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Abstract

In recent years there has been a growing interest in using stochastideéppeadent (STD) networks
as a modelling tool for a number of applications within such areas as trdaipn and telecommunica-
tions. It is known that an optimal routing policy does not necessarilyespond to a path, but rather to
atime-adaptive strategyin some applications, however, it makes good sense to require thattireg
policy corresponds to a loopless path in the network, that is, the time-ael@sipect disappears and a
priori route choice is considered.

In this paper we consider bicriterion a priori route choice in STD netwasksthe problem of finding
the set of efficient paths. Both expectation and min-max criteria arddayesl and a solution method
based on the two-phase approach is devised. Experimental res@td tlemt the full set of efficient
solutions can be determined on rather large test instances, which is imstoitpreviously reported
results for the time-adaptive case.

Keywords: stochastic time-dependent networks; bicriterion short&t; @ priori route choice; two-
phase method.

1 Introduction

Travel time between an origin and a destination is often tiiragry objective when routing data, com-
modities, vehicles etc. in a network. The problem of findinmiaimal travel time path, if travel time
is deterministic and time-independent, has been the subjextensive research for many years. For an
overview see e.g. Deo and Pang [4] or the textbook by Ahujagridati, and Orlin [1]. However, a trans-
portation network in which travel times between locatioresdeterministic and time-independent is often
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unrealistic. For instance, travel time between home andkplace is normally faster at midnight than
during rush hour, and even during off-peak hours, travettimay vary substantially.

We say that a network iBme-dependentf the travel times on the arcs are functions of time, and
stochastic,if the travel time is represented by probability distrilauis rather than simple scalars. It is
evident that both the stochastic and time-dependent pieperre appropriate in a transportation network
model. As a result stochastic time-dependent netwo{®$D networksoften provide a better modelling
tool in e.g. transportation applications. These networgsafirst addressed by Hall [7], who considered the
problem of finding a route between two nodes minimizing theeeted travel time, when leaving the origin
at a specific time. He pointed out several ways to formulaedhte selection problem, and complications
arising as a consequence of modelling both the stochastitime-dependent properties.

If the driver is allowed to react to revealed (actual) afrtimes at intermediate nodes, the best route
is not necessarily a path, but rather a time-adaptiv@tegythat assigns optimal successor arcs to a node
as a function of leaving time. This is referred totamse-adaptive route choicePretolani [14] presented
a directed hypergraph model for STD networks with discredee time distributions and showed that a
strategy corresponds to a hyperpath in a time-expandeddrgpd. Moreover, the best strategy under
different criteria, such as minimizing expected or maximpmssible travel time or cost, can be found by
solving a minimum weight hyperpath problem using apprdpneeights and weighting functions.

If a loopless patimust be specified before travel begins, and no deviations fin@ route are permitted,
the path is selected priori on the basis of only the probability distributions of the &aevel-times. Thus,
we seek a strategy that assigns the same successor arc lfsavatlg times for a specific node. This is
referred to as priori route choice and may be the only possible model in several practicals;c&sg. for
routing highly sensitive substances for which the patheftad must be preapproved, or when the driver
does not have access to (or time to access) information whilelling. The problem of finding a minimal
expected travel time path under a priori route choice is [dRH[L4].

The above problems only consider a single objective. Nbe&ss, due to the multi-objective nature
of many transportation and routing problems, a single dijedunction is not sufficient to completely
characterize most real-life problems. In a road networkrfstance, two parameters, travel time and cost,
can be assigned to each arc. Clearly, often the fastest mattbentoo costly or the cheapest path may be
too long. Therefore the decision maker must choose a solatitong the set dc#fficient(Pareto optimal)
paths. The problem of finding all efficient paths, commonfemned to asicriterion shortest pattibi-SP
has been widely studied and is known to be NP-hard even ifrdatestic costs/travel times are used [6].

It is obvious that problems concerning bicriterion routeick in STD networks are relevant. For
instance, when routing hazardous materials severalieriteay be considered besides expected travel time,
namely expected accident risk, population exposure, eliasts. Risk and exposure (rather than travel
time) may be the most relevant criteria, if materials mustdiged through urban areas. Note that STD
networks may be much more suitable in this case, due to théityao capture the inherent fluctuations
in these parameters. Moreover, the objective of the probtey vary; for example, a risk averse decision
maker may be interested in minimizing the maximum risk, @athan its expected value. We remark that
bicriterion route choice problems in STD networks show a Imricher structure than bi-SP, for at least
two reasons:

1. dueto the time-dependent nature of the network, travegiturn out to be a quite particular criterion,
as opposed to what happens in deterministic networks;

2. the purpose may be to minimize expected as well as maxinussile values.

The number of papers on multicriterion route choice in STEvoeks are rather limited. Miller-Hooks
and Mahmassani [8] consider bicriterion a priori route ckan discrete STD networks, with the objectives
being minimizing expected travel time and cost. They asstnaiethe network only contains a single peak
period and that the distributions are static after the peadod. A label-correcting procedure is described,
which guarantees that all the efficient paths can be obtai@mnputational results are presented on a
single road network.

1Also known as random time-dependent networks, stochastiewiarying networks or stochastic dynamic networks.



Chang, Nozick, and Turnquist [2] consider multicriteriomprori route choice in a continuous time
STD network where travel times are normally distributed.eydevise a heuristic method based on the
first two moments of the distributions, where an approxinsaehastic dominance criterion is adopted to
compare paths. Computational results are presented oraampéxnetwork and a single road network.

Time-adaptive route choice has been presented in Nielsaferaen, and Pretolani [11], where an exact
two-phase method is devised. Computational results aumbded on difficult STD grid networks, and the
results indicate that the number of efficient strategies graw exponentially with the network size. As a
result, fast heuristic algorithms finding approximatiofithe efficient set are developed.

