
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2005 / 2 2005 / 12 / 19

A note on ranking assignments using
reoptimization

Christian Roed Pedersen, Lars Relund Nielsen
and Kim Allan Andersen

ISSN 1600-8987

Department of Mathematical Sciences Building 530, Ny Munkegade
Telephone: +45 8942 1111 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk

A note on ranking assignments using
reoptimization

Christian Roed Pedersen∗

Department of Operations Research

University of Aarhus

Ny Munkegade, Building 1530

8000 Aarhus C

Denmark

Lars Relund Nielsen Kim Allan Andersen
Department of Accounting, Finance and Logistics

Aarhus School of Business

Fuglesangs Allé 4

DK-8210 Aarhus V

Denmark

December 19, 2005

Abstract

We consider the problem of ranking assignments according to cost in the
classical linear assignment problem. An algorithm partitioning the set of
possible assignments, as suggested by Murty, is presented where, for each
partition, the optimal assignment is calculated using a new reoptimization
technique. Computational results for the new algorithm are presented.

Keywords: Linear Assignment Problem, Ranking, K best solutions.

1 Introduction

The linear assignment problem (AP) is a well-known problem and may be considered
as the problem of assigning n workers to n jobs. Each worker must be assigned to
exactly one job. The objective is to minimize total cost.

In an annotated bibliography authored by Dell’Amico and Martello [4], more
than 100 papers on the problem are mentioned. Kuhn [9, 10] suggested the first
polynomial method for the solution of AP, called the Hungarian method with O(n4)

∗Corresponding author, e-mail: roed@imf.au.dk.

1

complexity. Since 1955 several other algorithms for AP have been developed. Some
of the most efficient algorithms are the class of successive shortest path algorithms1

with an O(n3) complexity, see e.g. Jonker and Volgenant [8], Tomizawa [17]. An
excellent survey is given by Dell’Amico and Toth [5] including comparative tests of
several implementations of different AP algorithms.

As for other optimization problems, the assignment problem can be generalized
to ranking the first K assignments in nondecreasing order of cost. Applications of
ranking assignments are numerous. First, ranking assignments can be used to gener-
ate near optimal solutions which may be better from a practical point of view when
presented to the decision maker. Second, applications of AP may include constraints
which are hard to specify formally or hard to optimize. Here an optimal assignment
can be found by enumerating suboptimal assignments until an assignment satisfying
the hard constraints is found. Last but not least, ranking assignments appear as
a subproblem within algorithms for solving the bicriterion assignment problem and
related extensions, see for example Pedersen, Nielsen, and Andersen [15].

Several algorithms for ranking assignments have been suggested. They may be
classified using two identifiers: A specific branching technique is used to partition
the set of possible assignments into smaller subsets, and a solution technique needed
for ranking the assignments is used to find an assignment for each subset.

Murty [12] suggested a branching technique where the set of possible assignments
is partitioned into at most n− 1 disjoint subsets for each additional ranking made.
The Hungarian algorithm was used to find the best assignment for each subset
resulting in an O(Kn5) complexity. However, applying e.g. a successive shortest
path algorithm may improve the overall complexity toO(Kn4). Later, the branching
technique in [12] was applied in the more general framework of finding the K best
solutions to a discrete optimization problem by Lawler [11].

Hamacher and Queyranne [7] presented an alternative general framework for
ranking solutions of combinatorial problems, later specialized for bipartite matchings
by Chegireddy and Hamacher [3]. There, an alternative branching technique is
suggested, partitioning the set into at most two subsets for each additional ranking.
For each subset, the second best assignment has to be calculated. Different solution
techniques are suggested. One consists of identifying the second best assignment by
a shortest cycle determination in an auxiliary network. The shortest cycle can be
found by solving at most n shortest paths problems resulting in an overall O(Kn3)
time complexity.

Recently, Pascoal, Captivo, and Cĺımaco [14] presented a ranking algorithm with
the same branching technique as in [12]. However, by considering the subsets in
reverse order when applying their solution technique, they are able to reoptimize
the solution from the previous subset considered and find the best assignment by
solving a single shortest path problem yielding the same running time as in [3].

The solution techniques in all the above ranking algorithms use shortest path
methods to find the best assignment for each subset. Methods based on shortest
paths are dual algorithms. Dual feasibility exists and primal feasibility has to be
reached. Tomizawa [17] noted that the original costs in the assignment may be
replaced with the reduced costs when using successive shortest path algorithms.

1Also known as shortest augmenting paths algorithms.

