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Abstract

In recent years there has been a growing interest in using stochastic
time-dependent (STD) networks as a modelling tool for a number of ap-
plications within such areas as transportation and telecommunications. It
is known that an optimal routing policy does not necessarily correspond
to a path, but rather to a time-adaptive strategy. In some applications,
however, it makes good sense to require that the routing policy should
correspond to a loopless path in the network, that is, the time-adaptive
aspect disappears and a priori route choice is considered.

In this paper we consider bicriterion a priori route choice in STD
networks, i.e. the problem of finding the set of efficient paths. Both
expectation and min-max criteria are considered and a solution method
based on the two-phase method is devised. Experimental results reveal
that the full set of efficient solutions can be determined on rather large
test instances, which is in contrast to the time-adaptive case.

Keywords: Stochastic time-dependent networks, bicriterion shortest
path, two-phase method, computational analysis.

1 Introduction

Recently there has been a growing focus on stochastic time-dependent net-
works 1 (STD networks) which often provide a better modelling tool in e.g.
transportation applications [3, 9, 10, 12]. Here travel times are modeled as
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1Also known as random time-dependent networks, stochastic time-varying networks or
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random variables with time-dependent distributions. Particular cases, such as
non-stochastic time-dependent networks (see [5] for a recent overview) and time-
independent stochastic networks (see [15]) have been widely studied, but are not
considered here.

STD networks were first addressed by Hall [4] who pointed out several ways
to formulate the route selection problem in STD networks. If the driver is
allowed to react to revealed (actual) arrival times at intermediate nodes, the
best route is not necessarily a path, but rather a time-adaptive strategy that
assigns optimal successor arcs to a node as a function of leaving time. This is
referred to as time-adaptive route choice. If a loopless path must be specified
before travel begins, and no deviations from the route are permitted, the path
is selected a priori on the basis of only the probability distributions of the arc
travel-times. This is referred to as a priori route choice and may be useful
for routing highly sensitive substances for which the path travelled must be
preapproved. The problem of finding a minimum expected travel time path
under a priori route choice is NP-hard [14].

It is quite obvious that multicriteria a priori route choice in STD networks is
a relevant and difficult problem. However, only two papers exist on the subject.
Miller-Hooks and Mahmassani [6] consider bicriterion a priori route choice in
discrete STD networks, the objectives being minimizing expected travel time
and cost. A label-correcting procedure is described, which guarantees that all
the efficient paths can be obtained. Computational results are presented on a
single road network. Chang, Nozick, and Turnquist [1] consider multicriterion
a priori route choice in a continuous time STD network, where travel times
are normally distributed. They devise a heuristic method based on the first
two moments of the distributions, where an approximate stochastic dominance
criterion is adopted to compare paths. Computational results are presented on
an example network and a single road network.

In this paper we consider bicriterion route choice problems in STD networks
under a priori route choice. More specifically we consider the problem of finding
the set of efficient paths between an origin and a destination node, when leaving
the origin at time zero. We assume that departure times are integer and that
travel times are discrete random variables. The paper differs from previous work
in the following aspects:

1. We propose a new algorithm using the two-phase method to determine
the set of efficient paths as opposed to the labelling approach proposed by
Miller-Hooks and Mahmassani [6].

2. We perform a reasonably wide computational experience on grid networks,
where we address the case of two cost criteria, besides the (somehow easier)
time/cost case; this allows us to evaluate the effect of uncorrelated and
correlated cost criteria; furthermore, we consider both expectation and
min-max criteria.

3. In our computational setting we do not consider a “steady state” with
deterministic travel times at the end of a single peak period in contrast
to [6]. During the travel, times are stochastic and time dependent, and
several peak periods are encountered.

4. Since our algorithms solve the bicriterion problem exactly on the set of
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Figure 1: The topological network G.

instances addressed here, we are able to compare the nondominated points
found under a priori and time-adaptive route choice.