In this paper we consider bicriterion route choice problen®TD networks under a priori route choice.
More specifically we consider the problem of finding the seeffitient paths between an origin and a
destination node when leaving the origin at time zero. Werassthat departure times are integer and that
travel times are discrete random variables. The paperrdifien previous work in the following aspects:

1. We propose a new algorithm using the two-phase methodtesrdime the set of efficient paths as
opposed to the labelling approach proposed by Miller-Haoid Mahmassani [8].

2. In addition to expected time and cost (a somehow easier easwe shall see) we address the case
of two cost criteria, which allows us to evaluate the effeCuncorrelated and correlated costs;
moreover, we consider expected as well as min-max critarid, we address the issue of possible
waiting at intermediate nodes.

3. We do not consider a “steady state” with deterministiwatdime at the end of a peak period:
throughout the route, times are always stochastic, andagveak periods are encountered. Thus
we concentrate on the dynamic features of the STD networlthibMihis computational setting we
perform a reasonably wide computational experience, atrating on grid networks rather than
random graphs.

4. Since our algorithms solve the bicriterion problem elyamt the set of instances addressed here, we
are able to compare the efficient sets found under a priortiaredadaptive route choice.

The paper is organized as follows. In Section 2 we give thesgary definitions of STD networks
and efficient paths. In Section 3 we give a short descriptibth® two-phase method and describe the
procedures we use for its implementation. Computatiorsailtg are reported in Sectioh 4, and conclusions
are given in Sectidn 5. Throughout the paper we illustraterse concepts by means of a running example,
which is reported in details in Appendix A.

2 Preliminaries

In this section we present the basic definitions used in @yEp We introduce stochastic time-dependent
networks and formally define the concept of a strategy andtagteategy. Finally, we recall some basic
facts from multicriterion analysis. Definitions are illtetied by means of a running example, discussed in
details in Appendix A, where we adopt (after a short intrdiun) the hypergraph representation of the
STD network given by Pretolani [14].

2.1 Stochastic time-dependent networks

We consider discrete STD networks, where departure anehbtiines are integer, and travel times are
independent integer-valued discrete random variabldstimite-dependent probability density functions.
LetG= (N, A) be a directed graph with node $¢tind arc sef, referred to as th®pological network
The forward star ofi € N is FS(u) = {(u,v) € A}. Leto, d € N denote two different nodes which represent
theorigin and thedestinatiomnode inG, respectively.
Assume that departure and arrival times belong to a fiiite horizoni.e. a seH = {0,1, ..., tmax}-
This is done by discretizing the relevant time period intodiintervals of lengtld, that is, the time horizon
H corresponds to the set of time instanced, @9, ..., tmaxd-



For each ar¢u,v) € AletL(u,v) C H be the set of possible leaving times from nadi&ong arc(u, v).
Moreover, letL(u), u # d denote the set of possible leaving times from nodee

Lw= U Ly
(u,v)eFS(u)

and letL(d) denote the set of possible arrival times at ndd&or each argu,v) € A andt € L(u,v), let
X(u,v,t) denote the arrival time at nodewhen leaving node at timet along arc(u,v). The arrival time
X(u,v,t) is a discrete random variable with density

PrX(u,vt) =t) = 6B (ti), tiel(uwt)

where
L(uvit) = {t1, . by

denotes the set af(u,v,t) possible arrival times at node That is, for each; € 1(u,v,t) the probability
of arriving at nodev at timet; when leaving node at timet is 6,(t)). We assume that travel times are
positive, and that the traveller cannot wait at an interatednode. Some issues related to waiting will be
discussed later.

Under time-adaptive route choice the best route is not saci®s a path but rather a strate@yi.e.
a function which provides routing choices for travellingrr all nodes and leaving times in its domain
towards the destinatioth. In particular, a traveller leaving nodeat timet travels along ar&u,t). More
formally, following [12], the definition of a strategy can beted as follows

Definition 1 A strategyis a functionSwith domain
DM(S) C {(ut) :ue N\ {d}, t € L(u)}

assigning to each pafo,t) € Dm(S) a successor arai,v) € FS(u). Furthermore, strategg must satisfy
the following conditions

1. If (u,t) € Dm(S) andS(u,t)
2. If (u,t) € Dm(S) andS(u,t) = (u,v), v#£d = (vt') € Dm(S),vt’ € I (u,v,t).

(u,v)=tel(uv).

Note that Condition (2) ensures that a traveller followit@t®gyS cannot get stuck in an intermediate
node, that is, he/she will arrive at the destination wittie time interval. Throughout this paper we
consider routing from an origin nodetowards a destination noagkwhen leaving nod® at time zero.
Hence we are interested in the particular case defined below.

Definition 2 An (o, 0)-strategyis aminimal strategyS such that/o,0) € Dm(S). Here, minimality means
that no other strategy with domain strictly containedm(S) exists.

For the sake of simplicity, in the remaining part of the papermuse the term strategy to denotaD)-
strategy. Since we leave the origin at time zero the arrina to the destination will be equal to the travel
time. As a result we consider arrival time and travel time@swalent in this paper.

Under a priori route choice we must travel along a loopledh paG. That is, we only consider
strategies, where the successor arcs for a node are tirapendent.

Definition 3 A path-strategys a strategys satisfying
S(ut) =S(u,t’), Y(ut),(ut’) e bm(S

It is easy to see that a path-strategy defines a unigddoopless path inG. The converse is not
necessarily true, that is, and path inG may not correspond to a strategy, since it may be impossible t
reach the destination within the time horizon travelingnaldhe path. From now on, we shall consider
path-strategies rather than paths; in some cases, we madlgausam “path” as synonymous with a path-
strategy. We denote hy” the set of all strategies and witkp the set of all path-strategies. Clearly,
Ip C.7.