2

Since the reduced costs are non-negative, the shortest path may be found using the
algorithm of Dijkstra [6].

In spite of the connection between the dual variables and successive shortest
path algorithms no one has considered updating the dual variables of the previous
solution before the shortest path algorithm is applied to a subset. In this paper,
we present an algorithm for ranking assignments, using the branching technique of
Murty [12]. For each subset, a solution technique is used where – by updating the
dual variables – only a single shortest path problem has to be solved. Hence, the
overall time complexity of the proposed method is O(Kn3).

After a short overview over the dual properties in AP and successive shortest
path algorithms in Section 2, we present the new ranking algorithm in Section 3. In
Section 4, computational results are given, and conclusions are drawn in Section 5.

2 Preliminaries

Let G = (U ∪ V, E) be a bipartite network with node sets U = V = {1, . . . , n}
and edge set E = {(i, j) : i ∈ U, j ∈ V } with cost cij on each edge (i, j). Note that
non-existing edges can be represented as arcs having infinity cost. The assignment
problem consists in assigning – with minimum total cost – each node in U to a node
in V .

Due to its totally unimodular constraint matrix AP can be formulated as the
continuous linear program

min
n∑

i=1

n∑
j=1

cijxij

st.
n∑

j=1

xij = 1, i = 1, . . . , n

n∑
i=1

xij = 1, j = 1, . . . , n

xij ≥ 0 i, j = 1, . . . , n

(1)

In an optimal solution to (1), xij = 1 if node i is assigned node j, and zero otherwise.
A feasible solution x to (1) is called an assignment. Using the network formula-
tion, an assignment may alternatively be written as a = {(1, j1) , . . . , (n, jn)} where
(i, j) ∈ a if and only if xij = 1. A partial primal solution is a solution in which less
than n variables is assigned value one, and the constraints in (1) are satisfied with
a ≤ sign instead of equality. Note that a partial primal solution corresponds to a
partial assignment a = {(i1, j1) , . . . , (iq, jq)}.

By associating dual variables ui and vj with the constraints above, the corre-
sponding dual problem is

max
n∑

i=1

ui +
n∑

j=1

vj

st. ui + vj ≤ cij, i, j = 1, . . . , n

(2)

3

1 procedure SuccSP()
2 (a, u, v) :=Preprocess([cij]);
3 while (|a| < n) do
4 G′ :=BuildAuxNetwork(a, u, v);
5 p :=FindAugmentPath(G′);
6 a :=AugmentSolution(p);
7 (v, u) :=AdjustDualSolution(p);
8 end while
9 end procedure

Figure 1: The successive shortest path algorithm

Given the reduced costs c̄ij = cij − ui − vj of AP, the complementary slackness
conditions become

xij c̄ij = 0, i, j = 1, . . . , n (3)

Successive shortest path algorithms for AP are dual methods. Dual feasibility
exists and the optimal solution is built step-by-step by iteratively adding assignments
to a current partial primal solution.

A successive shortest path algorithm consists of two phases. In phase one, the
cost matrix [cij] is preprocessed and a partial primal solution (or partial assignment)
and a dual feasible solution are determined which satisfy the complementary slack-
ness conditions (3). In phase two, the partial primal solution is augmented by adding
one row/column assignment at a time, until the solution becomes feasible. At each
step in phase two, the dual solution is updated so that complementary slackness still
holds. Hence, at the end of the second phase, the current primal and dual solutions
are optimal.

A pseudo-code for the successive shortest path algorithm is given in Figure 1.
Phase one is executed by function Preprocess which returns a partial assignment a
and a dual feasible solution (u, v) satisfying (3). Phase two is executed on lines 3–8.

If |a| 6= n then all nodes in U have not been assigned to a node in V and function
BuildAuxNetwork builds an auxiliary directed network G′ constructed from G. In the
following, let i denote a node in U and j a node in V . G′ = (V ′, A′) is defined as
follows:

V ′ = {s} ∪ U ∪ V, A′ = A′
s ∪ A′

d ∪ A′
r

A′
r = {(j, i) : (i, j) ∈ a}

A′
d = {(i, j) : (i, j) /∈ a}

A′
s = {(s, i) : (i, j) /∈ a, ∀j = 1, . . . , n}

The set A′
d is the set of directed arcs, A′

r is the set of reverse arcs and A′
s is the

set of auxiliary arcs. The arcs in A′
s are assigned a zero cost. Each arc (i, j) in A′

d

is assigned reduced cost c̄ij and each arc (j, i) in A′
r is assigned cost −c̄ij = 0 due

to (3).
It is easy to see that any directed path in G′ starting from s contains an arc

in A′
d and an arc in A′

r, alternatingly. Such paths are called alternating paths. If

4

the directed path p terminates with an unassigned node in V , then it is called an
augmenting path. Furthermore, the following lemma is well-known.

