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Abstract

In recent years there has been a growing interest in using stochastic time-dependent (STD) networks
as a modelling tool for a number of applications within such areas as transportation and telecommunica-
tions. It is known that an optimal routing policy does not necessarily correspond to a path, but rather to
a time-adaptive strategy. In some applications, however, it makes good sense to require that therouting
policy corresponds to a loopless path in the network, that is, the time-adaptive aspect disappears and a
priori route choice is considered.

In this paper we consider bicriterion a priori route choice in STD networks, i.e. the problem of finding
the set of efficient paths. Both expectation and min-max criteria are considered and a solution method
based on the two-phase approach is devised. Experimental results reveal that the full set of efficient
solutions can be determined on rather large test instances, which is in contrast to previously reported
results for the time-adaptive case.

Keywords: stochastic time-dependent networks; bicriterion shortest path; a priori route choice; two-
phase method.

1 Introduction

Travel time between an origin and a destination is often the primary objective when routing data, com-
modities, vehicles etc. in a network. The problem of finding aminimal travel time path, if travel time
is deterministic and time-independent, has been the subject of extensive research for many years. For an
overview see e.g. Deo and Pang [4] or the textbook by Ahuja, Magnanti, and Orlin [1]. However, a trans-
portation network in which travel times between locations are deterministic and time-independent is often
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unrealistic. For instance, travel time between home and workplace is normally faster at midnight than
during rush hour, and even during off-peak hours, travel times may vary substantially.

We say that a network istime-dependent,if the travel times on the arcs are functions of time, and
stochastic,if the travel time is represented by probability distributions rather than simple scalars. It is
evident that both the stochastic and time-dependent properties are appropriate in a transportation network
model. As a result stochastic time-dependent networks1 (STD networks) often provide a better modelling
tool in e.g. transportation applications. These networks were first addressed by Hall [7], who considered the
problem of finding a route between two nodes minimizing the expected travel time, when leaving the origin
at a specific time. He pointed out several ways to formulate the route selection problem, and complications
arising as a consequence of modelling both the stochastic and time-dependent properties.

If the driver is allowed to react to revealed (actual) arrival times at intermediate nodes, the best route
is not necessarily a path, but rather a time-adaptivestrategythat assigns optimal successor arcs to a node
as a function of leaving time. This is referred to astime-adaptive route choice. Pretolani [14] presented
a directed hypergraph model for STD networks with discrete travel time distributions and showed that a
strategy corresponds to a hyperpath in a time-expanded hypergraph. Moreover, the best strategy under
different criteria, such as minimizing expected or maximumpossible travel time or cost, can be found by
solving a minimum weight hyperpath problem using appropriate weights and weighting functions.

If a loopless pathmust be specified before travel begins, and no deviations from the route are permitted,
the path is selecteda priori on the basis of only the probability distributions of the arctravel-times. Thus,
we seek a strategy that assigns the same successor arc for allleaving times for a specific node. This is
referred to asa priori route choice, and may be the only possible model in several practical cases, e.g. for
routing highly sensitive substances for which the path travelled must be preapproved, or when the driver
does not have access to (or time to access) information whiletravelling. The problem of finding a minimal
expected travel time path under a priori route choice is NP-hard [14].

The above problems only consider a single objective. Nevertheless, due to the multi-objective nature
of many transportation and routing problems, a single objective function is not sufficient to completely
characterize most real-life problems. In a road network forinstance, two parameters, travel time and cost,
can be assigned to each arc. Clearly, often the fastest path may be too costly or the cheapest path may be
too long. Therefore the decision maker must choose a solution among the set ofefficient(Pareto optimal)
paths. The problem of finding all efficient paths, commonly referred to asbicriterion shortest path(bi-SP)
has been widely studied and is known to be NP-hard even if deterministic costs/travel times are used [6].

It is obvious that problems concerning bicriterion route choice in STD networks are relevant. For
instance, when routing hazardous materials several criteria may be considered besides expected travel time,
namely expected accident risk, population exposure, or travel costs. Risk and exposure (rather than travel
time) may be the most relevant criteria, if materials must berouted through urban areas. Note that STD
networks may be much more suitable in this case, due to their ability to capture the inherent fluctuations
in these parameters. Moreover, the objective of the problemmay vary; for example, a risk averse decision
maker may be interested in minimizing the maximum risk, rather than its expected value. We remark that
bicriterion route choice problems in STD networks show a much richer structure than bi-SP, for at least
two reasons:

1. due to the time-dependent nature of the network, travel times turn out to be a quite particular criterion,
as opposed to what happens in deterministic networks;

2. the purpose may be to minimize expected as well as maximum possible values.

The number of papers on multicriterion route choice in STD networks are rather limited. Miller-Hooks
and Mahmassani [8] consider bicriterion a priori route choice in discrete STD networks, with the objectives
being minimizing expected travel time and cost. They assumethat the network only contains a single peak
period and that the distributions are static after the peak period. A label-correcting procedure is described,
which guarantees that all the efficient paths can be obtained. Computational results are presented on a
single road network.

1Also known as random time-dependent networks, stochastic time-varying networks or stochastic dynamic networks.
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Chang, Nozick, and Turnquist [2] consider multicriterion apriori route choice in a continuous time
STD network where travel times are normally distributed. They devise a heuristic method based on the
first two moments of the distributions, where an approximatestochastic dominance criterion is adopted to
compare paths. Computational results are presented on an example network and a single road network.

Time-adaptive route choice has been presented in Nielsen, Andersen, and Pretolani [11], where an exact
two-phase method is devised. Computational results are conducted on difficult STD grid networks, and the
results indicate that the number of efficient strategies maygrow exponentially with the network size. As a
result, fast heuristic algorithms finding approximations of the efficient set are developed.