Figure 1: The topological networ&.

(uv),t (a,b),0 (ac),0 (byc),1 (bc),3 (bd),1 (bd),3 (cb),2 (cd),2 (cd),4 (cd),5

(uwt) {13} {2} {28 {45 {3} {67y {3} {34} {56 {6}
cuvt) (L1 (300 (22 (04 (38 (36 (21) (42 (33 (L5

Table 1: Input parameters.

Example 1 Consider the topological netwoi® = (N, A) in Figure 1, where is the origin node and

is the destination node. For each arcGpnthe possible departure and arrival times are listed in€Tabl
1l. Here a pair((u,v),t) corresponds to a possible leaving titm&fom nodeu along arc(u,v). For the
sake of simplicity, we assume thA{u,v,t) has a uniform density, i.e., for eathe 1(u,v,t), we have
6ut(t’) = 1/]|1(i, j,t)|. For example, if we leave nodeat time 3 along ar¢b, c), we arrive at node at
time 4 or 5 with the same probability/2. Two possible strategies are

S1:S(a,0) = (ab), Si(b,1) = (b,d), Si(b,3) = (b,d)
S :$(a,0) = (ab), S(b,1) = (b,d), $(b,3) = (b,c), $(c,4) = (c,d), $(c,5) = (c,d)

StrategyS, is a path-strategy and corresponds to the patho — d while for strategys, we travel different
routes depending on the leaving time from nade ]

Costs can be included in the model by letti{g, v,t), t € L(u,v) denote the travel cost of leaving node
u at timet along arc(u,v). Moreover letg(t) be the penalty cost of arriving at nodeat timet. Different
criteria described by Pretolani [14] are considered in laiper. GiverS e ., theexpected cost@{u,t)
of Sfor eachu # d andt € L(u) is defined by the recursive equations:

ECS(uat) = C(U,V,t) + Z QUVt(t/)ECS(V’tI)’ 1)

t'el(uvt)

whereS(u,t) = (u,v) andEZ(d,t) = gq(t), for eacht € H. ES(u,t) is the expected cost incurred, when
leaving nodeu at timet following strategyS towardsd, i.e. the expected cost of strate§ys equal to
ECS(O, 0). Here cost is formulated in general terms, e.g. cost may Bkaeasure or the economic travel
cost and one objective might be to determine a strategy wiitimmam expected cosMEC).

Instead of considering expectation criteria worst caseslmeof primary concern. That is, finding the
strategy minimizing maximum possible co8iNIC). Given S € . the maximum cost @(u,t) of Sfor
eachu # d andt € L(u) is defined by the recursive equations:

ME(u,t) = c(u,v,t) + max ME(vt) (2)
t'el(uvt)
whereM&(d,t) = g(t), for eacht € H.

Similarly, we can define minimum expected travel tildHT) and the problem of minimizing max-

imum travel time MMT). In fact finding the optimal strategy under the MET (MMT)terion may be



formulated as finding the optimal strategy under the MEC (MMg@terion by using specific costs and
penalty costs [14].

Theorem 1 Finding the optimal MET (MMT) strategy is equivalent to fimglithe optimal MEC (MMC)
strategy using costqu,v,t) = 0forall (u,v) € Aandte L(u,v) and penalty costs(g) =t forallt € L(d).

We shall generically denote B/ (S) the costof a strategyS € . with respect to one of the four criteria
described above, i.e., MEC, MET, MMC and MMT.

2.2 Bicriterion concepts

Let W(S) = (Wi(5),Wa(9)), denote the cost of strate@c .7 using some of the previously described
criteria. In this paper we face the following problem:

st. SeY%
Only path-strategieSe .#» are considered since we are routing under a priori routeceh@lath-strategies
are defined in thelecision space” and correspond to points in tlgiterion space?”” = {W(S) € R? |
S€ I»}.

Minimizing a vector-valued objective function, such ak (@puires some explanation since there is no
complete order defined iR?. Path-strategis efficient(Pareto optimal) if and only if

1Se Fp :Wi(S) <WA(S) andWs(S) < Wk(S)

with at least one strict inequality; otherwiSas inefficient
A pointW(S) € # is anondominategboint if and only ifSis an efficient strategy. Otherwi¥®(S) is
adominatedpoint. Let

& ={Se Z» | Sis efficient, #g = {W(S) € R?| Se %}

denote the set of efficient path-strategies and nondonuradénts, respectively. Nondominated points
can be partitioned into two sets, namely supported and ynastgrl. The supported ones can be further
subdivided into extreme and nonextreme. To this aim, letafimé the following set

W= =cov(#e)® {weR?|w>0},

where @ as usual denotes direct sum, acohy#g) denotes the convex hull 6. W(S) € #& is
a supportednondominated criterion point, &V(S) is on the boundary o#/=. OtherwiseW(S) is an
unsupportecpoint. A supported pointV(S) is extreme if W(S) is an extreme point o/ =. Otherwise
W(S) is anonextremgpoint.

If an approximation of#g is wanted, the quality can be controlled using the concep¢sdmmination
ande-approximation [15]. A pointWy, W) e-dominateoint (Wy, Ws) if

W > (1-e)W, W > (1-e)W,

A set#; is an s—approximationotanother nondominated s#t, if for each pointW € W5, there exists
W € % such thaWW e-dominatedn.

Example/1(continued) Assume that two costgu,Vv,t), i = 1,2, are given for each leaving timiefrom
nodeu along arc(u,Vv), see Table [1.

