average mt 187.5
4 3 2 0 good nmt 147.5
5 4 2 1 average mt 125.0
6 5 2 2 not working mt 115.0
7 6 3 O good mt 85.0
8 7 3 1 average mt 70.0
9 8 3 2 not working mt 60.0
10 9 3 3 replaced Dummy 0.0
11 10 4 © good 30.0
12 11 4 1 average 10.0
13 12 4 2 not working 5.0
14 13 4 3 replaced 0.0

2.5 Evaluating a specific policy

We may evaluate a certain policy, e.g. the policy always to maintain the machine:

setActionWeight (mdp, w=-100, sId=0, iA=0, iW=0) # set weight to original
policy<-data.frame(sId=states$sId,iA=0)

policy<-as .matrix (policy)

setPolicy (mdp, policy)

vV V Vv Vv

If the policy matrix does not contain all states then the actions from the previous optimal
policy are used. Now let us calculate the expected reward of that policy:

> calcWeights (mdp, iW, termValues=scrapValues)

> policy<-getPolicy(mdp, labels=TRUE) # optimal policy for each sId

> states<-stateIdxDf (prefix) # information about the states

> policy<-merge(states ,policy) # merge the two data frames

> policyW<-getPolicyW(mdp, iW) # the optimal rewards of the policy
> policy<-merge(policy ,policyW) # add the rewards

> policy

sId n0 sO label aLabel w0
1 0O 0 O Dummy buy 90.5
2 1 1 0 good mt 195.0
3 2 1 1 average mt 180.0
4 3 2 0 good mt 140.0
5 4 2 1 average mt 125.0
6 5 2 2 not working mt 115.0
7 6 3 O good mt 85.0
8 7 3 1 average mt 70.0
9 8 3 2 not working mt 60.0
10 9 3 3 replaced Dummy 0.0
11 10 4 O good 30.0
12 11 4 1 average 10.0
13 12 4 2 not working 5.0
14 13 4 3 replaced 0.0

3 Ordinary MDP with infinite time-horizon

For a sow it is relevant to consider at regular time intervals whether to keep the sow for a
period more or replace it by a new sow. Let a stage denote the time between two litters.
At the time of a stage we observe the state of the sow which in this simple example is the
current litter size small, average or big.

Two actions are possible, namely, keep or replace. Given an action 3 weights are
defined the duration, net reward and the number of piglets. The weights and transition
probabilities of an action are specified explicit when we generate the MDP:

prefix="sow_"
w<-binaryMDPWriter (prefix)
w$§setWeights (c("Duration", "Net reward", "Piglets"))
w$process ()
w$stage ()
w$state(label="Small litter")
w$action(label="Keep",weights=c(1,10000,8) ,prob=c(1,0,0.6, 1,1,0.3, 1,2,0.1))
w$endAction ()
w$action(label="Replace" ,weights=c(1,9000,8) ,prob=c(1,0,1/3, 1,1,1/3, 1,2,1/3))
w$endAction ()
w$endState ()
wstate(label="Average litter")
w$action(label="Keep",weights=c(1,12000,11),prob=c(1,0,0.2, 1,1,0.6, 1,2,0.2))
w$endAction ()
w$action(label="Replace" ,weights=c(1,11000,11) ,prob=c(1,0,1/3, 1,1,1/3, 1,2,1/3))
w$endAction ()
w$endState ()
w$state (label="Big litter")
w$action(label="Keep",weights=c(1,14000,14) ,prob=c(1,0,0.1, 1,1,0.3, 1,2,0.6))
w$endAction ()
w$action(label="Replace" ,weights=c(1,13000,14) ,prob=c(1,0,1/3, 1,1,1/3, 1,2,1/3))
w$endAction ()
w$endState ()
w$endStage ()
w$endProcess ()
w$closeWriter ()

VVVVVVVVVVVVVVVVVVVVVVVYVVYV

Statistics:
states : 3

10

actions: 6
weights: 3

Closing binary MDP writer.

Note that since we only have one stage at the founder level (level 0) the MDP have an
infinite time-horizon. That is, the MDP model a sow and all it successors (when a sow is
replaced, a new is always inserted).