Lemma 1. Given partial assignment a, network G′ and an augmenting path p in
G′, set

ā = (p ∩ A′
d) ∪ (a r (p ∩ A′

r)) (4)

Then |ā| = |a|+ 1.

That is, by removing assignments in a corresponding to the reverse arcs in p
and adding the directed arcs in p to a, the number of assignments in the (partial)
assignment ā has increased by one. Hence, finding the shortest augmenting path
in G′ is equivalent to finding a minimum cost (partial) assignment ā with |a| + 1
assignments. As a result, AP can be solved by identifying at most n successive
shortest augmenting paths. Since the reduced costs are non-negative, each path can
be determined through Dijkstra’s algorithm running in O(n2) time. Therefore, the
overall computational complexity of a successive shortest path algorithm is O(n3).

In procedure SuccSP the shortest augmenting path p is found using function
FindAugmentPath and next the (partial) assignment a is updated as in (4) using
function AugmentSolution. Finally, the dual variables are updated using function
AdjustDualSolution such that (3) holds.

For an efficient implementation of procedure succSP see for instance Jonker and
Volgenant [8]. Here extensive preprocessing is used in Preprocess and network G′ is
maintained implicitly in the data structures. Function FindAugmentPath calculates
the augmented path using a specialized version of Dijkstra and the new solution
is found in AugmentSolution by traversing the path. Finally, the dual solution is
adjusted by traversing the path. For further details see [8].

3 Ranking assignments

We consider the problem of ranking the first K assignments in nondecreasing order
of cost, i.e. finding the K best assignments a1, . . . , aK satisfying

1. c (ai) ≤ c (ai+1) , i = 1, . . . , K.

2. c (aK) ≤ c (a) , ∀a /∈ {a1, . . . , aK}.

where c (a) denotes the cost of assignment a.
An algorithm for ranking assignments in general uses a specific branching tech-

nique to partition the set of possible assignments into smaller subsets and uses a
solution technique to find an assignment for each subset needed for ranking the as-
signments. Let A denote the set of possible assignments. In this paper we use the
branching technique described in [12] where the set A is partitioned into smaller
subsets as follows. Given the optimal assignment a1 = {(1, j1) , . . . , (n, jn)}, the set
Ar {a1} is partitioned into n− 1 disjoint subsets Ai, i = 1, . . . , n− 1, where

Ai = {a : {(1, j1) , . . . , (i− 1, ji−1)} ∈ a, (i, ji) /∈ a} , i = 1, . . . , n− 1.

5

1 procedure K-AP()
2 a :=SuccSP();
3 Φ := Φ ∪ {(a,A)};
4 for (k := 1 to K) do
5 (â, Â) := arg min{c(ā) : (ā, Ā) ∈ Φ};
6 if ((â, Â) =null) then stop; else output ak := â;
7 Φ := Φ r {(â, Â)};
8 for (i:=1 to n-1) do
9 âi :=FindOptimal(Âi);

10 if (c(âi) < ∞) then Φ := Φ ∪ {(âi, Âi)};
11 end for
12 end for
13 end procedure

Figure 2: The ranking assignments algorithm.

We say that {(1, j1), . . . , (i−1, ji−1)} is forced to be in all assignments belonging
to Ai. Clearly, the second best assignment a2 can be found by using a solution
technique to find the optimal assignment in the sets Ai, i = 1, . . . , n− 1. Moreover,
the branching technique can be applied recursively to subsets Ai ⊂ A.

The pseudo code for the ranking algorithm, named K-AP, is shown in Figure 2.
The algorithm implicitly maintains a candidate set Φ of pairs (ā, Ā), where ā is
the optimal assignment in (sub)set Ā. Assuming that the first k − 1 assignments
a1, . . . , ak−1 have been found, the current candidate set represents the partition of
Ar {a1, . . . , ak−1}. Assignment ak is then found by selecting and removing the pair
(â, Â) containing the assignment with minimum cost in the candidate set (lines 5–7).
Next, the branching technique is used to partition Â, possibly obtaining new pairs
that are added to the candidate set (lines 8–11). Note that, in practice, we do not
have to consider all subsets in the partition of Â. Consider the case where (i, ji) was
forced to be contained in an assignment belonging to Â in some previous partition.
Hence Âi = ∅, since (i, ji) must not be contained in an assignment in Âi. In this
case, we may assume that Âi is not generated by the algorithm.