In this paper we consider bicriterion route choice problemsin STD networks under a priori route choice.
More specifically we consider the problem of finding the set ofefficient paths between an origin and a
destination node when leaving the origin at time zero. We assume that departure times are integer and that
travel times are discrete random variables. The paper differ from previous work in the following aspects:

1. We propose a new algorithm using the two-phase method to determine the set of efficient paths as
opposed to the labelling approach proposed by Miller-Hooksand Mahmassani [8].

2. In addition to expected time and cost (a somehow easier case, as we shall see) we address the case
of two cost criteria, which allows us to evaluate the effect of uncorrelated and correlated costs;
moreover, we consider expected as well as min-max criteria,and we address the issue of possible
waiting at intermediate nodes.

3. We do not consider a “steady state” with deterministic travel time at the end of a peak period:
throughout the route, times are always stochastic, and several peak periods are encountered. Thus
we concentrate on the dynamic features of the STD network. Within this computational setting we
perform a reasonably wide computational experience, concentrating on grid networks rather than
random graphs.

4. Since our algorithms solve the bicriterion problem exactly on the set of instances addressed here, we
are able to compare the efficient sets found under a priori andtime-adaptive route choice.

The paper is organized as follows. In Section 2 we give the necessary definitions of STD networks
and efficient paths. In Section 3 we give a short description of the two-phase method and describe the
procedures we use for its implementation. Computational results are reported in Section 4, and conclusions
are given in Section 5. Throughout the paper we illustrate several concepts by means of a running example,
which is reported in details in Appendix A.

2 Preliminaries

In this section we present the basic definitions used in this paper. We introduce stochastic time-dependent
networks and formally define the concept of a strategy and a path-strategy. Finally, we recall some basic
facts from multicriterion analysis. Definitions are illustrated by means of a running example, discussed in
details in Appendix A, where we adopt (after a short introduction) the hypergraph representation of the
STD network given by Pretolani [14].

2.1 Stochastic time-dependent networks

We consider discrete STD networks, where departure and arrival times are integer, and travel times are
independent integer-valued discrete random variables with time-dependent probability density functions.

Let G= (N,A) be a directed graph with node setN and arc setA, referred to as thetopological network.
The forward star ofu∈ N is FS(u) = {(u,v)∈ A}. Leto, d∈ N denote two different nodes which represent
theorigin and thedestinationnode inG, respectively.

Assume that departure and arrival times belong to a finitetime horizon, i.e. a setH = {0,1, ..., tmax}.
This is done by discretizing the relevant time period into time intervals of lengthδ , that is, the time horizon
H corresponds to the set of time instances 0,δ ,2δ , ..., tmaxδ .
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For each arc(u,v) ∈ A let L(u,v) ⊆ H be the set of possible leaving times from nodeu along arc(u,v).
Moreover, letL(u), u 6= d denote the set of possible leaving times from nodeu, i.e

L(u) =
⋃

(u,v)∈FS(u)

L(u,v)

and letL(d) denote the set of possible arrival times at noded. For each arc(u,v) ∈ A andt ∈ L(u,v), let
X(u,v, t) denote the arrival time at nodev, when leaving nodeu at timet along arc(u,v). The arrival time
X(u,v, t) is a discrete random variable with density

Pr(X (u,v, t) = ti) = θuvt (ti) , ti ∈ I (u,v, t)

where
I (u,v, t) =

{
t1, ..., tκ(u,v,t)

}

denotes the set ofκ(u,v, t) possible arrival times at nodev. That is, for eachti ∈ I(u,v, t) the probability
of arriving at nodev at timeti when leaving nodeu at timet is θuvt(ti). We assume that travel times are
positive, and that the traveller cannot wait at an intermediate node. Some issues related to waiting will be
discussed later.

Under time-adaptive route choice the best route is not necessarily a path but rather a strategyS, i.e.
a function which provides routing choices for travelling from all nodes and leaving times in its domain
towards the destinationd. In particular, a traveller leaving nodeu at timet travels along arcS(u, t). More
formally, following [12], the definition of a strategy can bestated as follows

Definition 1 A strategyis a functionSwith domain

Dm(S) ⊆ {(u, t) : u∈ NÂ{d} , t ∈ L(u)}

assigning to each pair(u, t) ∈ Dm(S) a successor arc(u,v) ∈ FS(u). Furthermore, strategySmust satisfy
the following conditions

1. If (u, t) ∈ Dm(S) andS(u, t) = (u,v) ⇒ t ∈ L(u,v).

2. If (u, t) ∈ Dm(S) andS(u, t) = (u,v), v 6= d ⇒ (v, t ′) ∈ Dm(S),∀t ′ ∈ I(u,v, t).

Note that Condition (2) ensures that a traveller following strategyScannot get stuck in an intermediate
node, that is, he/she will arrive at the destination within the time interval. Throughout this paper we
consider routing from an origin nodeo towards a destination noded when leaving nodeo at time zero.
Hence we are interested in the particular case defined below.

Definition 2 An (o,0)-strategyis aminimalstrategySsuch that(o,0) ∈ Dm(S). Here, minimality means
that no other strategy with domain strictly contained inDm(S) exists.

For the sake of simplicity, in the remaining part of the paperwe use the term strategy to denote a(o,0)-
strategy. Since we leave the origin at time zero the arrival time to the destination will be equal to the travel
time. As a result we consider arrival time and travel time as equivalent in this paper.

Under a priori route choice we must travel along a loopless path in G. That is, we only consider
strategies, where the successor arcs for a node are time-independent.

Definition 3 A path-strategyis a strategySsatisfying

S(u, t) = S
(
u, t ′

)
, ∀(u, t) ,

(
u, t ′

)
∈ Dm(S)

It is easy to see that a path-strategy defines a uniqueo-d loopless path inG. The converse is not
necessarily true, that is, ano-d path inG may not correspond to a strategy, since it may be impossible to
reach the destination within the time horizon traveling along the path. From now on, we shall consider
path-strategies rather than paths; in some cases, we may usethe term “path” as synonymous with a path-
strategy. We denote byS the set of all strategies and withSP the set of all path-strategies. Clearly,
SP ⊆ S .
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Figure 1: The topological networkG.