Consider the problem of finding the set of nondominated paintler a priori route choice, i.e. solving
(3), when both criteria are MEC. The criterion points cop@ding to the four possible loopless paths in
G are illustrated in Figure 2(a). In this example all four geiare nondominated. The points are given by:
W1 = (5,10), W? = (6,8), W3 = (8,7) andW* = (9,4). W', W2 andW* are supported points all of which
are extreme. Solid lines define the boundary\of; W andW* are theupper/leftand thelower/right



(a) Path-strategies. (b) Strategies.

Figure 2: Criterion spaces under a priori and time-adaptwe choice.

vertex inW=, respectively. The extreme points define two triangleswshwith dashed lines, in which it
may be possible to find unsupported nondominated pointsas\ai.

Under time-adaptive route choice, i.e., if we consider thietion of (3) with the constraint replaced
with Se ., we have nine possible strategies, five of which are not paittiegies; the corresponding points
are:W° = (4.5,11), W8 = (5,10.5), W’ = (7,9), W8 = (6,8.5) andW® = (6.5,7).

All nine points are illustrated in Figure 2(b). Five poim&', W2 W* W® andW? are supported non-
dominated points of whiciv! andW? are non-extreme. Points which do not lie inside the triamglech
asW? andW’ are dominated. Moreover, the two poiki€ andw® are dominated bW?! andwW?, respec-
tively. Note that a nondominated point under a priori rodteice may be dominated under time-adaptive
route choice, as is the case W#, dominated byV°.

The four path-strategies can be seen in Figure 7 in Appéngixhile the five time-adaptive strategies
not corresponding to a path are shown in Figure 8. ]

Obviously, the time-adaptive nondominated set always dates the a priori nondominated set, how-
ever, the former set does not necessarily contain the.laieme shall see later, the number of efficient
path-strategies is in general significantly lower than thber of efficient strategies.

3 Solution method

In this section we consider the problem of finding all the edfit paths under a priori route choice between
an origin nodeo and a destination nod#d when leaving the origin at time zero. We devise a solution
method based on the two-phase approach, and provide dwtaits implementation. We also discuss the
case, where waiting at intermediate node is allowed; weedttgat waiting makes the problem much harder,
and we show that our method can be adapted in order to obta@p@pximation of the efficient set.

The two-phase approach is a general method for solvingtdiimn discrete optimization problems
such as (3). As the name suggests, the two-phase methodslivid search for nondominated points into
two phases. In phase one, the supported extreme nondorthipaitets are found. These extreme points
define a number of triangles in which unsupported nondorathpbints may be found in phase two (see
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Figure 2). For a description of a generic two-phase methedPselersen, Nielsen, and Andersen [13].
Both phases make use of a parametric funcfio’?’,R,) — R, which defines thgparametric cost
of a path-strateg$ € .7 »:
YW (S),A) =Wi(SA +Wa(S). (4)

It is well-known that givemA > 0 the path-strateg$ with minimum parametric cost(W(S),A) cor-
responds to a supported nondominated point and hence ieefficAs a result all supported extreme
nondominated points can be found in phase one by solving(4jifferent values of\, see [3].

The extreme points found in phase one define a number of teisiiig which unsupported nhondom-
inated points may exist. Phase two searches each trianigig ais algorithm for ranking path-strategies
with respect to the parametric weight (4), whéres a function of the slope of the line joining the two
pointsW* = (W;",W;") andW~ = (W,",W; ") defining the triangle (see Figure 3). The search stops, when
the parametric cost reaches an upper bound, which is Igitiat touby = W, A +W,". During the search,
the upper bound is dynamically updated (decreased), whemaedominated points are found. Searching
in a triangle can be seen as a “sweep line” method, as showigimeF3; note that the upper bound is
updated taib; when the new nondominated point is found inside the trigrgjiece the area where further
nondominated points can be located (shaded in the pictermgdses.

It must be kept in mind that in both phases we have to solve aes®g of difficult problems, since a
priori routing even for the single criterion case is NP-hdndorder to solve these problems we adopted the
algorithm for ranking paths in STD networksrécedureK-BPS) recently devised by Nielsen et al. [12].
However, the effectiveness of this approach is quite diffefor expectation and min-max criteria.

3.1 Two expectation criteria

Consider (8) and assume that we are minimizing expectedaosotth criteria. Let

¢y (uvt) = c1(u,vt)A 4+ ca(u,vit), (u,v) € At €L(u,v)
() =0tA+0(1), tel(d)

The following theorem has been proved in Nielsen et al. [11].

Theorem 2 Let W, (S) denote the weight of a strategy S using cogt@ips,t) and g, (t) under the MEC
criterion. For everyA > 0 and for every S, we have thay\(6) = y(W(S),A).

Clearly, the result holds for path-strategies in particukss a consequence, we can rank paths with
respect to the parametric cogiW(S), A) by applying procedur&-BPSwith the costs), (u,v,t) andg, (t).
This procedure is also used in phase one, stopping as sodre dgst parametric cost path is found.
Theorem 2 also holds, when minimizing expected travel tinsteiad of cost since due to Theorem 1 we
have that the MET problem can be formulated as a MEC problem.



3.2 Two min-max criteria

Consider the case where we are minimizing maximum cost ftr boteria. Unfortunately, we do not
have a result similar to Theorem 2. However, a lower boundherparametric cost of a strategy can be
determined, Nielsen et al. [11].

Theorem 3 Let W, (S) denote the weight of a strategy S using cogtaio/t) and g (t) under the MMC
criterion. For everyA > 0 and for every S, we have thajV%) < y(W(S),A).

Due to Theorem 3 we can generate path-strategies in noeatog order of\j, (S) by applying pro-
cedureK-BPSwith costsc, (u,v,t) andg, (t). For each generated path-strat&ye can calculat®\ (S)
andWax(S) and hence/(W(S),A). Note thaty(W(S),A) provide us with an upper bound on the minimal
parametric cost. As a result, in phase one we can stop proz&dBPSas soon a¥V, (S) reaches the
parametric cost of the best path-strategy generated do falnase two a triangle is searched until the lower
boundW, (S) reaches the current upper bound.