Function FindOptimal represents the solution technique applied for finding the
optimal assignment in the given subset. Consider that partition Â has optimal as-
signment â = {(1, j1) , . . . , (n, jn)} and assume that all assignments in Â cannot
contain (l1, t1) , . . . , (lq, tq) (previous partitions). Recall that (1, j1) , . . . , (i− 1, ji−1)

are forced to be in all assignments belonging to subset Âi (⊆ Â). Therefore, as-
suming Âi is nonempty, the optimal assignment can be found solving an AP of size
n− (i− 1) where

1. Rows {1, . . . , i− 1} and columns {j1, . . . , ji−1} have been removed from the
reduced cost matrix [c̄ij], i.e. we do not consider these indexes in (1) and (2).

2. The reduced cost in cells (i, ji) and (l1, t1) , . . . , (lq, tq) is set to infinity.

Given a nonempty subset Âi, let AP (Âi) denote the AP defined as above by
subset Âi. If the successive shortest path algorithm, SuccSP, is used as the solution

6

technique to find the optimal assignment to AP (Âi), i = 1, . . . , n − 1, the overall
complexity of K-AP is O(Kn4). However, the optimal assignment to AP (Âi) can be
found using reoptimization – thereby reducing the complexity of the algorithm.

Lemma 2. Let â denote the optimal assignment in subset Â found by solving AP (Â)
and let (ûi, v̂j) denote the corresponding dual values. Define

a (i) = â r {(i, ji)} (5)

and dual variables

ui = ûi + minj∈{1,...,n}r{j1,...,ji} {cij − ûi − v̂j}
ur = ûr, r ∈ {i + 1, . . . , n}
vji

= v̂ji
+ minr∈{i+1,...,n} {crji

− ûr − v̂ji
}

vj = v̂j, j ∈ {1, . . . , n}r {j1, . . . , ji}

(6)

Then a(i) is a partial assignment of size n− 1 and (u, v) is a dual feasible solution
to AP (Âi), which satisfy the complementary slackness conditions (3).

Proof. Given (û, v̂), let ĉ denote the corresponding non-negative reduced costs. Since
ur = ûr, r ∈ {i + 1, . . . , n}, and vj = v̂j, j ∈ {1, . . . , n} r {j1, . . . , ji}, the reduced

cost matrix to AP (Âi) using (u, v) from (6) becomes

ji ji+1 · · · jn

i ∞ ciji+1
− ui − v̂ji+1

· · · cijn − ui − v̂jn

i + 1 ci+1ji
− ûi+1 − vji

ĉi+1ji+1
· · · ĉi+1jn

...
...

...
. . .

...

n cnji
− ûn − vji

ĉnji+1
· · · ĉnjn

That is, only the reduced costs in column ji and row i have changed. Due to (6) the
reduced costs in row i satisfy

cij − ui − vj ≥ cij − (ûi + (cij − ûi − v̂j))− v̂j = 0, ∀j ∈ {1, . . . , n}r {j1, . . . , ji}

Similar results hold for the reduced costs in column ji. Hence (u, v) is a dual feasible
solution to AP (Âi). Moreover, since the reduced costs corresponding to the elements
in assignment a (i) have not changed, the complementary slackness conditions (3)
still holds.

Using Lemma 2, the optimal assignment in Âi can be found as follows. Simply
consider the partial assignment (5), update the dual variables according to (6) and
find the shortest augmenting path in the corresponding auxiliary network. Further-
more, due to Lemma 1 and the fact that the length of the partial assignment (5) is
n− 1, we have the following result.

Theorem 1. Using partial assignment (5) and dual values (6), the optimal assign-
ment in subset Âi can be found by solving a single shortest path problem.

7

1 procedure FindOptimal(Âi)
2 a :=CreatePartial();
3 (u, v) :=ModifyDual();
4 G′ :=BuildAuxNetwork(a, u, v);
5 p :=FindAugmentPath(G′);
6 a :=AugmentSolution(p);
7 end procedure

Figure 3: Finding optimal solution for a subset.

Note that, Theorem 1 does not hold if the Hungarian algorithm was used instead.
In this case examples can be constructed where more than one iteration is needed.