Let us have a overview over the model

> stateIdxDf (prefix) # states of the MDP with labels returned as a data frame

sId nO sO label
1 0O 0 0 Small litter
2 1 0 1 Average litter

3 2 0 2 Big litter
> actionInfo (prefix) # all action information of the MDP returned in a single data
frame

ald sId Duration Net reward Piglets scpO idxO pr0 scpl idx1 prl scp2 idx2 pr2 label
1 0 O 1 10000 8 1 0 0.6000000 1 1 0.3000000 1 2 0.1000000 Keep
2 1 0 1 9000 8 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace
3 2 1 1 12000 11 1 0 0.2000000 1 1 0.6000000 1 2 0.2000000 Keep
4 3 1 1 11000 11 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace
5 4 2 1 14000 14 1 0 0.1000000 1 1 0.3000000 1 2 0.6000000 Keep
6 5 2 1 13000 14 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333 Replace

3.1 Finding the optimal policy under different criteria

Let us try to optimize our model under the expected discounted reward criterion. Here
two optimization techniques are possible. Let us first have a look at value iteration which
provide an approximate solution.

> mdp<-loadMDP (prefix)

Cpu for reading the binary files: Os
Cpu time for checking MDP Os.
Cpu time for building state-expanded hypergraph Os

> mdp

11

$binNames
[1] "sow_stateIdx.bin"
[5] "sow_actionWeight.bin"

"sow_stateIdxLbl.bin"
"sow_actionWeightLbl.bin"

"sow_actionIdx.bin" "sow_actionIdxLbl.bin"

"sow_transProb.bin"

$timeHorizon
[1] Inf

$states
[1] 3

$founderStatesLast
[1] 3

$actions
[1] 6

$levels
[1] 1

$weightNames
[1] "Duration"

$ptr
<pointer: 0x01d13728>

attr(,"class")

"Net reward" "Piglets"

[1] "MDP:C++"

> ## solve the MDP wusing value iteration

> iW<-1 # index of the weight we want to optimize

> iDur<-0 # index of the duration/time

> rate<-0.1 # discount rate

> rateBase<-1 # rate base

> valuelIte (mdp, iW, iDur, rate, rateBase, times = 10000, eps = 0.00001)

Run value iteration with epsilon

1le-05 at most

10000 time(s)

using quantity 'Net reward' under expected discounted reward criterion
with 'Duration' as duration using interest rate 0.1 and rate basis equal 1.
Iterations: 211. Running time Os.

> policy<-getPolicy(mdp, labels=TRUE) # optimal policy for each sId
> states<-stateIdxDf (prefix) # information about the states
> policy<-merge(states ,policy) # merge the two data frames
> policyW<-getPolicyW(mdp, iW) # the optimal rewards of the policy
> policy<-merge(policy ,policyW) # add the rewards
> policy
sId n0O sO label aLabel wil
1 0 0 O Small litter Replace 124363.1
2 1 0 1 Average litter Keep 127287.7
3 2 0 2 Big litter Keep 130836.9

12

First note that the we optimize the MDP for a specific interest rate which according to a
rate basis, i.e. if the rate is 0.1 and the rate base is 4 then the discount rate over one time
unit is exp(—0.1/4) = 0.9753. The discount rate over t time units then becomes

5(t) = exp(—rate/rateBase)'.

Second, the parameter times denote an upper bound on the number of iterations. Finally,
the parameter eps denote the € for stopping the algorithm. If the maximum difference
between the expected discounted reward of 2 states is below € then the algorithm stops,
i.e the policy becomes epsilon optimal (see [4] p161).

Let us have a look at how value iteration performs for each iteration.

termValues<-c(0,0,0)
iterations<-1:211
df<-data.frame(n=iterations ,al=NA,V1=NA,D1=NA,a2=NA,V2=NA,D2=NA,a3=NA,V3=NA,D3=NA)
for (i in iterations) {
valuelte (mdp, iW, iDur, rate, rateBase, times = 1, eps = 0.00001, termValues)
a<-getPolicy(mdp, labels=T)
w<-getPolicyW(mdp, iW)
res<-rep (NA,10)
res [1]<-i
res [2]<-a[1,2]
res [3] <-round (w[1,2],2)
res [4] <-round (w[1,2] -termValues [1],2)
res [6]<-a[2,2]
res [6] <-round (w[2,2],2)
res [7] <-round (w[2,2] -termValues [2],2)
res [8]<-a[3,2]
res [9] <-round (w[3,2],2)
res [10] <-round (w[3,2] -termValues [3],2)
df [i,]<-res
termValues<-w[,2]