Observe that in phase one, since we rank accordiivg, {®) instead ofy(W(S),A), procedureK-BPS
may generate many paths that actually fall inside the tteadgfined by a certaid. In order to take
advantage of this fact, we devisethygbrid algorithm, where the two phases are combined. More prggisel
when a new triangle is identified in the first phase, we imntetlissearch inside the triangle by letting
procedureK-BPScontinue until the lower bound/, (S) reaches the upper bound. In practice, the hybrid
approach avoids repeating the same computations perfdmpddse one to find the minimum parametric
cost path. For this reason, we adopt the hybrid algorithnumcomputational tests.

3.3 STD networks with waiting allowed

In this section we will briefly discuss the case in whighiting at the nodes is allowed. The subject will
not be discussed in great detail here, but a thorough tresfiche subject is available in|[9].

From a theoretical point of view, waiting at intermediatelas should not be considered within an a
priori route choice model, as it is an inherently time-adegpbehavior. Indeed, while travelling along a
path, at any given time in a node, a traveller has to choosethghto wait or proceed to the next node in
the path. Clearly, the decision cannot be “waiting” at eatiet since a traveller cannot wait indefinitely at
intermediate nodes. However, it may be interesting to camsivaiting as a limited form of time-adaptive
behavior, thus defining an intermediate model between ai @mal time-adaptive routing.

A key observation here is that and pathP in G defines several strategies, actually, an exponential
number in the length dP. That is, we may have many path-strategies corresponditizetsame path,
distinguished from each other only by the use of waiting. Aemsequence, different nondominated points
may correspond to the same patidnFrom a theoretical point of view, the two-phase method dlesd
above remains valid since we rank path-strategies. Howeler to the fact that a particular paehin
G may define a huge number of path-strategies, we may faceutliffis in phase two, when searching a
triangle using ranking. A lot more path-strategies may havee ranked before reaching the upper bound
of the triangle, resulting in much larger CPU times.

One way to deal with this problem is to consider only one psithtegy for each path i, when
ranking path-strategies in a triangle. In particular, weeta path-strategy yielding minimum parametric
cost with respect to the valuecorresponding to the triangle. This approach guarantegsithsubstantial
loss in computational performance will be incurred, butvides us with an approximation of the true
nondominated set. Furthermore, we may not always be ablévéoag estimate of the quality of the
approximation found; we shall try to evaluate this qualitypérically in our computational experience.

4 Computational results

We implemented the algorithm in C++ and tested it on a 1 GHE d@linputer with 1GB RAM using a
Linux Red Hat operating system. The source code has beeniledmygth the GNU C++ compiler with
optimize option -O. The main goals of the computational expents can be summarized as follows:
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Figure 4: Peak effect and random perturbation for an arc.

1. Validating the performance of the algorithm on reasonhhbtd test instances.

2. Evaluating the algorithm and the solution set under difié criteria and different correlation struc-
ture between the two criteria.

3. Comparing the nondominated points found under a priatitene-adaptive route choice.

4.1 Time-Expanded Generator with Peaks (TEGP)

The STD network test instances are generated using the dewdyoped generator TEGPTime-Expanded
Generator with PeaRs The generator includes several features inspired by#y@ispects of road net-
works, such as congestion effects, waiting, random peatighs.

An underlying grid graplt of base bandheight his assumed, and we search optimal routes from the
bottom-right corner node (origio) to the upper left corner node (destinatidph The choice of grids is
motivated by their resemblance to road networks, and byatteHat they are usually considered computa-
tionally harder. Indeed, each origin-destination pathdtdsasb -+ h— 2 arcs and the number of such paths
grows exponentially with the size &. Thus paths are not too short, as may happen in random giaudhs,
there is a large number of potentially efficient solutions.

The generator considetgclictime periods. In each cyclic period there are sqraak periodge.g. rush
hours). Each peak consists of three partsaasientpart, where the mean travel time (traffic) increases, a
pure peakpart, where it stays the same, and a transient part, wheeeriedses again. This is illustrated in
Figure 4 for a specific argu, v). Here two peaks are considered and the dotted line is the treaash time.
Given the mean travel timgyy(t) for arc (u,v) at leaving timet the travel time distribution is generated
such that:

1. the interval of possible travel times{isiy(t) — 0.25uuy(t) ], ..., [ Huv(t) + 0.25uu(t) 1 };

2. the probabilities give a rough discrete approximatioa abrmal distribution with meapy,(t) and
standard deviation.@5p(t).

This setting gives travel times with higher mean and stahdaviation in peaks.

The time horizon consists of one or more cyclic periods, \pithks placed at the same time in each
cycle. Note that the STD network does not have a final detestigrsteady state, as often assumed in the
literature (see e.g. [8]), but a stochastic and time-adam&haviour in the whole time-horizon.

Costs are generated taking three components into accoofftpaak cost, the peak effect and a random
perturbation. Theandom perturbations used to introduce small variations, not intercepted leygbak
effect, e.g. special information about the cost at exabty leaving time. Hence, the cost follows a slightly
different pattern compared to mean travel time; this pateshown by the solid line in Figure 4. If waiting
is allowed, waiting costs are generated using an off-peakpoment and a random perturbation. For more
details on the TEGP generator, see Nielsen [10].

2The problem generator and the test instances used in thier pag downloadable from the following web-page
http://ww.research. rel und. dk/ .
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Class 1 2 3 4
Grid size 5x8 10x10 5x8 10x10

H 144 288 144 288
It [3,20] [3,20] [3,20] [3,20]
Ic [1,2200] [1,2200] [1,2200] [1,2200]
Iw - - [1,550] [1,550]
K 6 6 6 6
Waiting no no yes yes
n 2254 14877 2263 14886
my 7383 53220 7405 53241
My 80 196 2262 14885

Table 2: Test classes.