A pseudo-code for the reoptimization algorithm is given in Figure 3. Here first
the partial assignment (5) and the dual values (6) are calculated. Next, the auxil-
iary network is built. Finally, the shortest augmenting path and the corresponding
solution are found.

Using Dijkstra to find the shortest path function FindOptimal, runs in O(n2) and
hence we obtain the overall complexity of K-AP.

Theorem 2. The K best assignments using procedure K-AP can be found in O(Kn3)
time.

4 Computational results

To validate the effectiveness of the reoptimization based solution procedure, we
implemented two versions of the ranking assignment algorithm K-AP.

The first algorithm, K-AP_SuccSP, is a straightforward implementation where
the successive shortest path algorithm, SuccSP, is used as function FindOptimal

(line 9 in K-AP) to find the optimal assignment in each subset Ai (or to problem
AP (Âi)). For each problem AP (Âi), we use the successive shortest path algorithm
implementation of Jonker and Volgenant [8] slightly modified, though, such that we
can solve problems of varying size.

The second algorithm, K-AP_Reopt, uses the reoptimization solution technique
given in Figure 3. Here FindAugmentPath finds the shortest augmenting path using
the implementation of Jonker and Volgenant [8].

In both algorithms, the candidate set Φ of pairs (ā, Ā) is maintained implicitly
using a binary tree as described in Nielsen [13, p137], and a 4-heap is used to sort
the costs in nondecreasing order, see Tarjan [16].

The algorithms were implemented in C++ and compiled with the GNU C++
compiler using optimize option -O. Moreover, all computations were performed on
an Intel Xeon 2.67 GHz computer with 6 GB RAM using operating system Red Hat
Enterprise Linux version 4.0.

To yield consistency in literature, we compared the two algorithms on the in-
stances provided in Pascoal et al. [14] plus a few larger instances not reported upon
in that paper. We consider two separate groups of instances, where, only for the

8

ave CPU
size K-AP_SuccSP K-AP_Reopt ratio

50 0.30 0.07 4.54
100 6.64 0.77 8.68
150 30.69 2.97 10.34
200 87.21 7.60 11.48
250 176.19 14.33 12.30
300 299.95 23.06 13.01

Table 1: Average CPU times for K=100, Pascoal et al. [14] instances.

second group, repetitions are made for a given problem size. Therefore, the main
part of the results presented in this section are on the second group of test instances.

The first group of test instances consists of assignment problems on complete bi-
partite networks with n ∈ {100, 200, . . . , 800} and cost randomly drawn in {1, . . . , 100},
taken from the OR-library2 and first used in Beasley [1]. Only one instance of each
problem size is solved, and the K = 100 best assignments are ranked. In Figure 4 we
display the CPU time (in seconds) against K for the individual problem sizes. For
all instances, the reoptimization algorithm shows significant superiority to the algo-
rithm without reoptimization. Furthermore, for K-AP_Reopt, the CPU time seems
to be linear dependent on the number of assignments to rank.

For the second group of test instances, the focus is on ranking the K = 100
best assignments for somewhat smaller complete bipartite networks of size n ∈
{50, 100, . . . , 300} and cost randomly drawn in {0, . . . , 1000}. For each problem
size, ten instances generated with different seeds were solved. These test problems
were kindly provided to us by the authors Pascoal et al. [14]. Figure 5 shows the
results for these problem classes and shows average CPU time to be linear dependent
on K for both algorithms. Again, the superiority of K-AP_Reopt is confirmed by
Figure 5 and can also be seen by numerical comparison in Table 1. Here, for each
possible problem size, we display the average CPU times for ranking the 100 best
assignments for both algorithms and the ratio between these CPU times. Since this
ratio is increasing in problem size, it shows that the reoptimization routine becomes
increasingly more valuable as the problem size increases.

For the second group of instances, we also plot the CPU times against size for
two specific K-values (K = 50 and K = 100), (see Figure 6). Both algorithms show
more than a linear growth in CPU time with increasing size. However, it is less than
exponential growth, as can be seen in Figure 7.

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html (see also [2]).

9

K

se
co

nd
s

0 20 40 60 80 100

0
1

2
3

4
5

100

0 20 40 60 80 100

0
20

40
60

200

0 20 40 60 80 100

0
50

10
0

15
0

300

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0

400

0 20 40 60 80 100

0
50

0
10

00

500

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00
12

00

600

0 20 40 60 80 100

0
10

00
20

00
30

00

700

0 20 40 60 80 100

0
50

0
10

00
15

00

800

K−AP_Reopt
K−AP_SuccSP

Figure 4: CPU time against K for Beasley [1] instances n = 100, . . . , 800.