V+ 4+ 4+ ++++++++4++++++VVVY

}
df[c(1:3,51:563,151:153,210:211) ,]

n al Vi D1 a2 V2 D2 a3 V3 D3
1 Keep 10000 10000 Keep 12000 12000 Keep 14000 14000
2 Keep 19953.21 9953.21 Keep 22858.05 10858.05 Keep 25762.89 11762.89
3 Replace 29682.82 9729.61 Keep 32682.82 9824.77 Keep 35997.02 10234.13
1 Replace 123583.65 81.97 Keep 126508.29 81.97 Keep 130057.51 81.97
52 52 Replace 123657.82 74.17 Keep 126582.47 74.17 Keep 130131.69 74.17
53 53 Replace 123724.93 67.11 Keep 126649.58 67.11 Keep 130198.8 67.11
151 151 Replace 124363.03 0 Keep 127287.67 0 Keep 130836.89 0
152 152 Replace 124363.03 Keep 127287.68 Keep 130836.9
153 153 Replace 124363.03 Keep 127287.68 Keep 130836.9
210 210 Replace 124363.06 Keep 127287.71 Keep 130836.93

0
0
0
211 211 Replace 124363.06 0 Keep 127287.71 Keep 130836.93

0
0
0
0

O O O o

Note value iteration converges very slowly to the optimal value.
Another optimization technique is policy iteration which finds an optimal policy. Let
us solve the MDP under the expected discount criterion.

> policyIteDiscount(mdp, iW, iDur, rate, rateBase)

13

Run policy iteration using quantity 'Net reward' under discounting criterion
with 'Duration' as duration using interest rate 0.1 and a rate basis equal 1.
Iteration(s): 1 2 3 finished.

policy<-getPolicy(mdp, labels=TRUE)
sIdx<-stateIdxDf (prefix)
policy<-merge(sIdx,policy)
policyW<-getPolicyW(mdp, iW)
policy<-merge(policy ,policyW)
rpo<-calcRP0O(mdp, iW, iA=0, criterion="discount", iDur=iDur, rate=rate,
ateBase=rateBase)
policy<-merge(policy ,rpo)
policy$wi<-round (policy$wi,0)
policy$rpo<-round (policy$rpo,0)
policy

VVVVHKYVVYVYVVYV

sId n0O sO label alLabel wl rpo
1 0 0 O Small litter Replace 124363 -455
2 1 0 1 Average litter Keep 127288 925
3 2 0 2 Big litter Keep 130837 2474

First, note that policy iteration converges fast only 3 iterations are needed. Second, we
also here try to calculate the retention payoff (RPO) or opportunity cost with respect to
action keep (action index 0). The RPO is the discounted gain of keeping the sow until her
optimal replacement time instead of replacing her now. For instance if we consider a sow
with a big litter we loose 2474 by replacing the sow instead keeping her to her until her
optimal replacement time. That is, if the RPO is positive the optimal decision is to keep
the sow and if the RPO is negative the optimal decision is to replace the sow.

Other criteria can also be optimized using policy iteration. For instance we can maxi-
mize the average reward over time:

> g<-policyIteAve(mdp, iW, iDur)

Run policy iteration under average reward criterion using
reward 'Net reward' over 'Duration'. Iterations (g):
1 (12000) 2 (12187.5) 3 (12187.5) finished.

policy<-getPolicy(mdp, labels=TRUE)

policy<-merge(sIdx,policy)

policyW<-getPolicyW(mdp, iW)

policy<-merge(policy ,policyW)

rpo<-calcRPO(mdp, iW, iA=0, criterion="average", iDur = iDur, g=g)
policy<-merge(policy ,rpo)

policy$wi<-round (policy$wi,0)

policy$rpo<-round (policy$rpo,0)

policy

V V.V V VVVVYV

14

sId n0O sO label alLabel wl rpo
1 0 0 O Small litter Replace -6688 -656
2 1 0 1 Average litter Keep -3813 875
3 2 0 2 Big litter Keep 0 2688

Here g is the average reward pr time unit and the weights are relative values compared to
the big litter state.
We may also maximize the average reward over piglets:

> iDur<-2
> g<-policyIteAve(mdp, iW, iDur=iDur)

Run policy iteration under average reward criterion using
reward 'Net reward' over 'Piglets'. Iterations (g):
1 (1090.91) 2 (1095.81) 3 (1095.81) finished.

policy<-getPolicy(mdp, labels=TRUE)

policy<-merge(sIdx,policy)

policyW<-getPolicyW(mdp, iW)

policy<-merge(policy ,policyW)

rpo<-calcRPO(mdp, iW, iA=0, criterion="average", iDur = iDur, g=g)
policy<-merge(policy ,rpo)

policy$wi<-round (policy$wi,0)

policy$rpo<-round (policy$rpo,0)

policy

V VV VVVVYVYV

sId nO sO label alabel w1l rpo
1 0 0 0 Small litter Keep 4772 2198
2 1 0 1 Average litter Keep 2251 964
3 2 0 2 Big litter Replace 0 -189

Here g is the average reward pr piglet and the weights are relative values compared to the
big litter state.