4.2 Testinstances

Four classes of STD networks are considered with two diffiegeid sizes, namely 5 8 and 10x 10. In

the first two classes, corresponding to the two differerd gizes, waiting is not allowed. In the first class

the time-horizon corresponds to one cycle with 144 timeainsts, e.g., 12 hours divided into 5 minute

intervals, whereas in the second class the time-horizarsponds to 288 time instances (2 cycles). Note
in general the time-horizon depends on the size of the nk&twéere the time-horizon is chosen so that it

should be possible to travel along all paths with lertghh. Classes three and four are similar to the first
two classes with the exception that waiting is allowed. Aley@s two peaks, each with a total length of

5 hours with each part of the peak lasting 1 hour and 40 mindibs first peak starts after half an hour

(t=6).

The interval of possible off-peak mean travel timefls, ul| = [4, 8], i.e. an off-peak mean travel time
between 20 and 40 minutes. The mean travel time increase@8¢ In the pure peak part. Similarly, the
interval of possible off-peak costs [ib¢c,ubc] = [1,1000 and the cost;(u,v,t) increases by 100% in the
pure peak part. In the case of waiting, waiting cdgtsare generated randomly between 1 and 500. The
random perturbation increases or decreases a cost vall@bwatimost.

The parameters defining our set of instances are summaniZadbie 2. Herely is the range of possible
travel times (for all arcs and departure times); similgrandly, denote the range of possible travel and
waiting costs, respectivel, denotes the average size of the travel time distributiom®e Farameters,

m, andmy, are related to the time-expanded hypergraph represemtattine STD used as the underlying
data structure in our algorithms. In particular, they dertbe number of nodes, hyperarcs and arcs in the
hypergraph, respectively. The values reported in the t@t@en average over all the instances in the same
class generated in our tests, and refer to the reduced hgpérgbtained at the end offaeprocessing
phase that deletes each node and hyperarc that cannot belondritegy; see [9] for detalils.

We report results on three ways of generating costs, naf@lynegqr, C/C ngor andT/C. In C/C
negqr the costs are assumed to be negatively correlated. Thig/jEal situation in hazardous material
transportation, where travel cost and risk/exposure andlictng. In this case, the off-peak costs for a
specific arc are generated so that if one belongs to the filsbhthe interval [Ibc, ubc] then the other
belongs to the second half. @YC na.or there is no correlation between the two costs, which arergést:
independently. Finally, foff/C the first cost corresponds to travel time (treated as a costrding to
Theorem 1) and the second cost is generated a€fmaq,,. In all combinations the penalty costs are
assumed to be zero, except when the cost corresponds tarimkich case the penalty costs are defined
according to Theorem 1.

4.3 Performance measures/statistics

In this section performance measures/statistics usedainae the algorithm are described. For each
class, combination of criteria and cost correlation type,measures are average (or maximum) over five
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V2N CPUx
Class |#sgl CPUsg Rl Rb A ave max ave  max

1 TI/IC 5 054 48 94 4 1 4 016 0.33
1 C/Cnogor 4 0.57 98 103 3 1 4 0.20 0.40
1 C/Cnegor 8 145 201 324 7 3 11 0.73 222
2 TIC 6 890 36 136 5 2 8 379 2291
2 Cl/Cnocor 8 2145 140 92 7 3 17 576 47.57
2 C/Cnegor 11 25.04 280 365 10 6 26 12.08 43.05

Table 3: Results expectation criteria.

independent instances obtained using a different seedfirfBhgroup of statistics refers to phase one; the
abbreviation used in the tables is given in parentheses.

Extreme supported siZe#sg|): The number of supported extreme nondominated points

CPU time(CPUsg): For expectation criteria, the total CPU time for phase iongeconds; not re-
ported for min-max criteria, where the hybrid algorithm ged.

Number of triangle¢/\): Number of triangles defined by supported extreme points.

Relative increasé€Rl;): The relative increase from the upper/left pait! to the lower/right point
W'" for the j'th criteria defined aRl; = (W)™ — W) /Wi andRI, = (Wy!' —WA") /WA". Re-
ported in percent.

In the second group we report statistics for each triangiecbed in phase two.

CPU time(CPUA): The CPU time for searching a triangle, in seconds. Theageeand maximum
over all the triangles searched are reported.

Points in the triangl€|# |): The number of nondominated points in the triangle notudirig the
two points defining the triangle. Average and maximum resafé reported.

Upper bound on epsilofeyp): For expectation criteria, an indication of the qualitytbé approxi-
mation obtained when waiting is permitted. An upper bogmpds computed, for each triangle,
with the following property: the approximated nondominbset found for a triangle is agx
approximation of the true set with< g,p. See Nielsen [9, Th. 5.4.5] for details. Average and
maximum results over all triangles are reported in percent.

4.4 Results - expectation criteria

First, we report on the results obtained, when both critemesent expectation and waiting at the nodes
in G is not allowed. The results are reported in Table 3. In phaseadl extreme supported nondominated
points can be determined in a reasonable amount of time. &fe Bolds for phase two (which is the most
time-consuming phase). That is, we can find the nondomirssefibr all the test instances considered.