(u,v), t (a,b),0 (a,c),0 (b,c),1 (b,c),3 (b,d),1 (b,d),3 (c,b),2 (c,d),2 (c,d),4 (c,d),5

I(u,v, t) {1,3} {2} {2} {4,5} {3} {6,7} {3} {3,4} {5,6} {6}

c(u,v, t) (1,1) (3,0) (2,2) (0,4) (3,8) (3,6) (2,1) (4,2) (3,3) (1,5)

Table 1: Input parameters.

Example 1 Consider the topological networkG = (N,A) in Figure 1, wherea is the origin node andd
is the destination node. For each arc inG, the possible departure and arrival times are listed in Table
1. Here a pair((u,v), t) corresponds to a possible leaving timet from nodeu along arc(u,v). For the
sake of simplicity, we assume thatX(u,v, t) has a uniform density, i.e., for eacht ′ ∈ I(u,v, t), we have
θuvt(t ′) = 1/|I(i, j, t)|. For example, if we leave nodeb at time 3 along arc(b,c), we arrive at nodec at
time 4 or 5 with the same probability 1/2. Two possible strategies are

S1 : S1(a,0) = (a,b), S1(b,1) = (b,d), S1(b,3) = (b,d)

S2 : S2(a,0) = (a,b), S2(b,1) = (b,d), S2(b,3) = (b,c), S2(c,4) = (c,d), S2(c,5) = (c,d)

StrategyS1 is a path-strategy and corresponds to the patha−b−d while for strategyS2 we travel different
routes depending on the leaving time from nodeb.

Costs can be included in the model by lettingc(u,v, t), t ∈ L(u,v) denote the travel cost of leaving node
u at timet along arc(u,v). Moreover letg(t) be the penalty cost of arriving at noded at timet. Different
criteria described by Pretolani [14] are considered in thispaper. GivenS∈ S , theexpected cost ESC(u, t)
of S for eachu 6= d andt ∈ L(u) is defined by the recursive equations:

ES
C(u, t) = c(u,v, t)+ ∑

t ′∈I(u,v,t)

θuvt(t
′)ES

C(v, t ′), (1)

whereS(u, t) = (u,v) andES
C(d, t) = gd(t), for eacht ∈ H. ES

C(u, t) is the expected cost incurred, when
leaving nodeu at time t following strategyS towardsd, i.e. the expected cost of strategyS is equal to
ES

C(o,0). Here cost is formulated in general terms, e.g. cost may be a risk measure or the economic travel
cost and one objective might be to determine a strategy with minimum expected cost (MEC).

Instead of considering expectation criteria worst cases may be of primary concern. That is, finding the
strategy minimizing maximum possible cost (MMC). Given S∈ S the maximum cost MSC(u, t) of S for
eachu 6= d andt ∈ L(u) is defined by the recursive equations:

MS
C(u, t) = c(u,v, t)+ max

t ′∈I(u,v,t)
MS

C(v, t ′) (2)

whereMS
C(d, t) = g(t), for eacht ∈ H.

Similarly, we can define minimum expected travel time (MET) and the problem of minimizing max-
imum travel time (MMT). In fact finding the optimal strategy under the MET (MMT) criterion may be
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formulated as finding the optimal strategy under the MEC (MMC) criterion by using specific costs and
penalty costs [14].

Theorem 1 Finding the optimal MET (MMT) strategy is equivalent to finding the optimal MEC (MMC)
strategy using costs c(u,v, t) = 0 for all (u,v)∈ A and t∈ L(u,v) and penalty costs g(t) = t for all t ∈ L(d).

We shall generically denote byW(S) thecostof a strategyS∈ S with respect to one of the four criteria
described above, i.e., MEC, MET, MMC and MMT.

2.2 Bicriterion concepts

Let W(S) = (W1(S),W2(S)), denote the cost of strategyS∈ SP using some of the previously described
criteria. In this paper we face the following problem:

min W(S) = (W1(S),W2(S))

s.t. S∈ SP

(3)

Only path-strategiesS∈SP are considered since we are routing under a priori route choice. Path-strategies
are defined in thedecision spaceSP and correspond to points in thecriterion spaceW = {W(S) ∈ R2 |
S∈ SP}.

Minimizing a vector-valued objective function, such as (3), requires some explanation since there is no
complete order defined inR2. Path-strategyS is efficient(Pareto optimal) if and only if

∄S̃∈ SP : W1(S̃) ≤W1(S) andW2(S̃) ≤W2(S)

with at least one strict inequality; otherwiseS is inefficient.
A point W(S) ∈ W is anondominatedpoint if and only ifS is an efficient strategy. OtherwiseW(S) is

adominatedpoint. Let

SE = {S∈ SP | S is efficient} , WE =
{
W(S) ∈ R2 | S∈ SE

}

denote the set of efficient path-strategies and nondominated points, respectively. Nondominated points
can be partitioned into two sets, namely supported and unsupported. The supported ones can be further
subdivided into extreme and nonextreme. To this aim, let us define the following set

W
≥ = conv(WE)⊕

{
w ∈ R2 | w ≥ 0

}
,

where⊕ as usual denotes direct sum, andconv(WE) denotes the convex hull ofWE. W(S) ∈ WE is
a supportednondominated criterion point, ifW(S) is on the boundary ofW ≥. OtherwiseW(S) is an
unsupportedpoint. A supported pointW(S) is extreme, if W(S) is an extreme point ofW ≥. Otherwise
W(S) is anonextremepoint.

If an approximation ofWE is wanted, the quality can be controlled using the concepts of ε-domination
andε-approximation [15]. A point(W1,W2) ε-dominatespoint (Ŵ1,Ŵ2) if

Ŵ1 ≥ (1− ε)W1, Ŵ2 ≥ (1− ε)W2

A setW1 is anε-approximationof another nondominated setW2, if for each pointŴ ∈ W2, there exists
W ∈ W1 such thatW ε-dominatesŴ.