3.2 Calculating other key figures for the optimal policy

Consider the optimal policy under the expected discounted reward criterion:

> policyIteDiscount(mdp, iW, iDur, rate, rateBase)

Run policy iteration using quantity 'Net reward' under discounting criterion
with 'Piglets' as duration using interest rate 0.1 and a rate basis equal 1.
Iteration(s): 1 2 finished.

15

policy<-getPolicy(mdp, labels=TRUE)
sIdx<-stateIdxDf (prefix)
policy<-merge(sIdx,policy)
policyW<-getPolicyW(mdp, iW)
policy<-merge(policy ,policyW)
rpo<-calcRPO(mdp, iW, iA=0, criterion="discount", iDur=iDur, rate=rate,
ateBase=rateBase)
policy<-merge(policy ,rpo)
policy$wi<-round (policy$wl,b0)
policy$rpo<-round (policy$rpo,0)
policy

VVVVHYVVVYVVYV

sId n0O sO label aLabel wl rpo
1 0 0O O Small litter Keep 18161 964
2 1 0 1 Average litter Keep 18047 974
3 2 0 2 Big litter Keep 18524 1025

Since other weights are defined for each action we can calculate the average number of
piglets per time unit under the optimal policy:

> g<-calcWeights(mdp, iW=2, criterion="average", iDur = 0)
> 8
[1] 11

or the average reward per piglet:

> g<-calcWeights(mdp, iW=1, criterion="average", iDur = 2)
> 8

‘[1] 1090.909

4 Hierarchical MDP with infinite time-horizon

We consider a cow replacement problem where we want to represent the age of the cow,
i.e. the lactation number of the cow. During a lactation a cow may have a high, average
or low yield. We assume that a cow is always replaced after 4 lactations.

In addition to lactation and milk yield we also want to take the genetic merit into
account which is either bad, average or good. When a cow is replaced we assume that the
probability of a bad, average or good heifer is equal.

We formulate the problem as a hierarchical MDP with 2 levels. At level 0 the states
are the genetic merit and the length of a stage is a life of a cow. At level 1 a stage describe
a lactation and states describe the yield. Decisions at level 1 are keep or replace.

Note the MDP runs over an infinite time-horizon at the founder level where each state
(genetic merit) define an ordinary MDP at level 1 with 4 lactations.

16

4.1 Generating the MDP

To generate the MDP we need to know the weights and transition probabilities which are
provided in a csv file. To ease the understanding we provide 2 functions for reading from
the csv:

> cowDf<-read .csv("cow.csv")
> head (cowDf)

sO nl s1 label Duration Reward Output scpO idx0O pr0 scpl idx1 prl scp2 idx2 pr2
1 0 0 O Dummy 0 0 0 1 0 0.3333333 1 1 0.3333333 1 2 0.3333333
2 0 1 O Keep 1 6000 3000 1 0 0.6000000 1 1 0.3000000 1 2 0.1000000
3 0 1 O Replace 1 5000 3000 0 0 0.3333333 0 1 0.3333333 0 2 0.3333333
4 0 1 1 Keep 1 8000 4000 1 0 0.2000000 1 1 0.6000000 1 2 0.2000000
5 0 1 1 Replace 1 7000 4000 0 0 0.3333333 0 1 0.3333333 0 2 0.3333333
6 0 1 2 Keep 1 10000 5000 1 0 0.1000000 1 1 0.3000000 1 2 0.6000000
> leviW<-function(s0Idx,nl1Idx,s1Idx,allbl) {
+ r<-subset (cowDf ,s0==s0Idx & nl==nl1lIdx & sl1==s1Idx & label==allbl)
+ return (as.numeric (r[5:7]))
+ }
> leviW(2,2,1, 'Keep') # good gemetic merit, lactation 2, avg yield, keep action
[1] 1 14000 7000

leviPr<-function(s0Idx ,n1Idx,s1Idx,allbl) {
r<-subset (cowDf ,s0==s0Idx & nl==nl1ldx & s1==s1Idx & label==allbl)
return (as.numeric (r[8:16]))