Comparing the different criteria, the results for phase ané two reveal that minimizing expected
travel time and cosftT{C) is in general easier than when considering cost/riskréitdf we compare the
two different types of correlation for cosE(C) the results indicate that negatively correlated costdyze
more extreme nondominated points. Moreover, these pogfisala larger gap between the upper/left and
lower/right points RI; columns), i.e. we have to search a larger area of the critespace. As a result
we have more triangles to search, and it takes longer timedock each one of them. This fact was
also observed under time-adaptive route choice, Nielseh. ¢11] and is a general feature for discrete
bicriterion optimization problems, see e.g. Pedersen. §t3). Figurg 5 gives an example of the effect of
negative correlation among costs.
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N CPUp

Class |#sgl A ave max ave max
1 C/Cnogor 4 3 1 4 0.32 0.68
1 C/Cnegor 7 6 4 14 2.01 5.65
2 CICnocor 8 7 2 12 1791 80.12
2 C/Cnegor 10 9 7 59 100.42 439.72

Table 4: Results min-max criteria.

AN CPUp Eub

Class |#sgl CPUsg Rl Rb A ave max ave max ave max

3 T/IC 35 6.01 84 100 34 0 10 0.12 048 05 7.3
3 C/Cnocor 41 6.74 424 121 40 0 6 013 060 09 91
3 C/Cnegor 32 5.70 201 349 31 1 11 042 286 13 8.1
4 TI/C 73 96.10 71 155 60 2 26 3.43 4305 0.1 46
4 C/Cnogor 113 265.71 756 126 112 1 18 1.79 5843 0.2 56
4 C/Cnegor 114 259.11 532 541 113 1 26 2.63 56.94 03 6.6

Table 5: Results expectation criteria (waiting allowed).

4.5 Results - min-max criteria

Assume that both criteria are min-max and waiting is novedid. We only consider the situation, where we
are minimizing maximum cost for both criteria, i.e., (MMCMC), since we believe that the time/cost case
is not very interesting in practice. Indeed, for a decisiakar interested in path-strategies with bounded
maximum travel time, finding the minimum cost path-stratégydifferent settings of the time-horizon
may be a much simpler and more efficient approach.

The results for the hybrid algorithm are presented in TablAldinstances can be solved. Compared
to expectation criteria the total number of nondominateidtgas about the same in average. However, the
CPU time spent is considerably higher as the lower bound fssednking is not very tight. If comparing
the different criteria the same results hold as under eggieatcriteria.

4.6 Results - waiting allowed

Even though waiting at the nodes@is essentially a time-adaptive behavior we tested our algos on
classes 3 and 4. Here the topology structure of the STD nksasthe same as in class 1 and 2 except that
waiting is allowed at intermediate nodes.

The results for expectation criteria are presented in Table the first phase all extreme nondominated
points can be found. The number of extreme points is muchehigbmpared to when no waiting is allowed
(see Table 3). This may be due to the fact that many extremespobrrespond to the same path, that is,
differ from each other only in what concerns waiting. Furthere, the gap between the upper/left and
lower/right points is much larger in the waiting cagdj(columns), i.e. we have to search a larger area of
the criterion space. However, since many extreme pointt exilecision maker may be satisfied with the
extreme points offered by phase one, which would make phassuperfluous.

In the second phase we computed an approximation of the naindted set by choosing only one path-
strategy for each path 8, when atriangle is searched. In order to evaluate the guadlihe approximation
we computed the upper boursd, described earlier. In general, acceptable approximatwasound,
however, in a few large triangles poor valuessgf are obtained. In general a large valuesgf does not
necessarily mean that we have found a poor approximatidmeafidndominated set, but may be due to the
fact that the true set lies deep inside the triangle.

The results for min-max criteria are presented in Table 6dmdot seem to differ substantially from
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N CPU, Eub

Class A ave max ave max ave max
3  C/Cnogor 6 1 7 0.32 1.04 - -
3 C/Cnegor 9 3 16 2.27 8.52 - -
4  CI/Cnocor 10 2 12 1492 76.02 - -
4 C/Cnegor 15 5 35 69.70 385.93 - -

Table 6: Results min-max criteria (waiting allowed).

the no waiting classes. This is probably because the maxipnsaible cost of a strategy is always an
integer value when using integer costs. Hence there wilbeoso many different nondominated points,
even if many path-strategies may correspond to the samé poin

4.7 Comparison to the time-adaptive case

Comparing the results for the a-priori case to previousltesor the time-adaptive case [9, 11] allows us
to point out interesting differences. Here we restrict eluss to expectation criteria, since for min-max
criteria the approximation found in [11] is usually rathezek.

First of all, recall that the set of nondominated points hesrbfound for all the instances considered.
This is in deep contrast to time-adaptive route choice, emat even arg-approximation withe = 1%
could be found for the same set of instances [11]. This resait be viewed as surprising, since finding
the best strategy in the single criterion case is easy (casohe in linear time) while finding the best
path-strategy is NP-hard. A reasonable explanation ofahjarent paradox is that the solution space is
much more dense in the time-adaptive case, that is, thertotaber of path-strategies is much lower than
the total number of strategies. Therefore the ranking mhaeeused in the second phase does not have to
rank as many solutions.

In order to get a deeper insight in this issue, we made platgpesing the nondominated set for the
a priori case with an approximation of the nondominated settfe time-adaptive case, obtained using
the algorithms from [11]. Figure 5 shows two instances onxaB5grid with uncorrelated costs (left) and
negatively correlated costs (right).

First, as noted above, negatively correlated costs proaiace nondominated points, spread in a wider
area; this situation arises for both a priori and adaptivging. Second, in some cases the a priori non-
dominated set may contain points close to the time-adaptivelominated set. Hence solutions found
when a priori routing must be adopted, due e.g. to outsidelaégns, may still be as good as those found
without this regulation. However, in other cases costs trighsubstantially higher, see e.g. the left plot in
Figure 5.

Finally, in general for our instances there are large viaratin the values of for which the a priori
nondominated set turns out fedominate the time-adaptive nondominated set. On averegbaves =
0.1, but the minimune value found was @3 and the maximum.@5.