Example 1 (continued) Assume that two costsci(u,v, t), i = 1,2, are given for each leaving timet from
nodeu along arc(u,v), see Table 1.

Consider the problem of finding the set of nondominated points under a priori route choice, i.e. solving
(3), when both criteria are MEC. The criterion points corresponding to the four possible loopless paths in
G are illustrated in Figure 2(a). In this example all four points are nondominated. The points are given by:
W1 = (5,10), W2 = (6,8), W3 = (8,7) andW4 = (9,4). W1,W2 andW4 are supported points all of which
are extreme. Solid lines define the boundary ofW≥; W1 andW4 are theupper/leftand thelower/right
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Figure 2: Criterion spaces under a priori and time-adaptiveroute choice.

vertex inW≥, respectively. The extreme points define two triangles, shown with dashed lines, in which it
may be possible to find unsupported nondominated points suchasW3.

Under time-adaptive route choice, i.e., if we consider the solution of (3) with the constraint replaced
with S∈S , we have nine possible strategies, five of which are not path-strategies; the corresponding points
are:W5 = (4.5,11), W6 = (5,10.5), W7 = (7,9), W8 = (6,8.5) andW9 = (6.5,7).

All nine points are illustrated in Figure 2(b). Five pointsW1,W2,W4,W5 andW9 are supported non-
dominated points of whichW1 andW2 are non-extreme. Points which do not lie inside the triangles such
asW3 andW7 are dominated. Moreover, the two pointsW6 andW8 are dominated byW1 andW2, respec-
tively. Note that a nondominated point under a priori route choice may be dominated under time-adaptive
route choice, as is the case forW3, dominated byW9.

The four path-strategies can be seen in Figure 7 in Appendix A, while the five time-adaptive strategies
not corresponding to a path are shown in Figure 8.

Obviously, the time-adaptive nondominated set always dominates the a priori nondominated set, how-
ever, the former set does not necessarily contain the latter. As we shall see later, the number of efficient
path-strategies is in general significantly lower than the number of efficient strategies.

3 Solution method

In this section we consider the problem of finding all the efficient paths under a priori route choice between
an origin nodeo and a destination noded, when leaving the origin at time zero. We devise a solution
method based on the two-phase approach, and provide detailson its implementation. We also discuss the
case, where waiting at intermediate node is allowed; we argue that waiting makes the problem much harder,
and we show that our method can be adapted in order to obtain anapproximation of the efficient set.

The two-phase approach is a general method for solving bicriterion discrete optimization problems
such as (3). As the name suggests, the two-phase method divides the search for nondominated points into
two phases. In phase one, the supported extreme nondominated points are found. These extreme points
define a number of triangles in which unsupported nondominated points may be found in phase two (see
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Figure 2). For a description of a generic two-phase method see Pedersen, Nielsen, and Andersen [13].
Both phases make use of a parametric functionγ : (W ,R+) → R+ which defines theparametric cost

of a path-strategyS∈ SP :
γ (W (S) ,λ ) = W1(S)λ +W2 (S) . (4)

It is well-known that givenλ > 0 the path-strategyS with minimum parametric costγ(W(S),λ ) cor-
responds to a supported nondominated point and hence is efficient. As a result all supported extreme
nondominated points can be found in phase one by solving (4) for different values ofλ , see [3].

The extreme points found in phase one define a number of triangles in which unsupported nondom-
inated points may exist. Phase two searches each triangle using an algorithm for ranking path-strategies
with respect to the parametric weight (4), whereλ is a function of the slope of the line joining the two
pointsW+ = (W+

1 ,W+
2 ) andW− = (W−

1 ,W−
2 ) defining the triangle (see Figure 3). The search stops, when

the parametric cost reaches an upper bound, which is initially set toub0 = W−
1 λ +W+

2 . During the search,
the upper bound is dynamically updated (decreased), when new nondominated points are found. Searching
in a triangle can be seen as a “sweep line” method, as shown in Figure 3; note that the upper bound is
updated toub1 when the new nondominated point is found inside the triangle, since the area where further
nondominated points can be located (shaded in the picture) decreases.

It must be kept in mind that in both phases we have to solve a sequence of difficult problems, since a
priori routing even for the single criterion case is NP-hard. In order to solve these problems we adopted the
algorithm for ranking paths in STD networks (procedureK-BPS) recently devised by Nielsen et al. [12].
However, the effectiveness of this approach is quite different for expectation and min-max criteria.

3.1 Two expectation criteria

Consider (3) and assume that we are minimizing expected costfor both criteria. Let

cλ (u,v, t) = c1(u,v, t)λ +c2(u,v, t), (u,v) ∈ A, t ∈ L(u,v)

gλ (t) = g1 (t)λ +g2 (t) , t ∈ L(d)

The following theorem has been proved in Nielsen et al. [11].

Theorem 2 Let Wλ (S) denote the weight of a strategy S using costs cλ (u,v, t) and gλ (t) under the MEC
criterion. For everyλ > 0 and for every S, we have that Wλ (S) = γ(W(S),λ ).

Clearly, the result holds for path-strategies in particular. As a consequence, we can rank paths with
respect to the parametric costγ(W(S),λ ) by applying procedureK-BPSwith the costscλ (u,v, t) andgλ (t).
This procedure is also used in phase one, stopping as soon as the best parametric cost path is found.
Theorem 2 also holds, when minimizing expected travel time instead of cost since due to Theorem 1 we
have that the MET problem can be formulated as a MEC problem.
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3.2 Two min-max criteria

Consider the case where we are minimizing maximum cost for both criteria. Unfortunately, we do not
have a result similar to Theorem 2. However, a lower bound on the parametric cost of a strategy can be
determined, Nielsen et al. [11].

Theorem 3 Let Wλ (S) denote the weight of a strategy S using costs cλ (u,v, t) and gλ (t) under the MMC
criterion. For everyλ > 0 and for every S, we have that Wλ (S) ≤ γ(W(S),λ ).