}

leviPr(2,2,1, 'Replace') # good genetic merit, lactation 2, avg yield, rTeplace action

V o+ 4+ 4V

[1] 0.0000000 0.0000000 0.3333333 0.0000000 1.0000000 0.3333333 0.0000000 2.0000000 0.3333333

1b1S0<-c ('Bad genetic level', 'Avg genetic level', 'Good genetic level')
1blSi<-c ('Low yield', 'Avg yield', 'High yield')
prefix<-"cow_"
w<-binaryMDPWriter (prefix)
w$setWeights (c("Duration", "Net reward", "Yield"))
w$process ()
w$stage () # stage 0 at founder level
for (sO in 0:2) {
w$state (label=1b1S0[s0+1]) # state at founder
w$action(label="Keep", weights=c(0,0,0), prob=c(2,0,1)) # action at founder
w$process ()
w$stage () # dummy stage at level 1
w$state (label="Dummy")
w$action(label="Dummy", weights=c(0,0,0), prob=c(1,0,1/3, 1,1,1/3,
»2,1/3))
w$endAction ()
w$endState ()
w$endStage ()
for (dl in 1:4) {

+ + 4+ + P ++++++VVVVVVVY

17

w$stage () # stage at level 1
for (s1 in 0:2) {
w$state (label=1b1S1[s1+1])
if (di'=4) {
w$action(label="Keep", weights=levliW(s0,dl,s1,"Keep"),
rob=lev1iPr(s0,dl,s1,"Keep"))
w$endAction ()
}
w$action(label="Replace", weights=1leviW(sO,d1,sl,"Replace"),
rob=1leviPr (s0,d1,s1,"Replace"))
w$endAction ()
w$endState ()
}
w$endStage ()
}
w$endProcess ()
w$endAction ()
w$endState ()
}
w$endStage ()
w$endProcess ()
w$closeWriter ()

VVV+++++++++0 +++T ++ + + +

Statistics:
states : 42
actions: 69
weights: 3

Closing binary MDP writer.

4.2 Finding the optimal policy
We find the optimal policy under the expected discounted reward criterion the MDP using
policy iteration:

> ## solve under discount criterion
> mdp<-loadMDP(prefix)

Cpu for reading the binary files: 0.03s
Cpu time for checking MDP Os.
Cpu time for building state-expanded hypergraph 0.016s

iw<-1

iDur<-0

rate<-0.1

rateBase<-1
sIdx<-stateIdxDf (prefix)
policyIteDiscount (mdp, iW, iDur, rate, rateBase)

index of the wetight we want to optimize (net reward)
indez of the duration/time

discount rate

rate base, %i.e. given a duration of t the rate s

V V. V V VYV
B R KR W

Run policy iteration using quantity 'Net reward' under discounting criterion
with 'Duration' as duration using interest rate 0.1 and a rate basis equal 1.
Iteration(s): 1 2 3 4 finished.

18

policy<-getPolicy(mdp, labels=TRUE)

policy<-merge(sIdx,policy)

policyW<-getPolicyW(mdp, iW)

policy<-merge(policy ,policyW)

> rpo<-calcRPO(mdp, iW, iA=0, criterion="discount", iDur=iDur, rate=rate,
rateBase=rateBase)

> policy<-merge(policy ,rpo)