The paper is organized as follows. In Section 2 we briefly introduce STD
networks. In Section 3 we give a short description of the two-phase method, and
describe the procedure we use for its implementation. Computational results
are reported in Section 4.

2 Stochastic time-dependent networks

Let G = (N, A) be a directed graph, referred to as the topological network and
let o, d ∈ N denote two different nodes which represent the origin and the
destination node in G, respectively. Throughout this paper we consider routing
from o towards d when leaving node o at time zero.

Departure and arrival times belong to a finite time horizon, i.e. a set H =
{0, 1, ..., tmax}. Let X(u, v, t) denote the arrival time at node v when leaving
node u at time t along arc (u, v) which is a discrete random variable with density

Pr (X (u, v, t) = ti) = θuvt (ti) , ti ∈ I (u, v, t)

where I(u, v, t) = {t1, ..., tκ(u,v,t)} denotes the set of κ(u, v, t) possible arrival
times at node v. We assume that travel times are positive, and no waiting is
allowed in the nodes. For the situation where waiting is allowed see [11].

Costs are considered in the model by letting c(u, v, t) denote the travel cost
of leaving node u at time t along arc (u, v) and g(t) the penalty cost of arriving
at node d at time t.

A strategy S is a function which provides routing choices for travelling from
o at time zero towards d. That is, if S(u, t) = (u, v) a traveller leaving node u at
time t travels along arc (u, v). Note that a strategy must provide routing choice
for all possible arrival times at an intermediate node. Under time-adaptive
route choice finding the best route with respect to some criterion corresponds
to finding the best strategy. Under a priori route choice we must travel along a
loopless path in G, that is, we must adopt a path-strategy, where the successor
arcs of a node for different leaving times are time-independent. From now on,
we shall identify paths with path-strategies. Let us denote by S the set of all
strategies and with SP the set of all path-strategies. Clearly, SP ⊂ S.

Example 1 Consider the topological network in Figure 1, where a is the origin
node and d is the destination node. For each arc in G, the possible departure
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(u, v), t (a, b), 0 (a, c), 0 (b, c), 1 (b, c), 3 (b, d), 1

I(u, v, t) {1, 3} {2} {2} {4, 5} {3}

c(u, v, t) (1, 1) (3, 0) (2, 2) (0, 4) (3, 8)

(u, v), t (b, d), 3 (c, b), 2 (c, d), 2 (c, d), 4 (c, d), 5

I(u, v, t) {6, 7} {3} {3, 4} {5, 6} {6}

c(u, v, t) (3, 6) (2, 1) (4, 2) (3, 3) (1, 5)

Table 1: Input parameters.

and arrival times are listed in Table 1. Here a pair ((u, v), t) corresponds to a
possible leaving time t from node u along arc (u, v). For the sake of simplicity,
we assume that X(u, v, t) has a uniform density, i.e., for each t′ ∈ I(u, v, t), we
have θuvt(t

′) = 1/|I(i, j, t)|. For example, if we leave node b at time 3 along arc
(b, c), we arrive at node c at time 4 or 5 with the same probability 1/2. Two
possible strategies are

S1 : S1(a, 0) = (a, b), S1(b, 1) = (b, d), S1(b, 3) = (b, d);

S2 : S2(a, 0) = (a, b), S2(b, 1) = (b, d), S2(b, 3) = (b, c),

S2(c, 4) = (c, d), S2(c, 5) = (c, d).

Strategy S1 is a path-strategy and corresponds to the path a − b − d while for
strategy S2 we travel different routes depending on the leaving time from node
b.