Due to Theorem 3 we can generate path-strategies in non-decreasing order ofWλ (S) by applying pro-
cedureK-BPSwith costscλ (u,v, t) andgλ (t). For each generated path-strategySwe can calculateW1(S)
andW2(S) and henceγ(W(S),λ ). Note thatγ(W(S),λ ) provide us with an upper bound on the minimal
parametric cost. As a result, in phase one we can stop procedure K-BPSas soon asWλ (S) reaches the
parametric cost of the best path-strategy generated so far.In phase two a triangle is searched until the lower
boundWλ (S) reaches the current upper bound.

Observe that in phase one, since we rank according toWλ (S) instead ofγ(W(S),λ ), procedureK-BPS
may generate many paths that actually fall inside the triangle defined by a certainλ . In order to take
advantage of this fact, we devised ahybridalgorithm, where the two phases are combined. More precisely,
when a new triangle is identified in the first phase, we immediately search inside the triangle by letting
procedureK-BPScontinue until the lower boundWλ (S) reaches the upper bound. In practice, the hybrid
approach avoids repeating the same computations performedin phase one to find the minimum parametric
cost path. For this reason, we adopt the hybrid algorithm in our computational tests.

3.3 STD networks with waiting allowed

In this section we will briefly discuss the case in whichwaiting at the nodes is allowed. The subject will
not be discussed in great detail here, but a thorough treatment of the subject is available in [9].

From a theoretical point of view, waiting at intermediate nodes should not be considered within an a
priori route choice model, as it is an inherently time-adaptive behavior. Indeed, while travelling along a
path, at any given time in a node, a traveller has to choose, whether to wait or proceed to the next node in
the path. Clearly, the decision cannot be “waiting” at each time, since a traveller cannot wait indefinitely at
intermediate nodes. However, it may be interesting to consider waiting as a limited form of time-adaptive
behavior, thus defining an intermediate model between a priori and time-adaptive routing.

A key observation here is that ano-d pathP in G defines several strategies, actually, an exponential
number in the length ofP. That is, we may have many path-strategies corresponding tothe same path,
distinguished from each other only by the use of waiting. As aconsequence, different nondominated points
may correspond to the same path inG. From a theoretical point of view, the two-phase method described
above remains valid since we rank path-strategies. However, due to the fact that a particular pathP in
G may define a huge number of path-strategies, we may face difficulties in phase two, when searching a
triangle using ranking. A lot more path-strategies may haveto be ranked before reaching the upper bound
of the triangle, resulting in much larger CPU times.

One way to deal with this problem is to consider only one path-strategy for each path inG, when
ranking path-strategies in a triangle. In particular, we take a path-strategy yielding minimum parametric
cost with respect to the valueλ corresponding to the triangle. This approach guarantees that no substantial
loss in computational performance will be incurred, but provides us with an approximation of the true
nondominated set. Furthermore, we may not always be able to give an estimate of the quality of the
approximation found; we shall try to evaluate this quality empirically in our computational experience.

4 Computational results

We implemented the algorithm in C++ and tested it on a 1 GHz PIII computer with 1GB RAM using a
Linux Red Hat operating system. The source code has been compiled with the GNU C++ compiler with
optimize option -O. The main goals of the computational experiments can be summarized as follows:
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Figure 4: Peak effect and random perturbation for an arc.

1. Validating the performance of the algorithm on reasonably hard test instances.

2. Evaluating the algorithm and the solution set under different criteria and different correlation struc-
ture between the two criteria.

3. Comparing the nondominated points found under a priori and time-adaptive route choice.

4.1 Time-Expanded Generator with Peaks (TEGP)

The STD network test instances are generated using the newlydeveloped generator TEGP2 (Time-Expanded
Generator with Peaks). The generator includes several features inspired by typical aspects of road net-
works, such as congestion effects, waiting, random perturbations.

An underlying grid graphG of base bandheight his assumed, and we search optimal routes from the
bottom-right corner node (origino) to the upper left corner node (destinationd). The choice of grids is
motivated by their resemblance to road networks, and by the fact that they are usually considered computa-
tionally harder. Indeed, each origin-destination path hasat leastb+h−2 arcs and the number of such paths
grows exponentially with the size ofG. Thus paths are not too short, as may happen in random graphs,and
there is a large number of potentially efficient solutions.

The generator considerscyclic time periods. In each cyclic period there are somepeak periods(e.g. rush
hours). Each peak consists of three parts; atransientpart, where the mean travel time (traffic) increases, a
pure peakpart, where it stays the same, and a transient part, where it decreases again. This is illustrated in
Figure 4 for a specific arc(u,v). Here two peaks are considered and the dotted line is the meantravel time.
Given the mean travel timeµuv(t) for arc (u,v) at leaving timet the travel time distribution is generated
such that:

1. the interval of possible travel times is{⌊µuv(t)−0.25µuv(t)⌋, ...,⌈µuv(t)+0.25µuv(t)⌉};

2. the probabilities give a rough discrete approximation ofa normal distribution with meanµuv(t) and
standard deviation 0.25µuv(t).

This setting gives travel times with higher mean and standard deviation in peaks.
The time horizon consists of one or more cyclic periods, withpeaks placed at the same time in each

cycle. Note that the STD network does not have a final deterministic steady state, as often assumed in the
literature (see e.g. [8]), but a stochastic and time-adaptive behaviour in the whole time-horizon.

Costs are generated taking three components into account: aoff-peak cost, the peak effect and a random
perturbation. Therandom perturbationis used to introduce small variations, not intercepted by the peak
effect, e.g. special information about the cost at exactly that leaving time. Hence, the cost follows a slightly
different pattern compared to mean travel time; this pattern is shown by the solid line in Figure 4. If waiting
is allowed, waiting costs are generated using an off-peak component and a random perturbation. For more
details on the TEGP generator, see Nielsen [10].