5 Conclusions

In this paper we have considered bicriterion a priori rotneice in stochastic time-dependent networks. A
new algorithm for solving this problem was presented. ltasddl on the two-phase approach, and exploits
a recently developed algorithm for ranking path-strategieurthermore, if waiting in the nodes @ is
allowed, our algorithm can compute an approximation of thiedominated set.

Numerical results were obtained on reasonably hard tetirings, considering both min-max and
expectation criteria. The reported results are encougadimo waiting is allowed (“true” a priori route
choice) we were able to solve all instances completely. Ehils contrast to time-adaptive route choice,
and is primarily due to the fact that the total number of psttiategies is much lower than the total number
of strategies. For the waiting case, we obtained a reaseapiproximation of the true nondominated set.
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Figure 5: The nondominated sets for an uncorrelated (leff)reegatively correlated (right) test instance.
Both criteria are minimizing expected cost.

Due to the effectiveness of our algorithm, we were able topame the nondominated set under a
priori route choice to the approximations of the nondonedaset obtained under time-adaptive route
choice. Based on the set of instances considered here, weonajude that nondominated points un-
der a priori routing often are equal or close to nondominatEdts found under time-adaptive routing, but
time-adaptive routing may result in much better solutionsame cases.
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A A hypergraph model for STD networks

As shown in Pretolani [14] Eime-expanded hypergrapt#’ = (¥,&) can be used to model an STD net-
work. We shall introduce the directed hypergraph model bgmsef Example 1, but first a few definitions
are needed.

A directed hypergraphs a pairs#Z = (¥,&), where¥ = (vi,...,Vq) is the set ofnodes and & =
(e1,...,em) is the set ohyperarcs A hyperarce € & is a paire= (T (e),h(e)), whereT (e) C ¥ denotes
the set oftail nodes andh(e) € 7'\ T(e) denotes théneadnode. Note that a hyperarc has exactly one
node in the head, and possibly several nodes in the tail. &iigyaphsz” = (7, &) is asubhypergrapiof
K= (V,8),if ¥ C¥ and& C &. A subhypergraph iproperif at least one of the inclusions is strict.

Definition 4 An st hyperpathit= (¥7, &) from sourcesto terminat, is a subhypergraph o¥ satisfying
that, ift = s, then&r = @; otherwise they > 1 hyperarcs ing;; can be ordered in a sequen@, ..., &)
such that

1. t =h(eg).
2. T(g) C{stu{h(er),...,h(e_1)}, V& €én

3. No proper subhypergraph ofis anst hyperpath.

Condition 3 implies that, for eaahe ¥7\ {s}, there exists a unique hyperae &y, such thah(e) = u.
We denote hyperareas thepredecessoof u in 7. An immediate consequence of this is that a hyperpath
tcan be described bymredecessor function p¥; — &x; for eachu € ¥7. p(u) is the unique hyperarc in
rrwhich has node as the head.

Example[1 (continued) The time expanded hypergragh = (¥, &) for the STD network given in
Example 1 is shown in Figufe 6. It represents the relatignssbietween leaving time and arrival time.
The set?” contains one node, for each pair(u,t), t € L(u) and a source node For each(u,v) € Aand

t € L(u,v) a hyperaraeyy(t) = ({w : t € I(u,v,t)},u) is defined, i.e. each column in Table 1 defines a
hyperarc in7Z’. Assigned to each hyperaeg,(t) are the corresponding costgu,v,t), i = 1,2 given in
Table 1. Finally, a dummy arey(t) = ({s}, d;) is defined for each < L(d) with zero costs. |
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Figure 6: The time-expanded hypergragh.

Itis not hard to recognize that there is a one to one corretgrore between a strategy and a predecessor
function p on the time-expanded hypergraptf, i.e. choosingp(u;) = ey(t) is equivalent to choosing
S(u,t) = (u,v). In particular, ano,0) strategy can be represented by a hyperpath from séd@odeo
in the time-expanded hypergraplf, and vice-versa.

Property 1 There is a one-to-one correspondence betw@ed) strategies and sghyperpaths ins?.

Pretolani [14] showed that the weight(S) of a strategys under MEC, MEC, MMC or MMT corre-
sponds to the weight of the correspondsgy hyperpath inZ using suitable hyperarc weights. Therefore,
the best strategy can be found by finding the minimum weigpetpath, i.e., by solving shortest hyper-
path problem ins#. Efficient procedures for finding shortest hyperpaths afeneié in Gallo, Longo,
Pallottino, and Nguyen [5].

Example'1 (continued) Due to Proposition 1 strategies can be illtstiaising hyperpaths in the time-
expanded hypergrapb?. All the possible strategies are illustrated in figures 7[@rtdgether with the
subgraph of5 that may be travelled using the specific strategy.

Under a priori route choice only strategies correspondirglbopless path are allowed, i.e. we consider
the solution of (8). The set of possible path-strategieshosvn in Figure 7.

Under time-adaptive route choice strategies deviatinmfeopath are also allowed, i.e. we consider
the solution of[(3) with the constraint replaced wilte . instead. The set of possible strategies not
corresponding to a path is shown in Figure 8.

Recall that the cost of the strategies described in figuresdBaare given in Section 2, assuming that
both criteria are MEC with costs as given in Table 1. For maits on how to calculate the costs of a
strategy using its hyperpath representation see Nielden [9

]
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(a) A priori strategy corresponding W (b) A priori strategy corresponding W2

(c) A priori strategy corresponding W3, (d) A priori strategy corresponding W*.

Figure 7: Possible strategies under a priori route choiath(ptrategies).

18



(a) Strategy corresponding . (b) Strategy corresponding Wi®.

(c) Strategy corresponding Y”. (d) Strategy corresponding W®.

(e) Strategy corresponding &°.

Figure 8: Time-adaptive strategies not corresponding tath. p
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