In this paper we assume that two values are associated with a strategy,
namely travel time and cost, where cost is considered in general terms, e.g.,
a risk measure or the economic travel cost. Furthermore, different criteria are
considered, namely, expectation criteria (minimize expected travel time or cost)
and min-max criteria (minimize maximum possible travel time or cost). The
value associated with a strategy according to these criteria can be formally
defined by means of sets of recursive equations, see Pretolani [14]. Given a
strategy S ∈ SP let W (S) = (W1(S), W2(S)) denote the 2-dimensional vector,
where Wi(S), i = 1, 2 is the value associated with S with respect to one of the
above four criteria. In this paper we face the following problem:

min W (S) = (W1(S), W2(S))

s.t. S ∈ SP .
(1)

That is, we want to find the set of efficient (Pareto optimal) path-strategies
SE ⊆ SP or equivalently the set of nondominated points WE = {W (S) ∈ R

2 |
S ∈ SE} in the criterion space W . We will follow the predominant thought
within bicriterion optimization which is to identify all nondominated points,
providing one corresponding efficient solution for each nondominated point.

Nondominated points can be partitioned into two sets, namely supported
and unsupported. The supported ones can be further subdivided into extreme
and nonextreme as illustrated in the following example.

Example 1. (continued) Assume that two costs ci(u, v, t), i = 1, 2, are given
for each leaving time t from node u along arc (u, v), see Table 1.
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(b) Strategies.

Figure 2: Criterion spaces under a priori and time-adaptive route choice.

Consider (1) when both criteria are to minimize expected cost. The criterion
points corresponding to the four possible loopless paths in G are illustrated in
Figure 2(a). In this example all four points are nondominated. W 1, W 2 and
W 4 are supported points all of which are extreme. The extreme points define
two triangles, shown with dashed lines, in which it may be possible to find
unsupported nondominated points such as W 3.

In general the total number of path-strategies is significantly lower than the
number of strategies. Under time-adaptive route choice, i.e. we consider (1) with
the constraint replaced with S ∈ S instead, we have nine possible strategies,
i.e. five points do not correspond to a path. All nine points are illustrated in
Figure 2(b). Under time-adaptive route choice the five points W 1, W 2, W 4, W 5

and W 9 are supported nondominated points of which W 1 and W 2 are non-
extreme. Points which do not lie inside the triangles such as W 3 and W 7 are
dominated. Moreover, the two points W 6 and W 8 are dominated by W 1 and
W 2, respectively. Further details and illustrations of the (path-)strategies can
be found in [11].

Please note that the set of nondominated points under time-adaptive route
choice will always dominate the set of nondominated points under a priori route
choice. However, a nondominated point under a priori route choice (such as
W 3) may be dominated, if time-adaptive route choice is considered.

3 Solution method

In this section we devise a solution method finding all efficient paths under a
priori route choice based on the two-phase method. The two-phase approach
is a general method for solving bicriterion discrete optimization problems such
as (1). As the name suggests, the two-phase method divides the search for
nondominated points into two phases. In phase one, extreme supported non-

5



dominated points are found. These extreme points define a number of triangles
in which unsupported nondominated points may be found in phase two. For a
description of a generic two-phase method see [13].

Both phases make use of a parametric function γ : (W , R+) → R+ which
denotes the parametric cost of a path-strategy S ∈ SP .

γ (W (S) , λ) = W1(S)λ + W2 (S) . (2)

It is well-known that given λ > 0 the path-strategy S with minimum para-
metric cost γ(W (S), λ) corresponds to a supported nondominated point and
hence is efficient. As a result all supported extreme nondominated points can
be found in phase one by solving (2) for different values of λ, see [2].

Phase two searches each triangle using an algorithm for ranking path-strategies
with respect to the parametric weight (2), where λ is a function of the slope
of the line joining the two points defining the triangle. The search stops when
the parametric weight reaches an upper bound, which in turn is dynamically
updated (decreased) when new nondominated points are found.

It must be kept in mind that in both phases we have to solve a sequence
of difficult problems, since a priori routing even for the single criterion case is
NP-hard. In order to solve these problems we adopted the newly developed
algorithm for ranking paths in STD networks (procedure K-BPS), see Nielsen
et al. [10]. However, the effectiveness of this approach is quite different for
expectation and min-max criteria.