2The problem generator and the test instances used in this paper are downloadable from the following web-page
http://www.research.relund.dk/.
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Class 1 2 3 4

Grid size 5×8 10×10 5×8 10×10

H 144 288 144 288

IT [3,20] [3,20] [3,20] [3,20]

IC [1,2200] [1,2200] [1,2200] [1,2200]

IW - - [1,550] [1,550]

κ 6 6 6 6

Waiting no no yes yes

n 2254 14877 2263 14886

mh 7383 53220 7405 53241

ma 80 196 2262 14885

Table 2: Test classes.

4.2 Test instances

Four classes of STD networks are considered with two different grid sizes, namely 5×8 and 10×10. In
the first two classes, corresponding to the two different grid sizes, waiting is not allowed. In the first class
the time-horizon corresponds to one cycle with 144 time instances, e.g., 12 hours divided into 5 minute
intervals, whereas in the second class the time-horizon corresponds to 288 time instances (2 cycles). Note
in general the time-horizon depends on the size of the network. Here the time-horizon is chosen so that it
should be possible to travel along all paths with lengthb+h. Classes three and four are similar to the first
two classes with the exception that waiting is allowed. A cycle has two peaks, each with a total length of
5 hours with each part of the peak lasting 1 hour and 40 minutes. The first peak starts after half an hour
(t = 6).

The interval of possible off-peak mean travel times is[lbt ,ubt ] = [4,8], i.e. an off-peak mean travel time
between 20 and 40 minutes. The mean travel time increases by 100% in the pure peak part. Similarly, the
interval of possible off-peak costs is[lbC,ubC] = [1,1000] and the costci(u,v, t) increases by 100% in the
pure peak part. In the case of waiting, waiting costsIW are generated randomly between 1 and 500. The
random perturbation increases or decreases a cost value by 10% at most.

The parameters defining our set of instances are summarized in Table 2. Here,IT is the range of possible
travel times (for all arcs and departure times); similar,IC and IW denote the range of possible travel and
waiting costs, respectively.κ denotes the average size of the travel time distributions. The parametersn,
mh andma are related to the time-expanded hypergraph representation of the STD used as the underlying
data structure in our algorithms. In particular, they denote the number of nodes, hyperarcs and arcs in the
hypergraph, respectively. The values reported in the tableare an average over all the instances in the same
class generated in our tests, and refer to the reduced hypergraph obtained at the end of apreprocessing
phase, that deletes each node and hyperarc that cannot belong to a strategy; see [9] for details.

We report results on three ways of generating costs, namelyC/C negcor, C/C nocor andT/C. In C/C
negcor the costs are assumed to be negatively correlated. This is a typical situation in hazardous material
transportation, where travel cost and risk/exposure are conflicting. In this case, the off-peak costs for a
specific arc are generated so that if one belongs to the first half of the interval [lbC,ubC] then the other
belongs to the second half. InC/C nocor there is no correlation between the two costs, which are generated
independently. Finally, forT/C the first cost corresponds to travel time (treated as a cost, according to
Theorem 1) and the second cost is generated as forC/C nocor. In all combinations the penalty costs are
assumed to be zero, except when the cost corresponds to time,in which case the penalty costs are defined
according to Theorem 1.

4.3 Performance measures/statistics

In this section performance measures/statistics used to evaluate the algorithm are described. For each
class, combination of criteria and cost correlation type, the measures are average (or maximum) over five
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|W△| CPU△
Class |WSE| CPUSE RI1 RI2 △ ave max ave max

1 T/C 5 0.54 48 94 4 1 4 0.16 0.33

1 C/Cnocor 4 0.57 98 103 3 1 4 0.20 0.40

1 C/Cnegcor 8 1.45 201 324 7 3 11 0.73 2.22

2 T/C 6 8.90 36 136 5 2 8 3.79 22.91

2 C/Cnocor 8 21.45 140 92 7 3 17 5.76 47.57

2 C/Cnegcor 11 25.04 280 365 10 6 26 12.08 43.05

Table 3: Results expectation criteria.

independent instances obtained using a different seed. Thefirst group of statistics refers to phase one; the
abbreviation used in the tables is given in parentheses.

Extreme supported size(|WSE|): The number of supported extreme nondominated points

CPU time(CPUSE): For expectation criteria, the total CPU time for phase onein seconds; not re-
ported for min-max criteria, where the hybrid algorithm is used.

Number of triangles(△): Number of triangles defined by supported extreme points.

Relative increase(RIj ): The relative increase from the upper/left pointWul to the lower/right point
Wlr for the j ’th criteria defined asRI1 = (Wlr

1 −Wul
1 )/Wul

1 andRI2 = (Wul
2 −Wlr

2 )/Wlr
2 . Re-

ported in percent.

In the second group we report statistics for each triangle searched in phase two.

CPU time(CPU△): The CPU time for searching a triangle, in seconds. The average and maximum
over all the triangles searched are reported.

Points in the triangle(|W△|): The number of nondominated points in the triangle not including the
two points defining the triangle. Average and maximum results are reported.

Upper bound on epsilon(εub): For expectation criteria, an indication of the quality ofthe approxi-
mation obtained when waiting is permitted. An upper boundεub is computed, for each triangle,
with the following property: the approximated nondominated set found for a triangle is anε-
approximation of the true set withε ≤ εub. See Nielsen [9, Th. 5.4.5] for details. Average and
maximum results over all triangles are reported in percent.

4.4 Results - expectation criteria

First, we report on the results obtained, when both criteriarepresent expectation and waiting at the nodes
in G is not allowed. The results are reported in Table 3. In phase one all extreme supported nondominated
points can be determined in a reasonable amount of time. The same holds for phase two (which is the most
time-consuming phase). That is, we can find the nondominatedset for all the test instances considered.