10

K

se
co

nd
s

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

50

0 20 40 60 80 100

0
2

4
6

8

100

0 20 40 60 80 100

0
10

20
30

40

150

0 20 40 60 80 100

0
20

40
60

80
10

0
200

0 20 40 60 80 100

0
50

10
0

15
0

20
0

250

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0

300

K−AP_Reopt
K−AP_SuccSP

Figure 5: Average CPU time against K for Pascoal et al. [14] instances n =
50, . . . , 300.

11

size

se
co

nd
s

50 100 150 200 250 300

0
50

10
0

15
0

20
0

50

50 100 150 200 250 300

0
10

0
20

0
30

0
40

0

100

K−AP_Reopt
K−AP_SuccSP

Figure 6: Average CPU time against size for Pascoal et al. [14] instances, K = 50
and 100.

size

Lo
g(

se
co

nd
s)

50 100 150 200 250 300

−
2

0
2

4

50

50 100 150 200 250 300

−
2

0
2

4
6

100

K−AP_Reopt
K−AP_SuccSP

Figure 7: Logarithm of average CPU time against size for Pascoal et al. [14] in-
stances, K = 50 and 100.

5 Conclusion

In this paper we have presented a new algorithm for ranking assignments using a
branching technique of Murty [12]. The algorithm utilizes reoptimization based on
easy updating of the dual variables in a successive shortest path procedure. To
validate the effectiveness of the new algorithm, we compared it to a straightforward
implementation where the successive shortest path algorithm is used to find the
optimal assignment for each subset. Numerical tests on instances previously used in
literature were presented.

The new algorithm was shown to have the best known theoretical time com-

12

plexity and the numerical tests showed that in practice it performs better than the
straightforward implementation. Furthermore, it was concluded that reoptimization
becomes exceedingly vital when the considered problem size increases.

References

[1] J.E. Beasley. Linear programming on cray supercomputers. Journal of the
Operations Research Society, 41(2):133–139, 1990.

[2] J.E. Beasley. Or-library: distributing test problems by electronic mail. Journal
of the Operational Research Society, 41(2):1069–1072, 1990.

[3] C.R. Chegireddy and H.W. Hamacher. Algorithms for finding k-best perfect
matchings. Discrete Applied Mathematics, 18:155–165, 1987.

[4] M. Dell’Amico and S. Martello. Linear assignment. In M. Dell’Amico, F. Maf-
fioli, and S. Martello, editors, Annotated Bibliographies in Combinatorial Opti-
mization, pages 355–371. Wiley, Chichester, 1997.

[5] M. Dell’Amico and P. Toth. Algorithms and codes for dense assignment prob-
lems: the state of the art. Discrete Appl. Math., 100(1-2):17–48, 2000. doi:
10.1016/S0166-218X(99)00172-9.

[6] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[7] H.W. Hamacher and M. Queyranne. k-best solutions to combinatorial opti-
mization problems. Annals of Operations Research, 6(4):123–143, 1985.

[8] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense
and sparse linear assignment problems. Computing, 38:325–340, 1987.

[9] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quart., 2:83–97, 1955.

[10] H.W. Kuhn. Variants of the hungarian method for the assignment problem.
Naval Research Logistics Quart., 3:253–258, 1956.

[11] E.L. Lawler. A procedure for computing the K best solutions to discrete op-
timization problems and its application to the shortest path. Management
Science, 18(7):401–405, March 1972.

[12] K.G Murty. An algorithm for ranking all the assignments in order of increasing
cost. Operations Research, 16:682–687, 1968.

[13] L.R. Nielsen. Route Choice in Stochastic Time-Dependent Networks. PhD
thesis, Department of Operations Research, University of Aarhus, 2004.

13

[14] M. Pascoal, M. Eugénia Captivo, and J. Cĺımaco. A note on a new variant of
Murty’s ranking assignments algorithm. 4OR: Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1(3):243–255, 2003. doi: 10.
1007/s10288-003-0021-7.

[15] C.R. Pedersen, L.R. Nielsen, and K.A. Andersen. On the bicriterion multi
modal assignment problem. Working Paper No. 2005/3, Department of Oper-
ations Research, University of Aarhus, 2005.

[16] R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-
NSF Conference Series. SIAM, 1983.

[17] N. Tomizawa. On some techniques useful for the solution of transportation
problems. Networks, 1:173–194, 1971.

14