As long as two expectation criteria are used, the parametric cost γ (W (S) , λ)
of a strategy S is equal to the cost of S with respect to the cost vector cλ =
c1 · λ + c2. This result has been proved in [9, Th. 2] for strategies, and clearly
holds for path-strategies too. As a consequence, we can rank paths with respect
to the parametric cost by applying procedure K-BPS with the costs cλ. This
procedure is also used in phase one, stopping as soon as the best parametric
path is found.

Unfortunately, the above result does not hold, if min-max criteria are consid-
ered. In this case, cλ only provides us with a lower bound Wλ(S) ≤ γ (W (S) , λ)
(see [9, Th. 3, 4]). By applying procedure K-BPS with costs cλ we generate
path-strategies in non-decreasing order of Wλ(S). In phase one, for each vale
value of λ we let procedure K-BPS run until Wλ(S) reaches the parametric cost
of the best path-strategy generated so far. In phase two a triangle is searched
until the lower bound Wλ(S) reaches the upper bound of the triangle. In phase
one it may happen, due to ranking according to Wλ(S), that procedure K-BPS
generates many paths that actually fall inside the triangle defined by a certain
λ. In order to take advantage of this fact, in our computational tests, we adopt
a hybrid algorithm, where the two phases are combined. More precisely, when a
new triangle is identified in the first phase we search inside the triangle by let-
ting procedure K-BPS continue until the lower bound Wλ(S) reaches the upper
bound.

4 Computational experience

We implemented the algorithm in C++ and compiled the source code with the
GNU C++ compiler with optimize option -O on a 1 GHz PIII computer with
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Size H Peaks IT IC κ

5 × 8 144 2 [3,20] [1,2200] 6

10 × 10 288 4 [3,20] [1,2200] 6

Table 2: Test parameters.

1GB RAM using a Linux Red Hat operating system. The main goals and re-
sults of our computational experience have been anticipated in the introduction,
where we pointed out the original contributions of our work.

4.1 Test instances

The STD network test instances are generated using the newly developed gen-
erator TEGP (Time-Expanded Generator with Peaks) which includes several
features inspired by typical aspects of road networks. For more details see [8].

Two grid graphs, with sizes 5× 8 and 10× 10, are considered; the length of
the time horizon is 144 and 288, respectively. Each grid arc is randomly assigned
an off peak mean travel time, so that the mean travel time changes as a function
of leaving time, increasing up to 100% during peak periods. For the 5 × 8 grid
the mean travel time follows the two-peaks pattern shown by the dotted line in
Figure 3, while for the 10×10 grid the pattern in Figure 3 is repeated, obtaining
four peaks. The travel time distribution is randomly generated around the travel
time mean, as a discrete approximation of a normal distribution. Arc costs are
generated independently from travel times and increase due to the peak effect
with a further random perturbation (10% at most) thus following a pattern
similar to the solid line in Figure 3.

The network parameters are summarized in Table 2. Here IT and IC denote
the range of possible travel times and costs, and κ is the average size of the
travel time distributions. For further details about the test instances see [11].

We report results on three different combinations, namely: T/C, correspond-
ing to travel time and cost; C/C negcor, where the two costs are negatively cor-
related; and C/C nocor, where no correlation between the two costs is assumed.
Recall that C/C negcor is usually considered to be harder. In all combinations
the penalty costs are zero. For each setting of costs five test instances where
generated.
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|W△| CPU△

|WSE| CPUSE △ ave max ave max

5 × 8 T/C 5 0.54 4 1 4 0.16 0.33

5 × 8 C/C nocor 4 0.57 3 1 4 0.20 0.40

5 × 8 C/C negcor 8 1.45 7 3 11 0.73 2.22

10 × 10 T/C 6 8.90 5 2 8 3.79 22.91

10 × 10 C/C nocor 8 21.45 7 3 17 5.76 47.57

10 × 10 C/C negcor 11 25.04 10 6 26 12.08 43.05

Table 3: Results expectation criteria.

|W△| CPU△

|WSE | △ ave max ave max

5 × 8 C/C nocor 4 3 1 4 0.32 0.68

5 × 8 C/C negcor 7 6 4 14 2.01 5.65

10 × 10 C/C nocor 8 7 2 12 17.91 80.12

10 × 10 C/C negcor 10 9 7 59 100.42 439.72

Table 4: Results min-max criteria.