Comparing the different criteria, the results for phase oneand two reveal that minimizing expected
travel time and cost (T/C) is in general easier than when considering cost/risk criteria. If we compare the
two different types of correlation for cost (C/C) the results indicate that negatively correlated costs produce
more extreme nondominated points. Moreover, these points define a larger gap between the upper/left and
lower/right points (RIj columns), i.e. we have to search a larger area of the criterion space. As a result
we have more triangles to search, and it takes longer time to search each one of them. This fact was
also observed under time-adaptive route choice, Nielsen etal. [11] and is a general feature for discrete
bicriterion optimization problems, see e.g. Pedersen et al. [13]. Figure 5 gives an example of the effect of
negative correlation among costs.
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|W△| CPU△
Class |WSE| △ ave max ave max

1 C/Cnocor 4 3 1 4 0.32 0.68

1 C/Cnegcor 7 6 4 14 2.01 5.65

2 C/Cnocor 8 7 2 12 17.91 80.12

2 C/Cnegcor 10 9 7 59 100.42 439.72

Table 4: Results min-max criteria.

|W△| CPU△ εub

Class |WSE| CPUSE RI1 RI2 △ ave max ave max ave max

3 T/C 35 6.01 84 100 34 0 10 0.12 0.48 0.5 7.3

3 C/Cnocor 41 6.74 424 121 40 0 6 0.13 0.60 0.9 9.1

3 C/Cnegcor 32 5.70 201 349 31 1 11 0.42 2.86 1.3 8.1

4 T/C 73 96.10 71 155 60 2 26 3.43 43.05 0.1 4.6

4 C/Cnocor 113 265.71 756 126 112 1 18 1.79 58.43 0.2 5.6

4 C/Cnegcor 114 259.11 532 541 113 1 26 2.63 56.94 0.3 6.6

Table 5: Results expectation criteria (waiting allowed).

4.5 Results - min-max criteria

Assume that both criteria are min-max and waiting is not allowed. We only consider the situation, where we
are minimizing maximum cost for both criteria, i.e., (MMC,MMC), since we believe that the time/cost case
is not very interesting in practice. Indeed, for a decision maker interested in path-strategies with bounded
maximum travel time, finding the minimum cost path-strategyfor different settings of the time-horizon
may be a much simpler and more efficient approach.

The results for the hybrid algorithm are presented in Table 4. All instances can be solved. Compared
to expectation criteria the total number of nondominated points is about the same in average. However, the
CPU time spent is considerably higher as the lower bound usedfor ranking is not very tight. If comparing
the different criteria the same results hold as under expectation criteria.

4.6 Results - waiting allowed

Even though waiting at the nodes inG is essentially a time-adaptive behavior we tested our algorithms on
classes 3 and 4. Here the topology structure of the STD networks is the same as in class 1 and 2 except that
waiting is allowed at intermediate nodes.

The results for expectation criteria are presented in Table5. In the first phase all extreme nondominated
points can be found. The number of extreme points is much higher compared to when no waiting is allowed
(see Table 3). This may be due to the fact that many extreme points correspond to the same path, that is,
differ from each other only in what concerns waiting. Furthermore, the gap between the upper/left and
lower/right points is much larger in the waiting case (RIj columns), i.e. we have to search a larger area of
the criterion space. However, since many extreme points exist a decision maker may be satisfied with the
extreme points offered by phase one, which would make phase two superfluous.

In the second phase we computed an approximation of the nondominated set by choosing only one path-
strategy for each path inG, when a triangle is searched. In order to evaluate the quality of the approximation
we computed the upper boundεub described earlier. In general, acceptable approximationsare found,
however, in a few large triangles poor values ofεub are obtained. In general a large value ofεub does not
necessarily mean that we have found a poor approximation of the nondominated set, but may be due to the
fact that the true set lies deep inside the triangle.

The results for min-max criteria are presented in Table 6 anddo not seem to differ substantially from
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|W△| CPU△ εub

Class △ ave max ave max ave max

3 C/Cnocor 6 1 7 0.32 1.04 - -

3 C/Cnegcor 9 3 16 2.27 8.52 - -

4 C/Cnocor 10 2 12 14.92 76.02 - -

4 C/Cnegcor 15 5 35 69.70 385.93 - -

Table 6: Results min-max criteria (waiting allowed).

the no waiting classes. This is probably because the maximumpossible cost of a strategy is always an
integer value when using integer costs. Hence there will notbe so many different nondominated points,
even if many path-strategies may correspond to the same point.

4.7 Comparison to the time-adaptive case

Comparing the results for the a-priori case to previous results for the time-adaptive case [9, 11] allows us
to point out interesting differences. Here we restrict ourselves to expectation criteria, since for min-max
criteria the approximation found in [11] is usually rather week.

First of all, recall that the set of nondominated points has been found for all the instances considered.
This is in deep contrast to time-adaptive route choice, where not even anε-approximation withε = 1%
could be found for the same set of instances [11]. This resultmay be viewed as surprising, since finding
the best strategy in the single criterion case is easy (can bedone in linear time) while finding the best
path-strategy is NP-hard. A reasonable explanation of thisapparent paradox is that the solution space is
much more dense in the time-adaptive case, that is, the totalnumber of path-strategies is much lower than
the total number of strategies. Therefore the ranking procedure used in the second phase does not have to
rank as many solutions.

In order to get a deeper insight in this issue, we made plots comparing the nondominated set for the
a priori case with an approximation of the nondominated set for the time-adaptive case, obtained using
the algorithms from [11]. Figure 5 shows two instances on a 5×8 grid with uncorrelated costs (left) and
negatively correlated costs (right).

First, as noted above, negatively correlated costs producemore nondominated points, spread in a wider
area; this situation arises for both a priori and adaptive routing. Second, in some cases the a priori non-
dominated set may contain points close to the time-adaptivenondominated set. Hence solutions found
when a priori routing must be adopted, due e.g. to outside regulations, may still be as good as those found
without this regulation. However, in other cases costs might be substantially higher, see e.g. the left plot in
Figure 5.