vV V Vv Vv

> policy

sId n0O sO a0 ni1 si label alabel wl rpo
1 O O O NA NA NA Bad genetic level Keep 115594.1 0.00000
2 1 0 0 0 0 O Dummy Dummy 115594.1 0.00000
3 2 0 0 01 O Low yield Replace 113594.1 -2095.39618
4 3 0 0 0 1 1 Avg yield Replace 115594.1 -1190.55876
5 4 0 0 0 1 2 High yield Replace 117594.1 -285.72134
6 5 0 0 0 2 0 Low yield Replace 115594.1 -2095.39618
7 6 0 0 0 2 1 Avg yield Replace 117594.1 -1190.55876
8 7 0 0 0 2 2 High yield Replace 119594.1 -285.72134
9 8 0 0 0 3 0 Low yield Replace 115594.1 -3000.23360
10 9 0 0 O 3 1 Avg yield Replace 117594.1 -2095.39618
11 10 0 0 0 3 2 High yield Replace 119594.1 -1190.55876
12 11 0 0 0 4 O Low yield Replace 114594.1 0.00000
13 12 0 0 0 4 1 Avg yield Replace 116594.1 0.00000
14 13 0 0 0 4 2 High yield Replace 118594.1 0.00000
15 14 0 1 NA NA NA Avg genetic level Keep 118982.8 0.00000
16 15 0 1 0 0 O Dummy Dummy 118982.8 0.00000
17 16 0 1 0 1 O Low yield Keep 115675.2 81.05822
18 17 0 1 0 1 1 Avg yield Keep 118946.8 1352.67520
19 18 0 1 0 1 2 High yield Keep 122326.4 2732.26494
20 19 0 1 0 2 O Low yield Replace 117594.1 -229.70139
21 20 0 1 0 2 1 Avg yield Keep 120325.3 731.15596
22 21 0 1 0 2 2 High yield Keep 123454.2 1860.07314
23 22 0 1 0 3 O Low yield Replace 117594.1 -1190.55876
24 23 0 1 0 3 1 Avg yield Replace 119594.1 -285.72134
256 24 0 1 0 3 2 High yield Keep 122213.2 619.11607
26 26 0 1 0 4 O Low yield Replace 116594.1 0.00000
27 26 0 1 0 4 1 Avg yield Replace 118594.1 0.00000
28 27 0 1 0 4 2 High yield Replace 120594.1 0.00000
29 28 0 2 NA NA NA Good genetic level Keep 125468.3 0.00000
30 29 0 2 0 O O Dummy Dummy 125468.3 0.00000
31 30 0 2 0 1 O Low yield Keep 121968.9 4374.75204
32 31 0 2 0 1 1 Avg yield Keep 125468.3 5874.15939
33 32 0 2 0 1 2 High yield Keep 128967.7 7373.56674
34 33 0 2 0 2 0 Low yield Keep 122087.6 2493.51826
3 34 0 2 0 2 1 Avg yield Keep 125401.8 3807.72105
36 35 0 2 0 2 2 High yield Keep 128716.0 5121.92385
37 36 0 2 0 3 0 Low yield Keep 120213.2 619.11607
38 37 0 2 0 3 1 Avg yield Keep 123118.1 1523.95349
39 38 0 2 0 3 2 High yield Keep 126022.9 2428.79091
40 39 0 2 0 4 O Low yield Replace 118594.1 0.00000
41 40 0 2 0 4 1 Avg yield Replace 120594.1 0.00000
42 41 0 2 0 4 2 High yield Replace 122594.1 0.00000

4.3 Visual view of the hierarchical structure of the MDP

The program MLHMP is a Java implementation of some algorithms for solving MDPs
ﬂﬂ] It have a graphical user interface where the hierarchical structure of the MDP can be
visualized. A model can be loaded into MLHMP using the HMP format which is an XML

19

file containing the model. The MDP package contain a function for converting the binary
files to the HMP format:

> convertBinary2HMP (prefix)

Model saved to file: cow_converted.hmp
Converted binary files to hmp format.
user system elapsed
0.46 0.00 0.47

The function create the file cow_converted.hmp which can be opened by MLHMP.

References

[1] A. R. Kristensen and E. Jorgensen. Multi-level hierarchic Markov processes as a frame-
work for herd management support. Annals of Operations Research, 94:69-89, 2000.
doi:10.1023/A:1018921201113.

2] A.-R. Kristensen. A general software system for Markov decision processes in herd
management applications. Computers and Electronics in Agriculture, 38(3):199-215,
2003. doi:10.1016,/S0168-1699(02)00183-7.

[3] L.R. Nielsen and A.R. Kristensen. Finding the K best policies in a finite-horizon Markov
decision process. European Journal of Operational Research, 175(2):1164-1179, 2006.
doi:10.1016/j.ejor.2005.06.011.

[4] M.L. Puterman. Markov Decision Processes. Wiley Series in Probability and Mathe-
matical Statistics. Wiley-Interscience, 1994.

20

http://dx.doi.org/10.1023/A:1018921201113
http://dx.doi.org/10.1016/S0168-1699(02)00183-7
http://dx.doi.org/10.1016/j.ejor.2005.06.011

	Introduction
	Ordinary MDP with finite time-horizon
	Generating the MDP
	Getting an overview
	Finding the optimal policy
	Modifying the MDP
	Evaluating a specific policy

	Ordinary MDP with infinite time-horizon
	Finding the optimal policy under different criteria
	Calculating other key figures for the optimal policy

	Hierarchical MDP with infinite time-horizon
	Generating the MDP
	Finding the optimal policy
	Visual view of the hierarchical structure of the MDP

