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Introduction

= larkov decision processes (MDPs) with discrete state
spaces model sequential decision making over time.

= An application could be finding the optimal replacement
decision for an animal. States in the MDP represent
levels of traits of the animal and transition probabilities
are based on biological models estimated from data.

i State space models (SSMs) usually deal with a “contin-
uous state vector’ and continuous responses. T herefore

it is hard combining an MDP and an SSM.

1> \We have a method for embedding an SSM into an MDP

such that predictions in the MDP are based on Bayesian
updating, so hang on and see what happens!

"A.n i . 1779 fi il
' Markov decision processes (MDPs)

i Discrete time-instances, states and decisions.

= A stage of an MDP is illustrated using a directed hyper-
graph in Fig. 1. Decisions terminate and continue are
illustrated using hyperarcs.

1 Use dynamic programming to find optimal decisions.
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= Models of phenomena evolving in time e.g. blood pres-
sure and milk yield.

= | atent process evolves as a first order Markov process.
0; =GO 1+ W, W ~ /V(O, W)
== Y, are observations which we model as a function de-
pending on 0;.
Y:=F'0:+Vv:, vi~ N(0,V)
%

Embedding the SSM

1= Kalman filter/Bayesian updating implies the distribution
of the posterior at time t can be calculated:

(et | Y17°°°7Yt) ~ N(mt7 Ct)

which can be found using the observation and the prior
of the latent variable. Hence all previous observations
do not have to be stored as state variables in the MDP,
the observations can be represented by storing m; and
C; instead.

1 C; does not depend on data and hence can be excluded
from the states in the MDP.
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" Embedding the SSM (continued)

= Let my,..., M, denote the discretization of m; then a
stage can be illustrated as

time t time t+1
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Fig. 1: MDP with the SSM embedded. The state term indicates that the data

for the SSM has terminated either using a decision or involuntary.

1= Transition probabilities P(m;, 1| m;) can be calculated

on the basis of (m;.1 | my) ~ N(u, LX) with:
U = Gmt, ) — GCtG/—|— W — Ct_|_1
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Dlscretlzmg the SSM

= Discretize m; based on the relative entropy (RE) as cri-

terion.
= Goal: Few stages but good approximation (low RE).
i Univariate: Discretize each variable in m;.

= Multivariate: Discretize the vector m;.
. = Multivariate in general has fewer states for the same

quality of the approximation (see Fig. 2).
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(a) Univariate. (b) Multivariate.
Fig. 2: Partition of m; (2-dim) using univariate and multivariate discretization.

Multivariate discretization reduces the number of states by 58%.
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Conclusions

- The method can be applied to MDPs which use information

from online biosensors, e.g. the method is currently usec
to calculate optimal replacement strategies for dairy cows
based on daily yield measurements.
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