Finally, in general for our instances there are large variations in the values ofε for which the a priori
nondominated set turns out toε-dominate the time-adaptive nondominated set. On average,we haveε =
0.1, but the minimumε value found was 0.03 and the maximum 0.25.

5 Conclusions

In this paper we have considered bicriterion a priori route choice in stochastic time-dependent networks. A
new algorithm for solving this problem was presented. It is based on the two-phase approach, and exploits
a recently developed algorithm for ranking path-strategies. Furthermore, if waiting in the nodes inG is
allowed, our algorithm can compute an approximation of the nondominated set.

Numerical results were obtained on reasonably hard test instances, considering both min-max and
expectation criteria. The reported results are encouraging. If no waiting is allowed (“true” a priori route
choice) we were able to solve all instances completely. Thisis in contrast to time-adaptive route choice,
and is primarily due to the fact that the total number of path-strategies is much lower than the total number
of strategies. For the waiting case, we obtained a reasonable approximation of the true nondominated set.
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Figure 5: The nondominated sets for an uncorrelated (left) and negatively correlated (right) test instance.
Both criteria are minimizing expected cost.

Due to the effectiveness of our algorithm, we were able to compare the nondominated set under a
priori route choice to the approximations of the nondominated set obtained under time-adaptive route
choice. Based on the set of instances considered here, we mayconclude that nondominated points un-
der a priori routing often are equal or close to nondominatedpoints found under time-adaptive routing, but
time-adaptive routing may result in much better solutions in some cases.
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A A hypergraph model for STD networks

As shown in Pretolani [14] atime-expanded hypergraphH = (V ,E ) can be used to model an STD net-
work. We shall introduce the directed hypergraph model by means of Example 1, but first a few definitions
are needed.

A directed hypergraphis a pairH = (V ,E ), whereV = (v1, ...,vn) is the set ofnodes, andE =
(e1, ...,em) is the set ofhyperarcs. A hyperarce∈ E is a paire= (T(e),h(e)), whereT(e) ⊂ V denotes
the set oftail nodes andh(e) ∈ V \T(e) denotes theheadnode. Note that a hyperarc has exactly one
node in the head, and possibly several nodes in the tail. A hypergraphH̃ = (Ṽ , Ẽ ) is asubhypergraphof
H = (V ,E ), if Ṽ ⊆ V andẼ ⊆ E . A subhypergraph isproper if at least one of the inclusions is strict.

Definition 4 An s-t hyperpathπ = (Vπ ,Eπ) from sources to terminalt, is a subhypergraph ofH satisfying
that, if t = s, thenEπ = ∅; otherwise theq ≥ 1 hyperarcs inEπ can be ordered in a sequence(e1, ...,eq)
such that

1. t = h(eq).

2. T(ei) ⊆ {s}∪{h(e1), ...,h(ei−1)}, ∀ei ∈ Eπ .

3. No proper subhypergraph ofπ is ans-t hyperpath.

Condition 3 implies that, for eachu∈Vπ \{s}, there exists a unique hyperarce∈ Eπ , such thath(e) = u.
We denote hyperarce as thepredecessorof u in π. An immediate consequence of this is that a hyperpath
π can be described by apredecessor function p: Vπ → Eπ ; for eachu∈ Vπ . p(u) is the unique hyperarc in
π which has nodeu as the head.

Example 1 (continued) The time expanded hypergraphH = (V ,E ) for the STD network given in
Example 1 is shown in Figure 6. It represents the relationships between leaving time and arrival time.
The setV contains one nodeut for each pair(u, t), t ∈ L(u) and a source nodes. For each(u,v) ∈ A and
t ∈ L(u,v) a hyperarceuv(t) = ({vti : ti ∈ I(u,v, t)},ut) is defined, i.e. each column in Table 1 defines a
hyperarc inH . Assigned to each hyperarceuv(t) are the corresponding costsci(u,v, t), i = 1,2 given in
Table 1. Finally, a dummy arced(t) = ({s},dt) is defined for eacht ∈ L(d) with zero costs.
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Figure 6: The time-expanded hypergraphH .

It is not hard to recognize that there is a one to one correspondence between a strategy and a predecessor
function p on the time-expanded hypergraphH , i.e. choosingp(ut) = euv(t) is equivalent to choosing
S(u, t) = (u,v). In particular, an(o,0) strategy can be represented by a hyperpath from nodes to nodeo0

in the time-expanded hypergraphH , and vice-versa.

Property 1 There is a one-to-one correspondence between(o,0) strategies and s-o0 hyperpaths inH .

Pretolani [14] showed that the weightW(S) of a strategySunder MEC, MEC, MMC or MMT corre-
sponds to the weight of the correspondings-o0 hyperpath inH using suitable hyperarc weights. Therefore,
the best strategy can be found by finding the minimum weight hyperpath, i.e., by solving ashortest hyper-
path problem inH . Efficient procedures for finding shortest hyperpaths are defined in Gallo, Longo,
Pallottino, and Nguyen [5].

Example 1 (continued) Due to Proposition 1 strategies can be illustrated using hyperpaths in the time-
expanded hypergraphH . All the possible strategies are illustrated in figures 7 and8 together with the
subgraph ofG that may be travelled using the specific strategy.

Under a priori route choice only strategies corresponding to a loopless path are allowed, i.e. we consider
the solution of (3). The set of possible path-strategies areshown in Figure 7.

Under time-adaptive route choice strategies deviating from a path are also allowed, i.e. we consider
the solution of (3) with the constraint replaced withS∈ S instead. The set of possible strategies not
corresponding to a path is shown in Figure 8.

Recall that the cost of the strategies described in figures 7 and 8 are given in Section 2, assuming that
both criteria are MEC with costs as given in Table 1. For more details on how to calculate the costs of a
strategy using its hyperpath representation see Nielsen [9].
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Figure 7: Possible strategies under a priori route choice (path-strategies).
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Figure 8: Time-adaptive strategies not corresponding to a path.
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