4.2 Results

We first consider the case of two expectation criteria. The results are reported in
Table 3. Here |WSE | is the number of supported extreme nondominated points
and CPUSE is the average CPU time (in seconds) used to find the supported
extreme nondominated points. |△| is the number of triangles, while |W△| is
the number of nondominated points in a triangle (points defining the triangle
not included). Finally, CPU△ is the CPU time used to find the nondominated
points in a triangle (average and maximum).

In phase one all extreme supported nondominated points can be determined
in a reasonable amount of time. The same holds true for phase two (which is
the most time-consuming phase). That is, we can find the nondominated set
for all the test instances considered.

Comparing the different combinations of criteria, we see that the time-cost
case is in general easier than the cost-cost cases, and that negatively correlated
costs are harder than uncorrelated costs. The plots in Figure 4 give an intuition
of the difference between C/C negcor and C/C nocor. Indeed, negatively corre-
lated costs produce more nondominated points that are spread in a larger area
of the criterion space. As a result, we have more triangles to search, and it takes
longer time to search each one of them; see [11] for further details. This fact
was also observed under time-adaptive route choice [9] and is a general feature
for discrete bicriterion optimization problems, see e.g. [13].

The results for two min-max criteria are presented in Table 4; we only con-
sider the (more difficult) cost/cost combinations here. Compared to expectation
criteria the total number of nondominated points is about the same in average.
However, the CPU time spent is considerably higher, as we may expect, since
the parametric problem is harder to solve and the lower bound used for ranking
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Figure 4: WE for an uncorrelated (left) and negatively correlated (right) test
instance (both criteria are minimizing expected cost).

is not very tight. Also in this case, the problems with negatively correlated costs
are much more difficult.

4.3 Comparison to the time-adaptive case

Comparing the results for the a-priori case to previous results for the time-
adaptive case [7, 9] allows us to point out interesting differences. Here we restrict
ourselves to expectation criteria, since for min-max criteria the approximation
found in [9] is usually rather week.

First of all, recall that the set of nondominated points has been found for all
the instances considered. This is in deep contrast to time-adaptive route choice,
where not even an ε-approximation with ε = 1% could be found for the same
set of instances [9]. This result may be viewed as surprising, since finding the
best strategy in the single criterion case is easy (can be done in linear time)
while finding the best path-strategy is NP-hard. A reasonable explanation of
this apparent paradox is that the solution space is much more dense in the
time-adaptive case, that is, the total number of path-strategies is much lower
than the total number of strategies. Therefore the ranking procedure used in
the second phase does not have to rank as many solutions.

In order to get a deeper insight in this issue, we made plots comparing the
nondominated set for the a priori case with an approximation of the nondom-
inated set for the time adaptive case, obtained using the algorithms from [9].
Figure 4 shows two instances on a 5 × 8 grid with uncorrelated costs (left) and
negatively correlated costs (right).

First, as noted above, negatively correlated costs produce more nondomi-
nated points, spread in a wider area; this situation arises for both a priori and
adaptive routing.

Second, in some cases the a priori nondominated set may contain points
close to the time-adaptive nondominated set. Hence solutions found when priori
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routing must be adopted, due e.g. to outside regulations, may still be as good
as those found without this regulation. However, in other cases you may have
to pay higher costs, if paths must be adopted (e.g. if the first cost is below 4500
in the left plot in Figure 4).

Finally, in general for our instances there are large variations in the values
of ε for which the a priori nondominated set turns out to ε-dominate (see [16])
the time-adaptive nondominated set. On average ε = 0.1, the minimum ε value
found was 0.03 and the maximum 0.25.
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